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We demonstrate how to obtain optimal constraints on a primordial gravitational wave component in
lensed cosmic microwave background (CMB) data under ideal conditions. We first derive an estimator of
the tensor-to-scalar ratio, r, by using an error-controlled close approximation to the exact posterior, under
the assumption of Gaussian primordial CMB and lensing deflection potential. This combines fast internal
iterative lensing reconstruction with optimal recovery of the unlensed CMB. We evaluate its performance
on simulated low-noise polarization data targeted at the recombination peak. We carefully demonstrate
our r-posterior estimate is optimal and shows no significant bias, making it the most powerful estimator
of primordial gravitational waves from the CMB. We compare these constraints to those obtained from
B-mode band-power likelihood analyses on the same simulated data, before and after map-level quadratic
estimator delensing, and iterative delensing. Internally, iteratively delensed band powers are only slightly
less powerful on average (by less than 10%), promising close-to-optimal constraints from a stage IV CMB
experiment.
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I. INTRODUCTION

After the completion of the Planck Cosmic Microwave
Background (CMB) mission [1], the major target of the
CMB community has now become precise measurement of
the CMB polarization. The magnetic (B) part of the CMB
polarization [2,3] on degree scales is a unique signature of
the stochastic background of primordial gravitational
waves produced during inflation [4,5]. Constraints on
the tensor-to-scalar power spectrum ratio, r, are expected
to increase by 2 orders of magnitude in precision within the
next decade: CMB Stage IV (CMB-S41) has forecast
sensitivity down to r ∼ 5 × 10−4, using delensed B-mode
band powers after foreground cleaning [6]. Lensing of the
CMB photons by large-scale structures generates B polari-
zation that effectively appears as an approximately white
cosmic variance noise [7,8]. To reach such tight constraints
on the primordial signal, successful delensing of this
5 μK-arc min noise is mandatory. Currently and for the
next few years, the most faithful lensing tracer at the scales
relevant for B-mode delensing is the cosmic infrared
background (CIB) [9], able to achieve 40% delensing on
60% of the sky [10], and possibly more in areas that are
clean from galactic dust. It is also possible to combine the
CIB with other large-scale structure tracers [11,12], or with
the CMB internal reconstruction [10], in order to increase
its fidelity to the CMB lensing field. Lensing estimates for

CMB-S4 will be dominated by the internal reconstruction,
using polarization quadratic estimators [13] or more power-
ful iterative estimators, first introduced by Ref. [14]. At the
low instrumental noise levels expected for CMB-S4,
iterative internal estimation from CMB polarization has
been demonstrated on simulated data to give lensing
reconstructions that are more than 90% cross-correlated
to the true lensing [15,16].
One may ask whether it could be possible, at least in

principle, to do even better than these forecasts. The lensing
deflections introduce non-Gaussianities in the form of
higher-order statistics in the CMB temperature and polari-
zation [8], which are used to reconstruct the lensing signal
[17]. Delensing will remove part of the non-Gaussianity,
but only imperfectly, and some amount of information must
remain beyond the power spectra. Hence, it is plausible that
there may be room for alternative statistics that compress
more information than delensed B-mode band powers.
This paper has two main purposes. The first is to

demonstrate how to obtain directly the posterior probability
density (PDF) for r, from lensed CMB data. The posterior
contains all the information on r, and constraints based on it
are optimal. The second is to compare this optimalmethod to
band-power likelihood analysis. Finding a posteriorwidth in
agreement with naive expectations will confirm current
forecasting methods and our understanding of how well
CMB experiments can constrain primordial gravita-
tional waves.
Our approach uses an approximate, analytic marginali-

zation of the large-scale structure lensing to build the
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statistics of interest, here the tensor-to-scalar ratio, r. This
analytic marginalization is a fairly natural choice and has
been used already in a different context by Ref. [14], in
which the aim was to obtain an optimal estimator of the
lensing spectrum. In this paper, we generalize the analytic
marginalization to an error-controlled variational approxi-
mation and provide a rigorous discussion of its accuracy,
showing that corrections are negligible for our purposes and
the experimental configurations investigated. Variational
principles have a long history in cosmology, at least dating
back to Peebles’s minimum action principle to reconstruct
large-scale motions [18].
We work in the flat-sky approximation. All our simu-

lations use the Planck 2015 cosmology [19], with power
spectra generated with the CAMB [20] software. We use
square maps of area 645 deg2, assuming periodic boundary
conditions for simplicity, with pixels of 1.5 arc min on a
side. Foreground cleaning is a major challenge to the quest
for primordial gravitational waves. We do not consider
these complications in this paper, assuming throughout
we are working with foreground-cleaned maps with white
noise power spectra. We always use white Gaussian noise
levels of

ffiffiffi
2

p
· 1.5 μK-arc min in polarization, an instru-

ment beam of 3 arc min, and consider CMB multipoles
below l ¼ 3000 only. The minimum multipole we probe
in our flat-sky implementation of the sky patches is
lmin ¼ 14, excluding the reionization peak. We consider
three different levels of tensor modes, with tensor-to-
scalar ratio rin defined at the pivot scale k ¼ 0.05=Mpc
and a vanishing tensor spectral index. The first has
rin ¼ 0.05, close to current constraints r0.002 < 0.062
(cf. 95%) from BICEP2/KECK array BK15 data in
combination with Planck [21,22]. For the configuration
just described, the nominal band powers are enough for a
strong detection. Second, rin ¼ 0.01, in which case the
nominal band powers cannot detect the waves decisively
but the delensed band powers can. Third, a vanishing
amplitude rin ¼ 0.0, where in all cases only upper limits
can be placed from the data.
The paper is built as follows. Section II describes our

approximation scheme to the exact posterior density
function, and Sec. III gives details on our numerical
implementation. In Sec. IV, we discuss our nominal and
delensed band-powers likelihood and implementation. We
present in Sec. Vour results and summarize and conclude in
Sec. VI. One Appendix details a couple of technical points
for completeness.

