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We study the power spectra and entropy of two-field warm inflationary scenario with canonical
condition which is described by many-dimensional stochastic differential equations. The field perturbations
are analytically calculated via a Volterra integral equation of the second kind, based on which we obtain
a spectra with leading order and first order of slow-roll parameters. We also find the evolutions of
background are not independent but relying on dissipative coefficients, which is distinguished from that in
cold inflation. Then, we calculate the entropy on the basis of statistical physics theory by introducing an
entropy matrix. On superhorizon scale, the entropy matrix follows the fluctuation-dissipation relation
consistent with the scale-invariance of spectra or the stationarity of field perturbations. The entropy
perturbation vanishes at both superhorizon and subhorizon scale, while narrow peaks generate at a specific
scale which could be considered as horizon. In addition, the second law of thermodynamics is followed as

well.
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I. INTRODUCTION

The warm inflation model was established as a candidate
scenario to overcome some defects in cold inflation [1,2].
However, it was realized a few years after its original
proposal that the idea of warm inflation was not easy to be
realized in concrete models and even is simply not possible
[3.4]. Some problems were mentioned in such a scenario.
Shortly afterwards, many successful models of warm
inflation were established, in which improved method is
based on the theoretical model that the inflaton indirectly
interacts with the light degrees of freedom through a heavy
mediator fields instead of being coupled with a light field
directly [5—7]. In such a scenario, the evolution of the
inflaton field can be properly determined in the context of
the in-in form, or Schwinger closed-time path functional
formalism [8]. This formalism leads an stochastic differ-
ential equation which contains a dissipative term and a
Gaussian stochastic noise term as a type of generalized
Langevin-like equation of motion [9,10].
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Recently, series of work has been done to distinguish
warm inflationary scenario from the cold one. The warm
little inflation scenario can lead to different realizations of
warm inflation on being both dynamically and observatio-
nally consistent [11]. Within the warm inflationary sce-
nario, the modifications to the primordial perturbation
spectrum induced by dissipative and thermal effects
generically lead to a more blue-tilted scalar spectrum with
respect to cold inflation models with the same potential
functions. A more suppressed tensor component is also
obtained in previous work [12] compared with cold
inflation which is another method to distinguish the two
models. Besides, the warm inflation model with appropriate
dissipative coefficient, like TI'(¢) = I',¢p?, dramatically
increases the possibility of the occurrence of inflation [13].

Compared with the predictions of cold inflation that
primordial density fluctuations mostly from quantum
fluctuation and thermal bath are only generated at the
end of inflation [14], warm inflation model suggests that
our Universe is hot during the whole inflation when inflaton
fields couple with the thermal bath and the primary source
of density fluctuations comes from thermal fluctuations
[15-17]. The equation of motion for warm inflation can be
written as a stochastic Lengevin equation, in which there

© 2019 American Physical Society


https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.99.043528&domain=pdf&date_stamp=2019-02-20
https://doi.org/10.1103/PhysRevD.99.043528
https://doi.org/10.1103/PhysRevD.99.043528
https://doi.org/10.1103/PhysRevD.99.043528
https://doi.org/10.1103/PhysRevD.99.043528

LI, ZHENG, and ZHU

PHYS. REV. D 99, 043528 (2019)

is a dissipation term to describe the inflaton fields coupling
with thermal bath and there is also a fluctuation term
described by a stochastic noise term [9,18]. The funda-
mental principles of warm inflation have been reviewed
recently in Ref. [19].

Besides single-field inflationary scenario, a different
possible way to generate perturbations in agreement with
observations is so-called multifield inflationary model.
Multi-field inflationary scenarios usually involves several
fields which play a dynamical role during inflation [20-27].
Previously, two-field inflation with canonical kinetic term
was investigated by decomposing field perturbations into
perturbations parallel to background trajectory in field
space (the adiabatic or curvature perturbation) and orthogo-
nal to the background trajectory (the isocurvature or
entropy perturbation) [28]. Recently, such a model has
been successfully generalized to the warm inflationary
scenario [29].

In previous works, relevant results have been obtained
under noncanonical situation [30-32], but in this paper
we only concentrate on the canonical situation since it
allows analytical expressions. We will continue to focus on
multifield warm inflation but some areas have been
improved. First, the field perturbations are obtained by a
description of many-dimensional stochastic differential
equations which is equivalent to an integral equation set.
Second, we study the entropy perturbation via stochastic
physical method by which we introduce a symmetric and
non-negative matrix.

The organization of this paper is the following. In Sec. II,
from a phenomenological stochastic differential equation
set which describe the evolution of field perturbations, a
scale-invariant spectra is derived. Section III is devoted to
the study of entropy on both superhorizon and subhorizon
scale based on which discussions on relevant properties
have also been made. Finally, in Sec. IV, we conclude our
work and give some further discussions about our results.

