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We study the power spectra and entropy of two-field warm inflationary scenario with canonical
condition which is described by many-dimensional stochastic differential equations. The field perturbations
are analytically calculated via a Volterra integral equation of the second kind, based on which we obtain
a spectra with leading order and first order of slow-roll parameters. We also find the evolutions of
background are not independent but relying on dissipative coefficients, which is distinguished from that in
cold inflation. Then, we calculate the entropy on the basis of statistical physics theory by introducing an
entropy matrix. On superhorizon scale, the entropy matrix follows the fluctuation-dissipation relation
consistent with the scale-invariance of spectra or the stationarity of field perturbations. The entropy
perturbation vanishes at both superhorizon and subhorizon scale, while narrow peaks generate at a specific
scale which could be considered as horizon. In addition, the second law of thermodynamics is followed as
well.
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I. INTRODUCTION

The warm inflation model was established as a candidate
scenario to overcome some defects in cold inflation [1,2].
However, it was realized a few years after its original
proposal that the idea of warm inflation was not easy to be
realized in concrete models and even is simply not possible
[3,4]. Some problems were mentioned in such a scenario.
Shortly afterwards, many successful models of warm
inflation were established, in which improved method is
based on the theoretical model that the inflaton indirectly
interacts with the light degrees of freedom through a heavy
mediator fields instead of being coupled with a light field
directly [5–7]. In such a scenario, the evolution of the
inflaton field can be properly determined in the context of
the in-in form, or Schwinger closed-time path functional
formalism [8]. This formalism leads an stochastic differ-
ential equation which contains a dissipative term and a
Gaussian stochastic noise term as a type of generalized
Langevin-like equation of motion [9,10].

Recently, series of work has been done to distinguish
warm inflationary scenario from the cold one. The warm
little inflation scenario can lead to different realizations of
warm inflation on being both dynamically and observatio-
nally consistent [11]. Within the warm inflationary sce-
nario, the modifications to the primordial perturbation
spectrum induced by dissipative and thermal effects
generically lead to a more blue-tilted scalar spectrum with
respect to cold inflation models with the same potential
functions. A more suppressed tensor component is also
obtained in previous work [12] compared with cold
inflation which is another method to distinguish the two
models. Besides, the warm inflation model with appropriate
dissipative coefficient, like ΓðϕÞ ¼ Γ2ϕ

2, dramatically
increases the possibility of the occurrence of inflation [13].
Compared with the predictions of cold inflation that

primordial density fluctuations mostly from quantum
fluctuation and thermal bath are only generated at the
end of inflation [14], warm inflation model suggests that
our Universe is hot during the whole inflation when inflaton
fields couple with the thermal bath and the primary source
of density fluctuations comes from thermal fluctuations
[15–17]. The equation of motion for warm inflation can be
written as a stochastic Lengevin equation, in which there
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is a dissipation term to describe the inflaton fields coupling
with thermal bath and there is also a fluctuation term
described by a stochastic noise term [9,18]. The funda-
mental principles of warm inflation have been reviewed
recently in Ref. [19].
Besides single-field inflationary scenario, a different

possible way to generate perturbations in agreement with
observations is so-called multifield inflationary model.
Multi-field inflationary scenarios usually involves several
fields which play a dynamical role during inflation [20–27].
Previously, two-field inflation with canonical kinetic term
was investigated by decomposing field perturbations into
perturbations parallel to background trajectory in field
space (the adiabatic or curvature perturbation) and orthogo-
nal to the background trajectory (the isocurvature or
entropy perturbation) [28]. Recently, such a model has
been successfully generalized to the warm inflationary
scenario [29].
In previous works, relevant results have been obtained

under noncanonical situation [30–32], but in this paper
we only concentrate on the canonical situation since it
allows analytical expressions. We will continue to focus on
multifield warm inflation but some areas have been
improved. First, the field perturbations are obtained by a
description of many-dimensional stochastic differential
equations which is equivalent to an integral equation set.
Second, we study the entropy perturbation via stochastic
physical method by which we introduce a symmetric and
non-negative matrix.
The organization of this paper is the following. In Sec. II,

from a phenomenological stochastic differential equation
set which describe the evolution of field perturbations, a
scale-invariant spectra is derived. Section III is devoted to
the study of entropy on both superhorizon and subhorizon
scale based on which discussions on relevant properties
have also been made. Finally, in Sec. IV, we conclude our
work and give some further discussions about our results.

II. SPECTRA OF MULTI-FIELDS WARM
INFLATION

In warm inflationary scenario, a inflaton Φðx; tÞ is
composed of a unperturbed background field ϕðtÞ and a
perturbed field δϕððxÞ; tÞ which follow the equations

∂2ϕ

∂t2 þ ½3H þϒ� ∂ϕ∂t þ V;ϕ ðϕÞ ¼ 0; ð2:1Þ
� ∂2

∂t2 þ ½3H þϒðϕÞ� ∂∂t −
1

a2
∇2 þϒϕðϕÞ _ϕþ VϕϕðϕÞ

�
δφ

¼ ξT; ð2:2Þ

where ϒ is the dissipation coefficient and ξT is the thermal
noise fluctuation. In this paper, we consider only the case
of de Sitter spacetime, where aðtÞ ¼ expðHtÞ and H is

regarded as a constant. According to the fluctuation-
dissipation theorem, dissipation coefficient ϒ and fluc-
tuation noise ξT follow the relation

hξTðx; tÞξ�Tðx; t0Þi ¼ 2ϒTa−3δ3ðx − x0Þδðt − t0Þ: ð2:3Þ

The Fourier transformation of Eq. (2.3) is

hξTðk; tÞξ�Tðk0; t0Þi ¼ 2ð2π3ÞϒTa−3δ3ðk − k0Þδðt − t0Þ:
ð2:4Þ

Now extend the single field warm inflationary model to
multifield condition which is described by a phenomeno-
logically multidimensional Langevin equation. The back-
ground fields follow the equations