II. POSTERIOR FOR TENSOR-TO-SCALAR RATIO

Given CMB Stokes parameter polarization data Xdat ¼
ðQdat; UdatÞ, and for a uniform prior on r, the posterior is
proportional to the likelihood

pðrjXdatÞ ∝ pðXdatjrÞ: ð2:1Þ

Owing to the lensing by large-scale structures, the CMB
probability density function on the right-hand side is non-
Gaussian in Xdat and does not have a simple analytical
description. We may write, however, marginalizing over
possible lensing deflection maps,

pðXdatjrÞ ¼
Z

Dϕpϕ½ϕ�pðXdatjϕ; rÞ; ð2:2Þ

where pϕ is the probability density of the lensing potential,
defined by the large-scale structure evolution. When the
lensing map is known, the lensed CMB is still Gaussian,
since the deflections just remap points on the sky to very
good approximation [23]. Hence, we can consider
pðXdatjϕ; rÞ Gaussian in Xdat, with covariance determined
by the lensed spectra of the CMB together with the
specified amount of the tensor mode, transfer function,
and noise covariance matrix. Neglecting for simplicity the
tiny cross-correlation between ϕ and the CMB E polari-
zation [24], which is too small to impact our results,2 we
can write explicitly

lnpðXdatjϕ;rÞ¼−
1

2
Xdat;†Cov−1ϕ Xdat−

1

2
lndetCovϕ; ð2:3Þ

with pixel-space covariance matrix

Covϕ ¼ BDϕCunl;fidD†
ϕB

† þ N: ð2:4Þ

Here, B is the transfer function including instrument beam,
Dϕ is the lensing deflection operator that maps the unlensed
CMB Stokes parameters to the ones deflected by ∇ϕ,
Cunl;fid is our set of unlensed fiducial CMB spectra, andN is
the noise matrix. In position space and on the flat sky, Dϕ

has the explicit representation ðDϕXÞðxÞ≡ Xðxþ∇ϕðxÞÞ.
The model specified by Eq. (2.3) neglects the very small

effect of lensing of the polarization generated from reio-
nization, so a single, common lensing deflection Dϕ can be
used. The CMB spectra contain the dependence on tensor
modes

Cunl;fid
l ≡ Cscal;fid

l þ rCtens;fid
l : ð2:5Þ

We pick the prior on lensing maps pϕ in Eq. (2.2) to be

Gaussian with power Cϕϕ;fid
L , calculated from the nonlinear

matter power.3 Owing to nonlinear evolution in the late
Universe, pϕ is not exactly Gaussian. However, nonlinear
effects are weak at scales relevant for the lensing B modes
(the nonlinear contribution to the degree-scale lensing B
power is only a few percent), and generally the effects of

2We do include properly all cross-correlations including CϕE
l

in all our simulations.
3We follow standard practice of denoting lensing multipoles

with L and CMB multipoles with l.
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non-Gaussian lenses are not expected to bias the lensing
reconstruction from polarization [25,26]. Hence, this
choice is unlikely to significantly bias our results. In
practice, this assumption could simply be explicitly tested
by performing the reconstruction of this paper using
lensing maps from realistic N-body simulations.
The integrand in Eq. (2.2) peaks at the most probable

lensing map, given the data and candidate value r for the
tensor amplitude. Let ϕ�ðXdat; rÞ be this most probable
potential map. We may then write

e−S½ϕ� ≡ pϕ½ϕ�pðXdatjϕ; rÞ ð2:6Þ

and expand the action S½ϕ� to second order around ϕ�,

S½ϕ� ∼ S½ϕ�ðrÞ� þ 1

2
ðϕ − ϕ�ðrÞÞHr½ϕ�ðrÞ�ðϕ − ϕ�ðrÞÞ:

ð2:7Þ

Both the lensing potential ϕ� and the curvature Hr at this
point have explicit dependence on the data map and explicit
(through the CMB spectra) and implicit [through ϕ�ðrÞ]
dependence on r. In the following, we suppress the data
dependence for notational clarity.
The lensing map marginalization, Eq. (2.2), becomes

trivial under this approximation. The result is, up to terms
independent from r,

lnpðrjXdatÞ ≃ −S½ϕ�ðrÞ� − 1

2
ln detHr½ϕ�ðrÞ�; ð2:8Þ

which forms the basis of our investigations. Leading
corrections or alternative expansions are discussed below
in Sec. II A.
In the remainder of this subsection, we just note how

S½ϕ�� is related to the B-mode power, by looking at its
dependence on r. Let us introduce theWiener-filtered CMB
maps XWF ¼ ðEWF; BWFÞ through

XWF ≡ Cunl;fidD†
ϕB

†Cov−1ϕ Xdat: ð2:9Þ

These are the most probable unlensed CMBmaps given the
observed Stokes data and given the fiducial model entering
the covariance Covϕ. In particular, since the scalar unlensed
B power vanishes, BWF is the most probable (maximum
a posteriori) map of the B tensor modes, assuming the
fiducial value of r and lensing map ϕ are the truth. By
definition,

δS½ϕ�
δϕ

����
ϕ¼ϕ�ðrÞ

¼ 0; ð2:10Þ

hence, dS=dr ¼ ∂S=∂r for this lensing map. For this
reason, the prior term does not contribute to the action r
derivative, only the likelihood defined in Eq. (2.3). It then
follows (neglecting the tensor E contribution) that

dS½ϕ�ðrÞ�
d ln r

¼ 1

2

X
l

jBWF
l ðrÞj2 − hjBWF

l ðrÞj2i
rCBB;tens

l

: ð2:11Þ

The first term on the right-hand side comes from the
quadratic part in the CMB likelihood. The sum

P
l runs

over all two-dimensional frequencies of our sky patch. The
second term (the average of the first over data realizations)
comes from the log-determinant ln det Covϕ r derivative.4

All dependence on the lensing map prior in the recon-
structed r posterior in Eq. (2.11) is absorbed into the
lensing map reconstruction ϕ�. If the lensing map were
exactly known, then BWF is the properly delensed B-mode
map, there is no marginalization over the lensing map, and
Eq. (2.11) directly gives the (derivative of log)r posterior
by trivial comparison to the expected power.

A. Corrections and alternative approximations

Equation (2.8) is an approximation of the posterior PDF,
that relies on the Gaussianity of the reconstructed lensing
map. Lens reconstruction from the CMB is nonlinear in the
data, and some non-Gaussian features are expected, and
visible, in standard lens reconstructions with perfectly
Gaussian true input lensing [27]. If the approximation is
not good enough, resulting constraints might be biased, or
suboptimal, possibly both. Hence, it is very useful to be
able to assess the size of the leading corrections. We discuss
now how corrections can be evaluated, which also gives us
alternative expansion schemes. Section III D later on
demonstrates by using these tools that Eq. (2.8) is accurate
and unbiased.
We can proceed as follows. The exact posterior in

Eq. (2.2) integrates e−S½ϕ�. Using an arbitrary trial action
St as an approximation to S, we may write the exact identity

Z
Dϕ e−S½ϕ� ¼

�Z
Dϕ e−St½ϕ�

�
he−ΔS½ϕ�it; ð2:12Þ

where the average is with respect to probability density
e−St and ΔS ¼ S − St is the mismatch between the true and
trial actions. If choosing for St the natural expansion
Eq. (2.7), the first term on the right-hand side (the
normalization factor of the density e−St ) is our approxi-
mation Eq. (2.8), and the second term encapsulates all
errors. The point is that whenever St is chosen quadratic in
ϕ this error term is an average over Gaussian lensing maps.
We can simulate these maps and estimate this term by
averaging over simulations. Unless the approximation is
extremely good, in practice, we can never probe directly the
exponential with a reasonable number of Monte Carlos, but

