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We study the gravitational-wave (GW) signatures of clouds of ultralight bosons around black holes
(BHs) in binary inspirals. These clouds, which are formed via superradiance instabilities for rapidly
rotating BHs, produce distinct effects in the population of BH masses and spins, and a continuous
monochromatic GW signal. We show that the presence of a binary companion greatly enriches the
dynamical evolution of the system, most remarkably through the existence of resonant transitions
between the growing and decaying modes of the cloud (analogous to Rabi oscillations in atomic
physics). These resonances have rich phenomenological implications for current and future GW
detectors. Notably, the amplitude of the GW signal from the clouds may be reduced, and in many
cases terminated, much before the binary merger. The presence of a boson cloud can also be revealed
in the GW signal from the binary through the imprint of finite-size effects, such as spin-induced
multipole moments and tidal Love numbers. The time dependence of the cloud’s energy density
during the resonance leads to a sharp feature, or at least attenuation, in the contribution from the finite-
size terms to the waveforms. The observation of these effects would constrain the properties of
putative ultralight bosons through precision GW data, offering new probes of physics beyond the
Standard Model.
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I. INTRODUCTION

The recent detections of gravitational waves (GWs) by
the LIGO/Virgo Collaboration [1–5] mark the beginning of
multimessenger astronomy [6] and the birth of “precision
gravity” [7,8]. Binary systems, of comparable masses or
extreme-mass ratios, will become the leading probe to test
gravitational dynamics and the physics of compact objects,
such as black holes (BHs) and neutron stars (NSs), under
unique conditions. While it is indisputable that future GW
observations will play a transformative role in astrophysics
[9], it is less clear what impact these measurements will
have on other branches of physics, and in particular,
whether they can shed light on phenomena beyond the
StandardModel. In principle, the nonperturbative regime of
gravitational dynamics may carry imprints of “new phys-
ics”; see e.g., [10]. However, the need for numerical
modeling, together with the small number of cycles
involved, may hinder our ability to pinpoint different
scenarios, if restricted only to the merger phase. In contrast,
an accurate analytic reconstruction of the signal during the
inspiral, in combination with simulations for the late stages
of the coalescence, offers a unique opportunity to study

physics beyond the Standard Model through GW preci-
sion data.
Using GW observations as probes of new physics is

challenging, mainly due to the efficient decoupling of
short-distance physics from long-distance observations.
Indeed, finite-size effects, characterized by higher-
derivative terms in a “worldline” effective field theory
(EFT) approach [11–22], encapsulate the physics at scales
shorter than the size of the objects sourcing GWs in a
binary system. Because Einstein gravity is derivatively
coupled, these terms scale with high powers of the ratio
between the size and the separation of the bodies. For a
nonrotating compact object, the first correction to the
structureless point-particle approximation is due to tidal
effects and scales with the fifth power of its size. It is often
parametrized in terms of the so-called (tidal) “Love
numbers,” e.g., [23,24], which are analogous to suscep-
tibilities in electrodynamics. These Love numbers modify
the phase of the GW signal for inspiraling binary systems at
fifth post-Newtonian (5PN) order [25,26]. For rapidly
rotating bodies, finite-size effects become relevant already
at 2PN, through intrinsic spin-induced multipole moments
[11,27,28]. In either case, the challenge is to extract the
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parameters of the source accurately [29–31], which
requires very precise waveforms.1 As we shall see, both
the Love numbers and the spin-dependent multipoles may
carry the imprint of new degrees of freedom. The Love
numbers in particular offer a unique diagnostic, since they
vanish for BHs in Einstein gravity [23,24,49,50], and
therefore any nonzero value would point to physics beyond
the Standard Model [7,21,22].
New physics may also appear at distances larger than the

size of the objects in a binary. This may entail long-distance
modifications of general relativity or extra fields as in
scalar-tensor theories. In either case, if the scale of new
physics is shorter than the separation between the bodies,
decoupling still applies, as far as the computation of GW
observables is concerned. For example, modifications of
general relativity can be evidenced during the inspiral phase
through higher-derivative corrections to the Einstein-
Hilbert action; see e.g., [51]. On the other hand, additional
degrees of freedom can have effects at longer distances if
their Compton wavelength is larger than the size of the
compact objects. This will lead, as we shall see, to larger
natural values for the finite-size coefficients in the effective
theory, enhanced by powers of the ratio between the
Compton scale and gravitational radius. In this manner,
new physics may manifest itself at scales larger than
anticipated from the Standard Model plus Einstein gravity
alone.
A notable example for physics beyond the Standard

Model are “ultralight” particles [52]. Even though the
masses for these particles can be many orders of magnitude
smaller than those of known elementary particles, they are
technically natural if the coupling to ordinary matter is very
weak. At the same time, the required weak coupling makes
detecting these particles by traditional experimental means
extremely challenging. On the other hand, their large
Compton wavelengths means that, if present in nature,
they will be efficiently produced by the superradiance

instability of rapidly rotating BHs [53–59]. For bosonic
fields, superradiance creates a classical condensate which
can carry a significant amount of the total mass and
angular momentum of the system; see [60] for a review.
Rather quickly, on cosmological/astrophysical scales, this
leads to the BH carrying an “atmosphere,” with a large
“cloud” of the field co-rotating with the BH (see Fig. 1).2

In the nonrelativistic limit, the eigenfunctions of the
system are determined by a Schrödinger-like equation
and the whole setup is sometimes referred to as a
“gravitational atom.”
The bosons which can be produced in this manner span a

vast range of masses, from 10−20 to 10−10 eV, correspond-
ing to BHs of a few to billions of solar masses. At the upper
end of this range we may find particles which play the role
of the QCD axion [61–63], while those at the lower end
offer alternative dark matter candidates, both with real [64]
and complex [65,66] scalars. In addition, a plethora of
ultralight axionlike particles arise also as a natural conse-
quence of most string compactifications [67,68]. The
“axiverse” [69], as it is commonly known, includes fields
with a wide range of masses, increasing the chances some
of them may have formed boson clouds through super-
radiance instabilities.
In this paper, we investigate the GW signatures from

boson clouds surrounding BHs, when the latter are part of a
binary. As we will show, the existence of a companion
greatly enriches the dynamical evolution of the entire
system. One of the most important consequences of the
gravitational perturbation occurs when the orbital fre-
quency of the binary matches the energy difference
between growing and decaying modes of the cloud, leading
to resonant transitions between the two states. This effect is
analogous to Rabi transitions in the hydrogen atom under

FIG. 1. Schematic illustration of the evolution of the boson cloud during the inspiral. The system experiences a resonance when the
orbital frequency matches the energy difference between growing and decaying modes. The orbits for which the resonance occurs are
indicated by the gray bands, marking the point when the cloud may rapidly deplete leading to novel GW signatures.

1The current state-of-the-art analytic computations are ap-
proaching 4PN order [28,32–48], moving forward toward the key
5PN threshold [7,8].

2These clouds are a form of “BH hair.” We emphasize,
however, that this is not a violation of no-hair theorems for
BHs, since these configurations are unstable, eventually returning
to the Kerr solution. Nevertheless, if the lifetime is long compared
to astrophysical or cosmological timescales, then the BH will
carry hair for all practical purposes.
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the influence of an oscillating external field. The reso-
nances can deplete (or significantly attenuate) the energy
density stored in the cloud, leading to rich phenomeno-
logical implications and powerful new probes of physics
beyond the Standard Model.
For real bosonic fields, there are two main sources of

GW radiation: (i) a continuous monochromatic signal from
the cloud [70] and (ii) emission from the two-body system,
that includes the BH-cloud system and its companion. The
former depends on the specific configuration for complex
scalar fields around BHs, and may be absent for axisym-
metric condensates. Both signals, when present, will be
affected by the dynamical evolution of the cloud in the
binary, in particular as the system evolves through the
resonances. Notably, the amplitude of the continuous signal
emitted from the cloud may be reduced, and in many cases
terminated, much before the binary merger. The boson
clouds can also reveal themselves through finite-size effects
in the GW signal from the binary during the inspiral, such
as spin-induced multipole moment(s) and tidal Love
number(s). The time dependence of the cloud during the
resonance leads to a sharp feature, or at least an attenuation,
in the contribution from finite-size effects to the wave-
forms. The observation of these phenomenological effects
would help us elucidate the nature of the BH-cloud system,
and the putative ultralight bosons, through precision
GW data.
Using high-precision GW observations to constrain the

particle content in the Universe resembles the discipline
of collider physics. In our case, a scattering process takes
place between the rotating BH and an incident wave of
the bosonic field. The superradiant amplification of the
scattered wave is a type of “resonance” that occurs when
the Compton wavelength of the field exceeds the size of
the BH horizon. This resonance creates a large number
of ultralight bosons in the intermediate state, which, in
the case of real scalars, then decay via self-annihilation
into GWs. These GWs can be thought of as many soft
quanta in the final state, whose frequency is given by
(twice) the mass of the boson. In a binary system, the
initial state features an extra body, producing a final
state that includes the GWs emitted during the inspiral.
The existence of a “three-body” initial state leads to an
additional resonant behavior, opening new decaying
channels for the bosonic field. This new configuration
enables us to extract more information about the inter-
mediate state. In particular, the coefficients of finite-size
terms in the worldline theory carry the imprints of new
particles, which, as we will show, can be constrained by
GW precision data. This is analogous to precision tests
in particle physics, where constraints on the coefficients
of higher-dimension operators probe new physics beyond
the Standard Model [71].
A similar analogy, between collider physics and the

imprints of massive particles in cosmological correlation

functions, was drawn in [72].3 Taking inspiration from
cosmology, we will refer to this nascent discipline in GW
science as “gravitational collider physics,” which comple-
ments other searches for new light particles, in the lab [52],
astrophysics [84], and cosmology [85–87].

A. Outline

The outline of the paper is as follows: In Sec. II, we
review how superradiance generates boson clouds around
rotating BHs, and compute their energy spectrum. In
Sec. III, we study the dynamics of the BH cloud when
it is part of a binary. We show that the gravitational
perturbation produced by a companion induces resonant
mixing between growing and decaying modes of the cloud.
We determine the efficiency of this level mixing to deplete
the energy density in the cloud, as a function of the
parameters of the system. In Sec. IV, we discuss how
the novel features in the dynamics of the BH cloud affect
GW signals, either directly from the cloud or the two-body
system including the companion. We estimate the relevant
finite-size effects, as well as their time dependence induced
by the evolution of the cloud. We then briefly discuss the
novel type of constraints on ultralight bosons in binary
inspirals, through GW searches both from the cloud and the
binary system. We conclude, in Sec. V, with a summary of
our results and a discussion of open problems. We also
provide an outlook on future applications of the gravita-
tional collider. A number of appendices contain additional
material: In Appendix A, we derive various properties of
the BH cloud, including the higher-order (hyper)fine
structure of its energy spectrum and its quadrupole
moment. In Appendix B, we provide an alternative per-
spective on the absence of a dipole induced by the
companion object. Finally, in Appendix C, we review
aspects of the EFT approach for extended objects and
introduce the relevant finite-size corrections.

B. Notation and conventions

Our metric convention is ð−;þ;þ;þÞ. We will use
natural units, ℏ ¼ c ¼ G ¼ 1, throughout. The gravita-
tional radius of an object of mass M is rg ≡GM=c2 ¼ M.
Properties of the boson cloud will be denoted by the
subscript c, e.g., Mc and rc are the mass and typical radius
of the cloud. We use the subscript � for quantities related to
the companion, e.g., M� is its mass and V� is the induced
gravitational potential. Ignoring the small energy loss in
GW emission, the mass of the BH cloud is equal to the
initial BH mass, and we useM for both of them. We denote

3In the case of the “cosmological collider,” particles are
produced as “resonances,” when their Compton wavelength
exceeds the cosmological horizon during inflation. The properties
of the new particles in the intermediate state are reflected in the
momentum scaling and angular behavior in the soft limits of
correlation functions [72–83].
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by J the initial BH angular momentum, which is also equal
to that of the BH cloud. We define the BH spin parameters
ã ¼ a=M ¼ J=M2. The mass and spin of the BH at the
moment when superradiance saturates are denoted by the
subscript s, i.e.,Ms and as. We introduce the dimensionless
variables κ and Λ to describe the spin-induced quadrupole
and tidal Love number. For a Kerr BH, we have κ ¼ 1
and Λ ¼ 0.

II. BOSON CLOUDS AROUND BLACK HOLES

When a BH rotates faster than the angular phase velocity
of an incoming wave, it amplifies the energy and angular
momentum of the field in its vicinity.4 This superradiance
effect [53–57] is a natural mechanism to create clouds of
ultralight bosons around Kerr BHs (see [60] for a review).
In this section, we will review this phenomenon and the
properties of the boson clouds that it generates.