∂2ϕ

∂t2 þ ½3H þϒϕðϕ; χÞ�
∂ϕ
∂t þ V;ϕ ðϕ; χÞ ¼ 0; ð2:5aÞ

∂2χ

∂t2 þ ½3H þϒχðϕ; χÞ�
∂χ
∂t þ V;χ ðϕ; χÞ ¼ 0; ð2:5bÞ

where Vðϕ; χÞ ¼ V1ðϕÞ þ V2ðχÞ þ VIðϕ; χÞ is potential
function. The perturbed fields follow the Langevin equations

� ∂2

∂t2 þ ½3H þϒϕ�
∂
∂tþ

k2

a2
þϒϕ;ϕ

_ϕþ V;ϕϕ

�
δϕ

þ V;ϕχ δχ þϒϕ;χ
_ϕδχ ¼ ξϕ; ð2:6aÞ

� ∂2

∂t2 þ ½3H þϒχ �
∂
∂tþ

k2

a2
þϒχ;χ _χ þ V;χχ

�
δχ

þ V;ϕχ δϕþϒχ;ϕ _χδϕ ¼ ξχ : ð2:6bÞ

ξϕ and ξχ are Gaussian fluctuating forces which also follow
the fluctuation-dissipation relation and ;ϕ denotes the partial
derivative with respect to ϕ. To be convenient, we remark
the symbols as a recognizable way: the physical symbols
concerned with δϕ or ϕ are labeled as 1 while δχ or χ
are labeled as 2. For example, φ ¼ δϕi ¼ ðδϕ; δχÞT ≡
ðδϕ1; δϕ2ÞT , or ϕ ¼ ϕi ¼ ðϕ; χÞT ¼ ðϕ1;ϕ2ÞT, where oper-
ator T represents a transpose operation. Based on the slow-
roll approximation, write the background fields in Eq. (2.5)
as the form

3Hð1þ riÞ _ϕi þ V;i ðϕjÞ ¼ 0; ð2:7Þ

where ri are the ratio between the dissipation coefficientsϒi
and Hubble parameter H, i.e. ri ≡ϒi=3H. As general, it’s
necessary to introduce some parameters to describe the slow-
roll condition in warm inflation
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ε ¼ 1

16πG

�
V;ϕ
V

�
2

≪ 1; ð2:8aÞ

ηii ¼
1

8πG
V;ii
V

≪ 1þ ri; ð2:8bÞ

and

βi ¼
1

8πG
ϒi;i V;i
ϒiV

≪ 1þ ri: ð2:8cÞ

The term ϒϕ;χ _ϕ=H2 is also a parameter much smaller than
the unit but a little differs from slow-roll parameter βi:

ϒϕ;χ _ϕ

H2
≃ −

ϒϕ;ϕ
∂ϕ
∂χ _ϕ

8πGVϒϕð1þ rϕÞ
ϒϕ

H
¼ −

3β1r1 tan θ
1þ r1

; ð2:9Þ

where tan θ≡ _ϕ=_χ and itwill be seen as below that θ is not an
independent variable but a constant relaying on dissipative
coefficients ϒi. Define a new variable z≡ k=aH, thus the
partial derivative with respect to cosmic time is equivalent to

∂
∂t ¼ −ð1 − εÞzH ∂

∂z : ð2:10Þ

With Eqs. (2.8)–(2.10), the multidimensional Langevin
equations (2.6) turn into

δϕ00
1 þ

1

z

�
1 − 2

2þ 3r1 − 3ε

2

�
δϕ0

1

þ
�
1þ 3ðη1 þ β1r1=ð1þ r1ÞÞ

z2

�
δϕ1

¼ 1

z2H2
ξ1 −

3

z2
η̃12δϕ2; ð2:11aÞ

δϕ00
2 þ

1

z

�
1 − 2

2þ 3r2 − 3ε

2

�
δϕ0

2

þ
�
1þ 3ðη2 þ β2r2=ð1þ r2ÞÞ

z2

�
δϕ2

¼ 1

z2H2
ξ2 −

3

z2
η̃21δϕ1; ð2:11bÞ

where η̃12¼η12−β1r1 tanθ=ð1þr1Þ, η̃21¼η21−β2r2cotθ=
ð1þr2Þ and prime 0 denotes the derivative with respect to
z. Now using t ¼ H−1 lnðk=HzÞ together with

δðfðxÞÞ ¼
X
fx0g

δðx − x0Þ
jf0ðx0Þj

; ð2:12Þ

where x0 are zero points of fðxÞ, the fluctuation-dissipation
relation of ξi becomes

hξiðk; zÞξ�jðk0; z0Þi ¼ 2Qij
H4

k3
z4δ3ðk − k0Þδðz − z0Þ:

ð2:13Þ

The correlation matrix Qij is symmetric and non-negative.
Applying Green’s function method [33], the solution of

differential equation (2.11a) is

δϕ1ðk; zÞ ¼
Z

∞

z
dz0g11ðz; z0Þ

1

z02
ðH−2ξ1ðk; z0Þ

− 3η̃12δϕ2ðk; z0ÞÞ; ð2:14Þ

where

g11ðz; z0Þ ¼
zα1

z0α1
1

2=πz0
ðJν1ðzÞYν1ðz0Þ

− Jν1ðz0ÞYν1ðzÞÞ for z0 > z; ð2:15Þ

with

α1 ¼ 3ð1þ r1 − εÞ=2; ð2:16aÞ

ν1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α21 −

3β1r1
1þ r1

− 3η11

s
: ð2:16bÞ

A detailed description of solution (2.14) is given in
Ref. [12]. Similarly, the solution of differential equa-
tion (2.11b) is obtained in the same way:

δϕ2ðk; zÞ ¼
Z

∞

z
dz0g22ðz; z0Þ

1

z02
ðH−2ξ2ðk; z0Þ

− 3η̃21δϕ1ðk; z0ÞÞ: ð2:17Þ

Inserting Eq. (2.17) into Eq. (2.14) leads to a Volterra
integral equation of the second kind for δϕ1ðk; zÞ,