4This term is most easily derived by realizing that, on average,
the likelihood variation vanishes, h∂r lnpðXdatjϕ; rÞiXdat ¼
∂rhpðXdatjϕ; rÞiXdat ¼ 0, since p is a properly normalized prob-
ability density for any value of r. Hence, Eq. (2.11) must average
to zero.
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we obtain in this paper leading contributions. Using a
standard cumulant expansion, we can write the asymptotic
expansion

ln he−ΔSit ∼ h−ΔSit þ
1

2
ðhðΔSÞ2it − hΔSi2t Þ þ � � � ð2:13Þ

In particular, all expansions of the form

St½ϕ� ¼ S½ϕ�� þ 1

2
ðϕ − ϕ�Þ†Hðϕ − ϕ�Þ ð2:14Þ

for an arbitrary H matrix result in (including here only the
leading cumulant corrections)

lnpðrjXdatÞ ∼ −S½ϕ�� − 1

2
ln detH − κ1 þ

1

2
κ2; ð2:15Þ

where κ1 and κ2 are the mean and variance of ΔS from a
Gaussian ensemble of lensing maps with inverse covariance
H. This provides alternative expansion schemes and useful
consistency checks, in which some of the difficulties of
dealing with the exact curvature can be eliminated by using
a simpler matrix, at the cost of a larger cumulant correction
(see Sec. III D).

III. POSTERIOR EVALUATION

This section describes the implementation of the different
terms in the posterior, Eq. (2.8). Two large log-determinants
must be evaluated. The determinant of the CMB data
covariance matrix is discussed in Sec. III A and is in fact
fairly harmless. The second, the determinant of the lensing
curvature matrix, discussed in Sec. III B, is more complex
and is the most expensive step of the entire implementation.
However, we find that its dependence on the data realization
is very weak and can be neglected. For this reason, it only
needs to be calculated once for a simulation suite. All terms
must be evaluated at the best lensingmapϕ�. The production
of this map together with the Wiener-filtered CMB maps
XWF is described in Sec. III C. Finally, we give in Sec. III D
details on our generation of Gaussian lensing map samples
with large and dense covariance matrices, as required for
evaluation of the cumulant corrections.

A. Data covariance determinant

How can one estimate log-determinants of very large,
dense matrices like Covϕ? There is no trivial diagonaliza-
tion, so the large size of the matrix renders brute force
methods totally useless. Possibilities include integral rep-
resentations combined with Monte Carlo evaluation of the
diagonal [28]. We are only interested in the r dependence.
This allows us to simplify the problem quite a bit. We first
note that

cðrÞ≡ −
∂
∂r

1

2
ln det Covϕ�ðrÞ ¼

1

2
Tr Cov−1ϕ�ðrÞ∂rCovϕ�ðrÞ;

where ∂rCovϕ only depends on the covariance matrix
constructed from tensor CMB spectra.5 Using Monte Carlo
simulations, we can write an unbiased estimator as

ĉðrÞ ¼ 1

2
X†Cov−1ϕ�ðrÞ∂rCovϕ�ðrÞ X; ð3:1Þ

whereX are unit spectra random variables with hXiX
†
ji¼ δij.

It is easily seen that the estimator is unbiased. ItsMonteCarlo
(MC) noise variance (when using Gaussian X) is simply
the Fisher information on r, divided by the number of
simulations used. We can further reduce the variance with
the help of a reference ideal covariance matrix, denoted with
a subscript 0, for which we know the determinant: consider
the modified estimator

ĉðrÞ − ĉ0ðrÞ þ c0ðrÞ; ð3:2Þ

the last term c0ðrÞ≡ hĉ0ðrÞi being known analytically.With
a good isotropic approximation to the covariance, we might
expect to be able to reduce the MC noise of the original
estimate substantially. Figure 1 shows in the upper panel the
Monte Carlo error ΔĉðrÞ=jcðrÞj as a function of r, using the
raw estimator ĉðrÞ (blue line) of Eq. (3.1), with the lensed
spectra as reference (orange) in Eq. (3.2) and using unlensed
spectra (green) as reference. More specifically, neglecting
again the tensor E contribution, these last two choices
correspond to

clen0 ðrÞ ¼ 1

2

X
l

ð2lþ 1ÞCBB;tens
l

rCBB;tens
l þ CBB;len

l þ CBB;noise
l

ð3:3Þ

in the lensed case and

cunl0 ðrÞ ¼ 1

2

X
l

ð2lþ 1ÞCBB;tens
l

rCBB;tens
l þ CBB;noise

l

ð3:4Þ

in the unlensed case. In these two equations, 2lþ 1 is short-
hand notation for the exact number of modes of our flat-sky
patch, andCBB;noise

l is the beam-deconvolved noise spectrum.
In the unlensed case, it is apparent that with a single
simulation we can reach well below percent accuracy on
the log-determinant.
In fact, for our experimental configuration at least, the

isotropic, unlensed spectra determinant approximation is
extremely accurate, and the small deviation from it can be
very well captured by the leading term of a perturbative
expansion in powers of ϕ. This is shown in the lower panel
of Fig. 1, which displays the relative deviation of the exact
determinant cðrÞ from its isotropic counterpart calculated

5The derivative ∂r does not act on ϕ�ðrÞ; we are interested in
the explicit r dependence only, for the reasons explained at the
end of Sec. II.
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with unlensed spectra (blue points with error bars) and the
perturbative prediction (red line). More explicitly, the
perturbative prediction is

1

2
ln det Covϕ ¼ 1

2
ln det Covϕ¼0 þ

1

2

X
L

RLjϕLj2; ð3:5Þ

where the linear, mean-field response matrix R is obtained
in the Appendix and the first term on the right-hand side is
evaluated with the unlensed CMB spectra. At first sight, it
might appear counterintuitive that the unlensed spectra
prediction is so accurate, but this is easily explained. In the
limit of vanishing instrumental noise and perfect resolution,
the data covariance (2.3) reduces to

Covϕ ⟶
low noise

high res
DϕCunl;fidD†

ϕ:

Averaged over lensing maps, this gives the CMB spectra
lensed by Cϕϕ. However, taking the determinant, one
expects the factorization (e.g., after imposing a sufficiently
high band limit, making all these operators square matrices)

ln det Covϕ ⟶
low noise

high res
ln detDϕD

†
ϕ þ ln detCunl;fid:

The first determinant has no dependence on r and is an
irrelevant constant. Hence, usage of the unlensed spectra
gives under these conditions the exact result irrespective of
the amount of lensing in the data. Figure 1 demonstrates
that in our instrumental configuration the mean-field
response R in Eq. (3.5) captures very well the tiny residual
coupling between these terms, the transfer function, and the
noise matrix.