A. Black hole superradiance

Consider a rotating BH of mass M and spin J ≡ aM. A
bosonic field with mass μ and angular frequency ω
experiences a superradiant instability if

ω

m
< ΩH ¼ a

2Mrþ
; ð2:1Þ

wherem is the azimutal angular momentum of the field,ΩH

is the angular velocity of the black hole, and rþ ≡M þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
is the size of the event horizon of the black hole

(see Appendix A). Superradiant growth requires m > 0,
i.e., modes that corotate with the Kerr black hole.
In principle, superradiance occurs for both massive and

massless fields. However, the mass of the bosonic field
plays the crucial role of a reflecting barrier, so that the
superradiantly amplified field is reflected back onto the
black hole and continuously extracts angular momentum
from it. This provides a natural realization of the “black-
hole bomb” scenario proposed by Teukolsky and Press
[89]. The amplitude of the field increases while the black
hole spin decreases, until the inequality (2.1) is saturated.
The black hole spin at saturation is

as
Ms

¼ 4mðMsωsÞ
m2 þ 4ðMsωsÞ2

; ð2:2Þ

where Ms and ωs are the relevant quantities evaluated after
superradiance has ended. The existence of black holes with
spins above this critical value would rule out ultralight
scalar fields in the corresponding mass range [70].

Although superradiance is a phenomenon that occurs for
bosons of any spin [56,57,90], in the rest of the paper we
will focus only on the scalar case. The reason is twofold:
from a practical point of view, the Klein-Gordon equation
for a massive scalar field in a Kerr background is separable
in Boyer-Lindquist coordinates [91,92], which makes the
problem analytically tractable (see Appendix A). This is
not the case for massive vector5 and tensor fields. From a
theoretical point of view, ultralight scalar fields arise
naturally as particle candidates in various scenarios for
physics beyond the Standard Model. The Kerr-scalar
system is therefore a particularly well-motivated system
to be studied.

B. Gravitational atom

The equation of motion of a massive scalar field Ψ
around a rotating BH is

ðgab∇a∇b − μ2ÞΨðt; rÞ ¼ 0; ð2:3Þ

where gab is the Kerr metric and ∇a is the associated
covariant derivative. For (real) solutions of (2.3) in the
nonrelativistic limit, it is convenient to consider the ansatz6

Ψðt; rÞ ¼ 1ffiffiffiffiffi
2μ

p ½ψðt; rÞe−iμt þ ψ�ðt; rÞeþiμt�; ð2:4Þ

where ψðt; rÞ is a complex scalar field which varies on a
timescale that is much longer than μ−1. Substituting (2.4)
into (2.3), and keeping only the leading contributions in
r−1, the field ψðt; rÞ satisfies the Schrödinger equation with
a Coulomb-like central potential7

i
∂
∂tψðt; rÞ ¼

�
−

1

2μ
∇2 −

α

r

�
ψðt; rÞ; ð2:5Þ

where we have defined the “fine-structure constant”

α≡GMμ

ℏc
≃ 0.02

�
M

3 M⊙

��
μ

10−12 eV

�
: ð2:6Þ

Notice that α is the ratio of the gravitational radius of the
BH, rg ≡ GM=c2, and the (reduced) Compton wavelength
of the scalar field, λc ≡ ℏ=ðμcÞ.

4This is the rotational analog of Cherenkov radiation [88],
where spontaneous emission of light occurs when a test particle
moves with a speed that is faster than the phase velocity of the
medium.

5See [93] for recent progress in the separability of the Proca
field in Kerr backgrounds.

6Complex solutions may be described in terms of two real
fields without loss of generality.

7Although the Schrödinger equation is first order in time
derivatives, the Klein-Gordon equation is second order. This
means that generic solutions of (2.3) will still depend on the value
of the field and its first time derivative as initial conditions.
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1. Energy spectrum

Remarkably, the Schrödinger equation (2.5) takes the
same form as for the hydrogen atom, such that the stationary
eigenstates ψnlm around the BH are given by the hydrogenic
eigenfunctions (see Appendix A for details)

ψnlmðt; rÞ ≃ e−iðω−μÞtR̄nlðrÞYlmðθ;ϕÞ; ð2:7Þ

where fn;l; mg are the principal, orbital, and magnetic
“quantum numbers” respectively, which satisfy l ≤ n − 1
and jmj ≤ l. For future convenience, we denote these
eigenstates by ψnlm ≡ jnlmi, and refer to the occupied
states as “clouds.” The eigenfrequencies are given by

ωnlm ≃ μ

�
1 −

α2

2n2

�
: ð2:8Þ

The radial profile of the scalar cloud peaks at

rc;n ≃
�
n2

α2

�
rg; ð2:9Þ

which can be far away from the central BH for α ≪ 1.

2. Fine structure and beyond

Keeping higher powers of r−1 in the large distance
expansion, one obtains higher-order corrections to the
eigenfrequencies (2.8) (see Appendix A for details):

Δωnlm¼μ

�
−
α4

8n4
þð2l−3nþ1Þα4

n4ðlþ1=2Þ þ 2ãmα5

n3lðlþ1=2Þðlþ1Þ
�
:

ð2:10Þ

The individual terms in (2.10) are analogous to the
relativistic correction to the kinetic energy, the fine splitting
(Δl ≠ 0) and the hyperfine splitting (Δm ≠ 0) in the
hydrogen atom. These corrections break the degeneracies
between modes of the same n but different l and m (see
Fig. 2).8 As we shall see in Sec. III, the presence of an
external perturbation can induce transitions between these
energy levels.

3. Decay width

The analogy between the gravitational atom and the
hydrogen atom is of course not exact. An obvious dis-
tinction is that electrons in the hydrogen atom are fermions,
while the cloud is bosonic. This means that each level of the
gravitational atom can be occupied by an exponentially
large number of scalar quanta [70], forming a boson
condensate. Moreover, the states are not perfectly sta-
tionary, due to the boundary conditions at the horizon. This
is encapsulated in the imaginary part of the eigenfrequency,

ωnlm → ωnlm þ iΓnlm; ð2:11Þ

which was omitted in (2.8). In general, the instability rate
has to be determined numerically [95]. However, in the
limit α ≪ 1, the decay width can be computed analytically.
The result, known as “Detweiler’s approximation,” is given
by [96]

Γnlm ¼ 2rþ
M

CnlmðαÞðmΩH − ωÞα4lþ5; ð2:12Þ

where we defined9

CnlmðαÞ≡ 24lþ1ðnþ lÞ!
n2lþ4ðn − l − 1Þ!

�
l!

ð2lÞ!ð2lþ 1Þ!
�
2

×
Yl
j¼1

½j2ð1 − ã2Þ þ ðãm − 2r̃þαÞ2�; ð2:13Þ

with ã≡ a=M and r̃þ ≡ rþ=M. Although the analytic
result (2.12) was obtained for α ≪ 1, it was found to give
reasonable agreements with numerical results for α < 0.5
(see Fig. 28 in [60]).
Due to the strong dependence of Γ on l, the dominant

growing modes have lg¼mg ¼ 1. In principle, this includes
an infinite tower of overtones jng11i, with ng ≥ 3, but, in
practice, the fastest growing mode is j211i. Moreover, at the
end of the superradiant growth,we haveωng11 > ω211 ¼ ΩH,
so that the higher overtones decay back into the black hole.
Hence, in the rest of the paper, we will consider j211i as the

FIG. 2. Illustration of the eigenfrequency spectrum of the
cloud, up to n ¼ 3 and l ¼ 2. Green (solid) lines represent
growing modes, while the red (dashed) lines are decaying modes.
For a given value of n and l, the lowest frequency level is the
m ¼ −lmode, and subsequent higher frequencies are levels with
larger values of m.

8Similar computations for the energy spectrum of bounded
Dirac fields in Kerr spacetime can be found in [94].

9See [97,98] which point out a missing factor of 1=2 in
Detweiler’s original computation.
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initial condition. The observationally relevant range of α is
then given by

0.005

�
M

3 M⊙

�
1=9 ≲ α < 0.5; ð2:14Þ

where the lower bound is obtained by demanding the cloud
to grow significantlywithin the age of theUniverse,while the
upper bound is the maximum value of α for superradiant
growth of the j211i mode to occur, assuming an initial BH
spin of ã ¼ 0.99. Smaller values of ã result in stronger upper
bounds on α. For instance, ã ¼ 0.8 implies α < 0.25 [95].

C. Continuous emission

While the energy spectra are identical for both real or
complex scalar fields, their stability properties may be
different. The energy-momentum tensor of a real scalar
field is always time dependent and nonaxisymmetric. As a
consequence, clouds made out of real fields are a continu-
ous source of GWs [70]. For complex fields, on the other
hand, certain configurations may suppress GW emission.
This occurs when the real and imaginary components of the
field are in the same eigenstate, but their relative phase is
such that they produce time-independent and axisymmetric
configurations. Whether this is realized in a specific case
depends on the initial conditions of the superradiant growth
of the cloud. In any case, since the timescale for this GW
emission is much longer than the timescale of the super-
radiance instability, the former does not inhibit the for-
mation of the cloud [99]. However, depending on the values
of M and α, the clouds may still deplete on cosmological/
astrophysical timescales.
The rate of GW emission for a real scalar cloud is

given by10

dEgw

dt
≃ 0.01

�
McðαÞ
M

�
2

α14; ð2:15Þ

where the numerical coefficient was obtained from a fit to
the numerical results of [99,100] and McðαÞ is the mass of
the cloud as a function of α. For α ≪ 1, and assuming the
initial BH spin to be close to maximal, ã → 1, we can
approximate McðαÞ ≃Mα [100].11 In the absence of addi-
tional effects such as accretion disks, conservation of
energy implies _Mc ¼ − _Egw, and the cloud evolves as

McðtÞ ¼
Mc;0

1þ t=τc
; ð2:16Þ

where Mc;0 is the initial mass of the cloud and τc the
lifetime of the cloud, which is given by

τc ≃ 107 years

�
M

3 M⊙

��
0.07
α

�
15

≃ 109 years

�
M

105 M⊙

��
0.1
α

�
15

: ð2:17Þ

These estimates are valid for α ≲ 0.1, while for larger
values of α, (2.17) can underestimate τc up to 2 orders of
magnitude (see footnote 10).
We see that the cloud’s lifetime is extremely sensitive to

the value of α. For stellar-mass BHs, with masses in the
range ½3; 100� M⊙, we can ignore the GW emission from
the cloud for typical binary dynamical timescales of order
10 Myr to 1 Gyr (e.g., [102] and references therein),
provided that α≲ 0.07. On the other hand, for super-
massive BHs with M ≳ 105 M⊙, the cloud survives for
more than 1 Gyr if α≲ 0.1. If the BHs continuously accrete
matter, long-lived clouds may be allowed with larger values
of α [103]. The associated ranges of α will become relevant
when we discuss the evolution of the BH cloud in a binary
system, and in particular its GW signatures. While GW
emission from the cloud may be ignored for evolution
timescales that are smaller than τc, other depletion channels
may become active in the presence of a companion. Wewill
discuss this next.

III. CLOUDS IN BINARY SYSTEMS

So far, we have studied the BH cloud in isolation, where
it can be described by quasistationary states. As we shall
see, these configurations are altered when the BH carrying
the cloud is part of a binary system (with a companion
which may or may not carry a cloud itself). We will find
that the gravitational perturbations on the BH cloud yield
interesting new phenomena. In particular, we will discover
the presence of resonant orbital frequencies for the binary,
which lead to new instabilities for the BH cloud. We will
discuss the observational consequences of these resonances
in Sec. IV.

A. Gravitational perturbations

The presence of a companion, of mass M�, introduces a
perturbation to the dynamics of the cloud. We will con-
centrate on the gravitational potential in the free-falling
frame of the cloud, but also briefly discuss the possibility of
mass/energy transfer between the cloud and the companion.
As long as the binary separation, R�, is larger than the size
of the cloud, R� > rc, the gravitational influence of the
companion can be treated in a multipole expansion.
Furthermore, we will assume that the correction to the

10Comparison with numerical results [99,100] suggests that
(2.15) is a good approximation for α ≲ 0.1. For larger values of α,
nonlinear effects reduce the emission power, and (2.15) is only
an upper bound.

11For larger values of α, determiningMcðαÞ requires numerical
simulations; see [58] for the extraction efficiencies for axisym-
metric complex Proca fields in near extremal BH backgrounds.
The theoretical upper limit of superradiance extraction is given by
Mc=M < 0.29 [101].
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Kerr metric is a small perturbation. This requires the
length scale associated to the gravitational (curvature)
perturbation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R3�=M�

p
to be larger than rc, or equivalently

R� > 2−2=3q1=3α2=3rc, where q≡M�=M. For α < 1, the
latter condition is somewhat weaker than the requirement
of negligible mass transfer (see below), which reads
R� > 2q1=3rc. Taking this into account, the regime of
validity of our perturbative treatment is bounded by
R� > Rpt ≡maxfrc; 2q1=3rcg.

