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We provide explicit formulas for the effective fluid approach of f(R) theories, such as the HuandSawicki
and designer models. Using the latter and simple modifications to the CLASS code, which we call
EFCLASS, in conjunction with very accurate analytic approximations for the background evolution, we
obtain competitive results in a much simpler and less error-prone approach. We also derive the initial
conditions in matter domination, and we find they differ from those already found in the literature for a
constant w model. A clear example is the designer model that behaves as ACDM in the background but
has nonetheless dark energy perturbations. We then use the aforementioned models to derive constraints
from the latest cosmological data, including supernovae, BAO, CMB, H(z) and growth-rate data, and find
they are statistically consistent to the ACDM model. Finally, we show that the viscosity parameter % in
realistic models is not constant as commonly assumed but rather evolves significantly over several orders

of magnitude, something which could affect forecasts of upcoming surveys.
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I. INTRODUCTION

A few decades ago it became clear that a model of
the Universe including the cosmological constant A could
alleviate several problems in the cold dark matter (CDM)
scenario [1]. Although the standard model of cosmology
ACDM is in very good agreement with recent astrophysical
measurements [2,3], it is also well known that the huge
discrepancy between both predicted and inferred values of
A represents one of the biggest conundrums for funda-
mental physics [4,5].

In 1998, convincing evidence from observations of
Supernovae type Ia (Snla) showed that the Universe is
undergoing a phase of accelerated expansion [6,7]. Ever
since, the standard cosmological model ACDM has become
the best phenomenological description for the Universe
[2,3,8]. The yet unsolved cosmological constant problem
has driven an effort towards alternative explanations for the
late-time accelerating phase of the Universe.

Different cosmological models have emerged, and nowa-
days one finds two leading approaches which avoid the
introduction of a cosmological constant. On the one hand,
there exist dark energy (DE) models [9] where yet
unobserved scalar fields would dominate the energy con-
tent at late times, avoiding fine-tuning issues as well as
accelerating the Universe [10,11]. On the other hand, there
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are modified gravity (MG) models that instead modify the
current theory of gravity, namely, Einstein’s theory of
general relativity (GR) [12]. These modifications of GR
are, however, not easily achieved as several tests carried out
up to extragalactic scales are in very good agreement with
GR [13,14].

Both DE and MG models provide plausible, alternative
scenarios for explaining the late-time acceleration of the
Universe. It is known that both kinds of models can fit
background astrophysical observations, as well as the
standard model ACDM. These models are, therefore,
degenerated at the background level despite several efforts
to disentangle them with model independent approaches
[15,16]. Although the recent discovery of gravitational
waves by the LIGO Collaboration [17] allows us to rule
out some families of MG models [18-27] (e.g., from the
so-called Horndeski theories' [29]), there remains a degen-
eracy between the two leading approaches.

Among the remaining MG models one finds an impor-
tant class: f(R) models [30-33]. Even though this kind of
model might be fully degenerated at the background level
(e.g., the so-called designer f(R) models which can exactly
mimic the background dynamics of a dark energy model
with equation of state w(z) [34-37]), the linear order
perturbations could in principle be distinguishable from
ACDM [38]. This is relevant as in general the DE

lHowever, a recent work claims that the reduction of viable
MG models is not as severe as previously announced [28].

© 2019 American Physical Society


https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.99.043516&domain=pdf&date_stamp=2019-02-12
https://doi.org/10.1103/PhysRevD.99.043516
https://doi.org/10.1103/PhysRevD.99.043516
https://doi.org/10.1103/PhysRevD.99.043516
https://doi.org/10.1103/PhysRevD.99.043516

ARJONA, CARDONA, and NESSERIS

PHYS. REV. D 99, 043516 (2019)

perturbations can have a strong effect in the determination
of the growth-index y [39], even though with current
growth data it is not possible to draw definite conclusions
in favor of any f(R) model [40,41].

The study of perturbations in MG models is thus of great
importance and one can find different approaches in the
literature (e.g., [35,36,38,42-59]). In Ref. [60], the authors
restricted themselves to background histories consistent with
a flat ACDM model and parametrized changes in both
Poisson and anisotropy equations via two functions u(a, k)
and y(a, k); these two functions take into account possible
deviations from GR in the relation between the Newtonian
potentials as well as the relation between the potentials and
matter perturbations. The parametric functions were imple-
mented in a modified version of the code CAMB? [61]
dubbed MGCAMB.? Since these parametrizations are only
valid at late times, in Ref. [62] the authors modified
MGCAMB to introduce new parametrizations which are
valid at all times. A drawback in this approach to perturbations
in MG models is that it fixes the background to ACDM while
itis known that viable f(R) models might differ from ACDM
at the background level (e.g., Hu-Sawicki model [42]).

A different approach to study perturbations in MG
models was carried out in Ref. [63] where the author
studied perturbations in f(R) models which exactly mimic
the ACDM background by using the full set of covariant
cosmological perturbation equations; the author modified
the publicly available code CAMB, implemented this
approach, and released a code called FRCAMB 4 In
Ref. [64], the author extended FRCAMB to take into
account f(R) models with a background different from
ACDM,; the code has not been released.

An effective field theory (EFT) approach [65] to DE and
MG models was pursued in Ref. [66] where authors had into
account a fairly general theory with unbroken symmetries and
implemented it in a code called EFTCAMB> (i.e., a modified
version of CAMB). Although this approach does not use
any quasistatic approximation and evolves the full dynamics
of perturbations on linear scales, the mapping of specific
models into an EFT formalism might be cumbersome.

The Planck Collaboration used MGCAMB and EFTCAMB
in Ref. [67] to study cosmological constraints in both DE
and MG models. Although the results somehow depend on
which data sets are regarded as well as on some assump-
tions [e.g., the equation of state w(a), the sound speed
c?(a, k), the anisotropic stress z(a, k)], the authors did not
find conclusive evidence for extensions to the standard
model of cosmology.6

*https://camb.info/

3http://aliojjati. github.io/MGCAMB/home.html

http://darklight.fisica.unimi.it/cosmonews/frcamb/

3 http://eftcamb.org/

However, in Ref. [68] authors found evidence for deviations
of GR (Z30) using various astronomical observations, including
data from Planck.

In Ref. [69], authors proposed the so-called equation of
state (EOS) approach for perturbations. In this approach,
f(R) models can be expressed as a dark energy fluid at
background and linearized perturbation order [44,52], see
also [70-72]. The authors used an elegant gauge-invariant
formalism, without the subhorizon approximation, where the
modifications to GR are expressed as equation of state w(a),
entropy perturbation I'(a, k), and anisotropic stress I1(a, k).
The EOS approach was implemented in a modified version of
the code CLASS’ [73] in Ref. [74] where good agreement
with previous studies and codes was found. In spite of
addressing the problem of perturbations in f(R) models in
an elegant way, the EOS approach is not physically very
intuitive: the interpretation of results and the perturbation
variables in this formalism is not straightforward.

In this paper, we will also express f(R) models as a dark
energy fluid, but differently to the EOS approach in [69], as
we will utilize the equation of state w(a), the sound speed
c2(a,k) and the anisotropic stress z(a,k) as variables
describing the fluid [75]. This makes the comparison with
popular DE models such as quintessence (w(a) > —1,
c¢2=1, n(a,k)=0) and K-essence (w(a), c2(a),
n(a, k) = 0) relatively easy. This is of paramount impor-
tance in the case of the anisotropic stress because in f(R)
models generically one has z(a, k) # 0 whereas in standard
single-field DE models z(a, k) = 0, so that any convincing
evidence of anisotropic stress would rule out all standard
single-field DE models [75,76]. Likewise, nondetection of
anisotropic stress would get several classes of MG models
into difficulties.

Since current galaxy surveys do not reach scales compa-
rable to the cosmological horizon, one frequently uses a
quasistatic approximation for the perturbation equations. The
quasistatic approximation roughly amounts to neglecting
time derivatives in the linearized Einstein equations while
only keeping spatial derivatives; in addition one only takes
into account modes whose wavelength is shorter than the
cosmological horizon. Some previous studies and imple-
mentations (i.e., FRCAMB, EFTCAMB, CLASS_EOS_FR)
did not apply the subhorizon approximation to the perturba-
tion equations. Nevertheless, the quasistatic approximation
has been investigated in the context of MG theories in
Refs. [47,77] and has been implemented in MGCAMB. On
the one hand, in Ref. [47] authors argue that general f(R)
models do not satisfy the quasistatic approximation; how-
ever, the subhorizon approximation can be safely used in
f(R) models describing the current phase of accelerating
expansion and fulfilling solar system tests.

