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We analytically determine the quasinormal mode (QNM) frequencies of a black hole with quadrupole
moment in the eikonal limit using the light-ring method. The generalized black holes that are discussed in
this work possess arbitrary quadrupole and higher mass moments in addition to mass and angular
momentum. Static collapsed configurations with mass and quadrupole moment are treated in detail and the
QNM frequencies associated with two such configurations are evaluated to linear order in the quadrupole
moment. Furthermore, we touch upon the treatment of rotating systems. In particular, the generalized black
hole that we consider for our extensive QNM calculations is a completely collapsed configuration whose
exterior gravitational field can be described by the Hartle-Thorne spacetime [Astrophys. J. 153, 807-834
(1968)]. This collapsed system as well as its QNMs is characterized by massM, quadrupole momentQ and
angular momentum J, where the latter two parameters are treated to first and second orders of
approximation, respectively. When the quadrupole moment is set equal to the relativistic quadrupole
moment of the corresponding Kerr black hole, J2=ðMc2Þ, the Hartle-Thorne QNMs reduce to those of the
Kerr black hole to second order in angular momentum J. Using ringdown frequencies, one cannot
observationally distinguish a generalized Hartle-Thorne black hole with arbitrary quadrupole moment from
a Kerr black hole provided the dimensionless parameter given by jQMc2 − J2jc2=ðG2M4Þ is sufficiently
small compared to unity.
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I. INTRODUCTION

To date, ten detections of gravitational waves have been
interpreted in terms of binary black hole mergers [1–7]. The
reported identifications are based on the gravitational
ringdown of the final collapsed configuration as it settles
into a relatively quiescent state. Future observations of
gravitational waves are expected to probe the complete
gravitational collapse of matter. Black holes are Ricci-flat
solutions of the gravitational field equations in general
relativity that represent the complete gravitational collapse
of matter to singular states, where such singularities are
hidden from the outside world via the existence of regular
event horizons [8]. However, more general collapsed
configurations are possible within the classical framework
of general relativity.
Consider the complete gravitational collapse of an

astronomical system in accordance with classical general
relativity. We expect that the final state of collapse is
characterized by a set of exterior multipole moments of the
system. Among such final states, isolated black holes form

a very special stationary axisymmetric subclass in which
the intrinsic Newtonian quadrupole moments as well as the
higher nonrelativistic moments of the original systems have
all been radiated away in the collapse process. In standard
general relativity, a black hole final state is given in general
by the charged Kerr spacetime characterized by its massM,
electric charge eBH and angular momentum J. The exterior
Kerr spacetime does have a relativistic quadrupole moment
given by J2=ðMc2Þ, which vanishes in the Newtonian
limit (c → ∞).
The remaining possible final states would have a more

complex structure in comparison with black holes. Indeed,
black hole uniqueness theorems imply that one should be
dealing with naked singularities in such cases, since the
resulting spacetime singularities would not be covered by
event horizons. The final states may contain all gravito-
electric and gravitomagnetic multipole moments. In the
space of such final states, black holes occupy a set of
measure zero. The temporal decay of higher moments
during the collapse process has been investigated within the
framework of linear perturbation theory by Price [9];
however, a general nonlinear treatment does not exist.
The formation of a regular event horizon has the advantage
that the exterior region satisfies the principle of causality.
To preserve this, Penrose has conjectured that singularities
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that would actually occur in nature must be black holes
(cosmic censorship conjecture). However, there is no
general proof of this conjecture and most singularities that
are theoretically encountered in general relativity are naked
singularities, such as the big bang singularity [10]. General
relativity breaks down at a spacetime singularity; therefore,
the actual state of gravitationally collapsed matter is at
present unknown.
In this paper,we consider the possibility that the collapsed

configurations involved in the gravitational wave observa-
tions might in fact be generalized black holes possessing
arbitrarymultipole moments. A class of Ricci-flat stationary
axisymmetric spacetimes that is a generalization of Kerr
spacetime with all multipole moments is described in the
next section. Is the theory associated with black hole
quasinormalmodes (QNMs) applicable to generalized black
holes? The corresponding perturbation equations do not
appear separable and it is not known whether such systems
can undergo regular quasinormal mode oscillations. We
address this issue in the present paper; moreover, in this first
treatment of the oscillations of such systems, we limit our
considerations to the simplest generalized collapsed con-
figuration, namely, a black hole of mass M possessing
angular momentum J and a classical quadrupolemomentQ.
To simplify matters even further, we treat the angular
momentum to second order and the quadrupole contribution
to first order. We study analytically the QNMs of this
configuration in the eikonal limit using the light-ring
method.
The plan of this paper is as follows. Generalized Kerr

spacetimes are briefly introduced in Sec. II. There is no
known uniqueness result associated with such gravitational
fields; indeed, there are other known classes of solutions of
this type. We study exact solutions representing collapsed
systems with mass and quadrupole moment in Sec. III for
the sake of simplicity. Further simplification occurs when
we focus on linearized quadrupolar perturbations of a
Schwarzschild black hole. In fact, two such solutions are
considered in some detail in Sec. IV; that is, we introduce
the SQ solution and discuss the static Hartle-Thorne (HT)
solution. The analytic light-ring method is described in
Sec. V and the QNM frequencies of the SQ spacetime and
the static HT spacetime are calculated in the eikonal limit
on the basis of the temporal decay of a congruence of
equatorial null rays away from the unstable light ring. It is
noteworthy that we find essentially the same QNM
frequencies. To include rotation in our treatment, we
choose the Hartle-Thorne solution due to its physical
significance. Section VI generalizes our result to the
QNM frequencies of the rotating Hartle-Thorne solution.
A discussion of our results is contained in Sec. VII. Some
calculations are relegated to the appendices. Throughout
this paper, Greek indices run from 0 to 3, while Latin
indices run from 1 to 3. The signature of the spacetime
metric is þ2 and units are chosen such that c ¼ G ¼ 1,
unless specified otherwise.

II. GENERALIZED KERR SPACETIMES

The static exterior gravitational field of a nonrotating
axisymmetric body was first described by Weyl in
1917 [11]. In terms of Weyl’s canonical (cylindrical)
coordinates ðt; ρ;ϕ; zÞ, the line element for this field can
be expressed as

ds2 ¼ −e2ψdt2 þ e−2ψ ½e2γðdρ2 þ dz2Þ þ ρ2dϕ2�; ð1Þ

where the metric functions ψ and γ are functions of ρ and z,
and

ψ ;ρρþ
1

ρ
ψ ;ρþψ ;zz ¼ 0; ð2Þ

γ;ρ ¼ ρðψ ;2ρ −ψ ;2z Þ; γ;z¼ 2ρψ ;ρ ψ ;z : ð3Þ

Here, a comma denotes partial differentiation, so that
ψ ;ρ≔ ∂ψ=∂ρ. Equation (2) is the integrability condition
for the relations in Eq. (3); that is, γ;ρz ¼ γ;zρ, once ψ is a
solution of Eq. (2). Moreover, it is a remarkable fact that
Eq. (2) is Laplace’s equation in cylindrical coordinates; that
is, Eq. (2) is equivalent to ∇2ψ ¼ 0 and ψ is therefore a
harmonic function. It is natural to associate ψ with the
exterior Newtonian gravitational potential of a source,
which in general has nothing to do with the source of
the exterior general relativistic gravitational field. There are
two commuting hypersurface-orthogonal Killing vector
fields ∂t and ∂ϕ in this static axisymmetric system.
Furthermore, the symmetry axis is regular (i.e., elementary
flat) if γðρ; zÞ vanishes as ρ → 0.
If the gravitational potentials ψ and γ vanish, then metric

(1) represents Minkowski spacetime in standard spatial
cylindrical coordinate system. An important feature of the
field Eqs. (2)–(3) should be noted here: From a given
solution ðψ ; γÞ, one can generate a set of solutions
ðδψ ; δ2γÞ, where δ is a real nonzero parameter. This δ-
transformation, namely, ðψ ; γÞ ↦ ðδψ ; δ2γÞ, plays an
important role in the considerations of this paper. For
background material regarding various aspects of exact
solutions representing the exterior gravitational field of
static and stationary axisymmetric configurations in general
relativity, we refer to Refs. [12–14].
It proves useful to introduce prolate spheroidal coordi-

nates ðt; x; y;ϕÞ that are related to the Weyl canonical
coordinates ðt; ρ;ϕ; zÞ via

x ¼ 1

2σ
ðrþ þ r−Þ; y ¼ 1

2σ
ðrþ − r−Þ;

r2� ¼ ρ2 þ ðz� σÞ2; ð4Þ

where x ≥ 1, −1 ≤ y ≤ 1 and σ > 0 is a constant length.
Let us now transform Weyl’s metric to prolate spheroidal
coordinates ðt; x; y;ϕÞ. The result is
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ds2 ¼ −e2ψdt2 þ σ2e2γ−2ψ ðx2 − y2Þ
�

dx2

x2 − 1
þ dy2

1 − y2

�
þ σ2e−2ψðx2 − 1Þð1 − y2Þdϕ2; ð5Þ

where ψðx; yÞ and γðx; yÞ are now solutions of

½ðx2 − 1Þψ ;x �;x þ½ð1 − y2Þψ ;y �;y ¼ 0; ð6Þ

γ;x¼
1−y2

x2−y2
½xðx2−1Þψ ;2x−xð1−y2Þψ ;2y−2yðx2−1Þψ ;xψ ;y �;

ð7Þ

γ;y¼
x2−1

x2−y2
½yðx2−1Þψ ;2x−yð1−y2Þψ ;2yþ2xð1−y2Þψ ;xψ ;y �:

ð8Þ

In these equations, the requirement of asymptotic flatness
means that as x → ∞, we have ψðx; yÞ → 0 and
γðx; yÞ → 0. Moreover, elementary flatness requires that
γðx;�1Þ ¼ 0.
We now look for a solution of Laplace’s equation in

prolate spheroidal coordinates via separation of variables,
namely,

ψðx; yÞ ¼ AðxÞBðyÞ: ð9Þ

Substituting this ansatz in Eq. (6), we find the same
differential equation for both AðxÞ and BðyÞ; that is,

d
dx

�
ðx2 − 1Þ dA

dx

�
− λ0AðxÞ ¼ 0;

d
dy

�
ð1 − y2Þ dB

dy

�
þ λ0BðyÞ ¼ 0; ð10Þ

where λ0 is a constant, x ≥ 1 and jyj ≤ 1. We assume
henceforth that λ0 ¼ νðνþ 1Þ; then, AðxÞ and BðyÞ are both
solutions of the Legendre differential equation

d
dz

�
ð1 − z2Þ dFν

dz

�
þ νðνþ 1ÞFνðzÞ ¼ 0; ð11Þ

where FνðzÞ has regular singularities at z ¼ �1;∞. Let us
first consider the interval ½−1; 1�; for z ∈ ½−1; 1�, the
Legendre differential equation has two real linearly inde-
pendent solutions: PνðzÞ is the Legendre function of the
first kind and is regular for finite z, while QνðzÞ is a
Legendre function of the second kind and is singular at
z ¼ �1. If ν is an integer, ν ¼ n ≥ 0, PnðzÞ reduces to a
Legendre polynomial. The only solutions of the Legendre
differential equation with continuous first derivatives in
½−1; 1� are Legendre polynomials. However, if we allow Fn
to diverge at the end points of this interval, the solutions are

Legendre functions of the second kind QnðzÞ; see
Appendix A.
Let us now return to our solution of Laplace’s equation

via AðxÞ and BðyÞ, where x ≥ 1, while −1 ≤ y ≤ 1. We
choose for BðyÞ the Legendre polynomial PnðyÞ; however,
for AðxÞ, x ∈ ½1;∞Þ, we must consider the solutions of the
Legendre differential equation in the interval ½1;∞Þ. It
turns out that, as before, two real independent solutions
exist:PnðxÞ andQnðxÞ. It is clear that we can choosePnðxÞ
to be the same polynomial as Pn with x ∈ ½1;∞Þ. On the
other hand, we are particularly interested in the Legendre
functions of the second kind in this interval and these are
given by QnðxÞ, where QnðxÞ → 0 as x → ∞. These
Legendre functions of the second kind are discussed in
Appendix A. The solution of Laplace’s equation that we
adopt is therefore