II. SPECTRA OF MULTI-FIELDS WARM
INFLATION

In warm inflationary scenario, a inflaton ®(x,?) is
composed of a unperturbed background field ¢(7) and a
perturbed field 5¢((x), #) which follow the equations

P 9
a—tf+[3H+T]—¢+v,¢(¢) 0.

o (2.1)

2 o 1 y
{W +BHAY@B) 5, -5V +Ty(4)d + V¢¢(¢)}5‘/’
= ¢

(2.2)
where T is the dissipation coefficient and &7 is the thermal

noise fluctuation. In this paper, we consider only the case
of de Sitter spacetime, where a(t) = exp(Ht) and H is

regarded as a constant. According to the fluctuation-
dissipation theorem, dissipation coefficient YT and fluc-
tuation noise &y follow the relation

(Er(x, )& (x, 1)) =2XTa 33 (x = x)s(t = 1).  (2.3)

The Fourier transformation of Eq. (2.3) is

= 2(27%) XT38 (k — K')3(1 — ).
(2.4)

(r(k. )& (K. 1))

Now extend the single field warm inflationary model to
multifield condition which is described by a phenomeno-
logically multidimensional Langevin equation. The back-
ground fields follow the equations

0? )
O B LAV (h0) =0, (259
? 9
SEHBH T, 5+ Ve (p0) =0, (250)

where V(¢p,y) = V() + Vo(y) + Vi(p,y) is potential
function. The perturbed fields follow the Langevin equations

0? 0 Kk .
W + [3H + T¢] & + ? + T¢’¢¢ + V,¢¢ o¢

+ Vi 1+ Yy hy = &, (2.6a)
o? o k2 .

{W + [3H + T)(] E + ; + T)(J(Z + V’)()( }5){
V. 5+ T, g0 = &, (2.6b)

¢, and &, are Gaussian fluctuating forces which also follow
the fluctuation-dissipation relation and ,; denotes the partial
derivative with respect to ¢. To be convenient, we remark
the symbols as a recognizable way: the physical symbols
concerned with 8¢ or ¢ are labeled as 1 while §y or y
are labeled as 2. For example, @ = 6¢; = (6¢,y)" =
(8¢ 5¢2)" o1 = by = ($.2)7 = (1. h>)". where oper-
ator T represents a transpose operation. Based on the slow-
roll approximation, write the background fields in Eq. (2.5)
as the form

3H(1+r))gi + V.i(;) =0, (2.7)
where r; are the ratio between the dissipation coefficients Y;
and Hubble parameter H, i.e. r; = Y;/3H. As general, it’s
necessary to introduce some parameters to describe the slow-
roll condition in warm inflation
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1 (V)2

6_167IG<V> <1, (2.8a)
Vii 1 4 (2.8b)

. = — r .

T =826V A
and
1 Y.V

= e 2.

B 852G T,V <14 (2.8¢)

The term T, qb /H? is also a parameter much smaller than
the unit but a little differs from slow-roll parameter f;:

. ()¢ .
Tfﬁw‘ﬁ:_ Tyg5,¢ &:
H? 82GVYy(1+r,) H

3p,rtan @
1 + r

. (2.9)

wheretan 0 = ¢ /x and it will be seen as below that € is not an
independent variable but a constant relaying on dissipative
coefficients T;. Define a new variable z = k/aH, thus the
partial derivative with respect to cosmic time is equivalent to

0 _ —(1 —S)ZHE

5= 5 (2.10)

With Egs. (2.8)—(2.10), the multidimensional Langevin
equations (2.6) turn into

1 24+3r, -3
5¢/1/_|_Z<1 _2+r18>5¢/1

2
3 1
+ (1 i (m +ﬂlrz12/( +r1))>6¢1
1 3
:ﬂfl —2—2’7125452, (2.11a)
1 2+3r, -3
5y + - (1 — 2M>5¢/2
z 2
3(n + 1+
n (1 n (> ﬁzrzzz/( rz))>5¢2
1 3
~2H 52_;2’1215(}51, (2.11b)

where 7y =nip—p1rt@n0/(1+ry), iy =ny—prrocotd/
(147r,) and prime " denotes the derivative with respect to
z. Now using t = H~!In(k/Hz) together with

5(f(x)) = 3022 = %0)

, 2.12
2 )] 212

where x are zero points of f(x), the fluctuation-dissipation
relation of &; becomes

4
(66,25 (K, 7)) = 20,75 5k ~ K)ol = 7).