On the other hand, in Ref. [77], authors argue that the

quasistatic approximation breaks down outside the DE
H(z)

(142)cy

Jeans scale, rather than outside the cosmological horizon;

sound-horizon k < k;, where k;(z) = is the physical

7http://class-code.net/
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the authors disregarded the anisotropic stress in their
analysis and also consider a constant DE ¢2, both assump-
tions being not realistic for viable MG models. In this
paper, we will work out solutions to the perturbations
equations in f(R) models under the subhorizon approxi-
mation. We will derive analytical solutions for DE pertur-
bations and test them numerically showing that the
quasistatic approximation actually performs quite well
for this kind of MG model.

By placing MG and DE models on the same framework
one is, in principle, able to disentangle the two kinds of
models through different predictions for the equation of
state w(a), the sound speed c?(a, k), and the anisotropic
stress z(a, k). Both DE sound speed and DE anisotropic
stress are particularly important because they are closely
related to the growth of structures and, therefore, might
leave detectable traces in observables such as anisotropies
in the cosmic microwave background radiation (CMB)
and galaxy counts (GC) [38,78]. Although DE and dark
matter (DM) perturbations are invisible, they affect both
the CMB and the GC via, for instance, the integrated
Sachs-Wolfe (ISW) effect and the lensing potential [44].
While the presence of DE anisotropic stress can enhance
and stabilize the growth of matter perturbations [76,78-81],
the DE sound speed might alter the level of clustering
and the evolution of matter perturbations [82—84]. These
properties are very important because one can use them to
break background level degeneracies among different
models [85,86].

The most recent CMB data from the Planck satellite® as
well as data from the Dark Energy Survey’ are in good
agreement with the standard cosmological model ACDM
[2,3], but this situation could potentially change by combin-
ing different probes and from upcoming galaxy surveys,
stage IV CMB experiments, and gravitational wave obser-
vations (see, for instance, Refs. [25,87-107]). Despite the
success of the ACDM model when fitting current data sets,
its Bayesian evidence' is not extremely different from ex-
tended models [110,111]. Furthermore, there remain unex-
plained issues with other data sets such as direct Hubble
constant measurements, weak lensing data, and cluster
counts where dynamically DE models or MG models
could play a part (see, for instance, Refs. [78,110,112-120]).

This paper is organized as follows. In Sec. II, we discuss
the standard equations for perturbations in a Friedmann-
Lemaitre-Robertson-Walker (FLRW) metric. First, in
Subsection IT A, we explain how f(R) models can be
mapped into a DE fluid and give analytical solutions for DE
perturbations in general f(R) models under the subhorizon
approximation. Secondly, we present results for some

http //sci.esa.int/planck/

http% /lwww.darkenergysurvey.org/

10 See, for instance, Refs. [108,109] for a discussion about
Bayesian evidence in cosmology.

viable f(R) models in Subsection IIB. In Sec. III, we
show that our analytical solutions derived using the sub-
horizon are in very good agreement with a full numerical
evolution of the perturbation equations. Furthermore, we
compare our implementation in the CLASS code with
available codes such as MGCAMB, CLASS_EOS_FR, and
FRCAMB. In Sec. IV, we clarify and discuss some points
about viscosity in viable f(R) models. Then, in Sec. V, we
present cosmological constraints for a few MG models
within our methodology by using a Monte Carlo Markov
chain (MCMC) approach. We conclude in Sec. VI and give
details about our analytical computations and CLASS
implementation in Appendixes A and B, respectively.

II. THEORETICAL FRAMEWORK

Let us assume that the Universe can be described at
the background level by a FLRW metric, then in order to
study the perturbations of various cosmological models, we
consider the perturbed FRW metric, which in the conformal
Newtonian gauge can be written as

ds® = a(1)2[~(1 +29(%.7))de® + (1 - 20 (%.7))dx2], (1)

where 7 is the conformal time defined via dr = dt/a(t) and
we will follow the notation of Ref. [121].11
At this point we can assume an ideal fluid with an energy
momentum tensor
T! = P8 + (p + P)U*U,, (2)
where p, P are the fluid density and pressure, while U* =

\/d"sz is its velocity four-vector given to first order by
—as

Uﬂ:ﬁ(

U"U, = —1. Furthermore, = x where f = E’ and the
elements of the energy momentum tensor to first order of

perturbations are given by

— W, i), which as can easily be seen satisfies

TS = ~(p+ dp), (3)
7 = (p + P)u;, (4)
Ti = (P +6P)8; + X, (5)

where p, P are defined on the background and are functions
of time only, while the perturbations dp, 6P are functions of
(¥,7) and Xj = T’ — 8T} /3 is an anisotropic stress tensor.

" more detail, our conventions are: (— + +-) for the metric
signature, the Riemann and Ricci tensors are given by V.., —
Ve = Va R}y and R, = R?,, while the Einstein equations are
G, = +«T,, forx = S”CGN and Gy is the bare Newton’s constant.

In what follows, we will set the speed of light ¢ = 1.
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Then, assuming GR we find that the perturbed Einstein
equations in the conformal Newtonian gauge are given
by [121]

o3¢ (q’; + El{') = 4xGya®sT), (6)
a a
k2 (q) + gl}‘) =4zGya*(p + P)6, (7)
a
LA : i k*
D+ (Y +20 2———= |¥Y+—(®-Y¥
+a(+ )+<a a2> +3( )
4 .

= Z GyaoT, (8)
K2(® - V) = 122Gya?(p + P)o, )

where we have defined the velocity 6 = ik/u j» the aniso-
tropic stress (p + P)o = —(k;k; —18;,)ZV. We also need
the evolution equations for the perturbations, given by the
energy-momentum conservation 7% = 0 as

5=—(1+w)(0-3d) —3%(& -w)s,  (10)

2

W lor

0=-2(1-3w0- 126 — 126 + K2,
a

(11)

0
1+w +1—|—w

where we define the equation of state parameter w = g and

the rest-frame sound speed of the fluid ¢ = %, Following

Ref. [78], we eliminate € from Eqs. (10) and (11), resulting
in a second-order equation for &,

S+ (- )5+ ()8
= k(1 +w)W¥+c26-(1+w)o)+---

2
:—k2<(1+w)‘P+c§5—§n)+---, (12)

where the (---) indicates the presence of complicated
expressions and we have defined the anisotropic stress
parameter of the fluid as 7 = %(1 + w)o. As also discussed
in Ref. [78] the k* term will act as a source, driving the
perturbations. However, since the potential scales as ¥ ~
1/k? in relevant scales, the only terms that matter are the
sound speed and the anisotropic stress. Therefore, we can
define an effective sound speed as

2
C?,eff = C%‘g”/5 (13)

that characterizes the propagation of perturbations as
well as the clustering properties on subhorizon scales.

We should also note that in principle the sound speed 2 can
be both time and scale dependent, i.e., ¢Z = ¢Z(z, k). For
example, as noted in Ref. [122], the sound speed for a
scalar field ¢ in the conformal Newtonian gauge for small

2 .
2 P :4;57, where my is the mass of the scalar
:

scales is ¢
field. On the other hand, ¢? is equal to one only in the scalar
field’s rest frame (see Chap. 11.2 of Ref. [122] for a quick
derivation). Of course, one has the same situation in f(R)
theories because in practice they only contain a scalar
degree of freedom'” [77]. Therefore, we expect the sound
speed to be scale dependent in modified gravity models,
when we are not in the rest frame of the equivalent
DE fluid.

Finally, in what follows we will use the scalar velocity
perturbation V = iijé/p = (1+4+w)@ instead of the
velocity 6. The former has the advantage that it can remain
finite when the equation of state w of the fluid crosses —1
(see also Ref. [124]). With this new variable, the evolution
equations, Egs. (10)—(11), become

vV  3/8P
§ =3(1 O ——— - [ = —ws), 14
(14w~ a([_) w) (14)

vV  k* 5P K2

Vi=—(1=-3w)—F——+(1 y
( W)a+a2H/3+( +W)a2
2 k2

320" (15)

where the prime ' is a derivative with respect to the scale
factor a and H(r) = 4.4

a

is the Hubble parameter.

A. The f(R) models and the effective fluid approach

In this setup, we can study a plethora of MG models
either directly as in Ref. [38] or as an effective DE fluid
[69]. For example, in the case of the f(R) models, the
modified Einstein-Hilbert action reads

S = / d4x\/—_g[% f(R) + ,cm] , (16)

where L, is the Lagrangian of matter and x = 8zGy, is a
constant with Gy being the bare Newton’s constant.
Varying the action with respect to the metric, following
the metric variational approach, we arrive at the following
field equations [38],

1 m
FGuy =5 (f(R) = RF)g + (9,0~ V,V,)F = KT
(17)

2y (R) theories can be viewed as a nonminimally coupled
scalar field in the Einstein frame. See, for instance, Ref. [123].