1. Free-falling clouds

The perturbed metrics for BHs in external fields have
been studied extensively in the literature; see e.g., [104]
and references therein. The companion object induces
a time-dependent perturbation to the metric, such that

gμν ¼ gð0Þμν þ δgμν, where gð0Þμν is the unperturbed Kerr
spacetime. In general, the metric perturbation δgμν consists
of two separate components: (i) a direct contribution from
the gravitational potential due to M�, and (ii) the response
of the BH cloud to tidal deformations. We will work in the
Newtonian limit, which dominates the gravitational per-
turbation to the cloud due to the companion, and ignore the
subleading tidal contributions, as well as the effect of the
BH spin on the metric. (We will discuss tidal and spin-
induced effects in Sec. IV B, when we study the GW signal
from the binary system.)
In comoving Fermi coordinates ðt̄; x̄iÞ, whose origin is

located at the centre-of-mass12 of the unperturbed BH cloud
(see Fig. 3), the δg00 component reads [104,105]

δg00ðt̄; r̄Þ¼
X
l�¼2

2

l�ðl�−1ÞELðt̄;0Þx̄L

¼
X
l�¼2

X
jm�j≤l�

2

l�ðl�−1Þ r̄
l�Eðm�Þ

l� ðt̄;0ÞYl�m�ðθ̄; ϕ̄Þ;

ð3:1Þ

where we have used the notation L≡ ði1 � � � il� Þ. The
tensor EL is the symmetric trace-free representation of
the tidal tensor, defined as ELðt̄; 0Þ≡ −∂LU�ðt̄; 0Þ=
ðl� − 2Þ!, with U�ðt̄Þ ¼ −M�=R�ðt̄Þ the gravitational
potential generated by the companion, evaluated along
the geodesic of the BH cloud. In the second line of (3.1) we
have decomposed the gravitational field into spherical
harmonics in polar coordinates r̄≡ fr̄; θ̄; ϕ̄g, with coef-

ficients Eðm�Þ
l� ðt̄; 0Þ. The fact that the expansion (3.1) in

the free-falling frame begins with two derivatives of the

external potential is a well-known consequence of the
equivalence principle.
The tidal tensors can easily be computed. For example, at

leading Newtonian order, the l� ¼ 2 mode is [106]

Eijðt;0Þx̄ix̄j¼−
3M�
R3�

�
n̂in̂j−

1

3
δij

�
x̄ix̄j

¼−
8π

5

M�
R�

�
r̄
R�

�
2 X2
m�¼−2

Y�
2m� ðΘ�;Φ�ÞY2m� ðθ̄;ϕ̄Þ;

ð3:2Þ

whereR�ðtÞ≡ fR�ðtÞ;Θ�ðtÞ;Φ�ðtÞg describes the position
of the companion relative to the BH-cloud frame,
n̂≡R�=jR�j, and t now corresponds to the time measured
by asymptotic observers, as opposed to observers in the
free-falling frame.13 At this order, we thus have

Eðm�Þ
l�¼2ðt; 0Þ ¼ −

8π

5

M�
R3�

Y�
2m�ðΘ�;Φ�Þ: ð3:3Þ

Using these results, and considering higher harmonics, it is
straightforward to find the corrected gravitational dynamics
in the nonrelativistic limit. Substituting the perturbed
metric into the Klein-Gordon equation, we find that, at
lowest order, the gravitational potential in the Schrödinger-
like equation (2.5) is simply shifted by

V�ðt; r̄Þ ¼
1

2
μδg00 ¼ −

M�μ
R�

X
l�≥2

X
jm�j≤l�

4π

2l� þ 1

×
�

r̄
R�

�
l�
Y�
l�m� ðΘ�;Φ�ÞYl�m�ðθ̄; ϕ̄Þ: ð3:4Þ

Crucially, the first contribution starts with the quadrupole
l� ¼ 2. In principle, a different choice of observers/
coordinates—not free-falling with the BH cloud—could

FIG. 3. Fermi coordinates ðt̄; x̄iÞ centered on the geodesic of the
BH-cloud system.

12In our case, the center-of-mass of the BH cloud coincides
with that of the isolated BH, such that the ðt̄; x̄iÞ coordinates may
be directly related to the Boyer-Lindquist coordinates of the Kerr
metric.

13The distinction between time coordinates only plays a role at
higher post-Newtonian orders, e.g., [104], when the boost factors
begin to contribute.
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lead to the appearance of extra terms in the potential, for
instance a dipole. However, as we show in Appendix B, this
fictitious dipole eventually cancels. Finally, the above
reasoning can be generalized to incorporate all types of
relativistic corrections.
In summary, the Klein-Gordon equation for the BH-

cloud system receives corrections due to the presence of a
companion which, in the nonrelativistic limit, lead to a
perturbed gravitational potential (3.4). The salient feature is
the fact that the multipolar interaction starts at the quadru-
pole level, as determined by the equivalence principle.

2. Mass transfer

The mutual gravitational attraction between the bodies
can also induce transfer of mass/energy between the cloud
and the companion. This happens when the characteristic
Bohr radius rc exceeds the Lagrange point, L1, located in
between the two objects of the binary. The equipotential
surface with the same gravitational potential as L1 is called
the Roche lobe (see Fig. 4).
Mass transfer from the cloud to the companion happens

when rc ≳ RRoche. Using Eggleton’s fitting formula [107],
this can be converted into a critical orbital separation

R�;cr ≡
�

0.49q−2=3

0.6q−2=3 þ ln ð1þ q−1=3Þ
�−1

rc: ð3:5Þ

This phenomenon becomes particularly important when
q ≫ 1, since the Roche lobe surrounding the BH carrying
the cloud is then relatively small. In this limit, we find

R�;cr ≃ 2q1=3rc: ð3:6Þ

In the rest of the paper, we will impose R� > R�;cr, such that
mass transfer can be ignored.

B. Level mixing

The gravitational perturbation V� in (3.4) induces
an overlap between the modes jψ ii≡ jnilimii and
jψ ji≡ jnjljmji, through hψ jjV�jψ ii. Substituting (3.4),
we get

hψ jjV�jψ ii

¼−M�μ
X
l�≥2

X
jm�j≤l�

4π

2l�þ1

Y�
l�m� ðΘ�;Φ�Þ

Rl�þ1
�

×Ir̄×IΩ; ð3:7Þ

where

Ir̄ ≡
Z

∞

0

dr̄r̄2þl�R̄njljðr̄ÞR̄niliðr̄Þ; ð3:8Þ

IΩ̄ ≡
Z

dΩ̄Y�
ljmj

ðθ̄; ϕ̄ÞYlimi
ðθ̄; ϕ̄ÞYl�m� ðθ̄; ϕ̄Þ: ð3:9Þ

The angular integral IΩ̄ can be expressed in terms of the
Wigner 3-j symbol,

IΩ̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lj þ 1Þð2li þ 1Þð2l� þ 1Þ

4π

r �
lj li l�
0 0 0

�

×

�
lj li l�
−mj mi m�

�
; ð3:10Þ

which implies the following selection rules:
(S1)−mj þmi þm� ¼ 0,
(S2) jlj − lij ≤ l� ≤ li þ lj,
(S3)li þ lj þ l� ¼ 2p, for p ∈ Z.
Recall that the fastest growing mode j211i has lg¼mg¼1,
while the fastest decaying mode j100i has ld ¼ md ¼ 0.
In this case, the above selection rules would require
l� ¼ �m� ¼ 1, namely a dipole coupling, which is absent
in (3.4). For the quadrupole, the two fastest decaying
modes that can couple to lg ¼ mg ¼ 1 are ld ¼ 1; md ¼
−1 and ld ¼ 1; md ¼ 0. Since these rules are obtained
purely from the angular dependence of the eigenfunctions,
they apply equally to the fundamental mode (n ¼ 2) and
the overtones (n ≥ 3).

C. Rabi resonances

We now investigate how level mixings (see Fig. 5),
induced by the quadrupole l� ¼ 2, affect the dynamical
evolution of the cloud. For simplicity, we will restrict
ourselves to quasi-circular orbits with orbital frequency

FIG. 4. Illustration of the Roche lobes for a binary with q ≫ 1.
As the separation decreases, the Roche lobe of the BH cloud
begins to shrink. At the critical value R�;cr, given by (3.5), the size
of the cloud rc exceeds RRoche, and mass transfer starts to occur.

FIG. 5. Illustration of the frequency spectrum for l ¼ 1 up to
n ¼ 3 (there is in principle an infinite tower of overtones), for co-
rotating and counter-rotating orbits. Solid arrows represent the
allowed resonant transitions, while dashed arrows denote per-
turbative level mixings.
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Ω≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M þM�

R3�

s
; ð3:11Þ

where M is the total mass of the BH cloud, which is equal
to the initial BH mass before superradiance, if we neglect
the small mass loss due to GW emission. Since Φ� denotes
the azimuthal angle of M� relative to the BH cloud, the
orientation Φ� ¼ þΩt, with Ω > 0, corresponds to orbits
that corotate with the cloud, called co-rotating orbits, while
Φ� ¼ −Ωt are counter-rotating orbits. This distinction
will play a key role in the survival of the cloud throughout
the inspiral stage. For notational convenience, we will write
Φ� ¼ �Ωt, where the upper sign corresponds to co-rotating
orbits and the lower sign denotes counter-rotating orbits.

1. Hyperfine mixing

We first consider the mixing of the dominant growing
mode j211i with the nearby decaying modes j210i and

j21 − 1i. The problem then involves the dynamics of a
coupled three-state system. As we shall see, for orbital
motions along the equatorial plane, the mode j210i
decouples and the dynamics reduces to a two-state system.

2. Three-state system

For the three-state system, the expectation value of
Hamiltonian for the field ψ takes the form

H ¼ H0 þH1 þH2; ð3:12Þ

where H0 represents the diagonal terms that contribute
equally to all three modes, H1 contains terms that split the
degeneracy, and H2 are the off-diagonal terms induced by
the quadrupole perturbationl� ¼ 2. Using the basis j211i¼
ð1;0;0ÞT, j210i¼ ð0;1;0ÞT and j21−1i¼ ð0;0;1ÞT, the
explicit matrix representations of the different contribu-
tions are

H0 ¼

0
B@

E 0 0

0 E 0

0 0 E

1
CA; H1 ¼

0
BB@

ϵh þ 3ηf0ðΘ�Þ 0 0

0 −6ηf0ðΘ�Þ 0

0 0 −ϵh þ 3ηf0ðΘ�Þ

1
CCA;

H2 ¼

0
B@

0 3ηf1ðΘ�Þe∓iΩt 3ηf2ðΘ�Þe∓2iΩt

3ηf1ðΘ�Þe�iΩt 0 −3ηf1ðΘ�Þe∓iΩt

3ηf2ðΘ�Þe�2iΩt −3ηf1ðΘ�Þe�iΩt 0

1
CA; ð3:13Þ

where we have introduced the following quantities (see
Appendix A):

E≡ μ

�
−
1

8
α2 −

17

128
α4
�
; ð3:14Þ

ϵh ≡ μ

12
ãα5; ð3:15Þ

η≡ α−3
�
q
R�

��
rg
R�

�
2

: ð3:16Þ

The parameter ϵh > 0 is the hyperfine splitting, and η
characterized the strength of the perturbation, proportional
to the expectation value hψ jjV�jψ ii given by (3.7) (with
i, j ¼ 1, 2, 3). The oscillatory terms in H2 are due to the
phase evolution Φ� ¼ �Ωt. The functions fjm�jðΘ�Þ arise
from the angular dependence of the l� ¼ 2, m� ¼ 0, �1
and �2 modes:

f0ðΘ�Þ≡ 3cos2Θ� − 1;

f1ðΘ�Þ≡ 3
ffiffiffi
2

p
cosΘ� sinΘ�;

f2ðΘ�Þ≡ 3sin2Θ�: ð3:17Þ

For the special case Θ� ¼ π=2 (i.e., equatorial motion), this
reduces to f0 ¼ −1, f1 ¼ 0, f2 ¼ 3.
It is convenient to work in the interaction picture, where

the evolution of the state jψ Ii is given by

jψ IðtÞi ¼ eiHItjψðtÞi; ð3:18Þ

where HI ≡H0 þH1 is time independent.14 Since HI is
diagonal, it does not couple modes of different angular
momenta. The eigenstates of HI are therefore equal to the
corresponding eigenstates of the nonrelativistic hydrogen
atom, with the same l and m, up to Oðα2Þ corrections
which will not be relevant in our case.