ψðx; yÞ ¼
X∞
n¼0

ð−1Þnþ1qnQnðxÞPnðyÞ: ð12Þ

It is now possible to determine the explicit expression for
γðx; yÞ such that the resulting axisymmetric spacetime is
asymptotically flat and has a regular axis [15,16].
With σ ¼ Gm=c2 ≠ 0, where m is a mass parameter,

x ¼ −1þ r=m and y ¼ cos θ, Eq. (5) can be written as

ds2 ¼ −e2ψdt2 þ e2γ−2ψB

�
dr2

A
þ r2dθ2

�
þ e−2ψAr2sin2θdϕ2; ð13Þ

where A and B are given by

A ¼ 1 −
2m
r

; B ¼ 1 −
2m
r

þm2

r2
sin2θ: ð14Þ

If in Eq. (12) we let q0 ¼ 1 and qn ¼ 0 for n > 0, we find

ψ ¼ 1

2
ln

�
x − 1

xþ 1

�
¼ 1

2
lnA;

γ ¼ 1

2
ln

�
x2 − 1

x2 − y2

�
¼ 1

2
ln

�
A
B

�
; ð15Þ

so that Eq. (13) reduces to the standard Schwarzschild
metric with mass m in spherical polar coordinates ðr; θ;ϕÞ.
The quantities qn are proportional to the Newtonian
multipole moments; in fact, Eq. (12) corresponds to the
expansion of the exterior Newtonian potential in terms of
the multipole moments of the gravitational source. For
instance, if the constants qn vanish except for q0 ¼ 1 and
q2, one recovers the Erez-Rosen solution [15] for a
gravitational source with mass m and classical quadrupole
moment proportional to q2.
The Schwarzschild metric uniquely describes the exterior

vacuum field of a spherically symmetric distribution of
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matter. It follows that the static Schwarzschild solution
endowed with an infinite set of classical moments due to
axisymmetric deformations of a nonrotating spherical source
would be interesting for astrophysical applications, except
that astronomical sources generally rotate. As described in
detail in Refs. [13,17], powerful methods have been devel-
oped for generating solutions of Einstein’s field equations of
general relativity. Specifically, the HKX transformations
(due to Kinnersley, Hoenselaers and Xanthopoulos) could
be employed in the case under consideration here to generate
stationary axisymmetric vacuum solutions [18]. In this way,
one can find a generalization of the Kerr solution that
contains a full set of gravitoelectric (due to mass) and
gravitomagnetic (due to spin) multipole moments [19,20].
That is, as in Eq. (12), one can first work out the exterior
solution for a Schwarzschild source with a complete set of
gravitoelectric multipole moments by generalizing the Erez-
Rosen approach [16]; next, one can further generalize the
result by “rotating” it via HKX transformations to obtain a
significant generalization of Kerr spacetime. Moreover, it is
also possible to extend the resulting solution to include
electric charge and the Taub-NUT parameter [21–24]. These
stationary axisymmetric solutions are known as the gener-
alized Kerr spacetimes [25–27].
It is important to recognize that this class of generalized

Kerr spacetimes may not be unique, since nothing similar to
the black hole uniqueness theorems is known in this case.
For instance, another class of such solutions was inves-
tigated by Manko and Novikov [28–30]. The interconnec-
tion between these two classes of solutions is unknown. In
fact, there may be an infinite number of such distinct
stationary axisymmetric solutions representing generalized
black hole solutions, that is, different possible final states of
complete gravitational collapse with the same external
classical gravitoelectric and gravitomagnetic multipole
moments. This circumstance would seem to be in contrast
to Newtonian gravity, where the exterior gravitational
potential is uniquely given by the multipole moments of
the source. However, even in Newtonian gravity, the nature
of the source cannot be uniquely determined by the exterior
multipole moments. In connection with this degeneracy, let
us mention that the external Newtonian gravitational
potential of a compact spherical distribution of mass M
is simply −GM=r, regardless of the nature of the radial
density distribution inside the source. In fact, the source
could be replaced by a point mass. The same problem exists
in general relativity, since the exterior gravitational field of
a finite spherically symmetric distribution of matter is
uniquely described by the static Schwarzschild metric.
Thus an infinite degree of degeneracy exists regarding the
nature of the interior of the gravitational source.
The generalized black hole solutions of general relativity

theory may possibly be involved in generating the gravi-
tational wave signals that have been recently detected
[1–7]. On the other hand, perturbations of generalized

Kerr spacetimes have not been investigated. In particular, it
is not known whether such perturbed systems undergo a
ringdown at late times resulting in quasinormal mode
oscillations of the kind that have apparently been received
in recent observations [1–7]. This important issue will be
addressed in the next section.

III. SYSTEMS WITH MASS AND
QUADRUPOLE MOMENT

Static axisymmetric systems containing gravitoelectric
multipole moments have been the subject of numerous inve-
stigations. A recent review of two-parameter systems with
mass and quadrupole moment is contained in Ref. [31]. The
simplest such solution appears to be the δ-solution that is ob-
tained from the Schwarzschild solutionvia a δ-transformation.
We will limit our considerations in this section to two such
exact spacetimes, namely, those associatedwith the δ-solution
[32–35] and the Erez-Rosen solution [15].

A. δ-metric

Consider the δ-metric given by

ds2 ¼ −Aδdt2 þA−δ
�
A
B

�
δ2−1

dr2 þA1−δ
�
A
B

�
δ2−1

× r2dθ2 þ A1−δr2sin2θdϕ2; ð16Þ

which should agree for

δ ¼ 1þ q ð17Þ

with the q-metric given in Ref. [35]. Here, A and B are
defined in Eq. (14). For δ ¼ 1, we recover the
Schwarzschild metric. We assume throughout that δ > 0
or q > −1. A general discussion of the scalar polynomial
curvature invariants of the δ-metric is given in Appendix B
and the nature of the corresponding Weyl tensor is studied
in Appendix C. We have verified from our more general
results that the singularities of the δ-metric are just the ones
described in Ref. [35]. All the singularities occur for
r ≤ 2m; for r > 2m, the exterior field of the δ-metric is
singularity-free and static. Approaching the source from the
exterior region r > 2m, we encounter a naked singularity at
r ¼ 2m, which can be a null or a timelike hypersurface.
Other singularities exist interior to this hypersurface. The δ-
metric describes the exterior field of an oblate configuration
for q > 0 and a prolate configuration for −1 < q < 0.
In connection with volume element in the δ-metric, we

find

ffiffiffiffiffiffi
−g

p ¼ Aδ2−δ

Bδ2−1
r2 sin θ; ð18Þ

so that for θ ≠ 0; π and δ > 1, the volume element
corresponding to r ¼ 2m vanishes. Thus in the case of
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an oblate configuration, the naked singularity at r ¼ 2m is
essentially the “origin” for exterior observers.
The timelike Killing vector ∂t is such that ∂t · ∂t is −Aδ,

which vanishes at r ¼ 2m for δ > 0. Thus in general r ¼
2m is the static limit surface and, as expected, an infinite
redshift surface, which we theoretically demonstrate
towards the end of this subsection. Next, consider the r ¼
constant hypersurface and its normal vector N,

N · N ¼ grr ¼ A−δ2þδþ1Bδ2−1: ð19Þ

For θ ¼ 0; π, the r ¼ 2m hypersurface is always null.
Moreover, for θ ≠ 0; π, the hypersurface is again null for
δþ 1 > δ2 or 1−q>q2 for −ð ffiffiffi

5
p þ1Þ=2<q<ð ffiffiffi

5
p

−1Þ=2.
It follows that the hypersurface r ¼ 2m is always null for a
prolate configuration. For an oblate configuration, the r ¼
2m hypersurface is null provided q < ð ffiffiffi

5
p

− 1Þ=2; other-
wise, the r ¼ 2m hypersurface is timelike (except at
θ ¼ 0; π, where it is again null). This means that for all
prolate configurations as well as for oblate configurations
with q ≲ 0.6, the null singular hypersurface r ¼ 2m acts as
a one-way membrane, so that one can set up ingoing
boundary conditions for QNMs in this case just as in the
case of a black hole. It is therefore possible that with this
limitation on the magnitude of q for oblate systems, the
notion of quasinormal oscillations makes sense for such
configurations.

1. Physical interpretation of the δ-metric

Let us start with the δ-metric given by Eq. (16) and let
δ ¼ 1þ q, where we recover the Schwarzschild metric for
q ¼ 0; therefore, we may think of q as a deformation
parameter for the Schwarzschild black hole. For small
deformations, we may expand the metric to linear order in
q. The result can be expressed as

−gtt ¼
�
1 −

2m
r

��
1þ q ln

�
1 −

2m
r

��
; ð20Þ

grr ¼
1

1− 2m
r

�
1− q ln

�
1−

2m
r

�
− 2q ln

�
1þ m2sin2θ

r2 − 2mr

��
;

ð21Þ

gθθ ¼ r2
�
1 − q ln

�
1 −

2m
r

�
− 2q ln

�
1þ m2sin2θ

r2 − 2mr

��
;

ð22Þ

gϕϕ ¼ r2sin2θ

�
1 − q ln

�
1 −

2m
r

��
; ð23Þ

where we have used the fact that for Z > 0,

Zq ¼ eq lnZ ¼ 1þ q lnZ þOðq2Þ: ð24Þ

Let us consider next the coordinate transformations

r ¼ ρ

�
1 − q

m
ρ
− q

m2

ρ2

�
1þm

ρ
þ � � �

�
sin2ϑ

�
ð25Þ

and

θ ¼ ϑ − q
m2

ρ2

�
1þ 2

m
ρ
þ � � �

�
sinϑ cosϑ; ð26Þ

where we have neglected terms of order m4=ρ4.
Implementing these transformations in the metric coeffi-
cients and expanding terms such as lnð1 − 2m=ρÞ to order
m3=ρ3, namely,

ln

�
1 −

2m
ρ

�
¼ 1 − 2

m
ρ
− 2

m2

ρ2
−
8

3

m3

ρ3
− � � � ; ð27Þ

we find that the spacetime metric takes the form

ds2 ¼ −c2ð1þ 2ΦN=c2Þdt2 þ
dρ2

1þ 2ΦN=c2

þUðρ; ϑÞρ2ðdϑ2 þ sin2 ϑdϕ2Þ; ð28Þ

whereΦN is the Newtonian potential involving massM and
quadrupole moment Q. More precisely,

ΦN ¼ −
GM
ρ

þ GQ
ρ3

P2ðcosϑÞ;

Uðρ; ϑÞ ¼ 1 − 2
GQ
c2ρ3

P2ðcos ϑÞ; ð29Þ

where P2ðcos θÞ ¼ ð3 cos2 θ − 1Þ=2 is a Legendre poly-
nomial with P2ð�1Þ ¼ 1 along the symmetry axis and
P2ð0Þ ¼ −1=2 in the equatorial plane. Moreover, we have

M ¼ ð1þ qÞm; Q ¼ 2

3
m3q: ð30Þ

These physical parameters of the system under consider-
ation in this work agree with invariant definitions of
multipole moments in general relativity to first order in
q [35,36].
We note that for an oblate system Q > 0. Writing

Q ¼ Mr̄2, where r̄ is a length scale characteristic of the
system under consideration, the positive dimensionless
parameter q can be expressed as

q ¼ 6

�
2GM
c2r̄

�
−2
: ð31Þ
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We treat the quadrupole moment to first order in this paper;
therefore, r̄ ¼ ffiffiffiffiffiffiffiffiffiffiffi

Q=M
p

should be such that r̄ ≪ 2GM=c2.
The Einstein tensor for metric (28) has dominant terms

of order qm4=ρ4, which are the main terms that we
neglected in our analysis. Thus despite its deceptive form,
metric (28) is simply a weak-field post-Newtonian limit of
the δ-metric.