δϕ1ðk; zÞ

¼
Z

∞

z
dz0H−2½g̃11ðz; z0Þξ1ðk; z0Þ − 3η̃12g̃12ðz; z0Þξ2ðk; z0Þ�

− 9η̃12η̃21H−2
Z

∞

z
dz0g̃12ðz; z0Þδϕ1ðk; z0Þ; ð2:18Þ

where g̃11ðz; z0Þ ¼ g11ðz; z0Þ=z02 and

g̃12ðz; z0Þ ¼
Z

z0

z
dz00g̃11ðz; z00Þg̃22ðz00; z0Þ: ð2:19Þ

The solution of δϕ2ðk; zÞ is an analogue of the formula
above. The analytical solution of integral equation (2.18) is
a chronological exponential form [34,35], which, however,
may be not helpful to the calculation on power spectra. Then
the spectra could be obtained in a more straightforward way.
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Define the autocorrelation matrix Pijðz; z0Þ≡ hδϕiðk; zÞ
δϕ�

jðk0; z0Þi and the Green’s function matrix

gðz; z0Þ ¼
�

g11ðz; z0Þ −3η̃12g12ðz; z0Þ
−3η̃21g21ðz; z0Þ g22ðz; z0Þ

�
: ð2:20Þ

If consider only second order of η̃ij, the autocorrelation
matrix simplifies to

Pijðz; zÞ ¼ hξ̃iðk; zÞξ̃�jðk; zÞi − 18η̃12η̃21H−2

×
Z

∞

z
dz0g12ðz; z0ÞPijðz; z0Þ: ð2:21Þ

In the equation above, for convenience, we have introduced a
new stochastic variable:

ξ̃iðk; zÞ ¼
Z

∞

z
dz0H−2g̃ijðz; z0Þξjðk; z0Þ; ð2:22Þ

with sum on j. Obviously, Eq. (2.21) is another integral
equation. But, fortunately, only when the second order of
η̃ij has a significant impact on the total spectra that we need
to solve this complete equation, for the leading order of
spectra is just the zero order of η̃ij.
With the discussion above, the autocorrelation matrix is

written as

PijðzÞ¼Pð0Þ
ij ðz;zÞþPð1Þ

ij ðz;zÞþOðη̃2Þ
¼ hξ̃iðk;zÞξ̃�jðk;zÞiþOðη̃2Þ

¼H−4
Z

∞

z
dz0
Z

∞

z
dz00½g̃ðz;z0Þ�ik

× hξkðk;z0Þξ̃�l ðk0;z00Þi½g̃†ðz;z00Þ�ljþOðη̃2Þ

¼ 2δ3ðk−k0Þ
Z

∞

z
dz0
Z

∞

z
dz00

× ½gðz;z0ÞQg†ðz;z00Þ�ijδðz0− z00ÞþOðη̃2Þ

¼ 2δ3ðk−k0Þ
Z

∞

z
dz0½gðz;z0ÞQg†ðz;z0Þ�ijþOðη̃2Þ:

ð2:23Þ

According to the fluctuation-dissipation relation, the cor-
relation matrix Qij, generally, consists of dissipative
coefficients ϒi in the form of a diagonal matrix. The
correlation matrix, as the most general type, exhibits

Q ¼
� ð2πÞ3kBTϒ1 0

0 ð2πÞ3kBTϒ2

�
; ð2:24Þ

Then, the autocorrelation matrix shows an integral form

PðzÞ ¼ 6ð2πÞ3H2

k3
kBT
H

δ3ðk − k0Þ
Z

∞

z
dz0
�

r1½g11�2 þOðη̃2Þ −3η̃12½r1g11g12 þ r2g12g22�
−3η̃21½r1g21g11 þ r2g22g21� r2½g22�2 þOðη̃2Þ

�
ðz; z0Þ: ð2:25Þ

where we have used a succinct form ½gijgjk�ðz; z0Þ to
simplify the format of function gijðz; z0Þgjkðz; z0Þ. Noting
that

Z
∞

z
dz0½g11g12�ðz; z0Þ ¼

Z
∞

z
dz0½g21g11�ðz; z0Þ ð2:26Þ

(the proof is in the Appendix A) and autocorrelation matric
PðzÞ is symmetric, one finds η̃12 ¼ η̃21, which leads to a
specific relation about θ defined in Eq. (2.9):

θ ¼ arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r1
1þ r2

r2
r1

β2
β1

s
: ð2:27Þ

The spectra usually tends to scale-invariant at large scale,
i.e., z ≪ 1, or saying at the end of inflation (for
1=aH → 0). Since zαJνðzÞ → 0 and zαNνðzÞ tending to a
constant when z → 0, one can ignore the integration
containing Neumann function Yνðz0Þ and needs only to
consider the term ½zα�2 R∞z dz0z02−2αJ2νðz0Þ in the integration

R
∞
z dz0½g11�2ðz; z0Þ. On the other hand, the integrand
z02−2αJ2νðz0Þ almost equals to zero except a narrow peak
distributing at z≳ 1, so one can treat the lower limit of
integral as 0 when z < 1, which is presented to illustrate the
fact that the multifield warm inflation exhibits a scale-
invariant spectrum as well. Thus,

Z
∞

z
dz0z02−2αJ2νðz0Þ

≃
Γðα − 1ÞΓðν − αþ 3

2
Þ

2
ffiffiffi
π

p
Γðα − 1

2
ÞΓðαþ ν − 1

2
Þ

≃
Γð3

2
r1 þ 1

2
Þ

4Γð3
2
r1 þ 1ÞΓð3r1 þ 5

2
Þ : ð2:28Þ

In the equations above, we have used the Schafgeitlin
integral formula for double Bessel functions [36,37] and
relevant properties of gamma functions, together with
slow-roll conditions Eqs. (2.8a)–(2.8c). We introduce a
new function,
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Iðr1Þ≡ 16π3

2π2
π2

4
· 3HkBT½zα1Yν1ðzÞ�2jz→0

×
Z

∞

z
dz0z02−2αJ2νðz0Þ

≃ 24πH2
kBT
H

23r1r1½Γð32 r1 þ 1
2
Þ�3

ð3r1 þ 1ÞΓð3
2
r1 þ 1ÞΓð3r1 þ 5

2
Þ ;

ð2:29Þ

where the approximation of Neumann function

YνðzÞ ≈ −
ΓðνÞ
π

�
2

z

�
ν

ðν > 0; z → 0þÞ ð2:30Þ

is applied.