043516-4
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where F = f'(R), G, is the Einstein tensor and T,(,T) is the
energy-momentum tensor for the matter fields. By adding
and subtracting the Einstein tensor on the left hand side of
Eq. (17) and moving everything to the right hand side we
can rewrite the equations of motion as the usual Einstein
equations plus an effective DE fluid, along with the usual
matter fields [52]:

G = (T +TW), (18)
where

(DE)

1
KT;w = (1 - F)Guv +7(f(R) - RF)g;w

2
-(9,0-V,V,)F. (19)

Due to the diffeomorphism invariance of the theory, it is
very easy to show that the effective energy momentum
tensor given by Eq. (19), indeed satisfies the usual con-
servation equation:

VHTPE = 0. (20)

Clearly, the background equations are the same as in GR
[121]:

K _ _
H = gaz(.l?m + PpE) (21)

H = _gaz((pm + 3pm> + <.bDE + 3PDE>) (22)

While we assume that matter is pressureless (P,, = 0), the
effective DE density and pressure are given by

kPpg = ! H2/a? — 2FH?/a? + HEF/a?

=2-
—2H/a* - FH/a* + F/a?, (23)
KPpE = —§+3H2/(12—3HF/a2+3F7"l/a2, (24)

where H = % is the conformal Hubble parameter.13

Using Eqgs. (23) and (24), we see that the DE equation of
state for the f(R) models in the effective fluid description is
given by

~af +2((1 +2FYH2 = HF + 2+ F)H - F)
af —6(H* — HF + FH)

WDE =

(25)
which is in agreement with the expression found

in Ref. [38].

“In what follows, we denote the usual Hubble parameter as
H(t) = d“T/dt and the conformal one as H(z) = % The two are
related via H(z) = aH(1).

Thus, it becomes clear that by working in the effective
fluid approach, we can assign a density, pressure, velocity
and anisotropic stress to the effective energy momentum
tensor as in the general case of Egs. (3)—(5). Then, we can
find the effective quantities for the f(R) model using the
tensor of Eq. (19). As a result, the effective pressure,
density and velocity perturbations are given by

(..)6R + (...)8R + (...)5R + (...)¥

PDE
+ (I H (LD (.)D, (26)

Spe=(..)0R+(..)R+(.)¥+ (.. )@+ (..)D, (27)

VDE

(1 + wpg)0be
()8R + (.)6R + (L.)F + (.)D + (...)D.
(28)

Moreover, in these models, it is easy to see from the field
equations that the difference of the potentials ® and ¥ is
given by

F
<I>—‘P:?’R5R, (29)

which implies that the anisotropic stress can be written
as [121]

_ 3/, 1 ,

PDEZDE — ) <k,-kj - 5517') Y

1 k?

= E?(F‘R(SR +(1=-F)(®-Y)). (30)

In Appendix A, we give some other useful expressions
related to the effective fluid variables.

1. Subhorizon approximation

Expressions in Eqs. (26)-(30) for DE perturbations
might be cumbersome. Therefore, it is very convenient
to work in the subhorizon approximation, i.e., with modes
deep in the Hubble radius (k*> > a>H?), where we find that
terms with time derivatives are negligible compared to the
ones scaling as k*>. For example, the perturbation in the
Ricci scalar is

12(HX+H),, 4k 202

R=-—g ¥ gt ¥
I8H . 6H. 6
_—a2 Q—?T_?, (31)
4k 2k>
MDY, (32)

a
where the last line follows from the subhorizon approxi-
mation. Then, using the equations of motion we find that
the potentials can be written as

043516-5
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a G ff _

W = ~42Gy [y G (33)
aZ

D = —4nGy P OcitPmOm» (34)

where the effective Newton’s constant G and Q. are
given by [38]

114450k
fo/GN——ia’ (35)
¢ F14380
11+25%
eff F 2 F,R’ (36)
where F = d(R)’ Fgr= dR(2> Note, however, that in the

effective fluid approach we have to introduce the DE
density ppg, which then means that from the Poisson
equation for @, we have

K2 _ _ _
—;q) =47G N (PO +PoEdDE) = 478G N QcttPOm,  (37)

or that

1
Pimbm = Ouir — lpDE(SDEs (38)
which can be used to find the evolution of the DE density
perturbation in this regime.

The previous expressions are also useful as in the
subhorizon approximation one can derive a second-order
differential equation for the matter density contrast in terms
of Geff [38],

i) + (242D -

3Q,,0G/Gn
—7(‘)‘ prm— O’
2a°H(a)*/H} n(@)

(39)

where in this case primes
to the scale factor a.
Finally, we can also define the anisotropic parameters

— v <1> ) .
n=-5 and y =5 for which we then have

" denote derivatives with respect

2k2 Fg

_ F

1425

14 44 1)

v =

EEE RN
| ~n|;’ =,

We can now apply the subhorizon approximation and
derive relatively simple expressions for all the effective DE
perturbations in Egs. (26)—(30). In practice, we have found
that the results depend on the way the approximation is
applied and this is one of the main results of our paper.

Since 0R in Eq. (31) has up to second-order derivatives of ®
and Eq. (26) contains up to second-order derivatives of R,
this means that the pressure perturbation has up to fourth-
order derivatives of the metric perturbation ®. Eliminating all
of the higher-order perturbations via the subhorizon approxi-
mation can cause significant deviations and instabilities in
the system of effective fluid equations. We found that a
better approach is to use Eq. (26) and repeatedly apply
Eq. (29), thus reducing the number of higher-order derivative
terms and increasing the accuracy of the solutions.

Following this prescription and using the Poisson equa-
tions for the potentials, we find that the effective density,
pressure and velocity perturbations are given by

2Fp R -2 -
oPpp | 257 +3(1+ 555 FK 5,

5, (42
ppe  3F 1—1—3’;—27‘ PDE (42)
11-F+502-3F) 2 5
b = B F s (@)
F 1—0—3]‘ -+ PDE
F14+6555,
Vbe = (1 4 wpg)fpg = O (44)

2F1+3’<2FRp

Finally, the DE anisotropic stress parameter zpg is given by

. (45)

Note that the DE anisotropic stress in Eq. (45) can also be
written as

kZ
mos(@) =1 5 @, )
1+ f2(a)
where fl(a):Fg—RF and f,(a) = %, which is

reminiscent of model 2 in Ref. [78], but with different
functions in the numerator and the denominator. This is
interesting as it seems that many popular Ansdtze for the
DE anisotropic stress do not capture exactly all of the
features of the f(R) models.

On the other hand, using Eqgs. (42) and (43), we see that
the DE sound speed is given by

12858 4 3(1 + 5520 2

Cpp =% , 47
T3 I-F+502-3R) “7)

which implies that the DE effective sound speed is
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2
2 _ 2
Cseff = CsDE — g”DE/‘SDE

2

(455 ER
~ « .
1-F+5@2-3F)%

(48)

As we will see later on, the effective sound speed at late
times tends to go to zero due to the fact that the F term not
only is suppressed by k%, which in the subhorizon approxi-
mation is much larger than the Hubble parameter or related
quantities, but also because, for viable models, F in general
is a slowly varying function. This implies that for these
models there is no effective sound speed driving the DE
perturbations; thus, we expect that on large k and at late
times, the perturbations should become flat, in agreement
with Ref. [78].

It is clear that for the ACDM model, ie., f(R) =
R —2A, we have F'=1 and F p = 0, which implies that
wpg = —1 and (6Ppg, Sppg, 7pe) = (0,0,0) as expected.
When the equation of state wpg for an f(R) model, e.g.,
the Hu and Sawicki (HS, hereafter) model, crosses the
so-called phantom divide line (wpg(a) = —1), problems
could arise due to the presence of the 1 + w term in the
denominator in Eq. (11) [125]. However, we see that in our
case the perturbations remain finite despite the presence
of the 1 + w term in the denominator in Eq. (11) as we
can absorb the 1+ w term by introducing Vpg = (1 +
wpg )fpg as mentioned earlier. Furthermore, the combina-
tion (1 + wpg)Opg always remains finite for viable f(R)
models as can be seen in Eq. (44). The simple analytical
expressions given by Eqs. (42)—(44) are one of our main
results.

Finally, for our effective DE fluid in Eq. (19) the most
common energy conditions [126] can be written in terms of
the effective DE density and pressure:

NEC = ppg + Ppg > 0.