2. Quadrupole moment

Regarding the definition of the quadrupole moment, let
us recall that in Newtonian gravity we have for the external
potential of a matter distribution

ΦNðxÞ ¼ −G
Z

ρmatterðx0Þd3x0
jx − x0j ; ð32Þ

where ρmatter is the density of the distribution of matter in a
compact body and x is the position vector of a point
exterior to the body starting from an origin inside the body.
Let r ¼ jxj and r0 ¼ jx0j, then for r > r0, we can write

ΦNðxÞ ¼ −G
M
r
−G

D · x
r3

−G
Qijxixj

r5
− � � � ; ð33Þ

where the dipole moment and the symmetric and traceless
quadrupole tensor of the system are given by

D ¼
Z

ρmatterðx0Þx0d3x0;

Qij ¼
Z

ρmatterðx0Þð3x0ix0j − x02δijÞd3x0: ð34Þ

In general, D vanishes if the origin of coordinates coincides
with theNewtonian center ofmass of the source.On the other
hand, if the system possesses axial symmetry about
the chosen origin and is also reflection symmetric about
its equatorial plane, then D ¼ 0. For such a system the
quadrupole tensor is then diagonal in Cartesian coordinates
and is given by diagðQ11; Q22; Q33Þ, whereQ33 ¼ −2Q11 ¼
−2Q22. Let us define the quadrupole moment of such a
system via

Q ≔ −Q33 ¼ 2Q11 ¼ 2Q22: ð35Þ

It is then possible to write

ΦNðxÞ ¼ −G
M
r
þ G

Q
r3

3 cos2 θ − 1

2
− � � � ; ð36Þ

where the Cartesian coordinates ðx; y; zÞ are expressed as
ðr; θ;ϕÞ in spherical polar coordinates.
If in the definition of the quadrupole tensor we replace

the matter density by a certain constant average density,
then it is straightforward to show thatQ ≔ −Q33 is positive

for an oblate system. It is negative for a prolate system and
vanishes for a spherical system. Thus for fixed r, the
quadrupolar contribution to the Newtonian potential is
negative in the direction of elongation and positive in
the opposite direction.

3. Gravitational shift of frequency in δ-spacetime

It is interesting to consider the gravitational frequency
shift in δ-spacetime. For the sake of simplicity, we consider
radial null geodesics such that along the world line we have
θ ¼ constant and ϕ ¼ constant. The geodesic equations of
motion can be simply obtained from a Lagrangian of the
form ðds=dλÞ2, where λ is an affine parameter along the
world line. Using this approach, we find that in the case of
the δ-metric, we have dt=dλ ¼ C0=ð−gttÞ, where C0 > 0 is
a constant. This result can also be obtained from the
projection of the 4-velocity of the null geodesic kμ ¼
dxμ=dλ on the timelike Killing vector of the δ-metric. From
k · k ¼ 0, we find dr=dλ ¼ �C0=ð−gttgrrÞ1=2, where a plus
(minus) sign indicates an outgoing (ingoing) null ray.
Imagine a static observer that occupies a fixed spatial

position along the path of the null geodesic ray in the
exterior δ-spacetime. The observer’s 4-velocity is given by
u ¼ ð−gttÞ−1=2∂t and the frequency of light propagating
along the radial direction as measured by the observer is
ωr ¼ −u · k ¼ ω∞ð−gttÞ−1=2, where ω∞ ¼ C0 is the fre-
quency of light as measured by static inertial observers at
spatial infinity along the ray. In this way, one can determine
the contribution of the quadrupole moment to the gravi-
tational shift of the frequency of light. More specifically,
ωr ¼ C0A−δ=2, so that as the static observer approaches the
naked singularity, A → 0, and the measured frequency
diverges. That is, the r ¼ 2m singularity is an infinite
redshift surface for outgoing null rays.
For further recent studies of the δ-metric, see [37–42]

and the references cited therein. We note that the
Tomimatsu-Sato metric reduces in the absence of rotation
to the δ-metric for integer δ [13,14,34]. Moreover, a
rotating δ-spacetime is contained in Ref. [41].

B. Erez-Rosen metric

Thework of Erez and Rosen [15] extended the method of
Weyl and Levi-Civita to find the exterior gravitational field
of a Schwarzschild source possessing a multipole moment.
In particular, they explicitly worked out the case of an
object with mass parameter m and quadrupole parameter
q2. The Erez-Rosen solution (5) is given in prolate
spheroidal coordinates by

ψ ¼1

2
ln

�
x−1

xþ1

�
þq2

1

2
ð3y2−1Þ

�
3x2−1

4
ln

�
x−1

xþ1

�
þ3

2
x

�
;

ð37Þ
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γ ¼ 1

2
ð1þ q2Þ2 ln

�
x2 − 1

x2 − y2

�
−
3

2
q2ð1 − y2Þ

�
x ln

�
x − 1

xþ 1

�
þ 2

�

þ 9

16
q22ð1 − y2Þ

�
x2 þ 4y2 − 9x2y2 −

4

3
þ
�
x2 þ 7y2 − 9x2y2 −

5

3

�
x ln

�
x − 1

xþ 1

��

þ 9

64
q22ðx2 − 1Þð1 − y2Þðx2 þ y2 − 9x2y2 − 1Þln2

�
x − 1

xþ 1

�
: ð38Þ

With xþ 1 ¼ r=m and y ¼ cos θ, we obtain the
Schwarzschild solution augmented by a quadrupole
moment. In fact, for m ≪ r and to first order in q2, one
can write in the weak-field approximation

−gtt ¼ e2ψ ¼
�
1 −

2m
r

�

×

�
1 −

4

15
q2

m3

r3
P2ðcos θÞ

�
1þO

�
m
r

���
; ð39Þ

which may be compared to −gtt ¼ 1þ 2ΦN in the
Newtonian limit of general relativity. Therefore, for the
Erez-Rosen solution we have

M ¼ m; Q ¼ −
2

15
q2m3: ð40Þ

Thus q2 < 0 for an oblate configuration and q2 > 0 for a
prolate configuration.
Approaching the r ¼ 2m hypersurface from the exterior

region, the timelike Killing vector becomes null at r ¼ 2m
provided 1þ q2P2ðcos θÞ > 0, in which case the r ¼ 2m is
a static limit surface. This is always the case if jq2j is
sufficiently small compared to unity. A discussion of the
gravitational frequency shift along radial null geodesics in
the Erez-Rosen spacetime is contained in Ref. [43].
As expected, the r ¼ 2m hypersurface is a naked

singularity [25]. Let N ¼ grr∂r be the vector normal to
the r ¼ constant > 2m hypersurface. Then, N · N ¼ grr.
For θ ¼ 0; π, we find that as r → 2m, x → 1, the r ¼ 2m
hypersurface is null for 1þ q2 > 0, but it is otherwise
timelike. This means that the hypersurface is null for
Q=M3 < 2=15. On the other hand, for θ ≠ 0; π, we find
that as r → 2m and x → 1,

grr ∼ ðx − 1Þϖ; ð41Þ

where

ϖ ¼ 1þ δ̄ − δ̄2; δ̄ ¼ 15Q
2M3

P2ðcos θÞ: ð42Þ

Let us first suppose that P2ðcos θÞ ¼ 1 − 3
2
sin2 θ ¼ 0. This

occurs for θc and π − θc, where θc ≈ 54.7° is such that
sin θc ¼

ffiffiffiffiffiffiffiffi
2=3

p
. For θ ¼ θc and θ ¼ π − θc, we find from

Eq. (42) that ϖ ¼ 1 and the r ¼ 2m hypersurface is null.

On the other hand, suppose that P2ðcos θÞ ≠ 0; then, it
follows from Eq. (42) that ϖ > 0 and the r ¼ 2m hyper-
surface is therefore again null for

−
ffiffiffi
5

p
− 1

2
<

15Q
2M3

P2ðcos θÞ <
ffiffiffi
5

p þ 1

2
: ð43Þ

Otherwise, the r ¼ 2m hypersurface is timelike. For
instance, in the equatorial plane, the r ¼ 2m hypersurface
is null provided

−
ffiffiffi
5

p
− 1 <

15Q
2M3

<
ffiffiffi
5

p
− 1: ð44Þ

More generally, we note that for 0 < θ < θc and
π − θc < θ < π, 0 < P2ðcos θÞ < 1, above and below the
equatorial plane, while for θc < θ < π − θc around the
equatorial plane, − 1

2
< P2ðcos θÞ < 0.

A remark is in order here regarding an essential
similarity of this Erez-Rosen case with that of the δ-metric.
The naked singularity at r ¼ 2m is null and acts as a one-
way membrane if 1þ δ̄ > δ̄2, where δ̄ ≔ −q2P2ðcos θÞ,
while in the case of the δ-metric, we have 1þ δ > δ2,
where δ ¼ 1þ q. In the latter case, we expect QNMs in the
case of oblate systems with 0 < q≲ 0.6. In our approach to
QNMs of such systems, the quadrupole moment is treated
to linear order of approximation; therefore, for oblate
configurations in the Erez-Rosen case, q2 < 0 and when
the quadrupole moment is sufficiently small Eq. (43) is
always satisfied for 0 < θ < π.

IV. PERTURBATIVE TREATMENT OF THE
QUADRUPOLE MOMENT

In the exact ðM;QÞ solutions discussed thus far, the
spacetime singularities occur for r ≤ 2m; indeed,
approaching the collapsed system from the exterior region
one first encounters a naked singularity at r ¼ 2m [25]. We
have shown that this hypersurface is null and acts as a one-
way membrane for sufficiently small jQj=m3; henceforth,
we treat the quadrupole moment to linear order of approxi-
mation and expect QNM oscillations to occur when such
post-Schwarzschild systems undergo massless scalar,
electromagnetic or gravitational perturbations.
In the present section, we consider the post-Schwarzschild

approximation involving quadrupole moment to linear order
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represented by two spacetimes: the Schwarzschild-quadru-
pole (SQ) spacetime, which is a variant of the δ-spacetime,
and the static Hartle-Thorne (HT) spacetime [44], which, as
we show in the last part of this section, is related to the
Erez-Rosen spacetime. In fact, starting from the Erez-
Rosen solution, we obtain to linear order in the quadrupole
moment the static Hartle-Thorne solution via a certain
δ-transformation.

A. SQ-metric

We are interested in the strong-field regime near a
Schwarzschild black hole that has a quadrupole moment.
The latter is taken into account to linear order in our
treatment for the sake of simplicity. The simplest known
solution of GR suitable for our purpose is the δ-metric
given by Eq. (16) that has two parameters m and δ. In view
of Eq. (30), we can replace δ by 1þ q, m by M=ð1þ qÞ
and then linearize the resulting metric in the dimensionless
quadrupole parameter q. To first order in q, the quadrupole
moment is then given by Q, where

Q ¼ 2

3
M3q: ð45Þ

The end result is ds2SQ ¼ gμνdxμdxν, where gμν is diagonal
and represents the Schwarzschild spacetime of mass M
perturbed by terms that are linear in the quadrupole
moment Q. As expected, the Einstein tensor for this metric
is proportional to q2 and vanishes when terms proportional
to q2 and higher are neglected. It is useful to write the SQ-
metric in the following form:

ds2SQ ¼ −
�
1þ q

�
2M
rA

þ lnA

��
Adt2

þ
�
1 − q

�
2M
rA

þ ln
B2

A

��
dr2

A

þ
�
1 − q ln

B2

A

�
r2dθ2 þ ð1 − q lnAÞr2sin2θdϕ2:

ð46Þ

The connection coefficients for the SQ-metric can be
obtained from the results given in Appendix D.