(2.13)

The correlation matrix Q;; is symmetric and non-negative.
Applying Green’s function method [33], the solution of
differential equation (2.11a) is

() 1
5ihy (k. 2) = / gy (2. ) 3 (26 (k. )

Z

= 3ij126¢1(k, 2')), (2.14)
where
o(2.9) = S (U, (), ()
Z/a, 2/7'[2/ Ui U
-J, ()Y, (z)) forZ >z, (2.15)
with
ap =3(1+r —g)/2, (2.16a)
3p,r
v :\/a% 1+1r11_3’7“ (2.16b)

A detailed description of solution (2.14) is given in
Ref. [12]. Similarly, the solution of differential equa-
tion (2.11b) is obtained in the same way:

% 1
5 (K, z) :/ dZIsz(LZ/)ZTQ(H_252(k’Z/)

z

= 3i12,6¢, (k, 2')). (2.17)

Inserting Eq. (2.17) into Eq. (2.14) leads to a Volterra
integral equation of the second kind for ¢, (k, z),

6gbl(k,z)

= /oo dz’H?[711(z, 2 )é1 (K, 2') = 3i12912(2. 2) & (K, 2)]

Z

—9771277211‘1_2/ dz'g15(z. 2')6¢p1 (k. 2'), (2.18)
Z
where §,(z,7") = g11(z,7') /7% and
Z/
J12(z,7') = / dz"g1(z,2") 922 (2", 7). (2.19)
Z

The solution of 6¢,(k,z) is an analogue of the formula
above. The analytical solution of integral equation (2.18) is
a chronological exponential form [34,35], which, however,
may be not helpful to the calculation on power spectra. Then
the spectra could be obtained in a more straightforward way.
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Define the autocorrelation matrix P;;(z,z') =
6¢;(k', 7)) and the Green’s function matrix

(6¢i(k, 2)

=3i12912(2. ')

n_( 9n(z2)
Blz2) = ( 9(z.7)

=3i1921(2.7)

). (2.20)

If consider only second order of 7;;, the autocorrelation
matrix simplifies to

Pii(z,2) = @,(kz)fj*(kz)) — 18712775 H™?

x / 07 g15(2.2)Pyy (2. 7). (2.21)
Z

In the equation above, for convenience, we have introduced a
new stochastic variable:

Ek.2) = / ® A H (. 7)E (k. ).

Z

(2.22)

with sum on j. Obviously, Eq. (2.21) is another integral
equation. But, fortunately, only when the second order of
1;j has a significant impact on the total spectra that we need
to solve this complete equation, for the leading order of
spectra is just the zero order of 7;;.

With the discussion above, the autocorrelation matrix is
written as
|

6(277) H2 kB

3 g 5k — k’)/Z dz’(

where we have used a succinct form [g;;94](z,2") to
simplify the format of function g;;(z.z")gx(z. 7). Noting
that

P(z) =

/ ® 0 lgngnl(e.2) = / ® W gmonl(d)  (2.26)

Z Z

(the proof is in the Appendix A) and autocorrelation matric
P(z) is symmetric, one finds 7;, = #},;, which leads to a
specific relation about @ defined in Eq. (2.9):

1
0 = arctan ﬂﬁ&
L+ryr By

The spectra usually tends to scale-invariant at large scale,
ie., z< 1, or saying at the end of inflation (for
1/aH — 0). Since z*J,(z) — 0 and z*N,(z) tending to a
constant when z — 0, one can ignore the integration
containing Neumann function Y,(z’) and needs only to
consider the term [z%]? [ dz'z/*72*J7(Z/) in the integration

(2.27)

rilgn]* + O@7)
=301 11921911 + 12.922901)

Pi(2) =Py (2.2) + P} (2.2) + O(P)
= (& (k.2)% (k.2)) + O(P)
_H- / az / d2'[3

x (& (k. 2)E (K'.2") [ (2.2
—263k k’/ dz/ dz”

x [g(z,2)Qg"(2,2")];;6(z = 2") + O(i7?)
~20'(k=K) [ 7 d[g(z.)Qg (), + O

Z

i+ O)

(2.23)

According to the fluctuation-dissipation relation, the cor-
relation matrix Q;;, generally, consists of dissipative
coefficients Y; in the form of a diagonal matrix. The
correlation matrix, as the most general type, exhibits

[ (2a)kgTT, 0
Q_< 0 (2n)3kBTT2>’ (2.24)

Then, the autocorrelation matrix shows an integral form

=3ih2[r1911912 + 12.912922)

r2[92)* + O(i?) >(Zv 7). (2.25)

|
J2d2'[g11]*(z.2/). On the other hand, the integrand

7/2724J2(7') almost equals to zero except a narrow peak
distributing at z 2 1, so one can treat the lower limit of
integral as 0 when z < 1, which is presented to illustrate the
fact that the multifield warm inflation exhibits a scale-
invariant spectrum as well. Thus,