3. Two-state system

We now consider quasicircular orbits along the equator,
where f1 ¼ 0. This reduces the problem to a coupled two-
state system, which can be solved exactly. Labeling the

14Strictly speaking, HI has a time dependence due to the
decrease of the orbital radius R�ðtÞ in the binary. However, since
_R�=R� ≪ Ω during the inspiral stage, this time dependence can
be treated adiabatically, and neglected at leading order.
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growing and decaying modes as jψgi≡ j211i and jψ ðhÞ
d i≡

j21 − 1i, the state in the interaction picture is expressed as a
linear combination

jψ IðtÞi ¼ cgðtÞjψgi þ cðhÞd ðtÞjψ ðhÞ
d i; ð3:19Þ

where the time-dependent coefficients satisfy

jcgðtÞj2 þ jcðhÞd ðtÞj2 ¼ 1: ð3:20Þ

The Schrödinger equation becomes

i
d
dt

� cgðtÞ
cðhÞd ðtÞ

�

¼
 

0 9ηe−2ið�Ω−ϵhÞt

9ηeþ2ið�Ω−ϵhÞt 0

!� cgðtÞ
cðhÞd ðtÞ

�
: ð3:21Þ

Starting the evolution in the growing mode, cgð0Þ ¼ 1;

cðhÞd ð0Þ ¼ 0, we find

cgðtÞ ¼
eiðϵh∓ΩÞt

2ΔðhÞ
R

½ðΔðhÞ
R þ ϵh ∓ ΩÞe−iΔðhÞ

R t

þ ðΔðhÞ
R − ϵh � ΩÞeþiΔðhÞ

R t�; ð3:22Þ

cðhÞd ðtÞ ¼ 9ηe−iðϵh∓ΩÞt

2ΔðhÞ
R

½e−iΔðhÞ
R t − eþiΔðhÞ

R t�; ð3:23Þ

where we introduced

ΔðhÞ
R ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð9ηÞ2 þ ðϵh ∓ ΩÞ2

q
: ð3:24Þ

Since ψ is a complex scalar field with a global Uð1Þ
symmetry, there is an associated conserved Noether current
Jμ (see Appendix A for details). At leading order, J0 ≃ ψ�ψ ,
which is interpreted as the occupation density of the system,
and is analogous to the probability density in quantum
mechanics. The occupation density of the decaying mode is
proportional to

jcðhÞd ðtÞj2¼
�
1−
�
ϵh∓Ω

ΔðhÞ
R

�
2
�
sin2
�Z

t

t0

dt0ΔðhÞ
R ðt0Þ

�
: ð3:25Þ

Note that ΔðhÞ
R is not constant during the inspiral, but

increases as the orbit shrinks, so that the phase of the

oscillations in (3.25) has been written as an integral over

time.We see that 2ΔðhÞ
R controls the frequency of oscillations

between the growing and decaying modes. In analogy with
the quantum mechanical problem, we call this the Rabi
frequency.

4. Hyperfine resonance

When the orbital frequency Ω matches the hyperfine
splitting ϵh, the system experiences a resonance, and starts
to oscillate between the growing and decaying modes.
Since ϵh > 0, the resonance will only take place for co-
rotating orbits. We will refer to this effect as the hyperfine
resonance. This happens when the binary separation is

RðhÞ
res ¼1441=3α−4ð1þqÞ1=3ã−2=3rg;

≃91=3α−14=3ð1þ4α2Þ2=3ð1þqÞ1=3
�
as
a

�
2=3

rg; ð3:26Þ

where we have used (2.2) for as, with Ms ≃M
and Msωs ≃ α.

5. Bohr mixing

We now consider the possibility that the dominant
growing mode j211i mixes also with the decaying modes
jn10i and jn1 − 1i, with n ≥ 3. We will take the coupling
to the n ¼ 3 modes to be a proxy for the mixing with this
infinite tower of overtones. Similar conclusions hold for
the higher-order overtones (n ≥ 4). In particular, since
ωn1−1 > ω31−1, the only difference is that these resonant
mixings occur at orbital separations that are slightly shorter.
As before, we restrict ourselves to motion in the equatorial
plane, Θ� ¼ π=2, so that the j310i mode decouples.

6. Three-level system

Labeling jψgi≡ j211i and jψ ðhÞ
d i≡ j21 − 1i as before,

but adding the extra decaying mode jψ ðbÞ
d i≡ j31 − 1i, the

state of the system in the interaction picture is now
expressed as the following linear combination

jψ IðtÞi¼ cgðtÞjψgiþcðhÞd ðtÞjψ ðhÞ
d iþcðbÞd ðtÞjψ ðbÞ

d i; ð3:27Þ

with the normalization condition given by

jcgj2 þ jcðhÞd j2 þ jcðbÞd j2 ¼ 1: ð3:28Þ

The Schrödinger equation implies

i
d
dt

0
BB@

cgðtÞ
cðhÞd ðtÞ
cðbÞd ðtÞ

1
CCA ¼

0
BB@

0 9ηe−2ið�Ω−ϵhÞt −7.6ηe−2ið�Ω−ϵbÞt

9ηeþ2ið�Ω−ϵhÞt 0 0

−7.6ηeþ2ið�Ω−ϵbÞt 0 0

1
CCA
0
BB@

cgðtÞ
cðhÞd ðtÞ
cðbÞd ðtÞ

1
CCA; ð3:29Þ
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with

ϵb ≡ −
5

144
μα2: ð3:30Þ

In general, there is no analytic solution for the three-level
system (3.29). However, since we have ϵh=jϵbj ≃ α3 ≪ 1,
there is a clear hierarchy of scales in the evolution equation,
and the system will probe different decaying modes at
different times. The strength of the coupling—away from
resonances—is determined by the ratio of the size of the
gravitational perturbation to the energy split. During the
early stages of the inspiral, when Ω≲ ϵh, the mixing with
the hyperfine state dominates. The solutions for cgðtÞ and
cðhÞd ðtÞ are thus identical to those given in (3.25), with an
error in the normalization condition of order ðϵh=ϵbÞ2. As
we have seen, for co-rotating orbits, the binary experiences
a resonance when Ω ¼ ϵh, while counter-rotating orbits
continue smoothly through this region. When the orbital
frequency approaches the scale of the Bohr splitting,
Ω ¼ jϵbj, the overtone j31 − 1i gets excited; see Fig. 6.

7. Bohr resonance

Near Ω ≃ jϵbj, the phase of the hyperfine mixing term in
(3.29) oscillates rapidly over a time of order η−1. In this

region, we have jcðhÞd j2 ∼ ðη=ΩÞ2 ∼ ðη=ϵbÞ2 ≪ 1, so that we
can ignore the small correction due to the j21 − 1i state. The
dynamical evolution, once again, reduces to a two-level
system, this time describing the mixing between the states
j211i and j31 − 1i. Repeating the analysis of §III C 1, we
find

jcðbÞd ðtÞj2¼
�
1−
�
ϵb∓Ω

ΔðbÞ
R

�
2
�
sin2
�Z

t

t0

dt0ΔðbÞ
R ðt0Þ

�
; ð3:31Þ

where the modified Rabi frequency is

ΔðbÞ
R ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð7.6ηÞ2 þ ðϵb ∓ ΩÞ2

q
: ð3:32Þ

Similar to the hyperfine case, the system undergoes a
resonance when the orbital frequency matches with the
energy split with the overtones. We refer to this effect as the
Bohr resonance. A crucial difference to the case discussed in
Sec. III C 1 is that,while for the hyperfine resonancewe have
ω21−1 < ω211, the Bohr resonance is for an excited state
ω31−1 > ω211; see Fig. 5. This implies that the Bohr
resonance can only occur for counter-rotating orbits, at a
binary separation given by

RðbÞ
res ¼

�
144

5

�
2=3

α−2ð1þ qÞ1=3rg: ð3:33Þ

Note the α−2 scaling, whereas the corresponding result for
the hyperfine resonances scales as α−4. For small α, the Bohr
resonance therefore occurs at a much smaller separation

than the hyperfine case (see Fig. 6). In terms of the Bohr

radius of the cloud,we canwriteRðbÞ
res ¼ð18=5Þ2=3ð1þqÞ1=3rc.

For q < 1, the Bohr resonance thus occurs at the boundary
of the regime of validity of the multipole expansion,
R� > rc. On the other hand, for q ≫ 1, the multipole
expansion remains accurate, while the stronger constraint
typically comes from the requirement for the validity of
the perturbative treatment of the gravitational inter-
action with negligible mass transfer, corresponding to
R� > Rpt ¼ 2q1=3rc.

D. Cloud depletion

So far, we have taken the growing and decaying modes
to be stationary, while in reality both have nonzero decay
widths; see (2.12). Although Γ211 vanishes when the
superradiant growth stops, the rates Γnlm, with m ≤ 0,
remain finite throughout the evolution of the BH cloud.
Since the gravitational perturbation of the companion can
induce transitions to the decaying modes, this opens up a
new depletion channel for the cloud. In this section, we will
explore this effect in more detail, both for co-rotating and
counter-rotating orbits.
As we shall see, it is convenient to express the time

evolution of the system in terms of the orbital frequency,Ω,
of the binary. For quasicircular orbits, the relation between t
andΩ due to the leading quadrupolar GWemission is [108]

tðΩÞ ¼ τ0

�
1 −

�
Ω0

Ω

�
8=3
�
; ð3:34Þ

where τ0 is the time to merger for an initial orbital
frequency Ω0:

FIG. 6. Evolution of the occupation density of the decaying
modes, near the hyperfine and Bohr resonances, for co-rotating
(red) and counter-rotating (blue) orbits, respectively. For illus-
tration purposes, we use α ¼ 0.3 and q ¼ 10−3. The dotted
vertical line denotes the characteristic Bohr radius of the j211i
mode. For clarity, the oscillatory features of the solutions (3.25)
and (3.31) have been omitted.
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τ0
Mtot

≡ 5

256

1

ν

�
1

MtotΩ0

�
8=3

; ð3:35Þ

with Mtot ≡M þM� and ν≡MM�=M2
tot. For simplicity,

we will assume that we can neglect the GW emission from
the cloud throughout the coalescence of the binary. For the
case of real scalar fields, this requires the time to merger, τ0,
to be shorter than the lifetime of the cloud, τc, introduced in
Sec. II C. This constraint also applies to complex fields,
except for the special case where the resulting configuration
is time-independent and axisymmetric. Imposing the con-
dition τ0 < τc leads to

τ0
τc

≃
10−21

ðMΩ0Þ8=3
ð1þ qÞ1=3

q

�
α

0.07

�
15

< 1; ð3:36Þ

which can be translated into a bound on the initial orbital
frequency

Ω0 ≳ 0.9 mHz
�
3 M⊙

M

� ð1þ qÞ1=8
q3=8

�
α

0.07

�
45=8 ≡Ωcr:

ð3:37Þ

In the following, we will assume Ω > Ωcr during the
entirety of the binary inspiral. In principle, we can also
study binaries which form at smaller initial orbital frequen-
cies, so that GWemission depletes the cloud before merger.
We will return to this point in Sec. IV C.

1. Level mixings

We take t0 to be the time at which the superradiance
has saturated. To estimate the amount of depletion
between times t0 and t, we introduce the following
quantity

Aðt; t0Þ≡
X
n;l

X
m≤0

jΓnlmj
Z

t

t0

dt0jcnlmðt0Þj2; ð3:38Þ

where cnlmðtÞ is the overlap of the state jψi with the
decaying modes jnlmi, with m ≤ 0. The “depletion
estimator” (3.38) is thus the ratio of the integrated time
spent by the system in the decaying modes to the decay
timescale jΓnlmj−1, weighted by the occupation density
of each state. Physical quantities of the cloud, such
as its mass and angular momentum, would decay as
e−2Aðt;t0Þ, where the factor of 2 in the exponential arises
because the energy-momentum tensor depends quadrati-
cally on the field. In the limit where mixing with the
decaying states is negligible, A → 0 and the cloud
remains stable. On the other hand, significant depletion
occurs when A becomes of order one.
For α < 1, the decay rate (2.12) is suppressed for higher

l’s, so that the sum in (3.38) will be dominated by the
modes with l ¼ 1 andm ¼ −1 (them ¼ 0mode decouples

for orbits along the equatorial plane). Restricting further to
the dominant decaying channels, with nh ¼ 2 and nb ¼ 3,15

and using (3.34) to convert the integral over time in (3.38)
into an integral over orbital frequency, we have16

AðΩ;Ω0Þ

≃
X

i¼fh;bg
jΓðiÞ

d j
�
5

96

1

ν

1

M5=3
tot

Z
Ω

Ω0

dΩ0Ω0−11=3jcðiÞd ðΩ0Þj2
�
:

ð3:39Þ

Using Detweiler’s approximation (2.12), the relevant decay
rates are

jΓðiÞ
d j ¼ BðiÞ

24

α10

M

�
1 − 4α2

1þ 4α2

�
2
�

2

1þ 4α2
þ r̃þ

�
; ð3:40Þ

where BðhÞ ≡ 1 and BðbÞ ≡ 256=729, and we used ã ¼ ãs,
at saturation. In the limit of small α, the corresponding
decay time is

τðiÞd ≃ 1B−1
ðiÞ years

�
M

3 M⊙

��
0.07
α

�
10

≃ 0.9B−1
ðiÞ years

�
M

105 M⊙

��
0.2
α

�
10

: ð3:41Þ

This timescale is very sensitive to α, but can be shorter than
the duration of GW observations, so that the decay can, in
principle, occur in observational bands. In the following,
we will use the estimator (3.39) to analyze the stability of
the BH cloud against level mixing, during the inspiral phase
of the binary dynamics.