WEC = fpg 20 and ppg + Ppg >0,

DEC = ppp >0 and ppg > |Ppgs

SEC = ppg +3Ppg >0 and  ppg + Ppg > 0,

where NEC, WEC, DEC and SEC correspond, respectively,
to the null, weak, dominant and strong energy conditions.
As expected for an accelerating universe [127,128], we
have checked that the SEC is violated. Since the condition
ppe = 0 holds, we find that the NEC, WEC and DEC can
be translated into the following constraint for the DE
equation of state wpg > —1. As can be seen in Fig. 1 for
the HS model, the NEC, WEC and DEC are violated for
redshifts z = 1.65 for reasonable values of the parameter b
(see Eq. (56) in the next section), for b € [0, 0.05].

B. Results for specific f(R) models

So far, our analysis has been quite general and here we
work out a couple of examples. In this section, we will
present our results for two specific models, namely, the HS

-0.98 T T T
[ I . (HS)

-099F

-1.01

~1.02 L L L L L L

FIG. 1. The DE equation of state wpg(z) for the HS model for
Q.0 =0.3, n =1 and for a variety of values of the parameter b,
with b € [0,0.05]. As can be seen, the equation of state crosses
wpg = —1 at approximately the same redshift z ~ 1.65. At early
times, we have 1 + wpg < 0, thus violating the SEC.

model and the so-called designer (DES) model which has
an expansion history equal to the ACDM model. These
models are interesting because they satisfy solar system
tests and give a proper matter era. Note, however, that in the
literature one finds other f(R) models sharing these
properties (see, for instance, Refs. [49,129,130]), but to
simplify our presentation we only focus on the two
aforementioned models.

Since modifications to GR are expected to become
important at late times, we consider a universe only
containing matter and an effective DE fluid."* The system
of differential equations that we are interested in is, hence,
given by Egs. (6), (9), (14), (15),

\%
5111 — 3(D/ - az’;{a (49)
V., Kk
V== et (50
Voe 3 [0Ppg
O = 3(1 QO —-——-= - ) , (51
pE = 3(1 + wpg) 2H a4 ([’DE wpEdpg |, (51)

(52)
K2 L 3

“In this paper, we focus on the late-time evolution of the
Universe, but it is possible that MG theories play a part in earlier
stages as well, namely, the inflationary period. There exist f(R)
models that give a unified description of early- and late-time
accelerating phases of the Universe [131,132] and our effective
fluid approach could in principle also be applied in these
scenarios.
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2
%(‘D — V) = 3Qpg7pE, (54)
where the prime ’ denotes a derivative with respect to scale
factor a, we have assumed that the matter component is
cold (w,, ~0) and pressureless (c%,m ~0), Q, = Q,0a">,
Qpp = H? — Q,,, and finally that the effective DE density,
pressure and velocity perturbations are given by Eqs. (42),
(43) and (44), respectively.

1. The HS model
The HS model [42] has a Lagrangian15 given by

_ 2 CI(R/mz)n
f(R)=R—-m W, (55)

where ¢y, ¢, are two free parameters, m?> ~ Q,,oH3 is of the
order of the Ricci scalar R, Hy is the Hubble constant, Q,,,
is the dimensionless matter density today, and m and n are
positive constants with n usually taking positive integer
values i.e., n=1,2,.... In the rest of our paper, we
assume n = 1.

After simple algebraic manipulations, Eq. (55) can also
be written as [133]

o m?c, m?c,/c,
S R T R my
1
= R=2(1 - )
2A
=R- W7 (56)

12(613(9,”0 B 1)S2I'10(a3(g2m0 B 1) B QmO)(8a3(Qm0 B 1) + QmU))

1-1/n
where A = ’";TCZ‘ and b = 2626—] In this form, it is clear that
this model can be arbitrarily close to ACDM, depending on
the parameters b and n. Moreover, for n > 0, it has the
limits [133]

limf(R) = R=2A,  lmf(R)=R.  (57)

Since the HS model tends to ACDM for b — 0, it can be
considered as a small perturbation around the ACDM
model. Therefore, it should come as no surprise that the
HS model can successfully pass the solar system tests.
Furthermore, in Ref. [133] it was shown that for small
values of the parameter b one is always able to find an
analytic approximation to the Hubble parameter that works
to a level of accuracy better than ~107% when the
parameter b is of the order of b ~ [0.001-0.1], thus making
the approximations very useful. Then, the Hubble param-

eter H(t) = d“T/d’ can be well approximated by

Hys(a)? = Hy(a)? + b6H, (a)? + b*6H,(a)? + - -
(58)

where the functions §H,(a) and 6H,(a) are given in the
Appendix of [133].

From Eqgs. (25), (56), (58) and considering a universe
only containing matter and DE, we can calculate the DE
equation of state as a series expansion in terms of b

wpg(a) = -1 —

while the DE anisotropic stress will be given by

1 KBER p
a: F m
7ipg(a) = — Pm s
pe(4) F1+35—2%pDE
K1 4a°(1-Q,, D
(_2_2 a’( : 0) 3b+_._>_p_5m'
a” Hy3(Q,0 +4a’ (1= Q,0)) PDE
(60)

The Starobinsky model [49] has a Lagrangian f(R) = R—
cym?[1 = (1 + R?/m*)™], and the results we obtain are very
similar to those for the HS model. To keep our presentation
simple, we will only present results for the HS model.

(QmO - 4613 (QmO - 1))4

b+t (59)

[

From the system of differential equations (49)—(54)
and the DE perturbations (42)—(45), we can derive approxi-
mate solutions in a matter-dominated regime (H(a)?/
H (2) = Qm()a_3),

12a3b(1 - Q)

wpg(a) = =1 - +- o (61)

QmO
OPpg(a 8a’k? 66a’H?
_L()zb(l_gmo)z( 3 2 12 0 )
PoE(a) 9,0 Hy k" Qo
Q,(a)
X ——0,, 62
Qpg(a) (©2)
4a’kK* (1 — Q,)? ) Q,(a)
g =~ b . 7 Oms 63
DE ( 39310['1(2) QDE(”) ( )
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3Q,,0H?
S(a) = 6 <a +=0 °>, (64)
Vula) = =8g\/aQyo + -+, (65)
a’k? 8a*  4954°H3

~— 1-Q -

_%Jr y ) (©6)
Vig(a) = 8yb(1 = Q) C%ﬁ\m—m

_53%/23*) (67)

ofa) =~ 36, 200 )

where Q,,(a) = Q,0a=® and in this limit Qpg(a)~
1 —Q,,0. Also, as can be seen from the above expressions,
the dominant contributions in the subhorizon limit and in
the mater-dominated regime are dpg  k*a®> and Vpg «
a’/?. When numerically solving the system of differential
equations (49)—(54), we will use the above solutions as
initial conditions.

2. The DES model

The DES model [34,35,37], which has a background
exactly that of the ACDM model, has a Lagrangian
given by

A <
R) = R —2A + aH?

3 13 A
X (CO’E teogt 2007m>7 (69)

where ¢y = 15(=7 +v/73) and a is a free dimensionless

parameter.

While for the DES model the background is much
simpler than for the HS model (in the DES model the
expansion history matches that of the ACDM model, i.e.,
H}pg(a) = Hicpm(a), Eq. (69) makes more complicated
the expressions for all the effective DE quantities. We have
found an approximation around a ~ 0 that works very well
in the range a € [0, 1]; it reads

F(a)
Q_CO_I
~ 1 + m0 a3(1+C0)
fR‘OzFl(Co +1,c04+3:2¢0 +2:1-Q,0)
+ 0(03(2+C°>), (70)

where fro= F(a = 1) — 1. For viable models, the param-
eter f has typical values on the order fg o ~ —107* (see,
for instance, Ref. [36])."

Following the same approach as for the HS model, we
have found approximate solutions in a matter-dominated
regime,

WDE(a) == _L (71)
OPpE (_ 2(co + 1) frokPa®ot4Q 07 4. )
PDE 990
Q
x Suld) 5 (72)
Qpg(a)
_((co+ Df pokPa¥otiQ
apg = | — e 4
Q,(a)
x 5, 73
Qpg(a) (73)
3Q,,0H2
Sm(a) = 8 <a + —k§ °> : (74)
Vm(a) = _50 anO + -, (75)
B0/ roa' 0Q, 0 (a(1 4 2¢0)k* + 36¢6Q,0)
Spg(a) ~ 9
go(1 = Q,0)
+-o, (76)
3 Q,0H?
(a) = =26 k°2 04 ..., (78)

where gy = ,F(1+ co.3 4 co. 2 + 2¢p. 1 = Q,9). In the
next section, we will use these approximations as initial
conditions for the numerical evolution in the effective fluid
approach.