0 2-%a 12
/ dZ/Z, - (IJ,J(Z/)

| L(a-1DI(v—a+3)
2\f1“(a—f) (a+v-13)

N F(§r1+§)

TArGr + DG +3)

(2.28)

In the equations above, we have used the Schafgeitlin
integral formula for double Bessel functions [36,37] and
relevant properties of gamma functions, together with
slow-roll conditions Egs. (2.8a)—(2.8c). We introduce a
new function,
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1673 22
I(rl) = 2—71:2? . 3HkBT[Za1 Yl/l (Z)]2|Z—>0
X /oo dZIZ/2—2a]3(Z/)
z
oagpp BT 2G5

H (3ry+ DIGr + 13 +3)°
(2.29)

where the approximation of Neumann function

fuwz-g?(97v>az*0ﬂ (2.30)

is applied.

For the multifield inflationary model, the evolution for
double scaler field perturbations could be decomposed
along two directions: one is parallel to trajectory of the
evolution for background fields, which is called adiabatic
or curvature component, another is orthogonal to the
trajectory, which corresponds to the entropy or isocurvature
component [28]. The essential idea to describe the adiabatic
field is to introduce the linear combination of perturbed
fields 6¢;

86 = sin05¢ + cos 65y = @0, (2.31)
where
sin @ = L and 0= (sin@,cos0)’. (2.32)
¢+ 21

It is obvious why we define the ratio between ¢ and y as a
tangent relation in Eq. (2.9).

In order to quantify the spectra, we define the power
spectra of the perturbed fields

2%
(0¢i(k. 2)o0;(K',2)) = =5 Pyo*(k —Kk').  (2.33)
The spectra of adiabatic field is written as

Pin =Py +Piy + OGP)

k3
= 0 [ Kok, )oK D)o
k3
o [ @080
i3
= | ERO8P) . (2.34)
T

Inserting Egs. (2.25), (2.29), and (2.32) into the equation
above, we obtain the ith order of the spectra

Py = I(r,)sin® @ + I(r,) cos® 6, (2.35)

and

7?((5‘17) = —65sin 6 cos 07,
XA dZ'[”1911912 + 72912922](2’1/)- (2-36)

However, the variable o is not physical. The comoving
curvature perturbation with spatially flat gauge with obser-
vations is given by [29]

R=pgP i _ oo

2.37
¢ 7 6 237
Finally, we get the spectra of curvature perturbation

5 ,
=52 (R(k. 2R (K. 2)) |0

H\?2
B (T) ’Péo- .
o

The analytical result of ng) is plotted in Fig. 1 while the

Pr

(2.38)

approximate numerical result of 79%) is plotted in Fig. 2.

What needs to be pointed out is that the curvature
perturbation seems independent on the inflation back-
ground, but that’s not the case. In statistical physics, the
perturbation can not be independent of the background
within equilibrium or near equilibrium system. Once a 6 is
determined, the trajectory to the evolution of background
fields qb and y is determined as well. Thus the background
trajectory leads to the unique perturbation of inflatons o¢
and Jy. So there exists a one-to-one map between back-
ground (tan @) and curvature perturbation or isocurvature

5 7

FIG. 1. Power spectra for ng) which is normalized as
(#)?(35)* =1 and set to kgT/H ~1/8 [38].
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FIG. 2. Approximate numerical result of Power spectra for Pg)
which is also normalized as (£)*(£)2 =1 and set to kgT/
H~1/8.

perturbation. In fact, we can also get a similar result from

Eq. (2.27). The ratio between ¢ and y is determined by ry,
r, and slow-roll parameters ; and f3,, which contains the
massage of background trajectory. In a word, the curvature
perturbation or isocurvature perturbation depends uniquely
on the background trajectory.

III. ENTROPY OF MULTIFIELD WARM
INFLATION

As in the previous work in multifield inflation, the
entropy is defined as a linear combination [28]. But, in
this section, we study the entropy in a statistical physical
method.

Warm inflationary scenario assume the early Universe is
immersed into a thermal bath instead of being cold. Based
on such an assumption, the probe on cosmic microwave
background shows our Universe is almost on thermal
equilibrium state [39]. Thermodynamics shows the entropy,
acquiring a maximum value at complete equilibrium,
represents a quadratic form in the near equilibrium regime.
If the perturbed physical quantities have a phenomeno-
logically multidimensional linear Langevin equation rep-
resentation, the entropy reads [40,41]

S(kp’ 6¢z(t))

oS 1 928
S+ 220 s+ s,
AT R v L
1

In the equations above, S(k,,8¢;(¢)) denotes the entropy
on physical wave-number k , and E denotes entropy matrix
in terms of symmetric and non-negative form. In the
following discussion, we will see the entropy matrix E

depends on slow-roll parameters and correlation matrix Q
instead of an independent physical variable. The probability
of occupying the state 6¢p;(k,.1) is W(6¢;(k . 1))/ W,
where W, denotes full equilibrium. Using the definition
of entropy S = kg In W(6¢;(k ,, 1)), the distribution satisfies
the Boltzmann-Planck formula:

(dezt::ﬁ exp [— %5¢i(l‘)E,‘j(l‘)5¢j(t)} . (32)

f(5¢i) =

Based on slow-roll approximation, the second derivative
could be ignored and the multidimensional Langevin
equations become

y K m pini
o — 1)
¢1+(3(1—|—r1)a2H2+1+r1 (1+r1)2 ¢1
N2 piritan@ &
- oy = —————, 33
(1"”'1 (1—|—r1)2) ¢2 3(1—|—r1)H2 ( a)
y 1 k* 22 pars
o] - o
bt (3(1 e s 1)
N2 Py cotd &
- op = ———. 3.3b
+ <1+r2 (1+r2)2> ¢1 3(1—|—r2)H2 ( )

These are just the relations acquired in Eq. (3.1) as linear
stochastic differential equations. To simplify Eq. (3.3), we
introduce a new variable

a(t) =R'g(1) (3.4)

with

and a new matrix

i _ _bin Ny _ _pin
G:< Ten — (n)? T <1+r1)2tan9>. (3.6)

M2 para Mo Pars
Thr ~ (try coto

I+ry  (14n)?

Thus, the analytical solution to Eq. (3.3) reads
t ~
ailt) = [70,0) + [0 s
0

-z /Ot[Re‘G(t‘s)]ijaj(s)ds (3.7)
with z = k,/H = k/aH. The stochastic force & = H™?¢;
also  follows the fluctuation-dissipation  relation
(E(NE (1)) =2Q,;a3(1)8(t— '), and the exponential
map of matrix in Eq. (3.7) represents e ¢ = exp[-G].
As in the discussion in Sec. II, the multifield warm inflation
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exhibits a scale-invariant spectra on large scale, which
means the autocorrelation matrix of Eq. (2.21) is invariant
with time, or statistic physically speaking, variable a/?5¢;
follows a stationary process. Next, we will prove this
conclusion via statistic physical method.

a+Ga=E¢E

The solution to differential equation (3.8) reads

a(t) = e %a(0) + Are‘G("s)a(s)ds.

A. Entropy on large scale

A large scale condition means that the parameter z tends
to be zero, so the last term in Eq. (3.7) is neglected. Thus,
we simplify it as a tight form:

(3.8)

(3.9)

The initial states a(0) is determined by the Gaussian distribution of Eq. (3.2). The two time autocorrelation matrix y,;(#, t,)
is introduced as statistical average on two perturbed fields at different times, for #; > t,:

xij(ti ) = {{a;(t1)a;(t2)) }

= (7] [e7"]; {(ax(0)a;(0)) } + /0 " ds, /0 " d, emGl0=1)], oGl {8k (s1)&(s2)

_ [e—G(tl—tz)]ik[e—GtZE—l(O)e—G*tz]kj 4 2[eGnn)] /’2 ds[e—G(tz—s)Qe—G*(tz—s)e—3s]k_
0

= [e_G("'t2)]5k[e_{G"}*t2E_l(0)];<,~ + 2[e~C(n-n)] /t2 ds[e—{G»'}-r(fz—S)Qe—3s]kj,
0

In the equations above, E = RER, (---) denotes sto-
chastic average and {- - -} denotes the stochastic average on
initial state a(0). The matrix operator {G, -} is defined by

{G.Q}, =GQ +QG". (3.11)
When applied to double iterated, there exist
{G.}iQ ={G.{G.Q}; }4
= G’M + 2GMG' + M(G")>. (3.12)
The identity
e=61Qe=6"" = ¢~{6-}1Q (3.13)

is also applied in Eq. (3.10). According to the detailed
calculations in the Appendix B. Two time autocorrelation
matrix of Eq. (3.10) is finally written as

{{a;(t1)a;(2))}

= [e7C=n)] [em M AR E(0)],

o : 3t e—ti
+ [e=Glu—n wl=2 ~Q+2 = s 3.14
eon,[2 02 0] L Gy

kj

with =3 and L ={G,};. Setting t, =1, =t, the
statistical variance matrix of a;(¢) reads

]

(3.10)
|
{(ai(t)a;(1)}
=E;'(1) = 1;(0)
Lf-1 e et
= |e™E7(0)-2 ~Q+2 = . (3.15
R0 -2 502 0] L 3as)
The unique solution to Eq. (3.15) is obvious
_ o3t o3t
E-'(1)=-2 ~Q =2~ , 3.16
(=-25-Q=25—0Q (16

which leads to a relation E;;(t) = a*(t)E;;(0). When
applying 4 =0, Eq. (3.16) degenerates to Minkowski
condition {G,E~!'} =2Q [35,42,43]. Thus, two time
autocorrelation matrix of Eq. (3.10) simplifies to