For the multifield inflationary model, the evolution for
double scaler field perturbations could be decomposed
along two directions: one is parallel to trajectory of the
evolution for background fields, which is called adiabatic
or curvature component, another is orthogonal to the
trajectory, which corresponds to the entropy or isocurvature
component [28]. The essential idea to describe the adiabatic
field is to introduce the linear combination of perturbed
fields δϕi

δσ ≡ sin θδϕþ cos θδχ ¼ φ†θ; ð2:31Þ

where

sin θ≡ _ϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_ϕ2 þ _χ2

q and θ≡ ðsin θ; cos θÞT: ð2:32Þ

It is obvious why we define the ratio between _ϕ and _χ as a
tangent relation in Eq. (2.9).
In order to quantify the spectra, we define the power

spectra of the perturbed fields

hδϕiðk; zÞδϕjðk0; zÞi≡ 2π2

k3
Pijδ

3ðk − k0Þ: ð2:33Þ

The spectra of adiabatic field is written as

Pδσ ¼ Pð0Þ
δσ þ Pð1Þ

δσ þOðη̃2Þ

¼ k3

2π2

Z
d3k0hδσðk; zÞδσðk0; zÞijz→0

¼ k3

2π2

Z
d3k0hφ†θθ†φijz→0

¼ k3

2π2

Z
d3k0trðθθ†PÞjz→0: ð2:34Þ

Inserting Eqs. (2.25), (2.29), and (2.32) into the equation
above, we obtain the ith order of the spectra

Pð0Þ
δσ ¼ Iðr1Þ sin2 θ þ Iðr2Þ cos2 θ; ð2:35Þ

and

Pð1Þ
δσ ¼ −6 sin θ cos θη̃12

×
Z

∞

0

dz0½r1g11g12 þ r2g12g22�ðz; z0Þ: ð2:36Þ

However, the variable δσ is not physical. The comoving
curvature perturbation with spatially flat gauge with obser-
vations is given by [29]

R ¼ H
_ϕδϕþ _χδχ
_ϕ2 þ _χ2

¼ H
δσ

_σ
: ð2:37Þ

Finally, we get the spectra of curvature perturbation

PR ¼ k3

2π2
hRðk; zÞR�ðk0; zÞijz→0

¼
�
H
_σ

�
2

Pδσ: ð2:38Þ

The analytical result of Pð0Þ
R is plotted in Fig. 1 while the

approximate numerical result of Pð1Þ
R is plotted in Fig. 2.

What needs to be pointed out is that the curvature
perturbation seems independent on the inflation back-
ground, but that’s not the case. In statistical physics, the
perturbation can not be independent of the background
within equilibrium or near equilibrium system. Once a θ is
determined, the trajectory to the evolution of background
fields _ϕ and _χ is determined as well. Thus the background
trajectory leads to the unique perturbation of inflatons δϕ
and δχ. So there exists a one-to-one map between back-
ground (tan θ) and curvature perturbation or isocurvature

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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7

FIG. 1. Power spectra for Pð0Þ
R which is normalized as

ðH
_σ Þ2ðH2πÞ2 ¼ 1 and set to kBT=H ≃ 1=8 [38].
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perturbation. In fact, we can also get a similar result from
Eq. (2.27). The ratio between _ϕ and _χ is determined by r1,
r2 and slow-roll parameters β1 and β2, which contains the
massage of background trajectory. In a word, the curvature
perturbation or isocurvature perturbation depends uniquely
on the background trajectory.

III. ENTROPY OF MULTIFIELD WARM
INFLATION

As in the previous work in multifield inflation, the
entropy is defined as a linear combination [28]. But, in
this section, we study the entropy in a statistical physical
method.
Warm inflationary scenario assume the early Universe is

immersed into a thermal bath instead of being cold. Based
on such an assumption, the probe on cosmic microwave
background shows our Universe is almost on thermal
equilibrium state [39]. Thermodynamics shows the entropy,
acquiring a maximum value at complete equilibrium,
represents a quadratic form in the near equilibrium regime.
If the perturbed physical quantities have a phenomeno-
logically multidimensional linear Langevin equation rep-
resentation, the entropy reads [40,41]

Sðkp; δϕiðtÞÞ

¼ S0 þ
∂S
∂ϕi

����
δϕi¼0

δϕi þ
1

2

∂2S
∂ϕi∂ϕj

����
δϕi;j¼0

δϕiδϕj

¼ S0 −
1

2
kBδϕiðkp; tÞEijðtÞδϕjðkp; tÞ: ð3:1Þ

In the equations above, Sðkp; δϕiðtÞÞ denotes the entropy
on physical wave-number kp andE denotes entropy matrix
in terms of symmetric and non-negative form. In the
following discussion, we will see the entropy matrix E

depends on slow-roll parameters and correlation matrix Q
instead of an independent physical variable. The probability
of occupying the state δϕiðkp; tÞ is Wðδϕiðkp; tÞÞ=W0,
where W0 denotes full equilibrium. Using the definition
of entropy S ¼ kB lnWðδϕiðkp; tÞÞ, the distribution satisfies
the Boltzmann-Planck formula:

fðδϕiÞ ¼
ðdetEÞ12

2π
exp

�
−
1

2
δϕiðtÞEijðtÞδϕjðtÞ

	
: ð3:2Þ

Based on slow-roll approximation, the second derivative
could be ignored and the multidimensional Langevin
equations become