Note that in Ref. [124] the authors derived approxima-

tions to the evolution of the DE density contrast dpg =~

So(1 +w) (5, + mg{ﬂ) and velocity perturbation
Vg & —=80(1 + w)Hy/Q0a'/?. Clearly, in both cases
when w = —1, as is the case for the DES model, we would
have that (Spg, Vpg) = (0,0) as expected. However, we
have seen that the DE perturbations in the DES model
(despite having wpg = —1) have in general a dependence
on the scale factor a which is quite different. Therefore,
care should be used when applying the expressions of
Ref. [124] as initial conditions and instead one should
derive again the correct expressions as we have done.

"®For illustration purposes, we note that the right-hand side of
Eq. (70) evolves roughly as F(a) a1+ 0.85 fzo ;97 a>3%6.
We, however, do not use this expression in our computations.
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III. NUMERICAL SOLUTION OF THE
EVOLUTION EQUATIONS

A. Evolution of perturbations

Here, we present the results of the numerical solution
of the evolution equations (49)—(54). In all cases, we will
assume Qmo = 03, k= 3OOH0, fRO = —10_4 and 030 = 08,
where fro= F(a=1)—1, unless otherwise specified.
We set the initial conditions well inside the matter-
dominated regime at a = 1073. The reason we choose
the specific value of k = 300H, ~ 0.1 h/Mpc for the wave
number is that it corresponds to the largest value of k we
can choose without entering the nonlinear regime.

Before we proceed with the discussion of our results, it is
instructive to show the evolution of the DE sound speed ¢2
and the DE effective sound speed ¢? . given by Egs. (47)
and (48), respectively, for both the HS and DES models. The
plots are shown in Fig. 2, where we show ¢2 p (left) and
Cieff (right) for both the HS (dotted line) and DES (dashed
lines) models. As can be seen, for both models, the DE sound
speed remains close to ¢? pp ~ — % while the effective sound
speed is close to cieff ~ 07. On the one hand, this behavior
implies that at early times while the DE effective sound
speed is positive, the DE perturbations are expected to grow.
On the other hand, at late times as the DE effective sound
speed goes to zero asymptotically the DE perturbations are
expected to reach a plateau and stop growing.

In Figs. 3 and 4, we present our results for the
perturbation variables (6,,, V,,, 5pg, Vpg) and the potentials
(@, ¥), respectively. As noted before, the DE perturbations
reach a plateau and then flatten out for both models, as
expected from the fact that the DE effective sound speed
goes to zero at late times (see Fig. 2). Also, in all cases, the
DE velocity perturbation remains significantly suppressed
with respect to the rest of the variables. Furthermore, the
potentials remain approximately equal until a ~ 0.1, which

~0.667} fro=—107"

-0.668}F

as seen in Fig. 2 corresponds to the epoch when roughly
cieff ~ 0, and then diverge from each other significantly
due to the presence of the anisotropic stress.

B. Growth rate of matter perturbations

Next we will also present our results for the growth rate
of matter perturbations parameter fog(a)= f(a) - o(a),
where f(a) = % is the growth rate and o(a) = oy % is
the redshift-dependent root mean square (rms) fluctuations
of the linear density field within spheres of radius
R = 8 h™! Mpc, while the parameter oy g is its value today.
This parameter is important as it can be shown to be not
only independent of the bias b, but also a good discrimi-
nator of DE models [134].

In this section, we will also compare our results with
those of Ref. [36] that follow a direct brute-force solution of
the differential equations of the f(R) model, dubbed “Full
f(R)” from now on. There is of course also the equation of
state approach of Ref. [69] and we have explicitly checked
that our results are in excellent agreement with it; thus, to
avoid an overload in both the presentation and the plots, in
what follows we will only present the comparison with the
“Full f(R)” approach.

Both aforementioned approaches are exact, in the sense
of having no approximations, however the one of Ref. [36]
suffers from the problem that the relevant equations are
extremely stiff numerically, while in the one of Ref. [69] the
fluid equations are written in terms of a gauge-invariant
entropy perturbation which cannot be easily translated to
simple analytic expressions for the effective pressure,
density contrast and velocity perturbations such as
Egs. (42), (43) and (44) presented here.

In Figs. 5 and 6, we show the evolution of the fog(z)
parameter for the HS and DES models, respectively, for
Qmo = 03, k= 3OOH0,fR‘() = —10_4 and 030 — 0.8 vs the
fog data compilation from Ref. [135]. On the left panel we

- ~0.669} 2 DES
o » / HS
© _0.670f S
» II
» 1
» !
-0671F  /
[ /
» ,’
~0.672F /
L 1
0.001 0.005 0.010 0.050 0.100 0500 1

a

a

[ =107
0.0005F % fro=-10"" 4
0.0004F ]
1&00003F, &+ - DES |
1 s \

3 N HS |
o L \\ 4
0.0002F 3
0.0001F 3
0.001 0.005 0.010 0.050 0.100 0500 1

FIG.2. The DE fluid sound speed c; g, (left) and the DE effective sound speed c3 . (right) given by Eqgs. (47) and (48) for both the HS
(dotted line) and DES (dashed lines) models for Q,,; = 0.3, k = 300H,, and fz, = —107*. As can be seen, for both models the DE
sound speed remains close to ¢ ~ —% while the DE effective sound speed is close to ¢2 . ~ 0.
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FIG. 3. The evolution of the matter and effective DE perturbation variables (5,,, V,,, Spg, Vpg) for the HS (left) and the DES (right)
models for Q,,) = 0.3, k = 300H, 6y = 1, and fr( = —107*. As described in the text, the DE perturbations reach a plateau and then
flatten out for both models, as expected from the fact that the DE effective sound speed given by Eq. (48) goes to zero at late times (see
Fig. 2). Also, in all cases, the DE velocity perturbation remains significantly suppressed with respect to the rest of the variables.
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FIG. 4. The evolution of the potentials ® and ¥ for the HS (left) and the DES (right) models for Q,,, = 0.3, k = 300H,,, 5, = 1, and

fro = —107*. Due to a nonvanishing DE anisotropic stress, the potentials diverge from each other at late times.
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FIG. 5. The evolution of the fog(z) parameter for the HS model for Q,,0 = 0.3, k = 300H,, fzo = —107* and 63, = 0.8 vs the foy
data compilation from Ref. [135]. On the left panel we show the theoretical curves for the “Full f(R)” brute-force solution based on
Ref. [36] (magenta line), our effective fluid approach which we call “Eff. Fluid” (blue dashed line), the ACDM model (black line) and
the numerical solution of Eq. (39) dubbed “ODEGeff” (dotted blue line). On the right panel we show the difference of the
aforementioned theoretical curves with respect to that of the ACDM model. As can be seen, the agreement with all approaches is

excellent.
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FIG. 6. The evolution of the fog(z) parameter for the DES model for Q0 = 0.3, k = 300H,, fro = —107* and 65y = 0.8 vs the foy
data compilation from Ref. [135]. On the left panel we show the theoretical curves for the “Full f(R)” brute-force solution based on
Ref. [36] (magenta line), our effective fluid approach which we call “Eff. Fluid” (blue dashed line), the ACDM model (black line) and the
numerical solution of Eq. (39) dubbed “ODEGeff” (dotted blue line). On the right panel we show the difference of the aforementioned
theoretical curves with respect to that of the ACDM model. As can be seen, the agreement with all approaches is excellent.

show the theoretical curves for the “Full f(R)” brute-force
solution based on Ref. [36] (magenta line), our effective fluid
approach which we call “Eff. Fluid” (blue dashed line), the
ACDM model (black line) and the numerical solution of
Eq. (39) dubbed “ODEg.” (dotted blue line). On the right
panel, we show the difference of the aforementioned theo-
retical curves with respect to that of the ACDM model. As can
be seen, the agreement with all approaches is excellent.

C. CMB power spectrum

We now also present the results for the CMB power
spectra for both models and we compare our predictions
with those of several other codes. As we show in
Appendix B, our implementation of the effective fluid
approach in the CLASS code [73], while much simpler,
also gives results in excellent agreement with other codes,
such as EFTCAMB [66], MGCAMB [60], FRCAMB [63],
CLASS_EOS_FR [74]. In all cases, we took extreme care
in order to match the various cosmological parameters
between the codes and we explicitly tested that in the limit
of the ACDM model, all codes agree with each other within
the numerical errors. The fact that our implementation is
consistent with that of Ref. [74], which is exact, shows the
subhorizon approximation can be safely applied in the
models we discussed (see Fig. 7). This agrees with results
in Ref. [47]: for f(R) models that predict an accelerated
expansion of the Universe and satisfy the local gravity
constraints, the subhorizon approximation is accurate.