2. Co-rotating orbits

We first consider the evolution of the cloud for co-
rotating orbits, which is dominated by the existence of the
hyperfine resonance. For each combination of α and q, we
chose the initial condition Ω0 ¼ Ωcr, see (3.37). Figure 7
illustrates the total amount of depletion due to level mixing
between Ω0 and the breakdown of perturbation theory at
Ωpt. As shown in the top panel of Fig. 7, the parameter
space divides into three distinct regions:

(i) Region I (red). The cloud depletes dramatically
during the resonance.

15Ignoring the n ≥ 4 overtones amounts to underestimating
the total contribution from n ≥ 3 by approximately a factor
of 2, mostly from the evolution of the cloud prior to the
resonances. This arises from the suppression of Γnlm for
increasing n; see (2.13).

16In the numerical integration of (3.39), we ignore the
oscillatory terms in (3.25) and (3.31), which overestimates A
by roughly a factor of 2.
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(ii) Region II (yellow). The cloud experiences a long
period of perturbative depletion.

(iii) Region III (green). The cloud mostly survives the
entire inspiral.

To understand the morphology of the parameter space, it is
useful to compare the initial orbital frequency to that of the
hyperfine resonance:

Ω0

ϵh
≃ 2.9

�
0.1
α

�
11=8 ð1þ qÞ1=8

q3=8
: ð3:42Þ

Only for Ω0 < ϵh is the hyperfine resonance experienced
during the part of the evolution shown in Fig. 7. This occurs
for q≳ 2 × 10−4α−11=2, corresponding to regions I and IIIc
of the parameter space. In the other regions, the initial orbit
has already passed the orbital frequency of the hyperfine
resonance.
As seen in the example fα ¼ 0.1; q ¼ 104g (orange

curve), for combinations of parameters in region I, the
cloud depletes dramatically during the hyperfine resonance.
In region IIIc, on the other hand, the cloud survives the
resonance, as illustrated for the case fα ¼ 0.4; q ¼ 104g
(brown curve). This is because, for large q and α, the binary

only spends a short amount of time within the resonance

epoch, relative to the decay time τðhÞd .17

The results in the other regions can be understood
qualitatively as follows. The larger the value of q, for
fixed M and α, the faster the binary transits through the
inspiral stage, due to the efficiency of GW emission from
the binary. At the same time, in the regime of perturbative
level mixing, jcdj2 is proportional to q. Since A is roughly
proportional to both the time spent in the inspiral and the
strength of the coupling to the decaying modes, the two
effects compete with each other. By continuity, A peaks at
intermediate values of q in region II. As shown for the case
fα ¼ 0.1; q ¼ 1g (red curve), the depletion can be signifi-
cant, yet it extends over a larger time than in the case of the
resonant decay. In regions IIIa and IIIb, the rapid decay of
the orbit due to GW emission (q ≫ 1) and the suppression
of the perturbative mixing ðq ≪ 1Þ dominate, respectively.
As a consequence, the cloud hardly depletes during the
inspiral, as shown for fα ¼ 0.03; q ¼ 104g (yellow curve)
and fα ¼ 0.1; q ¼ 10−2g (blue curve). However, this does
not necessarily imply that the cloud is stable beyond
Ω > Ωpt, since our perturbative treatment of the problem
starts breaking down. Only a full numerical simulation
could then inform us about the fate of the cloud towards the
merger stage.

3. Counter-rotating orbits

Next, we consider the case of counter-rotating orbits, for
which the Bohr resonance can be excited. As before, we
chose the initial conditionΩ0 ¼ Ωcr. Figure 8 illustrates the
total amount of depletion between Ω0 and Ωpt. The label-
ling of the different regions is in accordance to Fig. 7. Once
again, the basic features can be understood as follows.
The ratio of the initial orbital frequency and the

frequency of the Bohr resonance is given by

Ω0

ϵb
≃ 0.003

�
α

0.1

�
21=8 ð1þ qÞ1=8

q3=8
: ð3:43Þ

Except for very large values of α and very small q, this
implies Ω0 < ϵb, so that essentially all the orbits shown in
Fig. 8 experience the Bohr resonance at some point during
the inspiral. However, since the Bohr resonance occurs
at much smaller orbital separations than the hyperfine
resonance, the binary moves through it much faster. As a
consequence, the amount of depletion is significantly
less dramatic than for co-rotating orbits experiencing the

FIG. 7. Plot of the total depletion of the cloud for co-rotating
orbits. Shown is AðΩpt;ΩcrÞ, as a function of q and α (top), and
the evolution of e−2A for specific choices of q and α (bottom). See
the main text for further discussion.

17For fixed mass of the BH cloud,M, large values of q increase
the rate of GW emission and hence the shrinking of the orbit,
while larger values of α push the resonance towards shorter
distances. Notice that, while the GW emission is invariant under
q → 1=q, the timescale associated with the decaying mode, as
well as the separation at resonance, is controlled by M, which
breaks this symmetry.
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hyperfine decay. Nevertheless, for α≳ 0.07 and q≲ 1
(corresponding to region I in the figure), the Bohr reso-
nance still creates a sharp depletion of the cloud, yet
without termination. This is illustrated by the blue curves in
the bottom panel of Fig. 8.
In region II, the cloud experiences a slow perturbative

depletion—mostly controlled by mixing with the nearby
hyperfine states—which can significantly reduce its energy
density; see the red curves in Fig. 8. By the time the cloud
reaches the Bohr resonance, the depletion (in comparison)
is only a small effect. In regions IIIa and IIIb, the cloud
survives with hardly any depletion, even after moving
through the resonance.

IV. GRAVITATIONAL WAVE SIGNATURES

In this section, we will briefly sketch some of the
observational consequences of our findings. For real scalar
fields, there are two sources of GWs (i) the continuous
emission from the rotating cloud itself (Sec. IVA), and
(ii) the radiation produced by the binary (Sec. IV B).
Depending on the initial conditions, only the latter may be
present for complex fields in axisymmetric configurations.
These signals can be affected by the dynamics of the boson
cloud as the system evolves during the inspiral. In Sec. IV C,
we will discuss a few paradigmatic examples of binary
systems that can provide key information about the ultralight

particles forming the cloud, and whose GW signatures are
within reach of current and planned GWobservatories. Our
treatment will be rather schematic and a more detailed
investigation will be the subject of future work.

A. Signal from the cloud

As we have seen in Sec. II C, a real scalar cloud emits
continuous, monochromatic GWs [70,99]. The frequency
of these GWs is determined by the mass of the scalar field,

fc ≃
μ

π
¼ 484 Hz

�
μ

10−12 eV

�
; ð4:1Þ

and their rms strain amplitude is [99,103]

hc ≃ 2 × 10−26
�

M
3 M⊙

��
McðαÞ=M

0.1

��
α

0.07

�
6
�
10 kpc

d

�
;

ð4:2Þ

where d is the (Euclidean) distance of the source. Since the
signal is emitted continuously, its detectability depends on
the total observation time Tobs. The signal-to-noise ratio
(SNR) of the cloud signal is

SNR ¼ hchF2þi1=2
T1=2
obsffiffiffiffiffiffiffiffiffiffiffiffiffi

SnðfcÞ
p ; ð4:3Þ

where SnðfcÞ is the (one-sided) noise spectral density at the
frequency fc, and hF2þi ¼ hF2

×i is the angular average of
the square of the detector pattern functions Fþ;× for each
GW polarization. Using (4.2), we get

SNR ≃ 13hF2þi1=2
�
Tobs

1 yr

�
1=2
�
10−23 Hz−

1
2ffiffiffiffiffiffiffiffiffiffiffiffiffi

SnðfcÞ
p ��

M
3 M⊙

�

×

�
Mc=M
0.1

��
α

0.07

�
6
�
10 kpc

d

�
; ð4:4Þ

which is strongly dependent on α. We see that BH-cloud
systems with α < 0.07 and M < 102 M⊙ may be detect-
able only within our own galaxy, while those with larger
values of α, and bigger masses, may be observed at extra-
galactic distances. Further discussion and detailed forecasts
can be found in [100,109–111].

1. Resonant extinction/attenuation

When the BH cloud is part of a binary system, the cloud
may deplete over time, according to18

FIG. 8. Same as Fig. 7, but for counter-rotating orbits. The
resonance is less pronounced than for co-rotating orbits since the
system moves through it much faster.

18The ratio (4.5) need not be a smooth exponential decay,
but may contain periodic features; cf. (3.25) and (3.31). The
depletion process switches on and off as the binary transits
through the resonance. This effect manifests itself most promi-
nently during the Bohr resonance.
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hcðtÞ
hcðt0Þ

¼ McðtÞ
Mcðt0Þ

∼ e−2Aðt;t0Þ; ð4:5Þ

where A is the depletion estimator introduced in (3.38).
This decay is most prominent for co-rotating orbits, since
the hyperfine resonance occurs at large separations, so that
the binary spends a significant amount of time near the
resonance orbit. For counter-rotating orbits, the Bohr
resonance attenuates the signal, but does not completely
terminate it. In either case, the extinction/attenuation of the
GWs produced by the cloud turns into a unique feature of
the binary system. In Sec. IV C, we will discuss the
phenomenological consequences of this effect in several
case studies.

2. Doppler modulation

In the presence of a companion, the GW frequency fc
will also be modulated by the orbital motion.19 In particu-
lar, if the orbital plane of the binary is oriented such that the
BH cloud has a nonvanishing radial velocity along the line-
of-sight, the orbital motion will induce a periodic Doppler
shift of the GW signal,

Δfc
fc

¼ vr
c
¼
�
M�
Mtot

�
R�Ω
c

sin ι; ð4:6Þ

where vr is the radial component of the velocity of the BH
cloud along the line of sight, and ι is its angle relative to the
normal of the orbit. While detecting the periodic modula-
tion of the frequency is experimentally (and computation-
ally) challenging, this Doppler effect would be very
convincing evidence that the BH cloud is part of a binary
system. At the same time, it will open a new avenue to
inferring parameters of a binary system at low orbital
frequencies, by monitoring the signal from the cloud with
continuous searches. Similar searches are being performed
for neutron stars in binaries [113].

B. Signal from the binary

The presence of the cloud can also reveal itself in the GW
signal of the binary, through subtle modifications in the
waveforms due to the cloud’s multipole moments and the
tidal response to the companion. In the following, we will
show how these finite-size effects inherit a characteristic
time dependence due to the dynamics of the cloud.

1. Spin-induced quadrupole

A spinning compact object has a series of multipole
moments [114,115] (see Appendix C). For the Kerr BH, the

no-hair theorem [116,117] implies that these moments are
fixed completely by the mass and spin of the BH, while
additional independent parameters are needed to character-
ize other objects, such as NSs [118,119] or boson stars
[120]. Given the mass quadrupole moment Q, it is custom-
ary to introduce the dimensionless parameter

κ≡ −
QM
J2

; ð4:7Þ

whereM and J are the mass and angular momentum of the
body. For Kerr BHs, we have κ ¼ 1 [115], while for NSs,
κ ≈ 1.4–8, depending on the equation of state [118,119].
The observation of a compact object with deviations from
κ ¼ 1, and masses larger than the estimated upper bound of
NSs (around 3 M⊙) [121], would be direct evidence for
the existence of exotic objects in nature; see e.g., [29]. The
value of κ can be obtained from the GW signal of the
binary, through its effect on the phase of the signal [22,27].
The effect arises at 2PN order, i.e., κv4χ2, where v is the
typical relative velocity of the binary and χ ≡ J=M2 is the
dimensionless spin parameter.
As long as the mass of the boson cloud constitutes a

sizable fraction of the initial BH mass, the metric of the
(isolated) BH cloud would depart from that of the Kerr
background. These departures include spin-induced multi-
pole moments, which are not uniquely determined by the
mass and spin of the cloud. A rigorous computation of
these quantities would require incorporating the backreac-
tion on the spacetime geometry, which is beyond the scope
of this work.20 Instead, we will assume that the cloud
dominates the contribution to the multipole moments of the
BH cloud, and estimate κ by comparing the cloud’s mass
quadrupole,Qc, to J2=M, whereM and J are the totalmass
and angular momentum of BH-cloud system. We choose to
normalize κ with ðM; JÞ of the BH cloud, instead of
ðMc; JcÞ of the cloud itself, because (i) the quantities
ðM; JÞ can be directly measured through GWobservations,
and (ii) they are conserved throughout the evolution (up to
small losses due to GW emission). The parameters ðM; JÞ
therefore also coincide with the mass and angular momen-
tum of the initial BH prior to the formation of the cloud.
From the stress-energy tensor of the scalar field, we find

for the j211i state (see Appendix A)

κðαÞ ≥ −
QcðαÞ
M3

∼ 103
�
McðαÞ=M

0.1

��
0.1
α

�
4

; ð4:8Þ

where we have imposed the weak cosmic censorship
condition, J ≤ M2 [123], to obtain the lower bound. The
effect on the GW phase then scales as

19This is the same effect that famously led to the discovery of
the Hulse-Taylor binary pulsar, where the frequency of the
emitted electromagnetic radiation was found to be modulated
by the orbital motion [112].