(]

“31,
{mmo@m»}zﬂfmwmmﬁ Q}

L—-2

(3.17)
kj

Obviously, two time autocorrelation matrix y,;(t; — t,) =
a’?(t,)a**(12){(a;(t,)a;(,))} exhibits a stationary proc-
ess which means a stationary expectation variance invariant
with time [44]. In other words, the spectra is time invariant
on superhorizon scale which is self-consistent with the
discussions in Sec. II. Using the conclusions above, we
will get more interesting results on both small and cross-
horizon scale.
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B. Small and cross-horizon scale

Turn to the discussion on small and cross-horizon scale.
The parameter z in solution of Eq. (3.7) becomes essential
under this condition, so the last term containing z> could
not be ignored. We are now looking for the exact analytical
solution to Eq. (3.3). Using successive approximation
method [45,46], the solution to Eq. (3.7) decomposes into
the terms as follow:

a(t) = ay(1) — 2?a, (1) + (=) a(t) + -+, (3.18)
where
ay(1) = e %"a(0) + /0 =)E(s)ds = £(1),  (3.19a)
a, (1) :/OtdsRe =Say(s), (3.19b)
a, (1) — A "dsReG0-9a,_ (s). (3.19¢)

After a tedious calculation (see the Appendix C), we get
the expression of a,(r) as

n _ (=) e

(_Zz) an(t) = _ZzR/ dSm [/’l(G, R, 17— s)} 1
x e"6U=9) £ (s), (3.20)

where
(G.R.i—s) / ™ e G R
0
_ io: (t — s)n+1 [G ]”R (3'21)
— (n+1)!

with [G,]_ R=GR - RG. Sum on n leads to the
expression

t
a) = (1) = 2R [ dseHEREIG0IE(), (3,22
0

It employs the variance matrix
(3.23)

To be convenient on calculation, we decompose matrix Z
into three components. The first component reads

=, = (F()F (1)) = ;‘i;Q, (3.24)

where we have used the conclusion in Eq. (3.17). The
second is defined as

Ea(1) = (-2)R Ad“ De~GU-If (5)f (1)

t
——zzR/ dse—*h(G.R.1=5) =35
0

1

e -G(t-s) __~ - —G(t—s)
A Q
— 2 —3tR/ se3se=% 2h(G,R.s)
—_G's
xe = e s, 3.25
o1 q (325

While, the third is

o}

1 2
3(1) — (Z2)26—31R/ ds e3se—z°h(G.R.s)
0

1 N
% =G _ e~G'se=ZMGR)'R 3.26
0 (3.26)

The problems next focus on the integration in Egs. (3.25)
and (3.26). However, it’s almost impossible to get analyti-
cal results, so the numerical results are given for second
order of perturbed entropy &°S(¢). It employs 8S(¢) as
(sum on i, j)

1

2S8(t) = _EkB (60 () E;(1)6p;(1))

- —%kBtr(E(I) (@™ (1))

— —%kBtr(E(I)<Ra(I)a+(f)R>)

_ —%kBtr(E( HE(r)). (3.27)

In Fig. 3, we plot the a three-dimensional picture to
illustrate the relations among second order of perturbed
entropy 6°S(t), dimensionless scaler variable z and dimen-
sionless cosmic time #, which shows several interesting
properties. The perturbed entropy almost vanishes at both
extremely large and extremely small scale. The former is
because the perturbations of fields are freeze-out outside
horizon and perturbations no longer increase, which could
be treated as an equilibrium state. The latter is because of
a sufficient interaction inside horizon, which could be treat
as a thermal equilibrium. While, it could be also found a
narrow peak locating at z = 34/1 + r; approximately. As
shown in Eq. (B4), the value of integrations of Egs. (3.25)
and (3.26) rely on the norm of matrix z2R +G. If 7z =
z, = 3y/1 + r|, itmeans ||z2R + G|| = 3, which exhibits a
singularity of the approximate integration
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FIG. 3. The second order of perturbed entropy 5°S(¢) as a
function of z and ¢. We have set the parameters as r; = r, = 0.5,
7711/(1 + rl) = 008, 1722/(1 + r2) = 005, Ny = 005, ﬁl =0.1
and f; = 0.05, which leads to matrix G = (0.1733 — 0.0271,
—0.02710.1167). The correlation matrix Q is in the form of
diagonalization same as the one in Eq. (2.24).

m

3(1) = (%)% 'R /tdse3se—{zzh(G’R~f)»'}:
0

1
X e_{G~'}+S —
L—-2 Q

<R /tdse&ve—{(zzRJrG),‘}Ts _ 1 Q
0 L—-2

(3.28)

So z, is something like the cross-horizon scale. On the
other hand, another factor that has an obvious effect on
5S(t) is the slow-roll parameter 75,,. Setting 7, > 1

40

FIG. 4. The second order of perturbed entropy §°S(¢) with
parameters the same as in Fig. 3 except a strong interaction
parameter #;, = 3. The amplitude is much smaller and there is a
oscillation at horizon scale. There is a similar situation with
ry 56 rp.