In order to check with other results for the DES model in
the literature, we find it advantageous to introduce the By
parameter defined as

_Fr  R(a)
Bo="F awtayn(a)|,_, (79)

The main reason for this choice is that the effects of the
modified gravity models on the ISW would be small for
fro= —107* that we used in the previous plots. Thus, in
order to make the effect more visible and still be able to
compare with other analyses, we will choose the value
By =1, which corresponds to fr,~—0.159285 for the
DES model for Q,,, = 0.3. For the HS model we will use
fro = —107! and in both cases the rest of the parameters
are as in the previous plots.

We also fix the spectral index n; and amplitude A, to
(ny,Ay) = (1,2.3 x 107?), so that we can isolate the effects
of the f(R) models from the effects of a nonflat primordial
spectrum. As we have mentioned in previous sections, for
large values of the parameter b the HS model behaves as a
matter-dominated model, and we actually expect the CMB
spectrum at low multipoles to be nearly completely flat
(also due to our choice of n;, = 1).

In Fig. 7, we present the low multipoles of the CMB
TT power spectrum for the HS model (left panel) and
the DES model (right panel). We compare several codes:
our own modifications to CLASS which we call
EFCLASS, the codes MGCAMB and FRCAMB for
the HS model and the codes CLASS _EOS_FR and
EFTCAMB for the DES model. We find that in the case
of the DES model all approaches are in very good
agreement, but in the case of the HS model, which also
requires modifying the background evolution, there is
significant disagreement at [ € [2,5] as the codes
MGCAMB and FRCAMB do not take into account
the change of the background properly.

Although disagreement between the codes for the HS
model can be explained by the fact that the other codes do
not treat the background properly, we also compare our
results with a direct theoretical calculation of the ISW
effect, see Fig. 8. The relevant formulas for the theoretical
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The low multipoles of the unlensed CMB TT power spectrum for the HS model (left panel) and the DES model (right panel).

We compare several codes: our own modifications to CLASS which we call EFCLASS, the codes MGCAMB and FRCAMB for the HS
model and the codes CLASS_EOS_FR and EFTCAMB for the DES model. We find that in the case of the DES model all approaches are
in very good agreement, but in the case of the HS model, which also requires modifying the background evolution, there is significant
disagreement at [ € [2, 5] as the codes MGCAMB and FRCAMB do not take into account the change of the background properly. For
these plots we assume (n,, A;) = (1,2.3 x 107), fzo = —107! for the HS model and B, = 1, which corresponds to f o =~ —0.159285
for the DES model for Q,,, = 0.3, while the rest of the parameters are as in the previous plots.

calculation of the ISW effect are given for completeness in
Appendix A. In Fig. 8, we show the comparison of the low
multipoles of the CMB TT power spectrum (I € [2, 5]) for
the HS and ACDM models between our own modifications
to cLASS (EFCLASS) and a direct theoretical calculation.
We find that in both cases there is excellent agreement.
For this plot again we assume (n,,A,) = (1,2.3 x 107?),
fro= —107", while the rest of the parameters are as in the
previous plots. We find that in the case of the HS model, the
agreement between the direct theoretical calculation and
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= 800
\
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/
FIG. 8. A comparison of the low multipoles of the unlensed

CMB TT power spectrum (/ € [2,5]) for the HS and ACDM
models between our own modifications to CLASS (EFCLASS)
and a direct theoretical calculation using the expressions for the
ISW effect given in Appendix A. We find that in both cases there
is excellent agreement. For this plot again we assume (n,,A;) =
(1,23 x 107) and fgo = —107!, while the rest of the param-
eters are as in the previous plots.

our CLASS modifications (green and cyan lines, respec-
tively) is well below ~2%.

IV. EVOLUTION OF THE VISCOSITY
PARAMETER

In principle, the anisotropic stress parameter is the lowest
multipole in the Boltzmann hierarchy after the density and
velocity perturbations. As a result, it should also follow an
evolution equation. Since the properties of DE are currently
unknown, one can assign a viscosity parameter c2 and a
phenomenological evolution equation as in Ref. [82],

2 2 8§ &2
. 3H_a — V1S [ VIS V4 , 80
S =3l T3 e (B0

whereas in previous sections, we have introduced the
parameter Vpg = (1 + w)@ and the adiabatic sound speed
Vli’ ) 3(‘1”11W) where dots are conformal
time derivatives and primes scale factor derivatives. Also,
note that there is a difference in the definition of the
anisotropic stress compared to Ref. [82]. Since we follow
the notation of Ref. [121] we have zpg = wllyy, where
mpe = 3 (1 4+ w)o is the anisotropic stress in this paper and
[Ty is the anisotropic stress parameter of Ref. [82].

The parametrization of Eq. (80) is also useful if one
wants to explore the properties of a generalized dark matter
fluid, as was done in Ref. [136] or place constraints in
imperfect fluids [80]. In our case, we actually know the
underlying DE model, which is our f(R) effective fluid, so
using Eq. (80) we can reconstruct the viscosity parameter,
something which would be of great interest for forecasts for
upcoming surveys.

iscizw—”{( =w-
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FIG. 9. The evolution of the viscosity ¢ (a) parameter for the
HS model for Q,,y = 0.3, fxo = —107* and values of the wave
number k/H, = [50, 100,300]. As can be seen, the parameter
changes by more than 7 orders of magnitude over the range
a €[1073,1].

After changing variables from conformal time to
scale factor in Eq. (80) we can solve for the viscosity
parameter as:

, _aH(1+w)

Vs T T4V ew (3¢a(1 4 w)mpg + w(azpg — 3wapg)).

(81)

In the case of the HS model, it can easily be seen from
the previous equation that at early times, in matter
domination in particular, the viscosity parameter scales as

141 -Q
2 T Rm0 g 4
Clis =3 2, bk*a®. (82)

C

In the case of the DES model, we have that while ¢2,, — 0
there is clearly anisotropic stress in this model as in the
RHS of Eq. (80) the term (1 + w) in the denominator
cancels out with ¢2 to give a nonzero result.

In Fig. 9, we show the evolution of the viscosity
parameter ¢ given by Eq. (81) as a function of scale
factor a for the HS model for ,,0 = 0.3, fro = —10~* and
values of the wave number k/H, = [50, 100, 300]. As can
be seen, the parameter changes by more than 7 orders of
magnitude over the range a € [1073, 1] which means that in
realistic models, like the HS f(R) model, ¢2 clearly cannot
be considered as a constant parameter, as is the usual
assumption when performing forecasts for future surveys

like Euclid [91].

V. COSMOLOGICAL CONSTRAINTS
A. Data

Here, we present the results of our analysis from fitting
the latest cosmological observations including the super-
novae type la (Snla), Baryon Acoustic Oscillations (BAO),

TABLEIL The H(z) data used in the current analysis (in units of
kms~! Mpc™!). This compilation is partly based on those of
Refs. [147,148].

z H(z) oy Reference
0.07 69.0 19.6 [149]
0.09 69.0 12.0 [150]
0.12 68.6 26.2 [149]
0.17 83.0 8.0 [150]
0.179 75.0 4.0 [151]
0.199 75.0 5.0 [151]
0.2 72.9 29.6 [149]
0.27 77.0 14.0 [150]
0.28 88.8 36.6 [149]
0.35 82.7 8.4 [152]
0.352 83.0 14.0 [151]
0.3802 83.0 13.5 [147]
0.4 95.0 17.0 [150]
0.4004 77.0 10.2 [147]
0.4247 87.1 11.2 [147]
0.44 82.6 78 [141]
0.44497 92.8 12.9 [147]
0.4783 80.9 9.0 [147]
0.48 97.0 62.0 [150]
0.57 96.8 34 [139]
0.593 104.0 13.0 [151]
0.60 87.9 6.1 [141]
0.68 92.0 8.0 [151]
0.73 97.3 7.0 [141]
0.781 105.0 12.0 [151]
0.875 125.0 17.0 [151]
0.88 90.0 40.0 [150]
0.9 117.0 23.0 [150]
1.037 154.0 20.0 [151]
1.3 168.0 17.0 [150]
1.363 160.0 33.6 [153]
1.43 177.0 18.0 [150]
1.53 140.0 14.0 [150]
1.75 202.0 40.0 [150]
1.965 186.5 50.4 [153]
2.34 222.0 7.0 [154]

CMB, the Hubble expansion H(z) and growth fog data.
In particular, we use the Pantheon Snla data of Ref. [137],
the BAO points from 6dFGS [138], SDDS [139], BOSS
CMASS [140], WiggleZ [141], MGS [142] and BOSS
DRI12 [143]. We also use the CMB shift parameters based
on the Planck 2015 release [112], as derived by
Ref. [144]."