B. Static Hartle-Thorne metric

The rotating Hartle-Thorne solution [44] represents the
exterior vacuum spacetime domain that matches smoothly
to a realistic model of a slowly rotating relativistic star of
mass M, angular momentum J and quadrupole moment Q.
The latter two parameters are treated to second and first
orders of approximation, respectively. In this section we
set J ¼ 0 and consider the static Hartle-Thorne (HT)
spacetime. Though formally more complicated than the

SQ-metric, the static HT-metric appears to be more suitable
for physical applications.
The static Hartle-Thorne metric for a mass M with

quadrupole moment Q, the latter treated to linear order, is
given by [44]

ds2HT ¼ −Fdt2 þ 1

F
dr2 þ Gr2ðdθ2 þ sin2 θdϕ2Þ; ð47Þ

where

F ¼
�
1 −

2M
r

��
1þ 5Q

4M3
Q2

2

�
r
M

− 1

�
P2ðcos θÞ

�
ð48Þ

and

G ¼ 1þ 5Q
4M3

�
2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rðr − 2MÞp Q1
2

�
r
M

− 1

�

−Q2
2

�
r
M

− 1

��
P2ðcos θÞ: ð49Þ

Here, Qm
n ðxÞ is the associated Legendre function of the

second kind for x ∈ ½1;∞Þ, namely,

Qm
n ðxÞ ¼ ð−1Þmðx2 − 1Þm=2 d

mQnðxÞ
dxm

: ð50Þ

From the formula for Q2ðxÞ given in Appendix A, we find

Q1
2ðxÞ ¼ −ðx2 − 1Þ1=2

�
3

2
x ln

�
xþ 1

x − 1

�
−
3x2 − 2

x2 − 1

�
; ð51Þ

Q2
2ðxÞ ¼

3

2
ðx2 − 1Þ ln

�
xþ 1

x − 1

�
− x

3x2 − 5

x2 − 1
; ð52Þ

etc.
For M ≪ r,

Q1
2

�
r
M

− 1

�
¼ 2M3

5r3

�
1þO

�
M
r

��
; ð53Þ

Q2
2

�
r
M

− 1

�
¼ 8M3

5r3

�
1þO

�
M
r

��
; ð54Þ

etc. Therefore,

2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðr − 2MÞp Q1

2

�
r
M

− 1

�
−Q2

2

�
r
M

− 1

�

¼ −
8M3

5r3

�
1þO

�
M
r

��
: ð55Þ

If we now assume that M ≪ r in the Hartle-Thorne metric
and expand the relevant radial quantities in powers ofM=r,
we find using Eqs. (53)–(55) that the result coincides with
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the post-Newtonian metric given in Eqs. (28) and (29). This
circumstance justifies the designation of M and Q as the
mass and the quadrupole moment of the gravitational
source in this case.
The Einstein tensor for the static Hartle-Thorne solution

turns out to be proportional to Q2 and vanishes when such
terms are neglected. In this solution the mass is thus taken
into account to all orders, while the quadrupole moment is
only considered to linear order.

1. Relation between Erez-Rosen and
static Hartle-Thorne solutions

It is possible to establish a connection between the Erez-
Rosen [15] and Hartle-Thorne [44] solutions in the absence
of angular momentum, see in this connection Appendix B
of Ref. [45]. To this end, one can first employ the δ-
transformation to obtain a new class of solutions from the
Erez-Rosen solution. In this class of solutions, we let
δ ¼ 1þ σ0q2, where σ0 is a real parameter and consider the
class of solutions to linear order in q2 that contain
parameters ðM; q2; σ0Þ. Let us next consider the trans-
formations given byM ¼ M0ð1þ q2Þ and ðr; θÞ ↦ ðr0; θ0Þ,
where

r¼ r0 þM0q2þ
3

2
M0q2

�
x0 þ1

2
ðx02−1Þ ln

�
x0−1

x0 þ1

��
sin2θ0

ð56Þ
and

θ ¼ θ0 −
3

2
q2

�
2þ x0 ln

�
x0 − 1

x0 þ 1

��
sin θ0 cos θ0: ð57Þ

Here, x0 ¼ −1þ r0=M0. To first order in q2, we recover the
metric of the static Hartle-Thorne solution [44] for

σ0 ¼ −1; MHT ¼ M0; QHT ¼ −
4

5
M03q2: ð58Þ

It follows that the connections between the Erez-Rosen and
static Hartle-Thorne parameters are given by

MHT ¼ MERð1 − q2Þ; QHT ¼ 6QER: ð59Þ

The above connection between the two metrics can be
further generalized by taking angular momentum into
account to second order [46]. More specifically, Quevedo
[46] has extended the above transformations to second order
in angular momentum and has thereby established a con-
nection between the Quevedo-Mashhoonmetric [18] and the
Hartle-Thorne metric [44] in the presence of angular
momentum. For further work regarding the Hartle-Thorne
solution, see Ref. [47].
Finally, the Christoffel symbols of the static Hartle-

Thorne solution can be obtained for J ¼ 0 from those of the

rotating Hartle-Thorne (RHT) solution presented in
Appendix D.

V. QUASINORMAL MODES

The results of Sec. IV will be useful for the approximate
analytic calculation of the frequencies of certain QNMs of
Schwarzschild black hole with quadrupole moment in the
eikonal limit via the light-ring method. Numerical
approaches are needed to do a more complete investigation.

A. General description of the analytic light-ring method

The early analytic approaches to the quasinormal modes
(QNMs) of black holes [48–53] included a method that is
independent of the separability of massless (scalar, electro-
magnetic and gravitational) wave equations on black hole
backgrounds. This method was applied to Kerr and Kerr-
Newman black holes in Refs. [50–51] and [52], respec-
tively. Only certain QNMs are accessible using this
approach [50,51]. The purpose of this subsection is to
provide a brief explanation of this method; in subsequent
subsections, we will apply this approach to find QNMs of a
perturbed Schwarzschild black hole with quadrupole
moment using the SQ-metric as well as the HT-metric.
The former is the simplest to deal with analytically, while
the latter has desirable physical properties. Furthermore, we
have shown that, to linear order in the quadrupole moment,
the Erez-Rosen solution can be essentially transformed to
the static Hartle-Thorne solution.
To calculate QNMs, one may employ any appropriate

perturbation and deduce the corresponding QNMs from the
temporal evolution of the perturbation, since the QNMs
constitute intrinsic properties of black holes and are
independent of any particular perturbation. Thus we con-
sider the bundle of null rays in the unstable circular
equatorial orbit at r ¼ r0 around the Schwarzschild black
hole with quadrupole moment and study the evolution of
the rays as they propagate outward to spatial infinity and
inward toward the central collapsed configuration. The
unperturbed null circular orbit can be written as

x̄μ ¼ ðt; r; θ;ϕÞ ¼
�
λ; r0;

π

2
;ω�λ

�
; ð60Þ

where λ is an affine parameter along the null geodesic orbit.
The corresponding propagation vector is thus kμ,

kμ ¼ dx̄μ

dλ
¼ ð1; 0; 0;ω�Þ ð61Þ

in the ðt; r; θ;ϕÞ coordinate system. Here, r0 is the radius of
the unperturbed orbit and ω� are frequencies associated
with the orbit such that ωþ refers to corotating and ω−
refers to counterrotating motions.
In the static axisymmetric background spacetimes

under consideration, the massless wave perturbations are
superpositions of a set of eigenmodes of the form
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eiðωt−μϕÞSωjμsðr; θÞ; ð62Þ

which takes into account the Killing symmetries of the
background spacetime. The wave eigenmode (62) has
frequency ω, total angular momentum parameters ðj; μÞ,
with −j ≤ μ ≤ j, and spin s. The null rays correspond to
the eikonal limit of wave motion such that Mω ≫ 1;
moreover, the circular null rays are characterized by
jμj ¼ j ≫ 1. That is, μ ¼ j for corotating rays, while the
counterrotating rays are characterized by μ ¼ −j. In this
approach, the resulting QNMs are independent of the spin
of the massless wave perturbation. It follows from Eqs. (60)
and (62) that for the null circular orbits, the dominant
perturbation frequency according to static inertial observers
at spatial infinity is given by

ω0 ¼ μ
dϕ
dt

¼ �jω�: ð63Þ

Next, we consider a slight perturbation of the circular
equatorial null orbit at t ¼ 0. The perturbed orbit is then
given by x̄μ ↦ xμ, where

r¼ r0½1þ ϵfðtÞ�; ϕ¼ω�½tþ ϵgðtÞ�; λ¼ tþ ϵhðtÞ:
ð64Þ

Here, ϵ is a dimensionless perturbation parameter,
0 < jϵj ≪ 1. The perturbed orbit (64) should be substituted
in the null geodesic equations to determine the functions
fðtÞ, gðtÞ and hðtÞ such that

fð0Þ ¼ gð0Þ ¼ hð0Þ ¼ 0: ð65Þ

It will turn out from the null path equation,
gμνdxμdxν ¼ 0, that gðtÞ ¼ 0, so that

dϕ
dt

¼ ω� þOðϵ2Þ: ð66Þ

This means that to Oðϵ2Þ, the real parts of the correspond-
ing QNM frequencies are given by Eq. (63).
The divergence of the null rays away from the unper-

turbed orbit corresponds to the decay of the QNM wave
amplitude with time in the eikonal limit. The imaginary
parts of the QNM frequencies are therefore given by the
decay rate of the orbit. The rate of divergence of nearby
trajectories can also be characterized via Lyapunov expo-
nents; for the connection between the decay rate of QNM
frequencies with the corresponding Lyapunov exponents,
see Ref. [54]. For a congruence of null rays along the
perturbed null equatorial circular orbit, the law of con-
servation of rays is given by

ðρnKμÞ;μ ¼ 0; ð67Þ

where ρn is the density of null rays and Kμ is the perturbed
propagation vector given to Oðϵ2Þ by

Kμ ¼ dxμ

dλ
¼ ½1 − ϵh0; ϵr0f0; 0;ω�ð1 − ϵh0Þ�; ð68Þ

where f0 ¼ df=dt, etc. As we will demonstrate in detail
below, the imaginary parts of the corresponding QNM
frequencies can then be deduced from

1

ρn

dρn
dλ

¼ −Kμ
;μ ¼ −

1ffiffiffiffiffiffiffiffiffiffiffiffi−gMQ
p ∂

∂xα ð
ffiffiffiffiffiffiffiffiffiffiffiffi−gMQ

p
KαÞ; ð69Þ

where gMQ is the determinant of the spacetime metric of a
perturbed Schwarzschild black hole representing a col-
lapsed configuration with massM and quadrupole moment
Q. Note that for ϵ ¼ 0, Kα reduces to kα and hence the
right-hand side of Eq. (69) vanishes, since the metric is
independent of time t and the azimuthal coordinate ϕ;
therefore, the density of null rays ρn remains constant.
However, for ϵ ≠ 0, ρn decays, as will be demonstrated
explicitly in the next two subsections.
For recent studies related to this method, see

Refs. [55–57] and the references cited therein. For more
recent general review articles on QNMs, see Refs. [58–60].

B. QNMs of the SQ spacetime

1. Light ring for SQ spacetime

Let xμðλÞ represent a null geodesic of the SQ-metric (46),
where, as before, λ is an affine parameter along the null
world line. Then, the equation for a null path (ds2 ¼ 0) and
the geodesic equation must be satisfied; that is,

gμν
dxμ

dλ
dxν

dλ
¼ 0;

d2xα

dλ2
þ Γα

μν
dxμ

dλ
dxν

dλ
¼ 0: ð70Þ

The spherically symmetric Schwarzschild spacetime has
an unstable photon sphere at rSch ¼ 3M. The presence of
the quadrupole moment modifies this situation. That is, due
to the axial and reflection symmetries of the SQ-metric, we
expect the existence of an unstable circular null orbit in the
equatorial plane. For such an orbit with constant radial
coordinate r0 and θ ¼ π=2, ds2 ¼ 0 implies

�
dϕ
dt

�
2

¼ −
gtt
gϕϕ

: ð71Þ

On the other hand, the geodesic equation simplifies in this
case and the main contribution comes from the radial
component of this equation which implies

�
dϕ
dt

�
2

¼ −
gtt;r
gϕϕ;r

; ð72Þ
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where we have used the fact that

Γr
tt ¼

1

2
grrð−gtt;rÞ; Γr

ϕϕ ¼ 1

2
grrð−gϕϕ;rÞ: ð73Þ

Using the other components of the geodesic equation,
one can show that the orbit has the form x̄μðλÞ ¼
ðλ; r0; π=2;ω�λÞ, where dϕ=dt ¼ ω�, ωþ indicates the
constant frequency of the corotating circular orbit and ω−
indicates the constant frequency of the counterrotating
orbit.
We therefore find explicitly from Eqs. (71) and (72),�

dϕ
dt

�
2

¼ A
r2

�
1þ 2q

�
M
rA

þ lnA

��
ð74Þ

and �
dϕ
dt

�
2

¼ M
r3

�
1þ q

�
M
rA

þ 2 lnA

��
; ð75Þ

respectively. These relations imply

r0 ¼ 3M

�
1 −

1

3
q

�
;

dϕ
dt

¼ ω� ¼ � 1

3
ffiffiffi
3

p
M

½1 − qð−1þ ln 3Þ�; ð76Þ

where q ¼ 3Q=ð2M3Þ. Using ln 3 ≈ 1.1, we can write�
dϕ
dt

�
SQ

≈� 1

3
ffiffiffi
3

p
M

�
1 − 0.15

Q
M3

�
: ð77Þ

2. Decay of the SQ light ring

The equatorial paths of the perturbed rays of the light
ring are null; hence, ds2SQ ¼ 0 with θ ¼ π=2; further-
more, with dr=dt¼ ϵr0f0, r0 ¼Mð3−qÞ and dϕ=dt ¼
ω�ð1þ ϵg0Þ, we have to linear order in q and ϵ,