20Exact solutions with (complex) scalar hair around spinning
BHs have been studied numerically in the literature; see e.g.,
[122]. In principle, these quasistationary spacetimes can also
have κ ≫ 1.
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κðαÞv4χ2 ≳ 10−2
�
McðαÞ=M

0.1

��
v

α=2

�
4

; ð4:9Þ

where we used χ ≃ 1, and assumed that the initial BH is
rapidly rotating (which is required for the cloud to form in
the first place). Notice that, in the regime of validity of the
perturbative expansion, the relative velocity satisfies
v≲ α=2.21 For v > α=2, the companion experiences a
smaller amount of the cloud according to Gauss’s law.
Even though larger relative velocities may seem favorable,
the reduction in the effective mass of the cloud will
dominate, leading to negligible finite-size effects once
the companion enters the BH-cloud system.
The existence of resonances in the orbital dynamics can

lead to an abrupt drop, or significant change, in the mass of
the cloud Mc, with a corresponding frequency-dependent
variation of the GW signal. As the binary scans through the
Rabi frequency, we have

κðtÞ − 1

κðt0Þ − 1
∼

McðtÞ
Mcðt0Þ

∼ e−2Aðt;t0Þ: ð4:10Þ

This time dependence constitutes a distinctive signature of
the existence of a BH cloud in a binary system and may
leave a measurable imprint in the waveforms. We will
return to this in Sec. IV C.

2. Tidal deformations

In addition to the permanent multipole moments, a
compact object may also acquire induced multipoles in
the presence of a gravitational perturbation. It is an
interesting (and somewhat puzzling) fact that for BHs
the tidal response to an external field vanishes in four-
dimensional Einstein gravity.22 This is often parameterized
in terms of the tidal Love numbers,23 which are zero for
black holes [7,23,24,49,50], but may have sizable values
for neutron stars [23,24] and other more exotic objects (like
boson stars) [30,31,125]. While the Love numbers first
enter in the GW phase at 5PN order [11,25,26,126], the
lack of standard model background in Einstein’s theory
offers a powerful opportunity to probe the dynamics of
vacuum spacetimes in general relativity, through precision
GW data. See [7] for more on this issue.
Since the cloud is much less compact than an isolated

BH, but carries a significant fraction of the mass and

angular momentum of the system, we can, in principle,
have large Love numbers for the BH-cloud system.
Although a detailed computation is beyond the scope of
this work, on dimensional grounds we expect the “tidal
deformability” parameter, Λ, to scale as (see Appendix C)

ΛðαÞ ∼
�
McðαÞ
M

��
rc
2rg

�
4

∼ 107
�
McðαÞ=M

0.1

��
0.1
α

�
8

:

ð4:11Þ

The parameter Λ enters in the phase of the waveform at
5PN order, and its imprint on the signal from the binary
therefore scales as

ΛðαÞv10 ∼ 10−6
�
McðαÞ=M

0.1

��
α

0.1

�
2
�

v
α=2

�
10

; ð4:12Þ

where v ≲ α=2 in the regime of validity of the multipole
expansion.
As for the spin-induced quadrupole, the presence of the

binary companion can induce a characteristic time depend-
ence of the Love numbers

ΛðtÞ
Λðt0Þ

∼
McðtÞ
Mcðt0Þ

∼ e−2Aðt;t0Þ; ð4:13Þ

most notably for Bohr resonances, which occur at shorter
binary separations.
As the companion progresses into the cloud and

approaches the merger with the central BH, both the effects
of the spin-induced quadrupole and Love numbers will be
dominated by the Kerr solution. In particular, the contri-
bution from the Love number will become negligible. By
comparing the values obtained before and after the reso-
nance, the variation of the spin-induced quadrupole and
Love number(s) can turn into a key signature of the
presence of a cloud in a binary system.

C. Probing ultralight scalars

In this section, we study the new ways in which ultralight
scalars can be probed with binary inspirals. We will
concentrate on paradigmatic GW sources for which both
the hyperfine and Bohr resonances can play a major role,
accessible to present and planned GW detectors.
To be able to probe the resonances, the lifetime of the

cloud has to be sufficiently long, and the resonance sharp
enough, to be detected within the operational time window
of GW observatories:
(1) Cloud lifetime. Survival of the cloud until the

resonance typically requires τc ≳ 10 Myr for stel-
lar-mass binaries, using generic lower bounds on
their merger times [102]. For supermassive BHs, we
conservatively take τc ≳ 1 Gyr to account for the
large uncertainties in the formation channels.

21For q≲ 1, the virial theorem implies v ≃ ðα=2Þ ffiffiffiffiffiffiffiffiffiffiffiffi
rc=R�

p
and

hence v≲ α=2 in the regime of validity of the multipole
expansion, rc < R�.

22So far, this has been shown to hold for nonrotating
BHs. However, it is also expected to be the case for Kerr
BHs. See e.g., [124] and references therein for progress along
this direction.

23These Love numbers are the analog of susceptibilities in
electrodynamics, which describe the response of a distribution of
charge to an applied electric (or magnetic) field.
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(2) Resonant decay. To observe significant resonant
decay in the GW signal by present and future
GW detectors, the typical decay time, τd, must be
≲ a few years.

Using (2.17) and (3.41) for τc and τd, respectively, these
considerations typically select narrow ranges of α, depend-
ing on M. For stellar-mass BHs, we will be sensitive to
α ≃ 0.07 for real fields, while axisymmetric clouds made
out of complex fields can be observed for larger values
of α. On the other hand, for supermassive BHs with
M ≳ 105 M⊙, the constraint on the decay time τd ≲
years implies α ≳ 0.2, with larger values of α required
for larger M. Even though this typically leads to τc ≲
1 Myr for real fields, astrophysical processes such as
accretion may alleviate the stability issue [103].24

In the following, we will discuss how boson clouds
around BHs can be probed in continuous-wave and
binary searches. In the former, the resonant decay of the
monochromatic signal is surveyed with ground-based
detectors and LISA, while in the latter, the focus is on
the resonant depletion/attenuation of finite-size effects,
observed through precision measurements in the GW
emission from the two-body system with LISA.

1. Continuous-wave searches

The frequency of the signal from the cloud is shown in
Fig. 9, for physically motivated values of α andM; cf. (4.1),
and compared to the frequency bands of ground-based
[127–131] and space-based [132–134] detectors, as well as
pulsar timing arrays (PTAs) [135–140]. We see that
ground-based experiments probe M ≲ 3 × 103 M⊙, while

LISAwould give us access toM ≳ 3 × 103 M⊙. For LIGO,
the majority of resolvable events with significant SNR
are produced by galactic sources; cf. (4.4). The present
binary event rates inferred from LIGO [141] indicate that
the most promising sources in the galaxy are far from
merging. Indeed, population synthesis codes [142–144]
suggest that there are presently of the order of 105 to 106

galactic BH-BH and BH-NS binaries of comparable
masses with orbital frequencies distributed in the mHz
region. Provided a fraction of these binary systems
transit through a resonant epoch, a sharp decay in the
GW signal from the cloud may be observed. This is
particularly suitable for the hyperfine decay, for which
the orbital resonances for stellar-mass BH binaries fall
naturally in the mHz region; see (4.14) below. However,
due to the finite lifetime of the clouds, detecting this
effect in the galaxy requires the clouds to be formed
relatively recently, while the majority of these binaries
may have formed much earlier [144]. Despite these
inherent uncertainties in the binary formation mecha-
nisms, there are fortunately a large number of galactic
binaries, each sampling a distribution of initial condi-
tions. This constitutes an ensemble which allows for a
“scanning” of the orbital frequencies for the resonance,
and the corresponding depletion of the monochromatic
GW signal.
The scanning for both the hyperfine and Bohr resonances

is more promising with LISA, which would also be
sensitive to extra-galactic sources. In particular, a sharp
decay may be observed for clouds surrounding super-
massive BHs with a small companion, in what are known as
extreme-mass-ratio inspirals (EMRIs). Similarly to the
tuning required for the binary signals from EMRIs to fall
into the LISA band [145], a companion may excite orbital
resonances, inducing a sharp depletion on the GW signal
from a supermassive BH cloud. The formation mechanism
and population of intermediate-mass and supermassive
BHs, as well as EMRIs, is less well understood.
However, since LISA will be able to probe sources of
extra-galactic origin, the search volume increases consid-
erably, allowing for the detection of GW signals at higher
redshifts.
As a concrete example, consider a real scalar field with

μ ≃ 10−17 eV, forming a cloud surrounding a supermassive
BH with mass M ≃ 5 × 106 M⊙. For simplicity, let us
assume that the BH accretes matter, so that the issue of the
lifetime of the cloud may be ignored. In this scenario we
have α ≃ 0.37, and a resonant decay time of about a few
months. The continuous monochromatic signal from the
cloud occurs around fc ≃ 5 mHz, the most sensitive part of
the LISA band. For binaries that transit through the
hyperfine resonance, the complete termination of the signal
occurs for q≲ 102. The decay can arise either from
significant perturbative depletion in the early stages or,
provided that the initial orbital frequency Ω0 lies close to

FIG. 9. Frequency of the monochromatic signal for physically
motivated ranges of α and M. The vertical dotted lines illustrate
the typical observational bands of various GW observatories.

24In general, we can relax the condition (3.36) for the cloud’s
stability by requiring the lifetime to be sufficiently long to reach
the resonance after formation, e.g., τc ≳ 1 Myr, but not neces-
sarily to last until merger.
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ϵh, the cloud may survive the perturbative decay and
experience a sharp depletion within a few months.25 On
the other hand, significant attenuation of the signal due to
Bohr resonances requires q < 1; cf. Fig. 8. These type of
binary systems, scanning over the space of orbital reso-
nances, are expected to be abundant in nature, which
motivates comprehensive continuous-wave searches with
space-based interferometers.

2. Binary searches

Precision finite-size measurements in binary searches are
a new probe of boson clouds around BHs. If the resonance
falls within the frequency window of future observatories, it
becomes a distinctive feature of the GW signal. To see
when that may be the case, it is instructive to translate the
orbital frequency at which the resonance transitions occur,
Ωres, to the GW frequency, fres, emitted from the binary
during the inspiral:

fðiÞres ≡ΩðiÞ
res

π
¼ jϵij

π

≃

8>><
>>:

7.2 mHz
1

1þ 4α2

�
α

0.1

�
7
�
3 M⊙

M

�
hyperfine;

0.75 Hz

�
α

0.1

�
3
�
3 M⊙

M

�
Bohr:

ð4:14Þ

This frequency is shown in Fig. 10, for physically moti-
vated ranges of α and M. We see that, for most cases, both
the hyperfine and Bohr frequencies are too low to be
observed by ground-based detectors. The best prospects for
detecting the resonance feature in future binary searches is
therefore through space-based detectors, such as LISA.
The targeted values of μ (and α) for real scalars is

restricted mostly by the stability of the cloud. For axisym-
metric configurations with complex fields, GW emission
from the cloud is not present and therefore binary searches
are perhaps the only way in which these bosons could be
potentially observable.26 As we see in Fig. 10, observing
the resonant decay is most promising in the deci-Hertz and
LISA frequency bands. For simplicity, let us focus on
sources that are observable by LISA, which is sensitive to
compact binaries with large masses M ∈ ½104; 107� M⊙,
although in principle it can also detect stellar-mass BHs

[146]. Binary searches can then broadly be divided into two
classes: (i) binaries of comparable masses, q ∈ ½10−2; 102�,
and (ii) EMRIs, with q ∈ ½10−6; 10−2� ∪ ½102; 106�.
In the case of comparable-mass binaries, finite-size

effects manifest themselves at high PN orders, and there-
fore become accessible when the relative velocity of the
binary becomes sizable. Once the companion enters the
cloud, the finite-size effects will be dominated by the BH
solution, for instance the spin-induced quadrupole will be
given by κ ≃ 1 and the Love numbers will vanish. To detect
the time-dependent effects in (4.10) and (4.13), the imprints
in the GW phase have to be observable near the resonance.
For co-rotating orbits, where the hyperfine resonance
occurs at larger distances, measuring the depletion of the
finite-size effects is challenging. Nevertheless, it is also
possible that the cloud forms in a binary systems with
Ω0 > ϵh, therefore missing the hyperfine resonance. While
level mixings would still deplete the cloud, it is possible
that it survives until later times; e.g., see Fig. 7 for α ≃ 0.1
and q ≃ 10−2. In this scenario, resonant depletion would
not occur and finite-size effects may still be observed at
later stages of the inspiral.
Detecting the resonant decay is more promising for

counter-rotating orbits, where the resonance generically
occurs at shorter separations. In that case, the relative
velocity near the resonance is given by vðbÞ ≃ 0.65ðα=2Þ,
which can be significant. For example, for α ≃ 0.1 and
Mc ≃ 0.1M, the finite-size effects near the Bohr resonance
are of order,

κðαÞv4ðbÞχ2 ∼ 10−3; ð4:15Þ

ΛðαÞv10ðbÞ ∼ 10−8: ð4:16Þ

The resonant depletion of these quantities can be as large as
≃20–30% (see Fig. 8 for α ≃ 0.1 and q ≃ 10−2). Notice
that, while small, both types of finite-size effects are
larger than the usual 2PN and 5PN terms, respectively.