The Hubble expansion H(z) data are in general derived
in two ways: by the differential age method and by the
clustering of galaxies or quasars. The former is related to
the redshift drift of distant objects over significant time
periods, usually a decade or longer, since in GR the Hubble

7As of writing, the likelihoods of the Planck 2018 data release
are not publicly available.
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TABLE II. Compilation of the fog(z) measurements used in
this analysis along with the reference matter density parameter
Q,,, (needed for the growth correction) and related references.

Z fog(z) G0y (2) Qe Reference
0.02 0.428 0.0465 0.3 [155]
0.02 0.398 0.065 0.3 [156,157]
0.02 0.314 0.048 0.266 [157,158]
0.10 0.370 0.130 0.3 [159]
0.15 0.490 0.145 0.31 [160]
0.17 0.510 0.060 0.3 [134]
0.18 0.360 0.090 0.27 [161]
0.38 0.440 0.060 0.27 [161]
0.25 0.3512 0.0583 0.25 [162]
0.37 0.4602 0.0378 0.25 [162]
0.32 0.384 0.095 0.274 [163]
0.59 0.438 0.060 0.307115 [164]
0.44 0.413 0.080 0.27 [141]
0.60 0.390 0.063 0.27 [141]
0.73 0.437 0.072 0.27 [141]
0.60 0.550 0.120 0.3 [165]
0.86 0.400 0.110 0.3 [165]
1.40 0.432 0.116 0.27 [166]
0.978 0.379 0.176 0.31 [167]
1.23 0.385 0.099 0.31 [167]
1.526 0.342 0.070 0.31 [167]
1.944 0.364 0.106 0.31 [167]

parameter can also be written in terms of the rate of change

of the redshift H(z) = — 1% [145]. The latter approach is

related to the clustering of galaxies or quasars and it
provides direct measurements of the Hubble parameter

0.0228f

0.0226

0.0224

Qph?

0.0222

0.0220¢

0.0218,

0.29 0.30 0.31

0.32 0.33 0.34

by measuring the BAO peak in the radial direction [146].
The compilation of Hubble parameter H(z) data that we
used in our analysis are shown in Table I along with the
corresponding references.

We use the growth-rate data compilation of Ref. [135]
which is presented in Table II with the corresponding
references. In Ref. [135], the authors analyzed com-
binations of subsets in the data set and used Bayesian
model comparison to show that this particular data set is
internally robust. The growth-rate data used in our analysis
come from measurements of redshift-space distortions,
which are probes of the Large Scale Structure (LSS) and
in fact measure the combination fog(a)= f(a)-o(a),
where f(a) =4" is the growth rate, o(a) = G&O% is
the redshift-dependent rms fluctuations of the linear density
field within spheres of radius R = 8 h~! Mpc, and the
parameter oy is its value today.

It is important to stress that fog(a) can be measured
directly from the ratio of the monopole to the quadrupole
of the redshift-space power spectrum. This depends on
the combination f = f/b,, where f is the growth rate
and by is the bias, with all quantities defined assuming
linear theory [125,134,168]. Then, fog(a) can be shown
to be independent of bias, as in this combination it
completely cancels out. Indeed, this combination has
been shown to be a good discriminator of DE models
[134]. For details on the covariances of the data and how
to properly correct for the Alcock-Paczynski effect, see
Refs. [135,169,170], while for previous related analyses
see Refs. [171-173].
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S
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100-Q,h? g
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FIG. 10. The 68.3%, 95.4% and 99.7% confidence contours (top) and the one-dimensional marginalized likelihoods (bottom) for
various parameter combinations for the ACDM model. The red point and black dashed lines correspond to the concordance Planck 2015
ACDM parameters given in Table III. The black point indicates the mean value from the MCMC analysis.
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FIG. 11.

The 68.3%, 95.4% and 99.7% confidence contours (top) and the one-dimensional marginalized likelihoods (bottom) for

various parameter combinations for the DES model. The red point and black dashed lines correspond to the concordance Planck 2015
ACDM parameters given in Table III. The black point indicates the mean value from the MCMC analysis.

B. Methodology

Our total likelihood function L., can be given as the
product of the various likelihoods as

Lot = Lsnta X Lao X LH(Z) X Loy X Lgrowthv

which can also be translated to the total y? via y2, =
—2log L, or

)(IZOI :)(%nla +)(123AO +)(%(z) +Xgmb +X§rowth' (83}

In order to study the statistical significance of our
constraints, we will use the well-known Akaike information
criterion (AIC) [174]. Assuming Gaussian errors, the AIC
estimator is given by

2k, (ky + 1)

AIC=-2InL 2k ,
N L, + p+Ndat_kp_1

(84)

where Ny, and k, indicate the total number of data points
and the number of free parameters (see also [175]) of our
models, respectively. In our case, we have 1048 data points
from the Pantheon set, 3 CMB shift parameters, 9 BAO
points, 22 growth-rate data and 36 H(z) points for a total
of Ny, = 1118.

The usual interpretation of the AIC estimator is that a
smaller value implies a better fit to the data. However, in
order to compare different models, we need to use the pair
difference which can be written as AAIC = AIC,,4e1—
AIC,,;,- This relative difference can be interpreted with the
Jeffreys’ scale as follows: 4 < AAIC < 7 indicate a positive
evidence against the model with higher value of AIC 44 and
AAIC > 10 suggests strong evidence. Finally, when we have
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FIG. 12. The 68.3%, 95.4% and 99.7% confidence contours (top) and the one-dimensional marginalized likelihoods (bottom) for
various parameter combinations for the HS model. The red point and black dashed lines correspond to the concordance Planck 2015
ACDM parameters given in Table III. The black point indicates the mean value from the MCMC analysis.

that AAIC < 2 then this is interpreted as an indication of
the consistency of the two models. However, note that the
Jeffreys’ scale in general has been shown to lead to misleading
conclusions, thus it has to be interpreted with care [176].
To summarize, our j? is given by Eq. (83) and the para-
meter vectors (assuming a flat Universe) are given by:
Pacom = (R0, 100,42, h, 65,) for the ACDM; and
Prr) = (Quo. 100Q,h% a, h,og4) for the f(R) models
(when studying the DES model a = f, whereas for the
HS model a = b). Then, the best-fit parameters and their
uncertainties were obtained via the MCMC method based
on a Metropolis-Hastings algorithm written by one of the
authors.'® Moreover, we assumed priors for the parameters

"®The MCMC code for MATHEMATICA used in the analysis is
freely available at http://members.ift.uam-csic.es/savvas.nesseris/.

given by Q0 €[0.1,05], Q,h* €[0.001,0.08],
a=(—fro.b) €0,1], h€[0.4,1], ogo € [0.1,1.8] and
obtained approximately ~10° points for each of the three
models.

C. Results

In Figs. 10-12, we show the 68.3%, 95.4% and
99.7% confidence contours for the ACDM, the DES
and the HS models, respectively, along with the one-
dimensional marginalized likelihoods for various para-
meter combinations. In these plots, we also highlight, with
either a red point or a black dashed line, the Planck 2015
concordance cosmology. The latter is based on the
TT, TE, EE 4 lowP spectra, a flat ACDM model and
the values are shown in Table III. In all cases, we find
the best-fit g, parameter is roughly ~2.5¢ away from the

043516-17


http://members.ift.uam-csic.es/savvas.nesseris/
http://members.ift.uam-csic.es/savvas.nesseris/
http://members.ift.uam-csic.es/savvas.nesseris/
http://members.ift.uam-csic.es/savvas.nesseris/
http://members.ift.uam-csic.es/savvas.nesseris/

ARJONA, CARDONA, and NESSERIS

PHYS. REV. D 99, 043516 (2019)

TABLE III. ACDM parameters with 68% limits based on
TT,TE, EE + lowP and a flat ACDM model (middle column)
or a wCDM model (right column); see Table 4 of Ref. [112] and
the Planck chains archive.

Parameter Value (ACDM) Value (wCDM)
Q,h? 0.02225 £ 0.00016 0.02229 £ 0.00016
Q. h? 0.1198 + 0.0015 0.1196 + 0.0015
ng 0.9645 + 0.0049 0.9649 + 0.0048
H, 67.27 £ 0.66 >81.3

Q, 0.3156 + 0.0091 0.2037022

w -1 1557019

o3 0.831 +£0.013 0,983ng52§)

Planck 2015 best-fit, thus reaffirming the mild tension
between low redshift probes and Planck [169]. However, it
should be mentioned that there exist several minima in the
likelihood with respect to the modified gravity parameters
froand b due to the presence of degeneracies in the growth
factor, something which has already been studied in
standard GR DE models in Ref. [177].