_δϕ1 þ
�

1

3ð1þ r1Þ
k2

a2H2
þ η1
1þ r1

−
β1r1

ð1þ r1Þ2
�
δϕ1

þ
�

η12
1þ r1

−
β1r1 tan θ
ð1þ r1Þ2

�
δϕ2 ¼

ξ1
3ð1þ r1ÞH2

; ð3:3aÞ

_δϕ2 þ
�

1

3ð1þ r2Þ
k2

a2H2
þ η22
1þ r2

−
β2r2

ð1þ r2Þ2
�
δϕ2

þ
�

η12
1þ r2

−
β2r2 cot θ
ð1þ r2Þ2

�
δϕ1 ¼

ξ2
3ð1þ r2ÞH2

: ð3:3bÞ

These are just the relations acquired in Eq. (3.1) as linear
stochastic differential equations. To simplify Eq. (3.3), we
introduce a new variable

aðtÞ ¼ R−1φðtÞ ð3:4Þ

with

R ¼
� 1

3ð1þr1Þ 0

0 1
3ð1þr2Þ

�
; ð3:5Þ

and a new matrix

G ¼
 η11

1þr1
− β1r1

ð1þr1Þ2
η12
1þr1

− β1r1
ð1þr1Þ2 tan θ

η12
1þr2

− β2r2
ð1þr2Þ2 cot θ

η22
1þr2

− β2r2
ð1þr2Þ2

!
: ð3:6Þ

Thus, the analytical solution to Eq. (3.3) reads

aiðtÞ ¼ ½e−Gt�ijajð0Þ þ
Z

t

0

½e−Gðt−sÞ�ijξ̃jds

− z2
Z

t

0

½Re−Gðt−sÞ�ijajðsÞds ð3:7Þ

with z≡ kp=H ¼ k=aH. The stochastic force ξ̃i ≡H−2ξi
also follows the fluctuation-dissipation relation
hξ̃iðtÞξ̃�jðt0Þi ¼ 2Qija−3ðtÞδðt − t0Þ, and the exponential
map of matrix in Eq. (3.7) represents e−G ≡ exp½−G�.
As in the discussion in Sec. II, the multifield warm inflation
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FIG. 2. Approximate numerical result of Power spectra for Pð1Þ
R

which is also normalized as ðH
_σ Þ2ðH2πÞ2 ¼ 1 and set to kBT=

H ≃ 1=8.
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exhibits a scale-invariant spectra on large scale, which
means the autocorrelation matrix of Eq. (2.21) is invariant
with time, or statistic physically speaking, variable a3=2δϕi
follows a stationary process. Next, we will prove this
conclusion via statistic physical method.

A. Entropy on large scale

A large scale condition means that the parameter z tends
to be zero, so the last term in Eq. (3.7) is neglected. Thus,
we simplify it as a tight form:

_aþGa ¼ ξ̃: ð3:8Þ

The solution to differential equation (3.8) reads

aðtÞ ¼ e−Gtað0Þ þ
Z

t

0

e−Gðt−sÞaðsÞds: ð3:9Þ

The initial states að0Þ is determined by the Gaussian distribution of Eq. (3.2). The two time autocorrelation matrix χijðt1; t2Þ
is introduced as statistical average on two perturbed fields at different times, for t1 ≥ t2:

χijðt1; t2Þ≡ fhaiðt1Þajðt2Þig

¼ ½e−Gt1 �ik½e−Gt2 �jlfhakð0Þalð0Þig þ
Z

t1

0

ds1

Z
t2

0

ds2½e−Gðt1−s1Þ�ik½e−Gðt2−s2Þ�jlhξ̃kðs1Þξ̃lðs2Þi

¼ ½e−Gðt1−t2Þ�ik½e−Gt2Ẽ−1ð0Þe−G†t2 �kj þ 2½e−Gðt1−t2Þ�ik
Z

t2

0

ds½e−Gðt2−sÞQe−G
†ðt2−sÞe−3s�kj

¼ ½e−Gðt1−t2Þ�ik½e−fG;·g†t2Ẽ−1ð0Þ�kj þ 2½e−Gðt1−t2Þ�ik
Z

t2

0

ds½e−fG;·g†ðt2−sÞQe−3s�kj; ð3:10Þ

In the equations above, Ẽ≡RER, h� � �i denotes sto-
chastic average and f� � �g denotes the stochastic average on
initial state að0Þ. The matrix operator fG; ·g† is defined by

fG;Qg† ≡GQþQG†: ð3:11Þ

When applied to double iterated, there exist

fG; ·g2†Q ¼ fG; fG;Qg†g†
¼ G2Mþ 2GMG† þMðG†Þ2: ð3:12Þ

The identity

e−GtQe−G
†t ¼ e−fG;·g†tQ ð3:13Þ

is also applied in Eq. (3.10). According to the detailed
calculations in the Appendix B. Two time autocorrelation
matrix of Eq. (3.10) is finally written as

fhaiðt1Þajðt2Þig
¼ ½e−Gðt1−t2Þ�ik½e−fM;·g†t2Ẽ−1ð0Þ�kj

þ ½e−Gðt1−t2Þ�ik
�
−2

e−3t

λ − L̂
Qþ 2

e−tL̂

λ − L̂
Q

	
kj
; ð3:14Þ

with λ ¼ 3 and L̂ ¼ fG; ·g†. Setting t1 ¼ t2 ¼ t, the
statistical variance matrix of aiðtÞ reads

fhaiðtÞajðtÞig
¼ Ẽ−1

ij ðtÞ ¼ χijð0Þ

¼
�
e−tL̂Ẽ−1ð0Þ − 2

e−3t

λ − L̂
Qþ 2

e−tL̂

λ − L̂
Q

	
ij
: ð3:15Þ

The unique solution to Eq. (3.15) is obvious

Ẽ−1ðtÞ ¼ −2
e−3t

λ − L̂
Q ¼ 2

e−3t

L̂ − λ
Q; ð3:16Þ

which leads to a relation EijðtÞ ¼ a3ðtÞEijð0Þ. When
applying λ ¼ 0, Eq. (3.16) degenerates to Minkowski
condition fG;E−1g ¼ 2Q [35,42,43]. Thus, two time
autocorrelation matrix of Eq. (3.10) simplifies to

fhaiðt1Þajðt2Þig ¼ 2½e−Gðt1−t2Þ�ik
�
e−3t2

L̂ − λ
Q

	
kj
: ð3:17Þ

Obviously, two time autocorrelation matrix χ̃ijðt1 − t2Þ≡
a3=2ðt1Þa3=2ðt2Þfhaiðt1Þajðt2Þig exhibits a stationary proc-
ess which means a stationary expectation variance invariant
with time [44]. In other words, the spectra is time invariant
on superhorizon scale which is self-consistent with the
discussions in Sec. II. Using the conclusions above, we
will get more interesting results on both small and cross-
horizon scale.
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B. Small and cross-horizon scale