FIG. 10. The resonance frequency fres for physically motivated
ranges of α and M. The vertical dotted lines illustrate the typical
observational bands of various GW observatories.

25One can show that for binary systems with initial condition
Ω0 < ϵh, Fig. 7 is modified such that regions II, IIIa and IIIb turn
red, but not region IIIb, making almost the entire parameter space
susceptible to decay.

26It is worth mentioning that in previous proposals, probes of
scalar fields in binary systems rely on the formation of boson stars
[31]. However, unlike the BH cloud, boson stars do not
experience resonant depletion, which therefore is a unique of
feature of boson condensates surrounding spinning BHs.
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In particular, near the resonance, tidal effects are compa-
rable to typical 3PN contributions and the corrections to the
GW phase appear to be within reach of future GW
observatories such as LISA [30].
In the case of EMRIs, the evolution of the companion in

the background of a supermassive BH can be obtained
through perturbative self-force computations [147,148].
The tidal deformability of the object is typically not taken
into account, since it is highly suppressed when M� ≪ M.
Nonetheless, systems with q ≪ 1 still offer an excellent
probe of deviations from κ ¼ 1 for the background
spacetime. It has been estimated that a variation in the
spin-induced quadrupole of order Δκ=κ ≃ 10−2 may be
detectable by LISA [149]. For example, counter-rotating
binaries with α ≃ 0.1–0.4 and q≲ 10−2 would behave in a
similar way as the blue curves in Fig. 8. This strongly
motivates searches for large spin-induced quadrupole
moments in EMRIs and their resonant depletion.

V. CONCLUSIONS AND OUTLOOK

Astrophysical BHs exist with a wide range of masses,
from a few to billions of solar masses. When these BHs are
rapidly rotating, they can produce condensates of ultralight
bosons with masses in the range ½10−20; 10−10� eV, which
includes well-motivated candidates for physics beyond the
Standard Model, such as the QCD axion [61–63], axionlike
particles in string theory [67–69], and interesting new
possibilities for dark matter [64]. Extremely ambitious
observational programs are under way to search for these
light particles in the lab [52], in astrophysics [84] and in
cosmology [85–87]. As impressive as these efforts are, they
are blind to particles that couple to ordinary matter only
with gravitational strength. Such extremely weakly coupled
particles would nevertheless be produced by BH super-
radiance. The resulting boson clouds can be long-lived (on
cosmological/astrophysical timescales) creating temporary
BH hair that can be searched for in future GWobservations,
either in isolation or as a member of a binary system.
In this paper, we studied the dynamics of scalar con-

densates in binary inspirals, both with real and complex
fields. We showed that the presence of a companion greatly
enriches the dynamics of the system, by inducing mixing
between growing and decaying modes of the cloud. At
certain critical orbital frequencies the evolution becomes
nonperturbative, leading to enhanced mixing through
resonances with the orbital motion of the system. By
restricting to simplified two- and three-state models of
the cloud, we have shown that the resulting time depend-
ence can significantly affect physical observables through a
sharp depletion (or at least an attenuation) of the energy
density in the bosonic field. This has important phenom-
enological consequences, both for the monochromatic
signal emitted by the cloud and the finite-size effects
imprinted in the waveforms of the binary signal. The
characteristic time dependence of the signals thus become

a very distinctive feature of the dynamics of boson clouds
in binary systems, which would not be present in other
scenarios, e.g., boson stars.
The results presented here should be considered a first

step towards more accurate descriptions of the dynamics of
the cloud. For instance, a proper calculation of the finite-size
effects associated with the BH cloud will require numerical
simulations, to incorporate the backreaction on the back-
ground geometry. We have also ignored the backreaction on
theBHmass and spin due to the evolution of the surrounding
cloud. Moreover, our analytical treatment breaks down
when higher modes are excited during the resonances, as
well as during the late stages of the inspiral, where the
dynamical system becomes strongly time dependent. In
these cases, only numerical approaches are able to properly
inform us about the exact details of the dynamics. Other
aspects of our estimations can also be improved upon. For
example, we have restricted our analysis to quasi-circular
orbits on the equator. This was only for simplicity, and it
would be relatively straightforward to extend our analysis to
the case of elliptic orbits. Finally, we did not perform a
detailed forecast of the expected event rates, and signal
strengths, with future GW observatories. This requires a
careful treatment of formation mechanisms, as well as the
associated generation of boson clouds.
In spite of our simplifications, we have identified robust

GW signatures for clouds in binary inspirals, which open
up new ways of probing physics beyond the Standard
Model through current and future GW observations. In
particular, we hope that future measurements could not
only detect these ultralight particles, but also help us
elucidate their putative properties. Following an analogy
with collider physics, we expect to extract not only the
particle’s masses, but also their spins and self-couplings
[150], ultimately realizing the idea of the “gravitational
collider.”

ACKNOWLEDGMENTS

We thank Mina Arvanitaki, Masha Baryakhtar,
Alessandra Buonanno, Sam Dolan, William East, Lotte
ter Haar, Tanja Hinderer, Badri Krishnan, Luis Lehner, Ilya
Mandel, Mehrdad Mirbabayi, David Nichols, Samaya
Nissanke, Paolo Pani, Frans Pretorius, John Stout, Ka Wa
Tsang, Benjamin Wallisch, and Matias Zaldarriaga for
helpful comments and discussions. We thank Benjamin
Wallisch for assistance in producing some of the figures.
D. B. is grateful to the Leung Center for Cosmology and
Particle Astrophysics at the National Taiwan University and
the Institute for Advanced Study for hospitality while some
of this work was being performed. The work of D. B. is
supported by a Vidi grant of the Netherlands Organisation
for Scientific Research (NWO) that is funded by the
Dutch Ministry of Education, Culture and Science
(OCW). The work of H. S. C. is supported by NWO. The
work of R. A. P. was supported by the Simons Foundation

PROBING ULTRALIGHT BOSONS WITH BINARY BLACK HOLES PHYS. REV. D 99, 044001 (2019)

044001-19



and São Paulo Research Foundation Young Investigator
Awards, Grants No. 2014/25212-3 and No. 2014/10748-5,
and by the German Science Foundation (DFG) within the
Collaborative ResearchCenter (SFB) 676 “Particles, Strings
and the Early Universe.” R. A. P. would like to thank the
International Center for Theoretical Physics (ICTP) in
Trieste for hospitality while this work was being completed.
R. A. P. is grateful to Leonidas K. Porto, Emiliano A. Porto
and Imme Roewer for the unconditional support.

APPENDIX A: GRAVITATION ATOM

In this appendix, we derive some of the properties of the
BH cloud presented in the main text. In particular, we
compute the corrections to the frequency eigenvalues of the
Hamiltonian in the nonrelativistic limit. We also determine
the mass quadrupole moment of the BH cloud in the
Newtonian approximation. Unless stated otherwise, these
results apply to both real and complex scalar fields.

1. Kerr geometry

The Kerr metric in Boyer-Lindquist (BL) coordinates is

ds2 ¼ −
Δ
ρ2

ðdt − asin2θdϕÞ2 þ ρ2

Δ
dr2 þ ρ2dθ2

þ sin2θ
ρ2

ðadt − ðr2 þ a2ÞdϕÞ2; ðA1Þ

where we have defined

Δ≡ r2 − 2Mrþ a2 and ρ2 ≡ r2 þ a2 cos2 θ: ðA2Þ
Since the metric components have no explicit dependence
on t and ϕ, the Kerr spacetime is stationary and axisym-
metric. The roots of Δ determine the event horizon at
rþ ¼ M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
and the Cauchy horizon at

r− ¼ M −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
. The surface gtt ¼ 0 at rE ¼ M þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 − a2 cos2 θ
p

is the ergosphere. The angular velocity of
the spinning BH at its event horizon is

ΩH ¼ a
2Mrþ

: ðA3Þ

The BH angular velocity ΩH plays a crucial role in the
superradiance condition (2.1).

2. Test scalar field

The quadratic Lagrangian of a real scalar field is27

L ¼ −
1

2
gab∇aΨ∇bΨ −

1

2
μ2Ψ2: ðA4Þ

Ignoring the backreaction of the field’s stress-energy on the
metric, we can use the Kerr solution (A1) for the metric gab.
Expressed in BL coordinates, the Klein-Gordon equation is
separable into a set of ordinary differential equations. To
find the stationary solutions of the KG equation, we
consider the following ansatz

Ψðt; r; θ;ϕÞ ¼
X
lm

Z
dω
2π

Re½e−iωteimϕRωlmðrÞSlmðθ; cÞ�:

ðA5Þ

The plane wave solutions in t and ϕ are a direct conse-
quence of the isometries of the Kerr solution. The angular
functions Slmðθ; cÞ are called spheroidal harmonics with
spheroidicity parameter c2 ≡ a2ðω2 − μ2Þ. In the limit
c2 → 0, we have SlmðθÞeimϕ → Ylmðθ;ϕÞ, where Ylm
are the ordinary spherical harmonics. The radial functions
RωlmðrÞ do not admit analytic solutions and have to be
determined numerically. However, as we shall see, at
leading order in an expansion in r−1, they take the form
of the radial functions of the hydrogen atom.

3. Nonrelativistic limit

The ansatz (A5) corresponds to stationary solutions
of a massive scalar field around the BH. To study the
dynamical evolution of Ψ, it proves useful to make
another ansatz

Ψðt; rÞ ¼ 1ffiffiffiffiffi
2μ

p ½ψðt; rÞe−iμt þ ψ�ðt; rÞeþiμt�; ðA6Þ

where ψ is a complex scalar field which varies on a
timescale that is much longer than μ−1. The action for ψ
reads

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−

1

2μ
½∇aψ

�∇aψþiμg0aðψ�∇aψ−ψ∇aψ
�Þ

þμ2ðg00þ1Þψ�ψ �
�
; ðA7Þ

which spontaneously breaks time reparametrization.
Expanding in powers of r−1, we obtain the following
effective action

S ¼
Z

dtdrdθdϕr2 sin θ½L2 þ L4 þ L5 þ � � ��; ðA8Þ

where Ln denotes terms of order OðαnÞ,

27Since a complex scalar field may be described in terms of
two real fields, we will restrict the following discussion to the real
case only.
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L2≡ iψ�∂tψ −
1

2μ
∂rψ

�∂rψ −
1

2μr2
∂θψ

�∂θψ

−
1

2μr2sin2θ
∂ϕψ

�∂ϕψþα

r
ψ�ψ ;

L4≡ 1

2μ
∂tψ

�∂tψþ2M
r

�
iψ�∂tψþ 1

2μ
∂rψ

�∂rψþα

r
ψ�ψ

�
;

L5≡2iaMψ�∂ϕψ

r3
: ðA9Þ

For the power counting, we have used the fact that α < 1

and r ∼ rc ≃ ðμαÞ−1. The Lagrangian L2 defines the non-
relativistic limit, which leads to the Schrödinger equation

i
∂
∂tψðt; rÞ ¼

�
−

1

2μ
∇2 −

α

r

�
ψðt; rÞ: ðA10Þ

This is analogous to the nonrelativistic limit of the hydro-
gen atom. By expanding ψ in terms of the stationary
eigenstates

ψðt; rÞ ¼
Z

dω
2π

X
lm

ψnlmðt; rÞ; ðA11Þ

and using (A5), we can identify

ψnlmðt; r; θ;ϕÞ ≃ e−iðω−μÞtR̄nlðrÞYlmðθ;ϕÞ; ðA12Þ

where we have used the small spheroidicity approximation
SlmðθÞeimϕ ≃ Ylmðθ;ϕÞ þOðα2Þ, and defined R̄nlðrÞ≡ffiffiffiffiffiffiffiffi
μ=2

p
RωlmðrÞ. Since we have expanded the action in

(A8) at large distances, the boundary condition at the
BH event horizon is replaced by a regular boundary
condition at the origin. The radial function R̄nlðrÞ therefore
take the form of the radial functions of the hydrogen atom.
The Lagrangians L4 and L5 are higher-order self-

interaction terms. Using the nonrelativistic equation of
motion (A10), we can substitute i∂tψ and ∂ϕψ ¼ imψ back
into L4 and L5. This gives

L4 þ L5 ¼
1

2μ
∂tψ

�∂tψ þ α

μ2r3
ψ�

× ½lðlþ 1Þ − 2r∂rðr∂rÞ − 2ãmα�ψ ; ðA13Þ

wherewe have used the eigenvalue equation of the spherical
hamornics

�
1

sin θ
∂
∂θ sin θ

∂
∂θ þ

1

sin2θ
∂2

∂2ϕ

�
Ylmðθ;ϕÞ

¼ −lðlþ 1ÞYlmðθ;ϕÞ: ðA14Þ

Finally, it is convenient towrite the dynamics ofψ in terms of
the Hamiltonian

Hc ≡ Tc þ Vc; ðA15Þ

where we have separated Hc into its kinetic and potential
components,

Tc≡−
1

2μ
∇2þ 1

2μ
∂2
t ;

Vc≡−
α

r
−

α

μ2r3
½lðlþ1Þ−2r∂rðr∂rÞ�þ

2ãmα2

μ2r3
: ðA16Þ

We see that the eigenfunctions of the cloud are determined
by the Hamiltonian of a test particle of mass μ. Furthermore,
since the Kerr metric is stationary, the kinetic energy of the
BH vanishes. However, as we will see in Appendix B, this
contribution becomes important when the BH cloud is part
of a binary system.