1

r3
½r − 2Mð1 − qÞ þ 2qrA lnA� ¼ ω2

�ð1þ 2ϵg0Þ: ð78Þ

Using A ¼ 1–2M=r, the left-hand side of Eq. (78) reduces,
after some algebra, to ω2

�; therefore, g
0 ¼ 0. Thus g is a

constant that must be zero in accordance with the boundary
condition (65). It follows that ω0

SQ ¼ �jω�. It remains to
determine fðtÞ and hðtÞ using the geodesic equation.
The null geodesic equation for the temporal coordinate

can be written as

d2t
dλ2

þ 2Γt
tr
dt
dλ

dr
dλ

¼ 0; ð79Þ

which reduces to

ϵh00 ¼ 2ϵrΓt
trf0 þOðϵ2Þ; ð80Þ

where Γt
tr, given by Eq. (D1) of Appendix D, can be

evaluated along the unperturbed orbit. It follows that

h00 ¼ 2M
r0A0

�
1 − q

2M
r0A0

�
f0; ð81Þ

where A0 ¼ 1–2M=r0 and r0A0 ¼ Mð1 − qÞ. In this way,
we find

h00 ¼ 2ð1 − qÞf0: ð82Þ

The null geodesic equation for the radial coordinate
reduces, after neglecting terms of order ϵ2, to

d2r
dλ2

þ Γr
tt

�
dt
dλ

�
2

þ Γr
ϕϕ

�
dϕ
dλ

�
2

¼ 0; ð83Þ

or, more explicitly,

ϵr0f00 þ ðΓr
tt þ Γr

ϕϕω
2
�Þð1 − 2ϵh0Þ ¼ 0; ð84Þ

where the connection coefficients are given in Appendix D.
After some algebra, we find

27MΓr
tt ¼ 1þ 2q½1 − ϵf þ lnð4=9Þ� ð85Þ

and

−
1

M
Γr
ϕϕ ¼ 1þ 2q lnð4=3Þ þ 3½1þ qð−1þ 2 lnð4=3Þ�ϵf:

ð86Þ

The end result is that h0 cancels out and Eq. (84) reduces to

f00 −
1

27M2
½1þ 2qð1þ 2 lnð2=3ÞÞ�f ¼ 0: ð87Þ

The null geodesic equation for the polar θ coordinate is
automatically satisfied, since, among other things,
sin 2θ ¼ 0. On the other hand, the null geodesic equation
for the azimuthal ϕ coordinate reduces to

d2ϕ
dλ2

þ 2Γϕ
rϕ
dr
dλ

dϕ
dλ

¼ 0; ð88Þ

where r2Γϕ
rϕ ¼ r − qM=A; see Appendix D. It follows that

h00 ¼ 2ð1 − qÞf0, just as in Eq. (82). Using the boundary
conditions (65), it is now straightforward to solve Eqs. (82)
and (87) and the final results are
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fðtÞ ¼ βSQ sinhðγSQtÞ; gðtÞ ¼ 0;

hðtÞ ¼ 2
ð1 − qÞβSQ

γSQ
½coshðγSQtÞ − 1� þ CSQt; ð89Þ

where βSQ ≠ 0 and CSQ are simply integration constants
and γSQ > 0 is given by

γ2SQ ¼ 1þ 2q½1þ 2 lnð2=3Þ�
27M2

: ð90Þ

It turns out that the QNM frequencies are essentially
independent of βSQ and CSQ; therefore, one can generally
set βSQ ¼ 1 and CSQ ¼ 0.
The last step involves the calculation of the damping rate

using Eq. (69). From the SQ-metric (46), we get

ffiffiffiffiffiffiffiffiffiffi−gSQ
p ¼

�
1 − q ln

B2

A

�
r2 sin θ: ð91Þ

For the case of the perturbed circular orbit under consid-
eration here, we have

ffiffiffiffiffiffiffiffiffiffi−gSQ
p ¼ 9M2

�
1þ q

�
ln
27

16
−
2

3

��
ð1þ 2ϵfÞ: ð92Þ

Thus Eq. (69) can be written as

1

ρn

dρn
dλ

¼−ϵ
�∂ð2f−h0Þ

∂t þ∂ðr0f0Þ
∂r þω�

∂ð2f−h0Þ
∂ϕ

�
; ð93Þ

which is evaluated along the perturbed congruence. It
follows from dr=dt ¼ ϵr0f0 that

1

ρn

dρn
dt

¼ −
f00

f0
þOðϵÞ: ð94Þ

Thus ignoring terms of order ϵ, we find

ρnðtÞ ¼ ρnð0Þ
1

coshðγSQtÞ
: ð95Þ

We can write this result for t > 0 as

ρnðtÞ ¼ 2ρnð0Þðe−γSQt − e−3γSQt þ e−5γSQt − � � �Þ: ð96Þ

This means that the imaginary parts of the QNM frequen-
cies (corresponding to the damping rates of outgoing
waves) are given by

ΓSQ ¼ γSQ

�
nþ 1

2

�
; n ¼ 0; 1; 2; 3;…: ð97Þ

Finally, we can write

ωQNM ¼ ω0
SQ þ iΓSQ ¼ �jω� þ iγSQ

�
nþ 1

2

�
;

n ¼ 0; 1; 2; 3;…; ð98Þ

where

ω� ¼ � 1 − qðln 3 − 1Þ
3

ffiffiffi
3

p
M

;

γSQ ¼ 1þ q½1þ 2 lnð2=3Þ�
3

ffiffiffi
3

p
M

; q ¼ 3Q
2M3

: ð99Þ

C. QNMs of the static HT spacetime

1. Light ring for static HT spacetime

The static HT-metric is given by Eqs. (47)–(49), whereF
and G for θ ¼ π=2, q̂ ≔ 5Q=ð8M3Þ and x ¼ −1þ r=M are
given by

F ¼A½1− q̂Q2
2ðxÞ�; G¼ 1− q̂

�
2M

r
ffiffiffiffi
A

p Q1
2ðxÞ−Q2

2ðxÞ
�
:

ð100Þ

The unstable null circular orbit of radius r0 and frequency
ω� in the equatorial plane of the static HT-spacetime
constitutes the light ring in this case.
To determine r0, we find for the analog of Eq. (71) in

this case

�
dϕ
dt

�
2

¼ A
r2
½1 − q̂ð−16þ 15 ln 3Þ�; ð101Þ

where for rSch ¼ 3M, x ¼ −1þ rSch=M ¼ 2 and hence,

Q1
2ð2Þ¼

ffiffiffi
3

p
ð−3 ln3þ10=3Þ; Q2

2ð2Þ¼ 4.5 ln3−14=3:

ð102Þ

Similarly, for the analog of Eq. (72) we get

�
dϕ
dt

�
2

¼ M
r3

�
1þ 3

2
q̂ð28 − 25 ln 3Þ

�
: ð103Þ

Equating Eq. (101) with Eq. (103), we find in the static HT
case

r0 ¼ 3Mð1þ αq̂Þ; α ≔
1

6
ð52 − 45 ln 3Þ: ð104Þ

Finally, using this result, we have

dϕ
dt

¼ ω� ¼ � 1

3
ffiffiffi
3

p
M

�
1 −

1

2
q̂ð−16þ 15 ln 3Þ

�
; ð105Þ
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or, with ln 3 ≈ 1.1, we get approximately the same result as
in the case of the SQ-metric�

dϕ
dt

�
HT

≈� 1

3
ffiffiffi
3

p
M

�
1 − 0.15

Q
M3

�
: ð106Þ

2. Decay of the static HT light ring

Let us perturb the null circular equatorial orbit and
consider the null path equation gμνdxμdxν ¼ 0; in this case,
we find

F ¼ 1

F

�
dr
dt

�
2

þ Gr2
�
dϕ
dt

�
2

; ð107Þ

where dr=dt ¼ ϵr0f0 and dϕ=dt ¼ ω�ð1þ ϵg0Þ, so that to
linear order in ϵ,

F
Gr2

¼A
r2

�
1þ q̂

�
2M

r
ffiffiffiffi
A

p Q1
2ðxÞ−2Q2

2ðxÞ
��

¼ω2
�ð1þ2ϵg0Þ:

ð108Þ

We find after some algebra that

A
r2

¼ 1 − 6αq̂ϵf
27M2

;

1þ q̂

�
2M

r
ffiffiffiffi
A

p Q1
2ðxÞ − 2Q2

2ðxÞ
�

¼ 1þ q̂ð16 − 15 ln 3Þ

þ 6αq̂ϵf: ð109Þ

It follows from these results that g0 ¼ 0; moreover, from the
boundary condition gð0Þ ¼ 0, we conclude that gðtÞ ¼ 0.
Therefore, ω0

HT ¼ �jω�.
Next, we consider the geodesic equation for the temporal

coordinate t, which reduces in this case to Eq. (79), but with
Γt
tr given by Eq. (D7) with J ¼ 0. Therefore,

ϵh00 ¼ 6Mð1þ αq̂ÞΓt
trϵf0: ð110Þ

For our present purposes, it is only necessary to compute
Γt
tr along the unperturbed orbit and we find

3MΓt
trðϵ ¼ 0Þ ¼ 1 − q̂ð24 − 21 ln 3Þ: ð111Þ

Therefore, the result of the temporal null geodesic
equation is

h00 ¼ 2

�
1 −

1

6
q̂ð92 − 81 ln 3Þ

�
f0: ð112Þ

For the radial geodesic equation, Eqs. (83) and (84) are
valid for the Hartle-Thorne case as well, except that we
must now calculate Γr

tt and Γr
ϕϕ for the static HT case using

Appendix D. The results are

Γr
tt ¼

1

27M

�
1þ 2q̂ð10 − 9 ln 3Þ þ 3

2
q̂ð28 − 27 ln 3Þϵf

�
;

ð113Þ

−
1

M
Γr
ϕϕ ¼ 1þ q̂ð4 − 3 ln 3Þ þ ½3 − 4q̂ð19 − 18 ln 3Þ�ϵf:

ð114Þ

The end result for the radial null geodesic equation is that h0
drops out, as before, and we find

f00 −
1

27M2
½1þ 2q̂ð−16þ 15 ln 3Þ�f ¼ 0: ð115Þ

The null geodesic equation for the θ coordinate is
satisfied for our perturbed equatorial orbit. The correspond-
ing equation for the ϕ coordinate reduces to Eq. (88),
namely,

ϵh00 ¼ 2Γϕ
rϕϵr0f

0; ð116Þ

except that Γϕ
rϕ is now for the static Hartle-Thorne case; see

Appendix D. It is sufficient to compute this quantity along
the unperturbed circular orbit and we find

Γϕ
rϕðϵ ¼ 0Þ ¼ 1

3M
½1þ 3q̂ð−8þ 7 ln 3Þ�: ð117Þ

This result, when inserted in Eq. (116), helps us recover
Eq. (112).
The solutions of the orbital perturbation equations are

thus

fðtÞ ¼ βHT sinhðγHTtÞ; gðtÞ ¼ 0; ð118Þ

hðtÞ ¼ 2

�
1 −

1

6
q̂ð92 − 81 ln 3Þ

�

×
βHT
γHT

½coshðγHTtÞ − 1� þ CHTt: ð119Þ

Here, βHT ≠ 0 and CHT are, as before, integration constants
and for our present purposes we can simply set βHT ¼ 1 and
CHT ¼ 0. Furthermore,γHT > 0 is given by