Turn to the discussion on small and cross-horizon scale.
The parameter z in solution of Eq. (3.7) becomes essential
under this condition, so the last term containing z2 could
not be ignored. We are now looking for the exact analytical
solution to Eq. (3.3). Using successive approximation
method [45,46], the solution to Eq. (3.7) decomposes into
the terms as follow:

aðtÞ ¼ a0ðtÞ − z2a1ðtÞ þ ð−z2Þ2a2ðtÞ þ � � � ; ð3:18Þ

where

a0ðtÞ ¼ e−Gtað0Þ þ
Z

t

0

e−Gðt−sÞξ̃ðsÞds≡ fðtÞ; ð3:19aÞ

a1ðtÞ ¼
Z

t

0

dsRe−Gðt−sÞa0ðsÞ; � � � ð3:19bÞ

anðtÞ ¼
Z

t

0

dsRe−Gðt−sÞan−1ðsÞ: ð3:19cÞ

After a tedious calculation (see the Appendix C), we get
the expression of anðtÞ as

ð−z2ÞnanðtÞ ¼ −z2R
Z

t

0

ds
ð−z2Þn−1
ðn − 1Þ! ½hðG;R; t − sÞ�n−1

× e−Gðt−sÞfðsÞ; ð3:20Þ

where

hðG;R; t − sÞ ¼
Z

t−s

0

ds0e−½G;·�−s0R

¼
X∞
n¼0

ðt − sÞnþ1

ðnþ 1Þ! ½G; ·�n−R ð3:21Þ

with ½G; ·�−R≡GR −RG. Sum on n leads to the
expression

aðtÞ ¼ fðtÞ − z2R
Z

t

0

ds e−z
2hðG;R;t−sÞe−Gðt−sÞfðsÞ: ð3:22Þ

It employs the variance matrix

ΞðtÞ≡ haðtÞa†ðtÞi: ð3:23Þ

To be convenient on calculation, we decompose matrix Ξ
into three components. The first component reads

Ξ1 ≡ hfðtÞf†ðtÞi ¼ 2e−3t

L̂ − λ
Q; ð3:24Þ

where we have used the conclusion in Eq. (3.17). The
second is defined as

Ξ2ðtÞ ¼ hð−z2ÞR
Z

t

0

dse−z
2hðG;R;t−sÞe−Gðt−sÞfðsÞf†ðtÞi

¼ −z2R
Z

t

0

dse−z
2hðG;R;t−sÞe−3s

× e−Gðt−sÞ 1

L̂ − λ
Qe−G

†ðt−sÞ

¼ −z2e−3tR
Z

t

0

dse3se−z
2hðG;R;sÞ

× e−Gs 1

L̂ − λ
Qe−G

†s: ð3:25Þ

While, the third is

Ξ3ðtÞ ¼ ðz2Þ2e−3tR
Z

t

0

ds e3se−z
2hðG;R;sÞ

× e−Gs 1

L̂ − λ
Qe−G

†se−z
2½hðG;R;sÞ�†R: ð3:26Þ

The problems next focus on the integration in Eqs. (3.25)
and (3.26). However, it’s almost impossible to get analyti-
cal results, so the numerical results are given for second
order of perturbed entropy δ2SðtÞ. It employs δ2SðtÞ as
(sum on i, j)

δ2SðtÞ ¼ −
1

2
kBhδϕiðtÞEijðtÞδϕjðtÞi

¼ −
1

2
kBtrðEðtÞhφφ†ðtÞiÞ

¼ −
1

2
kBtrðEðtÞhRaðtÞa†ðtÞRiÞ

¼ −
1

2
kBtrðẼðtÞΞðtÞÞ: ð3:27Þ

In Fig. 3, we plot the a three-dimensional picture to
illustrate the relations among second order of perturbed
entropy δ2SðtÞ, dimensionless scaler variable z and dimen-
sionless cosmic time t, which shows several interesting
properties. The perturbed entropy almost vanishes at both
extremely large and extremely small scale. The former is
because the perturbations of fields are freeze-out outside
horizon and perturbations no longer increase, which could
be treated as an equilibrium state. The latter is because of
a sufficient interaction inside horizon, which could be treat
as a thermal equilibrium. While, it could be also found a
narrow peak locating at z ¼ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r1

p
approximately. As

shown in Eq. (B4), the value of integrations of Eqs. (3.25)
and (3.26) rely on the norm of matrix z2RþG. If z ¼
z� ¼ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r1

p
, it means kz2RþGk ¼ 3, which exhibits a

singularity of the approximate integration
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Ξ3ðtÞ ¼ ðz2Þ2e−3tR
Z

t

0

dse3se−fz2hðG;R;sÞ;·g†

× e−fG;·g†s 1

L̂ − λ
Q

∝ R
Z

t

0

dse3se−fðz2RþGÞ;·g†s 1

L̂ − λ
Q: ð3:28Þ

So z� is something like the cross-horizon scale. On the
other hand, another factor that has an obvious effect on
δ2SðtÞ is the slow-roll parameter η12. Setting η12 > 1

(strong interaction situation), it yields kz2RþGk > 3
no matter how z changes, which shows such evolving
curves that the shape peak almost vanishes for any z (see
Fig. 4). This effect is owning to the strong interaction that
leads to a obvious departure from slow-roll condition,
which, in other words, declares slow-roll condition brings
to the generations of entropy. The detailed data also
illustrate the increasing of perturbed entropy δ2SðtÞ with
time t for any z, which follows the second law of
thermodynamics. In Fig. 5, we shows a different situation
for r1 ¼ 1.0, r2 ¼ 0.4. Two peaks generate at z1 ¼
3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r1

p
and z2 ¼ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p
respectively and a weak

oscillation exists between z1 and z2.