B. Hessian determinant

The Hessian H is defined as the second variation of the
log-posterior S of the lensing map, Eq. (2.7). Operationally
speaking, there are three terms H ≡Hdat þHCov þHPri.
The first originates from the quadratic piece of the CMB
likelihood and is data realization dependent,

Hdat
LL0 ≡ 1

2

δ2

δϕLδϕ̄L0
XdatCov−1ϕ Xdat

����
ϕ¼ϕ�ðrÞ

; ð3:6Þ

the second also comes from the likelihood but is data
independent,

HCov
LL0 ≡ 1

2

δ2

δϕLδϕ̄L0
ln det Covϕ

����
ϕ¼ϕ�ðrÞ

; ð3:7Þ

and the third is the lensing map prior curvature, dominant
on small scales in which the data do not constrain the
lensing deflection field. Under our choice of Gaussian
statistics for ϕ, this prior term is trivially given by

HPri
LL0 ¼ δLL0

Cϕϕ;fid
L

: ð3:8Þ

The calculation of the total Hessian determinant is the main
difficulty in getting the r posterior. It plays a key role in
shaping the final posterior and cannot be neglected but is
difficult to obtain exactly. However, as shown further below,
the dependence of the log-determinant on the data realiza-
tion can be neglected for all practical purposes. Hence, this
calculation only needs to be performed once for eachmodel.
In general, we solve for ln detH by coupling the same

trace probing method described in Sec. III A to a double
layered conjugate gradient inversion. We use for HCov our
accurate approximation from Sec. III A for the covariance
determinant, with the trivial result

HCov
LL0 ¼ δLL0RL: ð3:9Þ

The main operational difficulty lies in the application of
Hdat to an arbitrary lensing potential map ϕ. The details of
this calculation are deferred to the Appendix. There, it is
shown that one can apply the Hessian matrix to a lensing
potential vector at the cost of Wiener filtering one pair of

FIG. 1. Upper panel: The three curves show the Monte Carlo
noise ΔĉðrÞ=cðrÞ (one simulation equivalent) root variance for
three estimators ĉðrÞ of the lensed data covariance r derivative,
Eq. (3.2). The estimator accelerated by the isotropic reference
estimator using unlensed spectra and neglecting lensing (green) is
already accurate towell below a percent with a singleMonte Carlo
estimate. Lower panel: The red curve shows the relative deviation
of the analytic perturbative prediction to the isotropic, unlensed
approximation cunl0 ðrÞ to ĉðrÞ (multiplied by a factor 100),
Eq. (3.4). Blue points show estimates of the exact cðrÞ from
independent Monte Carlo simulations at each r point, where the
iterative lensing solution ϕ�ðrÞ was obtained using ten iterations
starting from the quadratic estimator. It is apparent that the exact
result is both very close to the isotropic estimation and correctly
captured by the analytical perturbative expansion. The error bars,
independent from point to point, are the empirical standard
deviations across nine Monte Carlo simulations. The figure
was built using a data realization with input rin ¼ 0.05 where
the r grid is densest.
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Stokes Q, U maps. This operation is itself performed via
conjugate gradient inversion. Using a simple diagonal
preconditioner for the outer conjugate gradient inversion,
we found that we need slightly above ten iterations and thus
the inverse filtering of the same number of polarizationmaps
to conservatively solve for ϕ†H−1∂rHϕ to five significant
figures. The same operations must then be repeated for each
Monte Carlo ϕ used to probe the trace and at each point r of
interest. For the area of ∼645 deg2 and the resolution of
1.5 arcmin dealt with in this paper, a single probe of the trace
at some r point takes a couple of minutes. The final
Monte Carlo error on the PDFs depends on the r density
of trace-probing MCs, rather than the number of MCs per r
point. Hence, it can be advantageous to use a dense r grid in
which each point is sparsely trace probed. For the PDFs
shown in this work, in which we reconstruct accurately the
entire PDF shape, we typically use 64 r points, denser near
the peak, and four MCs per point, which gives a crude but
still reasonable estimate of the local error.
Figure 2 shows a couple of posterior reconstructions on

simulated data: one pair with input rin ¼ 0.01 (orange) and
one pair with rin ¼ 0.05 (blue). The filled colors show the
reconstructions using the realization-dependent Hessian
estimate, in which the width displays the 2σ uncertainties
resulting from the Monte Carlo determinant evaluation.
These errors are independent only for the estimation of the
posterior r derivative; after normalization to build the
posterior itself, this produces a strong anticorrelation of
errors between points on the opposite side of the peak on

this figure. The black lines show the corresponding curves,
but with Hessian estimation swapped between the two
realizations. Summary statistics are virtually identical, and
this demonstrates that for all practical purposes we can
neglect the data dependence of the log-determinant.
However, the dependence on the lensing potential ϕ�
remains, and we do not offer in this work a trivial, fully
isotropic approximation.

C. Iterative lens estimation

The first step in the r-posterior reconstruction is always
the calculation of the iterative solution ϕ� together with the
Wiener-filtered CMB maps XWF. We follow Ref. [16] very
closely, maximizing the lensing map posterior probability
for the lensing deflections using a quasi-Newton iterative
descent. At each iteration step, the current lensing estimate
induces a mean-field (hϕi, in standard lensing estimation
terminology) term to subtract from the quadratic estimate,
originating from the first variation (with respect to ϕ) of the
covariance matrix determinant. This term is small on all
scales for lens reconstruction from polarization, and we use
the same accurate analytical approximation discussed in
Sec. III A and in the Appendix instead of simulations.