γHT ¼ 1þ q̂ð−16þ 15 ln 3Þ
3

ffiffiffi
3

p
M

: ð120Þ

Finally, from the HT-metric (47) we get

ffiffiffiffiffiffiffiffiffiffiffi
−gHT

p ¼ Gr2 sin θ: ð121Þ

For the perturbed orbit in the equatorial plane of the static
Hartle-Thorne spacetime, we have
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ffiffiffiffiffiffiffiffiffiffiffi
−gHT

p ¼ 9M2

�
1 −

3

2
q̂ð−4þ 3 ln 3Þ þ 2

�
1þ 1

3
q̂ð−28þ 27 ln 3Þ

�
ϵf

�
: ð122Þ

The rate of decay of the density of null rays is given by

1

ρn

dρn
dλ

¼ −
1ffiffiffiffiffiffiffiffiffiffiffi−gHT

p ∂
∂t ð

ffiffiffiffiffiffiffiffiffiffiffi
−gHT

p ð1 − ϵh0ÞÞ − 1ffiffiffiffiffiffiffiffiffiffiffi−gHT
p ∂

∂r ð
ffiffiffiffiffiffiffiffiffiffiffi
−gHT

p
ϵr0f0Þ

−
ω�ffiffiffiffiffiffiffiffiffiffiffi−gHT

p ∂
∂ϕ ð ffiffiffiffiffiffiffiffiffiffiffi

−gHT
p ð1 − ϵh0ÞÞ; ð123Þ

which can be written as

1

ρn

dρn
dλ

¼ −
∂ðϵr0f0Þ

∂r þOðϵÞ: ð124Þ

Next, we note that, as before, along the congruence we have

∂ðϵr0f0Þ
∂r ¼ dðϵr0f0Þ

dt

�
dr
dt

�
−1

¼ f00=f0; ð125Þ

since dr=dt ¼ ϵr0f0. Thus, neglecting terms of order ϵ, we
find ρnðtÞ ¼ ρnð0Þ= coshðγHTtÞ. The QNM frequencies of
the static Hartle-Thorne solution are therefore

ωQNM ¼ ω0
HT þ iΓHT ¼ �jω� þ iγHT

�
nþ 1

2

�
;

n ¼ 0; 1; 2; 3;…; ð126Þ

where

ω� ¼ � 1 − 1
2
q̂ð−16þ 15 ln 3Þ
3

ffiffiffi
3

p
M

;

γHT ¼ 1þ q̂ð−16þ 15 ln 3Þ
3

ffiffiffi
3

p
M

; q̂ ≔
5Q
8M3

: ð127Þ

D. Comments on static QNMs

In our analytic treatment (valid in the eikonal limit), we
have worked to linear order in jQj=M3 ≪ 1 for the sake of
simplicity. It remains to see what happens to QNM frequen-
cies in situations where there is significant oblateness and
the quadrupole contribution is thus sufficiently large.
On the physical side, it is important to note the following

circumstance: Suppose observations determine the real part
of the QNM frequency to be

ω0 ¼ j

3
ffiffiffi
3

p
MSch

ð128Þ

up to a certain angular momentum factor j ≫ 1, where
MSch is the mass of the Schwarzschild black hole involved
in the physical process under investigation. On the other

hand, if the collapsed configuration has mass M and
quadrupole moment Q, the relation would instead be

ω0 ≈
j

3
ffiffiffi
3

p
M

�
1 − 0.15

Q
M3

�
; ð129Þ

based on Eqs. (77) and (106) for the SQ and static HT
spacetimes, respectively. Equations (128) and (129) imply

M
MSch

≈ 1 − 0.15
Q
M3

; ð130Þ

so that for an oblate configuration with Q > 0, we have

M < MSch: ð131Þ

Thus, based solely on the real part of QNM frequency in
the high-frequency regime, the actual mass of the collapsed
configuration would be less than what one would conclude
if the quadrupole contribution is ignored. However, the
situation is basically different for the imaginary part of the
QNM frequency, since Eqs. (99) and (127) imply

γSQ ≈ γHT ≈
1þ 0.3Q=M3

3
ffiffiffi
3

p
M

: ð132Þ

It is remarkable that in the eikonal limit we find essentially
the same QNM frequencies for both SQ and static HT
spacetimes to linear order in the quadrupole moment.
What is the physical origin of this coincidence? Further
work is necessary to clarify this situation.
It would be interesting to see what one would find for the

least-damped dominant QNMs in the presence of quadru-
pole moment, since those QNMs would be most relevant
from an observational point of view.
Thus far we have neglected the rotation of the black hole.

In view of the essential equivalence of our results for the
QNM frequencies of nonrotating SQ and static HT space-
times, it is interesting to determine the effect of rotation of
the gravitational source. For this purpose, we choose the
Hartle-Thorne spacetime due to its physical importance
[44]. That is, we work out the QNM frequencies of the
rotating HT spacetime when angular momentum is
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included in the static HT spacetime to second order of
approximation. This is done in the next section.

VI. QNMS OF THE ROTATING HT SPACETIME

The metric of the rotating Hartle-Thorne spacetime is
given by [44]

ds2RHT ¼ −F1dt2 þ
1

F2

dr2

þ Gr2
�
dθ2 þ sin2θ

�
dϕ −

2J
r3

dt

�
2
�
; ð133Þ

where

F1¼
�
1−

2M
r

þ2J2

r4

�

×

�
1þ 2J2

Mr3

�
1þM

r

�
P2ðyÞþ2q̃Q2

2ðxÞP2ðyÞ
�
; ð134Þ

F2¼
�
1−

2M
r

þ2J2

r4

�

×

�
1þ 2J2

Mr3

�
1−5

M
r

�
P2ðyÞþ2q̃Q2

2ðxÞP2ðyÞ
�
; ð135Þ

G ¼ 1 −
2J2

Mr3

�
1þ 2

M
r

�
P2ðyÞ

þ 2q̃

�
2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rðr − 2MÞp Q1
2ðxÞ −Q2

2ðxÞ
�
P2ðyÞ: ð136Þ

Here, x ¼ −1þ r=M and y ¼ cos θ, as before, while q̃ is a
new dimensionless parameter defined by

q̃ ≔
5

8

Q − J2=M
M3

¼ q̂ −
5

8

J2

M4
: ð137Þ

The associated Legendre functions of the second kind Qm
n

are given in Eqs. (50)–(52). The Einstein tensor for the HT
spacetime vanishes when terms proportional to J3, JQ, Q2

and higher orders are neglected.
The rotating Hartle-Thorne solution represents the

exterior field of a configuration with mass M, which is
treated to all orders, angular momentum J, which is treated
to second order and quadrupole momentQ, which is treated
to linear order in perturbation. It is therefore interesting to
compare this spacetime with the exterior Kerr metric given
in Eq. (E1) of Appendix E in Boyer-Lindquist coordinates
ðt; r; θ;ϕÞ. For the Kerr metric (E1), the quadrupole
moment is given by QK ¼ J2=M. With this value for the
quadrupole moment Q, the rotating HT-metric coefficients
reduce to

F1¼
�
1−

2M
r

þ2J2

r4

��
1þ 2J2

Mr3

�
1þM

r

�
P2ðyÞ

�
; ð138Þ

F2 ¼
�
1 −

2M
r

þ 2J2

r4

��
1þ 2J2

Mr3

�
1 − 5

M
r

�
P2ðyÞ

�
;

G ¼ 1 −
2J2

Mr3

�
1þ 2

M
r

�
P2ðyÞ: ð139Þ

The resulting metric is equivalent, up to a coordinate
transformation, to the Kerr metric (E1) when terms higher
than second order in angular momentum (J ¼ Ma) are
neglected. Indeed, starting with the Kerr metric (E1) valid
to second order in a, the corresponding transformation is
given by

r → r −
a2

2r

��
1þ 2M

r

��
1 −

M
r

�

−
�
1 −

2M
r

��
1þ 3M

r

�
cos2θ

�
; ð140Þ

θ → θ −
a2

2r

�
1þ 2M

r

�
sin θ cos θ: ð141Þ

The connection coefficients for the rotating Hartle-Thorne
spacetime are given in Appendix D.

A. Light ring of the rotating HT spacetime

We look for an orbit with r ¼ r0 and θ ¼ π=2. The path
of the orbit is null; therefore, ds2RHT ¼ 0 implies

�
dϕ
dt

−
2J
r3

�
2

¼ F1

r2G
: ð142Þ

Furthermore, the radial geodesic equation can be written as

Γr
ϕϕ

�
dϕ
dt

�
2

þ 2Γr
tϕ
dϕ
dt

þ Γr
tt ¼ 0: ð143Þ

We assume the null orbit is given by x̄μðλÞ ¼
ðλ; r0; π=2;ω�λÞ, as before. It is then straightforward to
check that the other components of the geodesic equation
are indeed satisfied.
It follows from Eq. (142) that along the orbit

dϕ
dt

¼ 2J
r30

� 1

r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
r0

s �
1þ 1

2
q̃ð16 − 15 ln 3Þ − 1

54

J2

M4

�
;

ð144Þ

where q̃ is the parameter defined in Eq. (137). On the other
hand, Eq. (143) can be written as
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dϕ
dt

¼ −
Γr
tϕ

Γr
ϕϕ

�
��Γr

tϕ

Γr
ϕϕ

�
2

−
Γr
tt

Γr
ϕϕ

�
1=2

: ð145Þ

Using the connection coefficients, we find that to the order
of approximation under consideration here

Γr
tϕ

Γr
ϕϕ

¼ J
r30

ð146Þ

and

dϕ
dt

¼−
J
r30
�

ffiffiffiffiffi
M
r30

s �
1þ3

4
q̃ð28−25 ln3Þþ 7

54

J2

M4

�
: ð147Þ

From Eqs. (144) and (147), we can find r0 by assuming that
r0 − 3M can be expanded in powers of the small quantities
under consideration. After some algebra, the result is

r0 ¼ 3M ∓ 2Jffiffiffi
3

p
M

þ 1

2
Mq̃ð52 − 45 ln 3Þ − 1

27

J2

M3
: ð148Þ

Moreover, for dϕ=dt ¼ ω�, we can substitute r0 in either
Eq. (144) or Eq. (147) to get

ω� ¼� 1

3
ffiffiffi
3

p
M

�
1� 2J

3
ffiffiffi
3

p
M2

−
1

2
q̃ð−16þ15 ln3Þþ11

54

J2

M4

�
:

ð149Þ

For J ¼ 0, q̃ ¼ q̂ and we recover our previous result given
in Eq. (105) of Sec. V.

B. Decay of the light ring

As before, we assume that a bundle of null rays initially
moving on the light ring, x̄μ ¼ ðt; r; θ;ϕÞ ¼ ðλ; r0; π2 ;ω�λÞ,
begins to decay at t ¼ 0, so that the paths of the
null geodesics for t > 0 are given by r ¼ r0½1þ ϵfðtÞ�,
ϕ ¼ ω�½tþ ϵgðtÞ� and λ¼ tþ ϵhðtÞ, where fð0Þ ¼ gð0Þ ¼
hð0Þ ¼ 0. The bundle’s ingoing and outgoing paths are
null; therefore, we have

r2G
�
dϕ
dt

−
2J
r3

�
2

¼ F1 þOðϵ2Þ: ð150Þ

Next, we use the perturbed path components in Eq. (150)
and note that

F1

r2G
¼ 1

27M2

�
1þ q̃ð16 − 15 ln 3Þ � 4Jffiffiffi

3
p

M2
ϵf

−
J2

27M4
ð13 − 72ϵfÞ

�
þOðϵ2Þ; ð151Þ

where q̃ has been defined by Eq. (137). Finally, employing
Eqs. (148)–(151), we find after much algebra that

g0ðtÞ ¼ 0. Thus, as before, gðtÞ ¼ 0 follows from the
boundary condition that gð0Þ ¼ 0. Therefore, for the
rotating Hartle-Thorne case we have ω0

RHT ¼ �jω�.
The temporal component of the geodesic equation can be

written as

ϵh00 ¼ 2r0ðΓt
tr þ Γt

rϕω�Þϵf0 þOðϵ2Þ: ð152Þ

Along the unperturbed orbit, we find

Γt
trðϵ¼ 0Þ¼ 1

3M

�
1� 8J

3
ffiffiffi
3

p
M2

þ3q̃ð−8þ7 ln3Þþ37

18

J2

M4

�
ð153Þ

and

ω�Γt
rϕðϵ ¼ 0Þ ¼ 1

3M

�
∓ Jffiffiffi

3
p

M2
−
10

9

J2

M4

�
: ð154Þ

Next, employing Eq. (148) for r0, Eq. (152) takes the form

h00 ¼ 2

�
1� Jffiffiffi

3
p

M2
−
1

6
q̃ð92 − 81 ln 3Þ þ 91

162

J2

M4

�
f0:

ð155Þ

The radial component of the geodesic equation yields

ϵr0f00 þ ðΓr
tt þ 2Γr

tϕω� þ Γr
ϕϕω

2
�Þð1 − 2ϵh0Þ þOðϵ2Þ ¼ 0:

ð156Þ

Employing the Christoffel symbols given in Appendix D,
after much algebra Eq. (156) takes the form

f00−
1

27M2

�
1þ2q̃ð−16þ15 ln3Þ− 4J2

27M4

�
f¼ 0: ð157Þ

When J ¼ 0, q̃ ¼ q̂ and our result reduces to Eq. (115).
As before, the null geodesic equation for the θ coordinate

is satisfied and the corresponding equation for the ϕ
coordinate reduces to

ϵω�h00 ¼ 2ðΓϕ
tr þ Γϕ

rϕω�Þϵr0f0: ð158Þ

From Γϕ
tr ¼ J=ðr4AÞ, we find at the order of approximation

under consideration

Γϕ
trðϵ ¼ 0Þ ¼ J

27M4

�
1� 4Jffiffiffi

3
p

M2

�
: ð159Þ

Moreover, Γϕ
rϕ in the rotating Hartle-Thorne case is

given by
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Γϕ
rϕðϵ¼ 0Þ ¼ 1

3M

�
1� 2J

3
ffiffiffi
3

p
M2

þ 3q̃ð−8þ 7 ln3Þ− J2

6M4

�
:

ð160Þ

With these results, Eq. (158) reduces to Eq. (155).
The orbital perturbations follow from the solutions of the

null geodesic equation, namely,

fðtÞ ¼ βRHT sinhðγRHTtÞ; gðtÞ ¼ 0; ð161Þ

hðtÞ ¼ 2

�
1� Jffiffiffi

3
p

M2
−
1

6
q̃ð92 − 81 ln 3Þ

þ 91

162

J2

M4

�
βRHT
γRHT

½coshðγRHTtÞ − 1�

þ CRHTt: ð162Þ

As before, the integration constants βRHT ≠ 0 and CRHT
can be set equal to unity and zero, respectively.
Furthermore,γRHT > 0 is given by

γRHT ¼ 1þ q̃ð−16þ 15 ln 3Þ − 2J2=27M4

3
ffiffiffi
3

p
M

: ð163Þ

Regarding the calculation of the relative rate of decay of
the density of null rays along the light ring, let us first note
that for the rotating HT-metric (133),

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−gRHT

p ¼
ffiffiffiffiffi
F1

F2

s
Gr2 sin θ: ð164Þ

Along the perturbed orbit we have,

1

9M2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−gRHT

p ¼ 1 ∓ 4J

3
ffiffiffi
3

p
M2

−
3

2
q̃ð−4þ 3 ln 3Þ þ 4J2

27M4
þ 2

�
1 ∓ 4J

3
ffiffiffi
3

p
M2

þ 1

3
q̃ð−28þ 27 ln 3Þ þ 19J2

162M4

�
ϵf: ð165Þ

The relative rate of decay of the density of null rays can now be calculated as in the static Hartle-Thorne case and the
result is

ρnðtÞ ¼ ρnð0Þ= coshðγRHTtÞ; ð166Þ

when we neglect terms of order ϵ. Finally, the QNM frequencies of the rotating Hartle-Thorne solution via the light-ring
method are given by

ω0
RHT þ iΓRHT ¼ j

3
ffiffiffi
3

p
M

�
1� 2J

3
ffiffiffi
3

p
M2

−
1

2
q̃ð−16þ 15 ln 3Þ þ 11

54

J2

M4

�

þ i
nþ 1

2

3
ffiffiffi
3

p
M

�
1þ q̃ð−16þ 15 ln 3Þ − 2

27

J2

M4

�
; n ¼ 0; 1; 2;…; ð167Þ

where q̃ ¼ 5ðQ − J2=MÞ=ð8M3Þ. The QNM frequencies of
the rotating Hartle-Thorne solution can be compared with
those of the Kerr metric to second order in J=M2: For
QK ¼ J2=M, q̃ ¼ 0 and the QNM frequencies of the
rotating Hartle-Thorne solution coincide with those of
the Kerr solution given in Appendix E.

VII. DISCUSSION

In this paper, we have investigated collapsed configu-
rations with massM, angular momentum J and quadrupole
moment Q. To linear order in Q and second order in J, the
QNM frequencies of one such system, namely, the sta-
tionary exterior Hartle-Thorne spacetime have been ana-
lytically calculated in the eikonal limit using the light-ring
method. That is, for massless field perturbations of spin s,

s ¼ 0, 1, 2, with parameters ðω; j; μÞ such that Mω ≫ 1,
j ≫ 1 and μ ¼ �j, we have computed the ringdown
frequencies, given by Eq. (167), that reduce to those of
the Kerr black hole in appropriate limits. The deviation of
the QNM frequencies of the rotating Hartle-Thorne system
from those of the corresponding Kerr black hole can be
measured in terms of the dimensionless parameter
q̃ ¼ 5ðQ − J2=MÞ=ð8M3Þ. When the magnitude of this
parameter is sufficiently small, a generalized black hole
with classical quadrupole moment cannot be observatio-
nally distinguished from a Kerr black hole through their
QNM frequencies.
The determination of the QNM frequencies of the

rotating SQ spacetime requires further investigation.
Moreover, astrophysical (i.e., generalized) black holes
under consideration in the present work are expected to
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have accretion disks and associated electromagnetic fields,
which we have neglected for the sake of simplicity. Our
results may be relevant for considerations related to static
quadrupolar perturbations generated by tidal inter-
actions [61,62].

APPENDIX A: LEGENDRE FUNCTIONS

1. PnðzÞ and QnðzÞ for z ∈ ½− 1;1�
We recall that Legendre polynomials are given by

P0ðzÞ ¼ 1; P1ðzÞ ¼ z;

P2ðzÞ ¼
1

2
ð3z2 − 1Þ; P3ðzÞ ¼ ð5z3 − 3zÞ=2; ðA1Þ

etc., where Pnð1Þ ¼ 1. Moreover, the first three Legendre
functions of the second kind QnðzÞ are given by [63]

Q0ðzÞ ¼
1

2
ln

�
1þ z
1 − z

�
; Q1ðzÞ ¼

z
2
ln

�
1þ z
1 − z

�
− 1;

Q2ðzÞ ¼
3z2 − 1

4
ln

�
1þ z
1 − z

�
−
3

2
z: ðA2Þ

2. PnðxÞ and QnðxÞ for x ∈ ½1;∞Þ
For x ≥ 1, the Legendre function of the second kind can

be expressed as

QnðxÞ ¼
1

2
PnðxÞ ln

�
xþ 1

x − 1

�
−
2n − 1

n
Pn−1ðxÞ

−
2n − 5

3ðn − 1ÞPn−3ðxÞ − � � � ; ðA3Þ

where PnðxÞ is indeed the same as the Legendre poly-
nomial PnðxÞ but for x ≥ 1. Hence,

Q0ðxÞ¼
1

2
ln

�
xþ1

x−1

�
; Q1ðxÞ¼

x
2
ln

�
xþ1

x−1

�
−1; ðA4Þ

Q2ðxÞ ¼
3x2 − 1

4
ln

�
xþ 1

x − 1

�
−
3x
2
; ðA5Þ

etc., where Qnð∞Þ ¼ 0. Moreover, for x ∈ ð−∞;−1�,

PnðxÞ ¼ ð−1ÞnPnð−xÞ; QnðxÞ ¼ ð−1Þnþ1Qnð−xÞ:
ðA6Þ

Finally, in connection with the associated Legendre
functions of the second kind defined in Eq. (50), we have
the recurrence relations

ð2nþ1ÞxQm
n ðxÞ¼ ðn−mþ1ÞQm

nþ1ðxÞþðnþmÞQm
n−1ðxÞ;
ðA7Þ

ðx2 − 1Þ dQ
m
n ðxÞ
dx

¼ nxQm
n ðxÞ − ðnþmÞQm

n−1ðxÞ; ðA8Þ

etc.

APPENDIX B: CURVATURE INVARIANTS
OF THE δ-METRIC

A Ricci-flat solution in GR has four algebraically
independent scalar polynomial curvature invariants given by

I1 ¼ RμνρσRμνρσ − iRμνρσ
�Rμνρσ ðB1Þ

and

I2 ¼ RμνρσRρσαβRαβ
μν þ iRμνρσRρσαβ�Rαβ

μν: ðB2Þ

If the spacetime under consideration is algebraically special,
we have I31 ¼ 12I22. Here, we define the dual curvature
tensor �Rμνρσ via

�Rμνρσ ¼
1

2
eμναβRαβ

ρσ; ðB3Þ

where eμνρσ denotes the alternating tensor given by eμνρσ ¼ffiffiffiffiffiffi−gp
ϵμνρσ and ϵμνρσ is the totally antisymmetric symbol with

ϵ0123 ¼ 1. Note that in a Ricci-flat spacetime, the right and
left duals of the (Weyl) curvature tensor are equal.
It turns out that I1 and I2 for the δ-metric are both real

and can be expressed as

I1 ¼
16δ2m6

r10
B2δ2−3

A2ðδ2−δþ1ÞN 1;

I2 ¼
48δ3m8

r14
B3δ2−4

A3ðδ2−δþ1Þ ðX − δ − 1ÞN 2; ðB4Þ

where N 1 and N 2 are dimensionless, X ≔ r=m,

N 1¼ 3X4−6ðδþ2ÞX3þ3½ðδþ1Þðδþ5Þþδ2sin2θ�X2

−3ðδþ1Þ2ð2þδsin2θÞXþðδþ1Þ2ðδ2þδþ1Þsin2θ;
ðB5Þ

N 2 ¼ 2X4 − 4ðδþ 2ÞX3

þ ½2ðδþ 1Þðδþ 5Þ þ ð3δ2 − 1Þsin2θ�X2

− ðδþ 1Þ½4ðδþ 1Þ þ ð3δ2 þ 3δ − 2Þsin2θ�X
þ δðδþ 1Þ3sin2θ: ðB6Þ

Our result for the Kretschmann scalar (i.e., the real part of
I1) agrees with that given in Ref. [35]. Moreover, for δ ¼ 0,
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I1 ¼ I2 ¼ 0 and the resulting δ-metric is flat, since it can be
obtained from the Minkowski metric in spatial cylindrical
coordinates via the coordinate transformations ρ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðr − 2mÞp

sin θ and z ¼ ðr −mÞ cos θ.
Curvature singularities of the δ-metric occur at r ¼ 0 and

r ¼ 2m. Furthermore, for 0 < δ <
ffiffiffiffiffiffiffiffi
3=2

p
(excluding

δ ¼ 1), curvature singularities occur at r1 ¼ mð1þ
cos θÞ and r2 ¼ mð1 − cos θÞ, where B ¼ 0. For further
discussion, see Ref. [34].
Let us now compute I31 − 12I22 for the δ-metric. The

result is

I31 − 12I22 ¼
210m18δ6

r30
B3ð2δ2−3Þ

A6ðδ2−δþ1Þ ðδ2 − 1Þ2sin4θN 2
3N 4;

ðB7Þ

where N 3 ¼ 3X2 − 3Xðδþ 2Þ þ ðδþ 1Þðδþ 2Þ and

N 4 ¼ 9X4 − 18ðδþ 2ÞX3 þ 3X2W1

þ 6ðδþ 1ÞXW2 þW3 sin2 θ: ðB8Þ

Here,

W1 ¼ 3ð1þ δÞð5þ δÞ þ ð4δ2 − 1Þ sin2 θ; ðB9Þ

W2 ¼ −3ð1þ δÞ þ ð1 − 2δ − 2δ2Þsin2θ;
W3 ¼ ð1þ δÞ2ð1þ 2δÞ2: ðB10Þ

It follows that δ-metric is of Petrov type I [34], since
I31 − 12I22 is in general nonzero. However, I31 − 12I22 van-
ishes for θ ¼ 0; π, which means that δ-metric is algebrai-
cally special all along the symmetry axis. This conclusion is
in agreement with the result of Ref. [34] that the δ-metric
is of Petrov type D on the axis (θ ¼ 0; π). Furthermore, δ-
metric is degenerate as well when B ¼ 0 (for δ >

ffiffiffiffiffiffiffiffi
3=2

p
)

and at the positive roots of N 3 ¼ 0 and N 4 ¼ 0. In
connection with B ¼ 0, the metric is degenerate on r1 ¼
mð1þ cos θÞ and r2 ¼ mð1 − cos θÞ. For δ ≤ 2, the roots
of N 3 ¼ 0 are positive and the metric is algebraically
special at r ¼ mX, where 2X ¼ 2þ δþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4 − δ2Þ=3

p
.