4. Frequency eigenvalues

Including the mass term μ that was factored out in (A6),
the eigenfrequency spectrum of the Hamiltonian (A15) is

ωnlm ¼ μ

�
1 −

α2

2n2
−

α4

8n4
þ ð2l − 3nþ 1Þα4

n4ðlþ 1=2Þ

þ 2ãmα5

n3lðlþ 1=2Þðlþ 1Þ
�
; ðA17Þ

where we have used the following identities

hr−1inl ¼ μα

n2
;

hr−2inl ¼ μ2α2

n3ðlþ 1=2Þ ;

hr−3inl ¼ μ3α3

n3lðlþ 1=2Þðlþ 1Þ ; l > 0

hr−2∂rðr∂rÞinl ¼ μ3α3

n4

�
l − nþ 1=2
lþ 1=2

�
; ðA18Þ

with h� � �inl defined as the expectation value with respect to
R̄nlðrÞ. Equation (A17) shows that the frequency eigen-
values of modes with different quantum numbers fnlmg
are different. It is precisely these differences in the
eigenfrequencies that allow level mixings to occur.

5. Klein-Gordon norm

The action (A7) is invariant under the global Uð1Þ
transformation ψ → ψe−iβ, where β is an arbitrary constant.
The associated Noether current is

Ja ¼ i
2μ

½ψ∇aψ� − ψ�∇aψ � − g0aψ�ψ : ðA19Þ

At leading order in the expansion in r−1, the conserved
charge is J0 ≃ ψ�ψ , which can be interpreted as the
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occupation density of a particular state. This is analogous to
the probability density in quantummechanics, after suitable
normalization.

6. Quadrupole moment

The conserved energy associated with the energy-
momentum tensor of the scalar field is

E≡ −
Z
Σ
T0

aka; ðA20Þ

where ka ¼ δa0 is the time-like Killing vector field of the
Kerr metric and Σ is a spacelike hypersurface of constant t.
At leading order in r−1 and α, the energy density of the
j211i mode of the cloud is

ρEðt; rÞ≡ −T0
0 ≃

A2μ6α5

64π
r2e−αμrsin2θ; ðA21Þ

where A is the amplitude of the scalar field, which is
determined by the efficiency of the superradiant instability.
At leading order in α, the energy density ρE is equal to the
mass density ρm of the cloud and the mass quadrupole
moment can be approximated by

Qc¼
Z

∞

0

dr
Z

π

0

dθ
Z

2π

0

dϕr2 sinθ½ρmr2P2ðcosθÞ�; ðA22Þ

where P2ðcos θÞ is the Legendre polynomial. Normalizing
the amplitude A in (A22) by the mass of the cloud

Mc ¼
Z

∞

0

dr
Z

π

0

dθ
Z

2π

0

dϕr2 sin θρm; ðA23Þ

we obtain

Qc ≃ −
6Mc

α2μ2
≃ −

3

8
Mcr2c: ðA24Þ

The negative sign arises as a direct consequence of the
spinning motion of the cloud.

APPENDIX B: FREE-FALLING CLOUDS

In Sec. III A, we derived the effect of the companion on
the BH cloud by considering the perturbed metric in Fermi
coordinates. In this appendix, we present an alternative
perspective of this derivation by considering a three-body
analogy. Our main goal is to show how a fictitous dipole in
the gravitational potential, generated by a change of
coordinates, cancels out.

1. Three-body analogy

The eigenfunctions of the cloud are determined by the
Hamiltonian Hc of a test particle of mass μ, cf. (A15). This
is analogous to the Hamiltonian of the electron in a

hydrogen atom: while the electron wavefunction, as a
solution of the Schrödinger equation, has a wavelike
distribution around its nucleus, it is treated as a point particle
at the level of the Hamiltonian. In the rest of this appendix,
we will adopt this particle picture of the Hamiltonian.
In the presence of a companion, of mass M�, the BH

cloud will accelerate due to the external gravitational field.
The Hamiltonian (A15) must hence be modified to include
both the kinetic term of M as well as the contributions
from M�. It is convenient to introduce the center-of-mass
coordinate, ρ≡ ðMr1 þ μr2Þ=ðM þ μÞ, so that the total
HamiltonianHtot of the three-body system can be written as

Htot¼
�

p2
ρ

2ðMþμÞþ
p2
r

2μ̂
þVcðjrjÞ

�
þ
�
p2�
2M�

þV�ðr̄;R�Þ
�
;

ðB1Þ

where r≡ r2 − r1 is the relative spatial separation
between μ and M, and we introduced the reduced mass
μ̂≡Mμ=ðM þ μÞ, the momenta pρ ≡ ðM þ μÞ_ρ and
pr ≡ μ̂ _r, and the coordinates R� ≡ fR�;Θ�;Φ�g and r̄≡
fr̄; θ̄; ϕ̄g relative to the center-of-mass (cf. Fig. 11).
Working in the Newtonian limit, the external potential
V� is given by

V�ðr̄;R�Þ ¼ −
M�M

jR� þ μr̄=Mj −
M�μ

jR� − r̄j

¼ −M�
X
l�m�

4π

2l� þ 1

�
Mð−μ=MÞl� þ μ

R�

�

×

�
r̄
R�

�
l�
Y�
l�m� ðΘ�;Φ�ÞYl�m�ðθ̄; ϕ̄Þ: ðB2Þ

Substituting r̄¼ð1þμ=MÞ−1r, and expanding in μ=M ≪ 1,
we find

FIG. 11. Coordinates of the effective three-body system.
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V�ðr; R�Þ ¼ −
M�ðM þ μÞ

R�
−
M�μ
R�

X
l�≥2

X
jm�j≤l�

4π

2l� þ 1

×

�
r
R�

�
l�
Y�
l�m� ðΘ�;Φ�ÞYl�m� ðθ;ϕÞ;

≡ V�;0ðR�Þ þ
X
l�≥2

V�;l� ðr; R�Þ: ðB3Þ

The leadingmonopole termV�;0 determines the acceleration
of the center-of-mass of the BH-cloud system. It does not
depend on the relative separation r, so it does not lead to a
shift in the energy levels or themode functions of the system.
The remaining terms are a sum over harmonics, startingwith
the quadrupole l� ¼ 2. Importantly, the dipole contribution
l� ¼ 1 vanishes in the center-of-mass frame.

2. Fictitious dipole

We have shown that the contribution from the dipole
vanishes in the centre-of-mass frame. By virtue of the
equivalence principle, this property must hold for all
coordinate systems. More generally, this is a manifestation
of the fact that a constant gravitational gradient—in this
case the dipole term induced by the external gravitational
field produced by the companion M�—is physically
unobservable. We now show explicitly that this is indeed
the case for the coordinate system centered at M.
Consider expressingHtot in termsof (r1, r) instead of (ρ, r),

Htot ¼
��

1þ μ

M

��
p2
1

2M
þ p2

r

2μ̂

�
þ μ

Mμ̂
p1 · pr þ VcðjrjÞ

�

þ
�
p2�
2M�

þ V�ðr;RÞ
�
; ðB4Þ

where the gravitational potential in this choice of coordinates
reads (cf. Fig. 11)

V�ðr;RÞ ¼ −
M�M
jRj −

M�μ
jR − rj : ðB5Þ

Expanding V� for r ≪ R produces a dipole term

−
M�μ

jR − rj ⊃ −
�
M�μ
R

��
n̂ · r
R

�
; ðB6Þ

where n̂ is the unit vector along R, and we have used
jR − rj ¼ R − n̂ · rþOðr2Þ. We will now show that this
dipole is canceled by the kinetic mixing term μp1 · pr=Mμ̂.
This is manifested most transparently in the M�=R ≫ V�
limit, inwhich the gravitational attraction betweenM and μ is
negligible, compared to the force exerted byM�. In this limit,
M and μ free fall separately under the gravitational influence
of M�:

_r21 ¼
2M�
R

; _r22 ¼
2M�

jR − rj ; ðB7Þ

and the angle between _r1 and _r2, denoted by γ, is given by

cos γ ¼ R2 þ jR − rj2 − r2

2RjR − rj : ðB8Þ

The dipole arising from the kinetic mixing becomes,

μ

Mμ̂
p1 · pr ¼ μð_r1 · _r2 − _r21Þ

¼ μ

�
M�ðR2 þ jR − rj2 − r2Þ

ðRjR − rjÞ3=2 −
2M�
R

�

¼ μ

�
M�
R

�
2þ n̂ · r

R

�
−
2M�
R

þO
�
r
R

�
2
�

¼ þ
�
M�μ
R

��
n̂ · r
R

�
þO

�
r
R

�
2

: ðB9Þ

As advertised, this precisely cancels the dipole contribution
in (B6).

APPENDIX C: EFT OF EXTENDED OBJECTS

In the language of effective field theory, spinning
extended objects are described in terms of an effective
worldline action [11–22,28,33–38]. One of the virtues of
the formalism is the inclusion of finite-size effects as a
series of higher-dimension terms beyond the “minimally
coupled” point-particle worldline action, Spp ¼ M

R
dτ,

where M and τ are the mass and proper time, respectively.
One such term is the electric-type quadrupole coupling,

SQ ≡ −
1

2

Z
dτQijðτÞEijðτÞ; ðC1Þ

where Eij is the electric component of the Weyl tensor
projected onto the spatial hypersurface of a free-falling
basis,28 and Qij is the mass quadrupole moment of the
object. A similar coupling appears for the magnetic
component. Higher-order multipole moments can also be
easily incorporated.
The quadrupole moment can be further split into two

parts: i) a background term, which is independent of any
external perturbations, and ii) the response induced by an
external field, for instance the gravitational field induced by
a companion in a binary system. The effects of a permanent
quadrupole moment depend on the scaling of Qij with the
size and spin of the body. For example, the symmetric and
trace-free spin-induced quadrupole moment of a rotating
body can be parameterized as

ðQijÞS ¼ −
CES2

M

�
SiSj −

δij

3
SkSk

�
; ðC2Þ

28The electric part of the Weyl tensor Wacbd is defined as
Eab ¼ Wacbducud, with ua being the four-velocity. The tetrad is
chosen such that ea0 ¼ ua. Since Eabub ¼ 0, only the spatial
indices matter in the projection to the free-falling frame
Eij ¼ eai e

b
jEab.
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where Si is the spin vector and CES2 is a dimensionless
Wilson coefficient that incorporates the intrinsic properties
of the object. The factor of 1=M is chosen for convenience,
so that CES2 ¼ 1 for Kerr BHs. This parameter is equivalent
to κ, introduced in Sec. IV B, andmeasures the spin-induced
quadrupolar deformability of the object, relative to the value
for a rotating BH with the same mass and spin. At leading
order, the quadrupole term leads to the following additional
term in the worldline effective action [12,28,33,34]

SES2 ¼
CES2

2M

Z
dτSikSjkEij; ðC3Þ

where Sij is the spin tensor, so that Si ¼ 1
2
ϵijkSjk. Using the

power counting rules of the EFT, it is straightforward to
show that this term contributes at 2PN order for binary
systems with a rapidly spinning compact object (see [22] for
more details).
In the presence of an external perturbation, the object’s

multipole moments also receive induced corrections pro-
portional to the external field. For example, in the static
limit, the response part of the quadrupole moment is29

ðQijÞR ¼ −CEEij; ðC4Þ

where we have introduced the Wilson coefficient CE, often
called the “Love number.” In the worldline theory, this
leads to the following higher-dimension term in the
effective action,

SE2 ¼ CE

2

Z
dτEijEij; ðC5Þ

which is quadratic in the external field. Notice that
the parameter CE scales as ½mass� × ½size�4 for general
bodies, and hence as ½mass�5 for compact objects. It is
thus conventional to introduce the dimensionless
Love number, or “deformability parameter,” as (see
e.g., [5])

Λ≡ CE

M5
: ðC6Þ

Because of the many derivatives involved, this term
enters at 5PN order for compact objects in a binary
system, e.g., [11]. Perhaps somewhat surprisingly, the
Love numbers vanish for BHs in four-dimensional
general relativity. This unexpected “fine-tuning” offers
a unique opportunity to probe the nature of spacetime,
and the existence of exotic objects, through precision
GW data [7].
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