D. Higher-order cumulants calculation

Evaluation of the correction terms in Eq. (2.13) requires
sampling Gaussian lensing maps with inverse covariance
given by the curvature matrix chosen for the posterior
expansion. This matrix is very large and has no trivial
structure and hence is difficult to sample from, and standard
generic methods such as Cholesky decomposition are
useless. It is possible, however, to apply this matrix to a
lensing map in reasonable time, and powerful methods can
be used to construct samples with the correct covariance
structure using this property. We proceed by deforming
continuously the inverse square root of H as follows [29].
We connect H to the identity matrix I, defining

Ht ≡ I þ tðH − IÞ; ð3:10Þ

and introduce ϕt ≡H−1=2
t ϕ0, where ϕ0 is a unit variance

Gaussian vector of the appropriate dimensionality. By
definition, Ht¼1 ¼ H and ϕt¼1 has covariance H−1.
Differentiating gives the following ordinary differential
equation (ODE) for ϕt:

dϕt

dt
¼ −

1

2
ðH − IÞH−1

t ϕt ð3:11Þ

The solution of this ODE at t ¼ 1 is then by construction
the desired Gaussian sample.6 We have used this machinery

FIG. 2. Data dependence of the Hessian log-determinant.
Comparison of the r-posterior reconstruction on two simulated
data maps spanning 645 deg2 with 2.1 μK-arc min polarization
sensitivity. The filled colors use the expensive, realization-
dependent curvature determinant estimate. The width shows
the 2σ Monte Carlo uncertainties from the determinant derivative
calculation. For each realization, errors on opposite sides of the
peak of the posterior are strongly anticorrelated. The black lines
show the same reconstructions but swap the log-determinant
between the two realizations (black lines), with virtually identical
results. For the cases we investigated, the determinant needs only
be calculated on a single data realization.

6After discretization, the algorithm is reminiscent of the Van
Cittert deconvolution of image analysis [30,31].
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to test corrections to our posterior approximation (2.8) on
one data realization. In this case,

HLL0 ¼ δ2S½ϕ�
δϕLδϕ̄L0

����
ϕ¼ϕ�ðrÞ

: ð3:12Þ

For a consistency check, we also checked the alternative
choice of curvature in which the lensing deflections are
neglected,

HLL0 ¼ δ2S½ϕ�
δϕLδϕ̄L0

����
ϕ≡0

: ð3:13Þ

The second case considerably speeds up the calculation of
the curvature log-determinant, but the posterior is expected
to be less accurate. Figure 3 shows the different r-posterior
estimates, for one data realization with input rin ¼ 0.05.
The solid lines shows our baseline approximation, without
corrections (blue), with the first cumulant (orange), and
with the first two cumulants (green). We have used four
Monte Carlo samples per r point, on a grid devised as just
described in Sec. III B. We use in all cases a standard low-
order Bulirsch-Stoer algorithm [32] to solve the ODE
defined in Eq. (3.11). The bracketed inverse is solved with
conjugate-gradient descent. The corrections have a com-
pletely negligible effect on the posterior. The dashed lines
show the same curves with the choice of unlensed curva-
ture. The agreement, including the corrections, is very
good. However, the leading approximation is clearly worse,

and the corrections are essential in bringing the two
expansion schemes in agreement. In the remainder of this
paper, we stick to the lensed curvature matrix and safely
neglect the cumulant corrections.

IV. NOMINAL AND DELENSED B-MODE
BAND POWERS

We now describe our reconstruction of r from raw and
delensed band powers. The likelihood of CMB data
temperature and polarization band powers has been dis-
cussed at length in several places already, and efficient
parameterizations both at low and high multipoles are well
known, e.g., Refs. [33,34]. Only preliminary work exists,
however, for delensed band powers [35]. After performing
consistency checks described in the next section, we
decided to use the Hamimeche and Lewis likelihood
[34], using analytical band-power predictions and covari-
ance matrices as described below. We note that other
possibilities such as the parametrization of Ref. [36] seem
to work just as well. We consider B-mode multipoles only
up to lmax ¼ 200 and use as a baseline the maximal number
of bins (74) that our flat-sky mode structure allows when
building the r posteriors.
All of our B-spectra likelihoods may eventually be

written as

−2 lnpðrjĈBBÞ≡ gðxlÞĈBB
l Σ−1

ll0 Ĉ
BB
l0 gðxl0 Þ;

with gðxÞ≡ signðx − 1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðx − ln x − 1Þp

and xlðrÞ ¼
ĈBB
l =CBB

l ðrÞ. These power spectra include the tensor
contribution, residual lensing power, and beam-decon-
volved noise. The predictions of the spectra CBB

l ðrÞ are
evaluated analytically, using the perturbative expression
for the lensing B-mode power to linear order in the
appropriate lensing spectrum. For the nominal band powers,
we use the fiducial lensing spectrum Cϕϕ;fid

L . In the case of
the quadratic estimator or iteratively delensed band powers,
we first empirically measure the cross-correlation coeffi-
cient squared ρ2L of the reconstructed lensing maps to the
true input from a small set of simulations. We then use as a
lensing spectrum Cϕϕ;fid

L ð1 − ρ2LÞ. We neglect the tiny
lensing effects on the tensor spectra. The lensing maps
themselves are obtained as described in Sec. III C, with the
difference that we exclude the tensor modes scales l ≤ 200
to build the tracers. Including these modes would dramati-
cally complicate the analysis; if the delensed data and
lensing tracer contain common multipoles, the delensed B
modes would contain very strong, spurious delensing
signature originating from disconnected four-points and
six-points statistics of the CMB [37–39]. The reason is that
the lensing estimator cannot distinguish between true and
random lensing signatures in the data (such as shear or
magnification) and all of these signatures are removed after
delensing, leading to a spuriously unlensed-looking CMB at

FIG. 3. Corrections to posterior and alternative expansion.
Tensor-to-scalar ratio r-posterior estimates for one data realization
(with input value rin ¼ 0.05), without any cumulant correction
(solid blue), including first (solid orange) and second (solid green)
cumulant corrections. The dashed lines show the same curves, but
use a different posterior expansion scheme, with a less accurate
but simpler curvature matrix neglecting the lensing. The agree-
ment between the two methods is very good and provides a good
consistency check, but in the latter case, the inclusion of the
cumulant corrections becomes mandatory. The dashed bands
contain 68% of the probability.
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the two-point level. The loss of signal to noise in the lensing
tracer by excising the largest angular scales is small; the
delensing efficiency ρ2L is reduced by roughly 1% on the
most relevant scales L ∼ 500.
To delens the CMB, we use a simple remapping

technique. From the Wiener-filtered lensing deflection
estimate α, we simply remap the Stokes parameter (after
beam deconvolution and discarding multipoles higher than
2000) according to the lensing inverse deflection field α−1,
defined through the condition that deflected points
xþ αðxÞ get remapped back to themselves,

xþ α−1ðxþ αðxÞÞ≡ x: ð4:1Þ

This inversion is performed by exactly following Ref. [16],
using a fast-converging Newton-Raphson solver. This
delensing technique differs operationally and conceptually
from the template method used for instance by the SPTpol
team on their polarization data [40], which uses a Wiener-
filtered E-mode map to build a B template, which is then
subtracted from the data. The filters of the template method
are optimized to minimize the resulting B power at linear
order [9]. While the remapping method naturally contains
higher-order terms, the noise is also remapped, which can
result in higher total B power if this is high such as for
Planck data [10,38]. However, we found that there is
basically no difference between the two methods for the
low levels of noise here. By default, we include the noise
remapping into our delensed B-power predictions, but this
is very small. Finally, there are no E=B separation com-
plications [41,42] since we use periodic patches throughout
this paper and the spectra estimator ĈBB

l are trivial to build
from the delensed or nominal Stokes maps.
For the covariance matrix, we use the simple approxi-

mation [43,44] combining the Gaussian part with correc-
tions according to the lensing kernels,