FIG. 5.

The second order of perturbed entropy 6°S(¢) as a
function of z and 7. We have set the parameters as r; = 1.0,
ry = 04, 1111/(1 + rl) = 008, 7’]22/(1 + rz) = 005, Hy = 005,
p1=0.1 and p; =0.05, which leads to matrix G =
(0.1650 — 0.0251; —0.03580.1194). The correlation matrix Q
is a diagonal form.

(strong interaction situation), it yields |z’R + G| >3
no matter how z changes, which shows such evolving
curves that the shape peak almost vanishes for any z (see
Fig. 4). This effect is owning to the strong interaction that
leads to a obvious departure from slow-roll condition,
which, in other words, declares slow-roll condition brings
to the generations of entropy. The detailed data also
illustrate the increasing of perturbed entropy 6°S(¢) with
time ¢ for any z, which follows the second law of
thermodynamics. In Fig. 5, we shows a different situation
for ry =1.0, r, =04. Two peaks generate at z; =
31+ r; and z, = 34/1 4+ r, respectively and a weak

oscillation exists between z; and z,.

IV. CONCLUSION

In this paper, we have studied the two-field warm
inflationary scenario with canonical condition described
by a many-dimensional linear stochastic differential equa-
tions for it allows an analytical solution. Based on such a
model, we calculate its power spectrum and entropy.

First, in Sec. II, we have calculated analytically the
power spectra on superhorizon scale. The perturbed fields
is obtained as a form of Volterra integral equation of the
second kind. Thus the power spectrum is written as a
integral equation as well, but we don’t need to solve the
complete equation if only considering the leading order
and the first order of slow-roll parameter #;,. Generally,
the variance of curvature perturbation is introduced as a
combination of two perturbed fields whose coefficients
are dependent on the background fields. The symmetry of
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spectra for two perturbed fields leads to a relation between
the coefficients and the background fields, or the evolu-
tions of the background fields rely on the dissipative
coefficients which is distinguished from those in cold
multifield inflation.

Second, in Sec. III, we have calculated analytically the
entropy of warm multifield inflation on the superhorizon
scale and subhorizon scale, as well as the cross-horizon
scale. In the previous research, the entropy is defined as a
linear combination of perturbed fields analogous with the
curvature perturbation, but in this paper we introduce it via a
symmetric and non-negative matrix which is called entropy
matrix. This method has been widely studied in thermody-
namics and statistical physics. Similar with the result in flat
spacetime, the entropy is not an independent parameter but
relying on the slow-roll matrix G and correlation matrix Q
which is called dissipative-fluctuational relation on super-
horizon scale. By solving an integral equation, we obtain
analytically the second order of perturbed entropy 62S(2).
Then, via numerical analysis, we find several interesting
properties of 6>5(¢). The perturbed entropy almost vanishes
at both superhorizon and subhorizon scale with some
appropriate slow-roll parameters. While narrow peaks gen-
erates at specific scale interpreted as cross-horizon scale. In
addition, the increasing of entropy shows the second law of
thermodynamics is followed.

Finally, an extended question, which we mentioned at the
beginning of this paper, concerns how it will be if we extend
the multifield warm inflationary scenario to a noncanonical
condition. This question deserves further research.
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APPENDIX A: PROOF TO EQ. (2.26)

We can prove this equation in such method below.
Setting L(4) is a differential operator with parameter A,
the Green’s functions G,(z,z') and G,(z,7) satisfy

where Z is an arbitrary with Z > z’. The solutions to Egs. (A3) and (A4) read

f(Z/) _ /Z/ dZ”Gl (Z, Z//)Gz(ZN, Z),

Z

£() = / C 4Gy (2. 216 (. 7).

Z

Apply the operator L. (1,) on the both sides of Eq. (A3) and L. (4,) on Eq. (A4), then we have

L ()L (1)f (2) = 6(z = 2,

L (A)L(h)f'(z) = 8(z = 2).