IV. CONCLUSION

In this paper, we have studied the two-field warm
inflationary scenario with canonical condition described
by a many-dimensional linear stochastic differential equa-
tions for it allows an analytical solution. Based on such a
model, we calculate its power spectrum and entropy.
First, in Sec. II, we have calculated analytically the

power spectra on superhorizon scale. The perturbed fields
is obtained as a form of Volterra integral equation of the
second kind. Thus the power spectrum is written as a
integral equation as well, but we don’t need to solve the
complete equation if only considering the leading order
and the first order of slow-roll parameter η12. Generally,
the variance of curvature perturbation is introduced as a
combination of two perturbed fields whose coefficients
are dependent on the background fields. The symmetry of
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FIG. 4. The second order of perturbed entropy δ2SðtÞ with
parameters the same as in Fig. 3 except a strong interaction
parameter η12 ¼ 3. The amplitude is much smaller and there is a
oscillation at horizon scale. There is a similar situation with
r1 ≠ r2.
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FIG. 3. The second order of perturbed entropy δ2SðtÞ as a
function of z and t. We have set the parameters as r1 ¼ r2 ¼ 0.5,
η11=ð1þ r1Þ ¼ 0.08, η22=ð1þ r2Þ ¼ 0.05, η11 ¼ 0.05, β1 ¼ 0.1
and β1 ¼ 0.05, which leads to matrix G ¼ ð0.1733 − 0.0271;
−0.02710.1167Þ. The correlation matrix Q is in the form of
diagonalization same as the one in Eq. (2.24).
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FIG. 5. The second order of perturbed entropy δ2SðtÞ as a
function of z and t. We have set the parameters as r1 ¼ 1.0,
r2 ¼ 0.4, η11=ð1þ r1Þ ¼ 0.08, η22=ð1þ r2Þ ¼ 0.05, η11 ¼ 0.05,
β1 ¼ 0.1 and β1 ¼ 0.05, which leads to matrix G ¼
ð0.1650 − 0.0251;−0.03580.1194Þ. The correlation matrix Q
is a diagonal form.
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spectra for two perturbed fields leads to a relation between
the coefficients and the background fields, or the evolu-
tions of the background fields rely on the dissipative
coefficients which is distinguished from those in cold
multifield inflation.
Second, in Sec. III, we have calculated analytically the

entropy of warm multifield inflation on the superhorizon
scale and subhorizon scale, as well as the cross-horizon
scale. In the previous research, the entropy is defined as a
linear combination of perturbed fields analogous with the
curvature perturbation, but in this paper we introduce it via a
symmetric and non-negative matrix which is called entropy
matrix. This method has been widely studied in thermody-
namics and statistical physics. Similar with the result in flat
spacetime, the entropy is not an independent parameter but
relying on the slow-roll matrix G and correlation matrix Q
which is called dissipative-fluctuational relation on super-
horizon scale. By solving an integral equation, we obtain
analytically the second order of perturbed entropy δ2SðtÞ.
Then, via numerical analysis, we find several interesting
properties of δ2SðtÞ. The perturbed entropy almost vanishes
at both superhorizon and subhorizon scale with some
appropriate slow-roll parameters. While narrow peaks gen-
erates at specific scale interpreted as cross-horizon scale. In
addition, the increasing of entropy shows the second law of
thermodynamics is followed.

Finally, an extended question, which we mentioned at the
beginning of this paper, concerns how it will be if we extend
the multifield warm inflationary scenario to a noncanonical
condition. This question deserves further research.
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APPENDIX A: PROOF TO EQ. (2.26)

We can prove this equation in such method below.
Setting L̂ðλÞ is a differential operator with parameter λ,
the Green’s functions G1ðz; z0Þ and G2ðz; z0Þ satisfy

L̂zðλ1ÞG1ðz; z0Þ ¼ δðz − z0Þ; ðA1Þ

L̂zðλ2ÞG2ðz; z0Þ ¼ δðz − z0Þ: ðA2Þ

Consider these functions:

L̂z0 ðλ1Þfðz0Þ ¼ G2ðz0; z̃Þ; ðA3Þ

L̂z0 ðλ2Þf0ðz0Þ ¼ G1ðz0; z̃Þ; ðA4Þ

where z̃ is an arbitrary with z̃ > z0. The solutions to Eqs. (A3) and (A4) read

fðz0Þ ¼
Z

z0

z
dz00G1ðz; z00ÞG2ðz00; z̃Þ; ðA5Þ

f0ðz0Þ ¼
Z

z0

z
dz00G2ðz; z00ÞG1ðz00; z̃Þ: ðA6Þ

Apply the operator L̂z0 ðλ2Þ on the both sides of Eq. (A3) and L̂z0 ðλ1Þ on Eq. (A4), then we have

L̂zðλ2ÞL̂zðλ1ÞfðzÞ ¼ δðz − z0Þ; ðA7Þ

L̂zðλ1ÞL̂zðλ2Þf0ðzÞ ¼ δðz − z0Þ: ðA8Þ

L̂z0 ðλÞ is a differential operator of the Bessel’s type, there obviously exist

L̂zðλ1ÞL̂zðλ2ÞgðzÞ ¼ L̂zðλ2ÞL̂zðλ1ÞgðzÞ; ðA9Þ

for any gðxÞ ∈ C∞ðð0;þ∞ÞÞ. According to the uniqueness theorem of the solution, it’s obviously fðz0Þ ¼ f0ðz0Þ. Finally set
z̃ → z0, thus we prove the formula in Eq. (2.26):

g12ðz; z0Þ ¼ g21ðz; z0Þ: ðA10Þ
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APPENDIX B: PROOF TO EQ. (3.14)

Let’s start from a theorem widely used in functional analysis and spectral theory of linear operator [47,48]:
Theorem B.1: Assume linear operator T is a map from a Banach space X to X itself, if the norm of the operator

kTk < 1, there exist

1

I − T
¼
X∞
n¼0

Tn: ðB1Þ

The integration in Eq. (3.10) reads

Z
x

0

ds e−ðx−sÞL̂e−3s ¼
X∞
n¼0

L̂n

n!

Z
x

0

ðs − xÞne−λsds ¼
X∞
n¼0

L̂n

n!

Z
x

0

xn
�
s
x
− 1

�
n
e−λsds ¼

X∞
n¼0

L̂n

n!