Σl1l2
¼ δl1l2σ

2
l1
ðCBBÞ þ

X
l

∂CBB
l1

∂CEE;unl
l

σ2lðCEE;unlÞ ∂CBB
l2

∂CEE;unl
l

þ
X
L

∂CBB
l1

∂Cϕϕ
L

σ2LðCϕϕÞ ∂C
BB
l2

∂Cϕϕ
L

; ð4:2Þ

with Gaussian spectrum variance

σ2lðCXXÞ≡ 2ðCXX
l Þ2

2lþ 1
; ð4:3Þ

where 2lþ 1 really stands for the number of multipoles in
our flat-sky patch. The derivatives are evaluated to first
order in Cϕϕ;fid

L , or in Cϕϕ;fid
L ð1 − ρ2LÞ for the delensed band

powers. On the relevant scales l ≤ 200, the covariance
correlation coefficients are small and of minor importance,
and the perturbative expansion is accurate enough.
Collecting reconstructions from simulations, we checked

that the diagonal of the covariance matrices matches the
prediction to within a couple of percent at least.

V. RESULTS

We have performed our baseline posterior reconstruction,
including realization-dependent determinant calculation,

FIG. 4. Posterior constraints on the tensor-to-scalar ratio r for
different reconstruction methods on one data realization with an
input rin ¼ 0.05, 0.01, and 0 from top to bottom. The black line
shows our new estimator. The green, orange, and blue lines show
the constraints from nominal, quadratic estimator delensed, and
iteratively delensed B-mode band powers, respectively, with
likelihood built as described in the text. For comparison, the
red line shows the case of perfect knowledge of the input lensing
map, with posterior given by Eq. (5.1). In the upper two panels,
the dashed bands contain 68% of the probability.
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on 21 CMB simulations for each of the three different levels
rin ¼ 0.05, 0.01, 0 of tensor modes advertised in the
Introduction. For each realization, we also performed like-
lihood analyses from the quadratic-estimator delensed, iter-
atively delensedB-mode band powers andwith no delensing.
Figure 5 shows the following main results. For each simu-
lation, the constraints obtained from either our posterior
pðrjXdatÞ approximation are displayed (black), together with
those obtained from the different band-power analyses
(colored lines). Blue shows the results from the nominal
(no delensing) band-power likelihood, orange is after

delensing with the Wiener-filtered quadratic estimator
ðϕQEÞ, and green is after delensing with the iterative
[formally, the maximum a posteriori (MAP) solution
ϕMAP] lensing solution. Finally, for comparison, the red line
shows the constraints achievable if the lensing deflections
were known perfectly. Up to irrelevant constants, this latter
case is given by

lnpðr; jXdat;ϕinÞ ∝ −
1

2
Xdat;†Cov−1

ϕinXdat −
1

2
ln det Covϕin ;

ð5:1Þ

FIG. 5. Comparison of constraints on the tensor-to-scalar ratio r obtained from band-power analysis and the r posterior obtained in this
work (black), for 21 simulated data maps. Shown are constraints from nominal B-mode band powers (blue), quadratic estimator delensed
band powers (orange), and iteratively delensed band powers (green). The red curves show the constraints when the lensing deflection
potential is perfectly known for comparison. The grey shaded area shows the 2σ uncertainty on the constraint due to the Monte Carlo
evaluation of one of the deflection Hessian curvature determinants in the posterior. The three panels use maps with different input tensor
amplitudes rin ¼ 0.05, 0.01, and 0 (top to bottom).We quote two standard deviations (multiplied by 100) in the first two panels, where the
tensor modes are well constrained, and the 95% confidence limit (also multiplied by 100) in the lowest panel with vanishing input tensor
amplitude. All reconstructions are performed on 645 deg2, with a white polarization noise level of 2.12 μK-arc min.
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whereϕin is the lensingpotential input to data realizationXdat.
The three panels show rin ¼ 0.05, 0.01, and 0 from top to
bottom. In the first two panels, the quoted numbers are the
2σ width of the PDF, and the lowest panel shows the
95% confidence upper limit. The grey area around the black
line shows the 2σ uncertainty originating from the
Monte Carlo measurement of the Hessian determinant. We
evaluate these errors simply by sampling an ensemble of
posteriors from the Monte Carlo log-determinant’s errors.
Figure 4 shows explicitly the r-posterior PDF for one of the
realizations using the same color scheme. As is visible there,
all reconstructions show skewness and other non-Gaussian
features; hence, these summary statistics are only an imper-
fect representation of the constraints on r.
All of our exact posterior estimates mean values lie

within 1.8σ (rin ¼ 0.05) of the true value. The series of
rin ¼ 0.01 simulations shows a single outlier, with recov-
ered posterior mean 100 hri ¼ 0.53 formally lower than the
input by 2.5σ, but with a PDF showing substantial skew
with no strong evidence of an anomaly. We can try to
isolate a possible systematic bias in our posterior approxi-
mation by combining all posteriors as if they were
independent measurements of r. Doing so, we obtain the
constraints

100 r̂ ¼ 5.15� 0.12 ð100 rin ¼ 5; combinedÞ ð5:2Þ

100 r̂ ¼ 1.04� 0.05 ð100 rin ¼ 1; combinedÞ; ð5:3Þ

both perfectly consistent with the input values. This
constrains a systematic bias to a small fraction of a
standard deviation. The same test on all the band-power
likelihoods or the known ϕ likelihood [Eq. (5.1)] also
shows consistency.
It is apparent that there is significant spread in the

summary statistics displayed on Fig. 5. As expected, this is
more pronounced for the nominal band-power analysis
which has the weakest constraints. While the different
methods constraining power do rank as expected on
average, the results using the iteratively delensed band
powers in green and our full posterior reconstruction in
black are very close, with a few reconstructions showing
nominally slightly worse summary statistics from the
posterior reconstruction. These cases seem compatible with
the errors on the posterior. Also, since the exact band-power
likelihood is intractable, it is very difficult to assess
precisely the impact of our band-power likelihood approxi-
mation on each realization. In all cases, iterative delensing
does perform better than quadratic estimator delensing, but
the improvement shows substantial realization dependence
as well and in a couple of cases can be absolutely minimal.
Table I shows the summary statistics averaged across all
these simulations. We find that the exact posterior outper-
forms the iteratively delensed band powers by 3%, 6%, and
8% for rin ¼ 0.05, 0.01, and 0, respectively.