Finally, for an oblate object (δ > 1), the number of positive
roots of N 4 ¼ 0 can be four, two or zero by Descartes’s
rule of signs; in fact, the explicit determination of these
roots is in general straightforward but complicated and is
beyond the scope of this appendix.

APPENDIX C: GRAVITY GRADIOMETRY
NEAR r= 2m

In an arbitrary gravitational field expressed in admissible
coordinates, it is always possible to define observers that
remain at rest in space. We are interested in such static
observers in δ-spacetime. For r > 2m, we consider an
arbitrary static observer that carries an orthonormal tetrad
frame λμα̂, where λμ0̂ ¼ uμ is the 4-velocity of a static
observer and its local spatial frame is given by λμ î for i ¼ 1,
2, 3. In ðt; r; θ;ϕÞ coordinates, we have

λ0̂ ¼ A−δ=2∂t; λ1̂ ¼ Aδ=2

�
A
B

�ð1−δ2Þ=2∂r; ðC1Þ

λ2̂¼
1

r
Aðδ−1Þ=2

�
A
B

�ð1−δ2Þ=2∂θ; λ3̂¼
1

rsinθ
Aðδ−1Þ=2∂ϕ:

ðC2Þ

The static observer is in general accelerated and mea-
sures the curvature tensor via a gravity gradiometer. The
measured components of the curvature tensor are given by

Rα̂ β̂ γ̂ δ̂ ¼ Rμνρσλ
μ
α̂λ

ν
β̂λ

ρ
γ̂λ

σ
δ̂; ðC3Þ

which are obtained from the projection of the Riemann
curvature tensor upon the tetrad frame of the reference
observer along its world line. The Riemann curvature
tensor has 20 independent components. Taking advantage
of the symmetries of the Riemann tensor, this quantity can
be represented by a 6 × 6 matrix R ¼ ðRÎ Ĵ Þ, where the
indices I and J range over the set (01,02,03,23,31,12).
Thus we can write

R ¼
�
E B

B† S

�
; ðC4Þ

where E and S are symmetric 3 × 3 matrices and B is
traceless. The tidal matrix E represents the “electric”
components of the curvature tensor as measured by the
fiducial observer, whereas B and S represent its “magnetic”
and “spatial” components, respectively. In Ricci-flat regions
of spacetime, Eq. (C4) simplifies, since S ¼ −E, E is
traceless and B is symmetric. Hence, the Weyl curvature
tensor with 10 independent components is completely
determined by its “electric” and “magnetic” components
that are symmetric and traceless 3 × 3 matrices.
The Weyl tensor of the δ-metric as measured by the static

observer has no gravitomagnetic components, so that
B ¼ 0, as expected. The measured curvature tensor’s non-
zero gravitoelectric components are given by (X ≔ r=m)

E1̂ 1̂ ¼ −E2̂ 2̂ − E3̂ 3̂; ðC5Þ
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E2̂ 2̂ ¼
m4δ

r6
Bδ2−2

Aδ2−δþ1
fX3 − ðδþ 3ÞX2 þ ½2ðδþ 1Þ þ δ2sin2θ�X − δðδþ 1Þsin2θg; ðC6Þ

E3̂ 3̂ ¼
m2δ

r4
Bδ2−1

Aδ2−δþ1
ðX − δ − 1Þ; ðC7Þ

E1̂ 2̂ ¼ E2̂ 1̂ ¼
m3δ

r5
Bδ2−2

Aδ2−δþ1
2

ðδ2 − 1Þ sin θ cos θ: ðC8Þ

As expected, the off-diagonal component vanishes in the
Schwarzschild case (δ ¼ 1). Moreover, as r → ∞, E
becomes proportional to M=r3, where M ¼ mδ; indeed,
E=ðM=r3Þ ∼ diagð−2; 1; 1Þ, as expected from Newtonian
gravity.

Let us note here the directional nature of the naked
singularity at r ¼ 2m. For θ ¼ 0; π, the measured gravito-
electric components of the Weyl curvature vanish if δ > 2 as
we approach r ¼ 2m along the symmetry axis, but diverge as
Aδ−2 if δ < 2 [34].However, in the equatorial plane θ ¼ π=2,
the gravitoelectric components always diverge as A−δ2þδ−1.

APPENDIX D: CHRISTOFFEL SYMBOLS

1. SQ-metric

The nonzero connection coefficients for the SQ-metric
(46) can be obtained from the expressions given below,
where q ≔ 3Q=ð2M3Þ.

Γt
tr ¼

M
r2A

�
1 − q

2M
rA

�
; Γr

tt ¼
MA
r2

�
1þ 2q

�
M
rA

þ lnB

��
; ðD1Þ

Γr
rr ¼ −

M
r2A

�
1 − 2qM

r2Aþ ðr2 − 3Mrþ 3M2Þsin2θ
r3AB

�
; Γr

rθ ¼ −
qM2

r2B
sin 2θ; ðD2Þ

Γr
θθ ¼ −rA

�
1þ qM

r2 − 2Mr cos2 θ −M2 sin2 θ
r3AB

�
; ðD3Þ

Γr
ϕϕ ¼ −rA

�
1þ q

�
M
rA

þ 2 ln
B
A

��
sin2θ; Γθ

rr ¼
qM2

r4AB
sin 2θ; ðD4Þ

Γθ
rθ ¼

1

r

�
1 − qM

r2 − 2Mrð1þ sin2θÞ þ 3M2sin2θ
r3AB

�
; Γθ

θθ ¼ −
qM2

r2B
sin 2θ; ðD5Þ

Γθ
ϕϕ ¼ −

1

2

�
1þ 2q ln

B
A

�
sin 2θ; Γϕ

rϕ ¼ 1

r

�
1 − q

M
rA

�
; Γϕ

θϕ ¼ cot θ: ðD6Þ

2. Rotating HT-metric

The nonzero connection coefficients for the rotating Hartle-Thorne solution (133) can be obtained from the expressions
given below. Here, q̃ ¼ 5ðQ − J2=MÞ=ð8M3Þ.

Γt
tr ¼ −

q̃
M2

½3ðr −MÞ lnAþ 2M
r4A2

ð3r4 − 12Mr3 þ 13M2r2 − 2M3rþ 2M4Þ�P2ðcos θÞ

þ M
r2A

−
J2

Mr6A
ð3r2 þ 2Mr − 8M2ÞP2ðcos θÞ − 2

MJ2

r6A2
; ðD7Þ

Γt
tθ ¼

3q̃
4M2

½3r2A lnAþ 2M
r2A

ðr −MÞð3r2 − 6Mr − 2M2Þ� sin 2θ − 3J2

2Mr4
ðrþMÞ sin 2θ; ðD8Þ
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Γt
rϕ ¼ −

3Jsin2θ
r2A

; Γr
tϕ ¼ −

J
r3
ðr − 2MÞsin2θ; Γr

ϕϕ ¼ Γr
θθsin

2θ; ðD9Þ

Γr
tt ¼ −

q̃
M2

�
3ðrþMÞA2 lnAþ 2M

r4
ð3r4 − 6Mr3 − 5M2r2 þ 6M3rþ 6M4Þ

�
P2ðcos θÞ

þMA
r2

þ 2J2

3r6
ð2r −MÞ − J2A

3Mr5
ð9r − 2MÞP2ðcos θÞ; ðD10Þ

Γr
rr ¼ −Γt

tr −
4J2

r6A
ð7r − 12MÞP2ðcos θÞ þ

4J2

r5A
; Γr

rθ ¼ −Γt
tθ −

9J2

r4
sin 2θ; ðD11Þ

Γr
θθ ¼ 2M − r −

q̃
M2

½2Mð3r2 þ 3Mr − 14M2Þ þ 3rðr2 þ 2Mr − 2M2ÞA lnA�P2ðcos θÞ

−
J2

Mr4
ð3r2 − 12Mrþ 12M2ÞP2ðcos θÞ −

2J2

r3
; ðD12Þ

Γθ
tt ¼

A
r2
Γt
tθ −

2J2

r6
sin 2θ; Γθ

tϕ ¼ J sin 2θ
r3

; Γθ
rr ¼

1

r2A
Γt
tθ þ

9J2

r6A
sin 2θ; ðD13Þ

Γθ
rθ ¼

1

r
þ q̃
M2

�
3r lnAþ 2M

r3A
ð3r3 − 3Mr2 − 2M2r − 2M3Þ

�
P2ðcos θÞ þ

J2

Mr5
ð3rþ 8MÞP2ðcos θÞ; ðD14Þ

Γθ
θθ ¼ −

3q̃
4M2

�
3ðr2 − 2M2Þ lnAþ 2M

r
ð3r2 þ 3Mr − 2M2Þ

�
sin 2θ þ 3J2

2Mr4
ðrþ 2MÞ sin 2θ; ðD15Þ

Γθ
ϕϕ ¼ −Γθ

θθsin
2θ −

1

2
sin 2θ; Γϕ

θϕ ¼ Γθ
θθ þ cot θ; ðD16Þ

Γϕ
tr ¼

J
r4A

; Γϕ
tθ ¼ −

2J cot θ
r3

; Γϕ
rϕ ¼ Γθ

rθ −
6J2

r5A
sin2θ: ðD17Þ

APPENDIX E: KERR QNMS TO ða=MÞ2 ORDER
VIA THE LIGHT-RING METHOD

The metric of the exterior Kerr spacetime is given by [8]

ds2 ¼ −dt2 þ Σ
Δ
dr2 þ Σdθ2 þ ðr2 þ a2Þ sin2 θdϕ2

þ 2Mr
Σ

ðdt − a sin2 θdϕÞ2; ðE1Þ

whereM and J > 0 are the mass and angular momentum of
the gravitational source, respectively, a ¼ J=ðMcÞ has
dimensions of length and is the specific angular momentum
of the source, ðt; r; θ;ϕÞ are the standard Boyer-Lindquist
coordinates and

Σ ¼ r2 þ a2cos2θ; Δ ¼ r2 − 2Mrþ a2: ðE2Þ

The Kerr metric contains gravitoelectric, GM=ðc2rÞ, and
gravitomagnetic, GJ=ðc3r2Þ, potentials that correspond to
the mass and angular momentum of the source, respectively.

The QNM frequencies of the Kerr metric using the light-
ring method have been treated in detail in Ref. [51] and can
be expressed as

ωQNM ¼ ω0
K þ iΓK ¼ �jωK

� þ iγK

�
nþ 1

2

�
;

n ¼ 0; 1; 2; 3;…; ðE3Þ
where γK > 0 and

ωK
� ¼�

ffiffiffiffiffiffiffiffiffiffiffi
M=r30

q
1�a

ffiffiffiffiffiffiffiffiffiffiffi
M=r30

q ; γK ¼
ffiffiffi
3

p
jωK

�j
�
1−

2M
r0

þa2

r20

�
1=2

;

r0¼ 3M∓ 2a

�
M
r0

�
1=2

: ðE4Þ

To second order in the dimensionless parameter a=M,
the radius of the light ring is given by

r0 ¼ 3M ∓ 2affiffiffi
3

p −
2a2

9M
; ðE5Þ
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so that at this level of approximation

ωK
� ¼ � 1

3
ffiffiffi
3

p
M

�
1� 2a

3
ffiffiffi
3

p
M

þ 11

54

a2

M2

�
;

γK ¼ 1

3
ffiffiffi
3

p
M

�
1 −

2

27

a2

M2

�
: ðE6Þ

These results agree with the QNM frequencies of the rotating Hartle-Thorne solution for QK ¼ a2M.
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