Z

I:z(ll )I:z (’12)9(2) =

L /(A) is a differential operator of the Bessel’s type, there obviously exist

L.(41)G(2,2) = 8(z = 7). (A1)
L.(4)Gy(z.2) = 8(z - 2). (A2)
Consider these functions:
Ly (i)f(2) =Gy(.2), (A3)
L.(h)f'(2) = Gi(Z,2), (A4)
(A5)
(A6)
(A7)
(A8)
L.()L(41)g(2), (A9)

forany g(x) € C*((0, +0)). According to the uniqueness theorem of the solution, it’s obviously f(z') = f’(z’). Finally set

7z — 7/, thus we prove the formula in Eq. (2.26):

912(z2.7') = g1 (2, 2).

(A10)
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APPENDIX B: PROOF TO EQ. (3.14)

Let’s start from a theorem widely used in functional analysis and spectral theory of linear operator [47,48]:
Theorem B.1: Assume linear operator 7 is a map from a Banach space X to X itself, if the norm of the operator
IT|| < 1, there exist

Loy (B1)

The integration in Eq. (3.10) reads

X . @ ﬁ” X © i” X n © i” 1 ,
/0 dse (s)Lg=3s — ZFA (s —x)"e™Mds = Z—'A X" (j_c — 1) e Mds = Z_'/o X (s" = 1)re=Hsds’

n=0 n=0 n=0
0 l’:n / 0 in(_1>n 1
— Z (=1)" ntl gna=ix(1=s)(_dg) = X+l e—ix shetsxdg
= Lr(=1) n! “ (—Ax)™ SR " (—Ax)™
— e—ix xn+1 (1 _ e/lx — _ —Ax
; n! (—xlx)”“ — m! ; Antl 20 m!
3 " DA Sk S i (B
g s m— 1 m! — m! Antl P m! =1
oG et e )
a m i-L A-L a-1L

In the calculations above, we have applied Theorem B.1 and the integration

! na—ax n‘ : (_ﬂx)nl X
Axe dx:aH] (1—276/1). (B3)

m=0

In the discussions above, it acquires ||f,|| < A, which, in fact, is quite easy to get satisfied:

IGE + EGT|| _ [IGI[[[E + |[E[[|GT
[E[ ~ [E]l

IL|| =s = ||G|| + ||GT|| =2max 4 < A =3, (B4)

where 4; are eigenvalues of matrix G.

APPENDIX C: PROOF TO EQ. (3.20)

In this Appendix, we calculate the analytical solution to integral equation (3.7). Based on successive approximation, the
expression of a,(¢) in Eq. (3.19) reads

t 1 (]
an(t) = R/ dtye” (l—tl)/ dr, Re-Gli—12) .. / dl’ne_G(tn—l_tn)aO(l‘n)
0

_ 2)R/ dtl/ dty - - / B dt,e~Gl-1) ReG(i-1)e=G(1-1)

x ReG(=12)e=G(t=13) . .. ReG(—ts1) o~ G(l-fn)f([n) (C1)

Note that the integrand is symmetric on #; for 1 < i < n. Exchanging order of integration, we have
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t 1 ths [ t L3
/dt1/ dtz---/ dtn_l/ dtn...:/dt1~~~/ dt,,z/
0 0 0 0 0 0
t ) n-3
z/dtl.../ dt,,/ dt,s
0 0
t )
:/dtI/ dtn/ Lt
0 0
t -
:/ dtl / dtn/ dtn 3
0 0
t - u—4
— [fan | m/ -
0 0

dtn EEE

dtn 1

n—1

R

n—1
/ dfn—z A
L2
dr,_ 2/ dt,_5-

n

/
J
J
I
A

t t e
= / dtn/ dtn—l/ dtn 2 dtl (CZ)
0 ["
With Egs. (C1) and (C2), a, () is simplified to
(=z2%)"a,(t) = nR/ ds/ dt,_; - / dt, [e G- RG] ... [e=CU—ta) RCU—1-1)]e=Gl=5) )
1 G- _
= nR/ dS/ d[n— / dtn 2" / dllm[e G(t fl)ReG(l [])]...
X[C_Gtt”lRe tt,,] —Gts )
! (_Zz)n_ t / ! n=1
— (—ZZ)R/ ds~—>7 / ds/e—G(r—s)ReG(r—s) e—G(t—s)f(s). (C3)
0 (n - ])' K
Further more
t , —. t_ s n+1
h(G,R,t—s) = / ds’e CU=s)ReG(—) = / ds’ Ze[G 'R = Z G, 'R,
where we have used the relation
l‘— n+1
BeA — AR = Z ) A, ]"B
with [G,:]_R = GR — RG. According to Eq. (3.18), finally, the solution to Eq. (3.7) is written as
a(t) =f(r) - ?R / ’dsf:(_zzi_l [ / ' /G- RS- n_le‘G("s)f(s)
0 n=1 ( - 1)‘ s
t 2
=f(1) - °R / e T MRGI=5)o=G=9)f (5)ds. (C4)
0
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