VI. SUMMARY

Unless the primordial B-mode power produced during
inflation is very large, sophisticated analysis techniques
such as delensing will be essential to provide the best
constraints on primordial gravitational waves. We have
presented a new estimator, based on a close approximation
to the exact posterior of the tensor-mode amplitude. By
careful Monte Carlo investigations of corrections to the
approximation, we have demonstrated that it is unbiased
and very close to optimal, providing the tightest possible
constraints on primordial gravitational waves from CMB
data. The estimator uses fast, joint estimation of the best
lensing deflection map and of the unlensed CMB.
This first investigation used a simplified setting, includ-

ing periodic sky patches, no analysis mask, and use of
homogeneous noise, facilitating both the iterative lens
reconstruction and the unlensed E-B recovery from the
observed lensed Stokes polarization data. These assump-
tions did not play a key role in obtaining our results, since
the presence of the lensing deflections and data realization
dependence break isotropy and prevent the existence of
trivial basis to work with. Use of Monte Carlo simulations
and inversion methods akin to conjugate-gradient seem
unavoidable. Lens reconstruction and Wiener-filtering on
masked data have already been demonstrated successfully
[16] with the same methods, at the cost of a manageable
increase in execution time.
The posterior reconstruction has dependency on two

aspects of the cosmological model used to define the CMB
likelihood: the unlensed CMB scalar perturbations spectra
and the lensing potential power spectrum. Changes in the
lensing spectrum (or lensing deflection map prior) impact

TABLE I. Summary statistics comparison on tensor-to-scalar
ratio constraints averaged over our data realizations, for the
different methods tested in this work and three input values of
tensor modes as indicated in the first row. The reconstructions are
performed on maps of 645 deg2 with 2.12 μK-arc min polari-
zation noise. The first three rows show the results of B-mode
band-powers likelihood analysis, without delensing, with quad-
ratic estimator delensing, and with iterative delensing. The next
row shows the constraints from the exact posterior density
function on r, obtained as described in this work. The last
row shows the case of a perfectly known lensing map for
comparison. We quote twice the standard deviation for the first
two columns where r is well constrained and the 95% confidence
limit in the last column.

100 rin 5.0 1.0 0.0

Band powers, no delensing 1.65 (2σ) 0.83 (2σ) 0.75
(95% cf.)

Band powers, ϕQE delensing 1.27 0.56 0.40
Band powers, ϕMAP delensing 1.18 0.49 0.31
Exact posterior 1.14 0.46 0.29
ϕ known posterior 0.87 0.30 0.12
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slightly the optimal lens reconstruction, and changes in
the scalar spectra impact the unlensed E and B polari-
zation field reconstruction. Hence, formally, use of a
slightly different fiducial model might lead to a slightly
different result. However, all these power spectra are
extremely well constrained in practice from observations,
including the lensing spectrum, so this is unlikely to
bring significant biases. Furthermore, if necessary, it is
possible to include the uncertainty in the power spectra in
the posterior, by obtaining the linear response to the
spectra and extending in this way the posterior density,
in analogy to the way state-of-art lensing spectrum
reconstruction likelihoods are built [45,46]. One can also
go a step further and marginalize directly over these using
the empirical spectra, as demonstrated by Ref. [10]. We
also restricted our analysis to the extraction of the tensor-
to-scalar ratio assuming a fixed template shape of the
tensor spectrum. However, this is not a limitation of this
approach; using high-quality observations, the obvious
generalization of this framework will be able to distin-
guish features as well.
We have compared the performance of our estimator

to that of more traditionally planned B-mode band-
powers extraction. We found standard, well-demonstrated
analytical likelihood models are able to describe mean-
ingfully the delensed band powers, and we have used
these likelihoods on nominal, quadratic estimator dele-
nsed, and iteratively delensed band powers. The perfor-
mances of these delensed band powers do match naive
expectations. For the configuration studied here, target-
ing the recombination peak of the B-mode spectrum
with noise levels in line with expectations from a CMB
Stage IV experiment, our new estimator does outperform
the iteratively delensed band powers by a realization-
dependent amount, also depending on the exact value of
r, reaching 8% on average for small values. Producing
the posterior PDF for r as we did is more expensive
numerically than producing band powers. Nevertheless,
we demonstrated in this paper that the analysis was
possible, providing constraints optimal by construction
and improving prospects of detecting a tantalizing
component of modern cosmology.
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APPENDIX: LENSING MAP POSTERIOR
CURVATURE

This Appendix describes in more details the lensing
map posterior curvature matrix H ¼ Hr½ϕ�ðrÞ�, defined
as the matrix of second variation of the lensing map log-
posterior,

HLL0 ≡ δ2S½ϕ�
δϕLδϕ̄L0

����
ϕ¼ϕ�ðrÞ

; with

S½ϕ�≡ 1

2
XdatCov−1ϕ Xdat þ 1

2
ln det Covϕ þ

1

2

X
L

jϕLj2
Cϕϕ;fid
L

;

ðA1Þ

where the first two terms on the right-hand side come
from the lensing map likelihood and the last term comes
from the Gaussian prior. In particular, in this Appendix,
we obtain the result that the data-dependent part of the
matrix can be applied in linear time to a vector (at the cost of
one CMB Wiener filtering). This makes the calculation of
its log-determinant and inverse possible. The data-
independent part poses no particular problems. The
Gaussian prior curvature is trivial, and for the second term
in Eq. (A1), we adopt the same very accurate approximation
as in Sec. III A,

1

2
lndetCovϕ

≃
1

2
lndetCovϕ≡0þ

1

2

X
LL0

ϕLϕ̄
0
L

δ2 1
2
lndetCovϕ
δϕLδϕ̄L0

����
ϕ≡0

≡1

2
lndetCovϕ≡0þ

1

2

X
L

RLjϕLj2; ðA2Þ

where RL is the ϕ-induced mean-field linear response
(hence also the desired curvature term), obtained analyti-
cally following Ref. [16] and reproduced briefly at the end
of this Appendix.
To obtain the data-dependent part of the curvature, we

calculate for convenience the curvature Hab
datðx; yÞ with

respect to the two position-space deflection components
αaðxÞ, αbðyÞ of the flat sky, where α ¼ ∇ϕ. Once this is
done, it is straightforward to apply the matrix to a lensing
potential vector by expanding it into these two components,
applying Hab, and reprojecting eventually onto the poten-
tial Fourier harmonics. The data-dependent curvature splits
into two terms, which we describe next:
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Hab
datðx; yÞ ¼