Z
1

0

xnþ1ðs0 − 1Þne−λxs0ds0

¼
X∞
n¼0

L̂n

n!
ð−1Þn

Z
0

1

xnþ1sne−λxð1−sÞð−dsÞ ¼
X∞
n¼0

L̂nð−1Þn
n!

xnþ1e−λx
Z

1

0

sneλsxds

¼
X∞
n¼0

e−λx
L̂nð−1Þn

n!
xnþ1

n!
ð−λxÞnþ1

�
1 −

Xn
m¼0

ð−λxÞm
m!

eλx
�

¼
X∞
n¼0

−
L̂n

λnþ1

�
e−λx −

Xn
m¼0

ð−λxÞm
m!

�

¼
X∞
n¼0

−
L̂n

λnþ1

X∞
m¼nþ1

ð−λxÞm
m!

¼
X∞
m¼1

−
ð−λxÞm
m!

Xm−1

n¼0

ðL̂Þn
λnþ1

¼
X∞
m¼1

−
ð−λxÞm
m!

1 − ðL̂λÞm
λ − L̂

¼
X∞
m¼0

−
ð−λxÞm
m!

1 − ðL̂λÞm
λ − L̂

¼ e−xL̂

λ − L̂
−

e−λx

λ − L̂
: ðB2Þ

In the calculations above, we have applied Theorem B.1 and the integration

Z
1

0

xne−axdx ¼ n!
anþ1

�
1 −

Xn
m¼0

ð−λxÞm
m!

eλx
�
: ðB3Þ

In the discussions above, it acquires kL̂k < λ, which, in fact, is quite easy to get satisfied:

kL̂k ¼ sup
E≠0

kGEþ EG†k
kEk ≤

kGkkEþ kEkkG†k
kEk ¼ kGk þ kG†k ¼ 2max λi < λ ¼ 3; ðB4Þ

where λi are eigenvalues of matrix G.

APPENDIX C: PROOF TO EQ. (3.20)

In this Appendix, we calculate the analytical solution to integral equation (3.7). Based on successive approximation, the
expression of anðtÞ in Eq. (3.19) reads

anðtÞ ¼ R
Z

t

0

dt1e−Gðt−t1Þ
Z

t1

0

dt2Re−Gðt1−t2Þ � � �
Z

tn−1

0

dtne−Gðtn−1−tnÞa0ðtnÞ

¼ ð−z2ÞR
Z

t

0

dt1

Z
t1

0

dt2 � � �
Z

tn−1

0

dtne−Gðt−t1ÞReGðt−t1Þe−Gðt−t2Þ

×ReGðt−t2Þe−Gðt−t3Þ � � �ReGðt−tn−1Þe−Gðt−tnÞfðtnÞ ðC1Þ

Note that the integrand is symmetric on ti for 1 ≤ i < n. Exchanging order of integration, we have
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Z
t

0

dt1

Z
t1

0

dt2 � � �
Z

tn−2

0

dtn−1

Z
tn−1

0

dtn � � � ¼
Z

t

0

dt1 � � �
Z

tn−3

0

dtn−2

Z
tn−2

0

dtn

Z
tn−2

tn

dtn−1 � � �

¼
Z

t

0

dt1 � � �
Z

tn−3

0

dtn

Z
tn−3

tn

dtn−2

Z
tn−2

tn

dtn−1 � � �

¼
Z

t

0

dt1 � � �
Z

tn−3

0

dtn

Z
tn−3

tn

dtn−1

Z
tn−1

tn

dtn−2 � � �

¼
Z

t

0

dt1 � � �
Z

tn−4

0

dtn

Z
tn−4

tn

dtn−3

Z
tn−3

tn

dtn−1

Z
tn−1

tn

dtn−2 � � �

¼
Z

t

0

dt1 � � �
Z

tn−4

0

dtn

Z
tn−4

tn

dtn−1

Z
tn−1

tn

dtn−2

Z
tn−2

tn

dtn−3 � � �

¼ � � �

¼
Z

t

0

dtn

Z
t

tn

dtn−1

Z
tn−1

tn

dtn−2 � � �
Z

t2

tn

dt1 � � � : ðC2Þ

With Eqs. (C1) and (C2), anðtÞ is simplified to

ð−z2ÞnanðtÞ ¼ ð−z2ÞnR
Z

t

0

ds
Z

t

s
dtn−1 � � �

Z
t2

s
dt1½e−Gðt−t1ÞReGðt−t1Þ� � � � ½e−Gðt−tn−1ÞReGðt−tn−1Þ�e−Gðt−sÞfðsÞ

¼ ð−z2ÞnR
Z

t

0

ds
Z

t

s
dtn−1

Z
t

s
dtn−2 � � �

Z
t

s
dt1

1

ðn − 1Þ! ½e
−Gðt−t1ÞReGðt−t1Þ� � � �

× ½e−Gðt−tn−1ÞReGðt−tn−1Þ�e−Gðt−sÞfðsÞ

¼ ð−z2ÞR
Z

t

0

ds
ð−z2Þn−1
ðn − 1Þ!

�Z
t

s
ds0e−Gðt−s0ÞReGðt−s0Þ

	
n−1

e−Gðt−sÞfðsÞ: ðC3Þ

Further more

hðG;R; t − sÞ ¼
Z

t

s
ds0e−Gðt−s0ÞReGðt−s0Þ ¼

Z
t−s

0

ds0
X∞
n¼0

e½G;·�−s0R ¼
X∞
n¼0

ðt − sÞnþ1

ðnþ 1Þ! ½G; ·�n−R;

where we have used the relation

eABe−A ¼ e½A;·�−s0B ¼
X∞
n¼0

ðt − sÞnþ1

ðnþ 1Þ! ½A; ·�n−B

with ½G; ·�−R≡GR −RG. According to Eq. (3.18), finally, the solution to Eq. (3.7) is written as

aðtÞ ¼ fðtÞ − z2R
Z

t

0

ds
X∞
n¼1

ð−z2Þn−1
ðn − 1Þ!

�Z
t

s
ds0e−Gðt−s0ÞReGðt−s0Þ

	
n−1

e−Gðt−sÞfðsÞ

¼ fðtÞ − z2R
Z

t

0

e−z
2hðR;G;t−sÞe−Gðt−sÞfðsÞds: ðC4Þ
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