1

2
Xdat · Cov−1ϕ

δCovϕ
δαaðxÞ

Cov−1ϕ
δCovϕ
δαbðyÞ

Cov−1ϕ Xdat þ ða; x ↔ b; yÞ ð≡2Hab
F ðx; yÞÞ

−
1

2
Xdat · Cov−1ϕ

δ2Covϕ
δαaðxÞδαbðyÞ

Cov−1ϕ Xdat ð≡Hab
detðx; yÞÞ: ðA3Þ

When the data covariance precisely matches Covϕ (that is,
for our simulations, for fiducial r values close to the true
value in Xdat), the term HF coincides, on average, with the
Fisher information matrix on the displacement field. Under
these conditions, and setting ϕ≡ 0, it is precisely the

isotropic inverse lensing reconstruction noise Nð0Þ
L for the

deflection angle calculated with the unlensed CMB spectra
in the weights [13]. The second term Hdet is subdominant;
on average, and again when the data covariance matches
Covϕ, this term would be canceled by a contribution from
RL. This term RL would also cancel one of the two HF
factors in Eq. (A3). The complete relation Eq. (A1) for the
lensing potential Fourier modes under these conditions is

hHLL0 iXdat ¼δLL0

�
1

Nð0Þ
L

þ 1

Cϕϕ;fid
L

�

ðwhenϕ≡0; and hXdatXdat;†i¼Covϕ¼0Þ; ðA4Þ

which can serve as a useful consistency check of the data-
dependent curvature calculation.
To proceed, we need the first and second derivatives of

the covariance. To simplify notation, we introduce

ξϕ ≡DϕCunlD†
ϕ; ξϕ;a ≡Dϕ∇aCunlD†

ϕ; and

ξϕ;ab ≡Dϕ∇a∇bCunlD†
ϕ; ðA5Þ

where the operator ∇aCunl is defined by the
block-diagonal matrix Fourier representation

δll0 ila

�
CEE;unl
l 0

0 rCBB;tens
l

�
;and similarly for ∇a∇bCunl

with an additional factor ilb. The following relations hold:

δCovϕij

δαaðxÞ
¼Bðxi;xÞðξϕ;aB†Þðx;xjÞ− ðBξϕ;aÞðxi;xÞðB†Þðx;xjÞ;

ðA6Þ

and

δ2Covϕij

δαaðxÞδαbðyÞ
¼Bðxi;xÞðξϕ;abB†Þðy;xjÞδDðx−yÞ

−Bðxi;xÞðξϕ;abÞðx;yÞðB†Þðy;xjÞ
−ðBÞðxi;yÞðξϕ;abÞðy;xÞðB†Þðx;xiÞ
þðBξϕ;abÞðxi;yÞðB†Þðx;xjÞδDðx−yÞ: ðA7Þ

There are implicit sums over Stokes indices in the above
equations. We introduce further the following notation for
the inverse-variance weighted CMB maps ðX̄Þ and Wiener-
filtered CMB ðXWF

ϕ Þ:

X̄ ≡ B†Cov−1ϕ Xdat and XWF
ϕ ≡ ξϕB†Cov−1ϕ Xdat ¼ ξϕX̄:

ðA8Þ

The subscript ϕ on the Wiener-filtered CMB is present to
emphasize that these are the lensed Wiener-filtered dele-
nsed CMBmaps, in contrast to Eq. (2.9). With this, we may
write (full indices)

�
δCovϕ
δαbðyÞ

Cov−1ϕ Xdat

�
ðxjÞ

¼ Bðxj; yÞXWF
;b ðyÞ − ðBξϕ;bÞðxj; yÞX̄ðyÞ: ðA9Þ

The Fisher-like terms contract two such vectors, with an
inverse covariance in the middle. When doing the con-
traction, the operator B†Cov−1ϕ B≡ Kϕ appears, and deriv-
atives of ξ on the left-hand side get a minus sign because the
first derivative is antisymmetric. The result is

Hab
F ðx; yÞ ¼ 1

2
XWF
ϕ;aðxÞKϕðx; yÞXWF

ϕ;bðyÞ

−
1

2
X̄ðxÞðξϕ;aKϕξ

ϕ
;bÞðx; yÞX̄ðyÞ

−
1

2
XWF
ϕ;aðxÞðKϕξ

ϕ
;bÞðx; yÞX̄ðyÞ

þ 1

2
X̄ðxÞðξϕ;aKϕÞðx; yÞXWF

;b ðyÞ: ðA10Þ

This matrix is positive definite for any model. To apply this
a vector v, we can do as follows:
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Z
d2yHab

F ðx; yÞvbðyÞ

¼ XWF
ϕ;aðxÞðV −WÞðxÞ þ X̄ðxÞðξ;aðV −WÞÞðxÞ ðA11Þ

with

V ¼ Kϕ XWF
ϕ;b v

b W ¼ Kϕ ξ
ϕ
;b X̄ vb: ðA12Þ

There is thus only one set of maps to inverse filter, the
difference between ðξ;bX̄ÞðxÞvbðxÞ and ðξ;bðX̄vbÞÞðxÞ. The
term Hdet, which comes from the second derivative of
the covariance in Eq. (A3), remains. It is also a contraction
of these types of maps. Explicitly,

Hab
detðx; yÞ ¼ X̄ðxÞξϕ;abðx; yÞX̄ðyÞ − δDðx − yÞX̄ðxÞXWF

;ab ðxÞ;
ðA13Þ

which is easily applied to input vectors. The full H matrix,
after rescaling by a simple isotropic approximation, is close
enough to unity that its inverse can be applied to a vector
with conjugate gradient inversion without much difficulty.
Finally, we reproduce for completeness the expression

for the mean-response RL used in several places in this

work, defined above in Eq. (A2). Again, we state the result
Rabðx; yÞ for the two components of the displacement field,
defined as

Rabðx; yÞ≡ δ2 1
2
ln det Covϕ

δαaðxÞδαbðxÞ
����
ϕ≡0

: ðA14Þ

Since this is evaluated for vanishing deflection, the matrix
is only a function of r ¼ x − y. The result follows straight-
forwardly from the covariance first and second variations,
Eqs. (A5) and (A7):

−RabðrÞ ¼ ðξ0;aK0ÞðrÞðξ0;bK0ÞðrÞ
þ K0ðrÞðξ0;aK0ξ

0
bÞðrÞ − K0ðrÞξ0abðrÞ

þ δDðrÞðK0ξ
0
;abÞðrÞ: ðA15Þ

A contraction on Stokes indices is implicit in this equation.
Contracting Rab after Fourier transformation with La Lb
gives the lensing potential response RL. All terms are easily
calculated with two-dimensional fast Fourier transform
methods.
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