Furthermore, we find that a mild tension between Planck
and low redshift probes remains even in the case of the
f(R) models since in general these cannot predict a
decreasing G ¢ which is required by the growth data, in
agreement with Refs. [169,178]. It should be stressed
though, that the first year results from the Dark Energy
Survey, whose precision is now comparable to that of
Planck [3], hints that the tension might be decreasing.
Although the central values measured by the Dark Energy
Survey for og and Q,, are a bit lower compared to those
of Planck, it was shown in Ref. [3] that the corresponding
Bayes factor are similar; thus, the two data sets are
becoming more consistent.

In Tables IV and V, we show the best-fit, mean values of
the model parameter, and also the values for the y? and AIC
parameters for the ACDM, the DES and the HS models,
respectively. As can be seen from Tables IV and V, we find
that as the difference in the AIC parameters is roughly ~2,

TABLE V. The y? and AIC parameters for the ACDM, the DES
and the HS models, respectively.

Model 7 AIC AAIC
ACDM 1086.62 1094.660 0

DES 1086.63 1096.684 2.028
HS 1086.61 1096.664 2.008

then all three models seem to be statistically consistent
with each other.

VI. CONCLUSIONS

In this paper, we discussed in depth the effective fluid
approach and perturbation theory in the context of f(R)
theories. We presented several new results, in particular
regarding the effective DE fluid components of the energy
momentum tensor, the effective velocity of the fluid Vpg
given by Eq. (44), the effective pressure and sound speed
given by Egs. (42) and (48). We used these expressions in
our modifications of the popular CLASS code, which we
call EFCLASS. They provide a much simpler and less
error-prone approach in including the effects of modified
gravity models.

We then considered specific f(R) models: the well known
designer f(R) model (DES), which mimics exactly ACDM
at the background level, and the Hu-Sawicki (HS) model
which can evade solar system tests. For these models, we
calculated the solutions of the DE fluid in the matter-
dominated era, which we later used as initial conditions
for the numerical solution of the system. In this regard, we
anticipated the evolution of the numerical solutions by
studying the behavior of the DE effective sound speed at
both early and late times. As shown, the DE effective sound
speed is positive at early times, but then quickly it goes to
zero at late times and as a result, the DE perturbations first
grow quickly, but then at late times flatten out and reach a
plateau. We also found that the numerical solutions of the
matter perturbations are in good agreement with the fog data
and we later on used them in our MCMC analysis. Finally,
we also confirmed that for these models the strong energy

TABLE IV. The best-fit (top row) and mean (bottom row) parameters for the ACDM, the DES and the HS models, respectively. Note

that @ = (—fg0, b).

Model Qmo IOOQbhz loglo(a) I’l 68,0
Best-fit values

ACDM 0.313 £ 0.006 2.226 +£0.013 - 0.674 + 0.004 0.760 £ 0.029
DES 0.314 £ 0.006 2.226 +£0.014 —8.821 £1.946 0.674 + 0.005 0.753 £0.043
HS 0.315 £ 0.006 2.224 +0.014 —8.186 = 1.510 0.674 4+ 0.005 0.757 £0.036
Mean values

ACDM 0.314 £ 0.006 2.224 +0.014 — 0.674 + 0.004 0.760 + 0.029
DES 0.314 £ 0.006 2.225+0.014 —-6.391 £ 1916 0.674 4+ 0.005 0.738 +0.043
HS 0.314 £ 0.006 2.225+0.014 —6.176 £ 1.567 0.674 + 0.005 0.750 £ 0.035
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condition (SEC) is violated, in agreement with the expect-
ation for an accelerating Universe.

With these at hand, we then presented EFCLASS, namely
our modifications of the CLASS code, and compared it
with other codes in the literature, such as EFTCAMB,
CLASS_EOS_FR and FRCAMB. The differences between our
modifications, discussed in Appendix B, are twofold. First,
in contrast to other codes we treat the background of the
f(R) models properly by including the correct evolution of
the Hubble parameter. In particular, in the case of the HS
model we implement very accurate (better than <107>%)
second-order analytic approximations for the Hubble
parameter H(z). Second, our modifications are overall
much simpler and less error prone than the ones found
in other codes, as we use the effective fluid approach
variables, namely the effective velocity of the fluid Vpg
given by Eq. (44) and the anisotropic stress given by
Egs. (45). As a result, since we also properly modify the
background in the case of f(R) model, we clearly go
beyond the simple comparison of Boltzmann codes as was
done in Ref. [179]. While for the DES model we find that
our results are in good agreement with expectations and
other codes, we find a big difference in the case of the HS
model, as the other codes currently ignore the necessary
modifications to the background.

An important and related issue is also that the viscosity
parameter c%is actually is not constant as commonly
assumed, but rather evolves significantly, as shown in
Fig. 9 where we can see the parameter change by more
than 7 orders of magnitude over the range a € [1073, 1].
This means that in realistic models, like the Hu-Sawicki
f(R) model, ¢2, clearly cannot be considered as a constant
parameter, as is the usual assumption when performing
forecasts for future surveys, something which in the future
should be taken into account.

Finally, we also presented results from our MCMC
analysis using the latest cosmological probes including
Snla, BAO, CMB, H(z) and growth fcg data. We presented
a complete analysis and a Bayesian comparison of the
ACDM, DES and HS models. The confidence contours and
one-dimensional marginalized likelihoods from the
MCMC analysis were shown in Figs. 10-12, while in
Tables IV and V we showed the best-fit, mean values of the
model parameters, but also the values for the y> and AIC
parameters for the ACDM, the DES and the HS models,
respectively. We found that as the difference in the AIC
parameters is roughly ~2, then all three models can be
assumed to be statistically consistent with each other.

To summarize, we showed that by using our new
expressions for the DE effective fluid description of the
f(R) models as described earlier and the simple modifi-
cations to the CLASS code in conjunction to the very
accurate analytic approximations for the background evo-
lution, we can obtain competitive results in a much simpler
and less error-prone approach. In particular, the correct

treatment of the background evolution is very important, as
in the near future we will have access to cosmological data
that constrain the background to less than 1 percent; thus,
our theoretical predictions must also be at least as accurate.

Numerical analysis files: The numerical codes
(FOrRTRAN, C, MATHEMATICA and PYTHON) used by the
authors in the analysis of the paper and our modifications to
the cLAsS code, which we call EFCLASS, will be released
upon publication of the paper.
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APPENDIX A: USEFUL FORMULAS
AND ISW EFFECTS

In this section, we present some useful formulas related
to the effective fluid approach and the ISW effect. Using
the definitions of the effective pressure perturbation, the
anisotropic stress and the effective sound speed one can
easily obtain the following expressions:

1
OPpg = 3 T, (A1)
i i 1 i
Ly =T;- §5JT’ (A2)
PN 1 ;
(p+P)6:_ kikj_gét/ z 5 (A3)
3
TDE = 5 (1+w)o, (A4)
C3 eftPE = SPpE — gﬁDE”DEv (AS)
which lead to
— 3 A A .. T
PDETDE = ~ 5 (k,-ij’-/ - §> (A6)
and
C?,efftspDE = i‘ilACjT” (A7)
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where T = T, k; is a unit vector in Fourier space and in the
above expressions we have only kept the first-order parts.

In what follows, we present the theoretical expressions
used to calculate the low multipoles for Fig. 8. In this
regard, we mostly follow Ref. [180]. The contribution of
the ISW effect on the angular CMB power spectrum is
given by [180]:

9 P,

25 27%° (A8)

dk
CSY — 4n / Ik

where we have used the fact the power spectrum P is given
in terms of the primordial power spectrum times a transfer

function
KPe _ 4 (% " (A9)
27[2 S kO ’
where A, is the primordial amplitude, &, is the pivot scale
and 7'(k) is the usual matter-radiation transfer function (see
Eq. (7.71) in Ref. [181]). Furthermore, the kernel IV (k) is
given by

I5%(k) = 2 / 2%, (kr(2)).

o (A10)

where j,(x) is the spherical bessel function, r(z) =
4 dz/H(z) is the comoving distance and the function
G(z, k) is the scale dependent potential growth rate

®(a, k) + ¥(a, k)

k) = .
Gla.k) @ (ajy, k) + P(ap;, k)

(Al1)

Also, the contribution to the spectrum due to the usual
Sachs-Wolfe (SW) effect is given by:

27 , TQL(1 =)0 +27)
25 TG =20 +2 =55

CSW = (A12)

where I'(x) is the usual Gamma function. The previous
expression for n, = 1 simplifies to the well-known result
for the SW plateau

(€ +1)
2w

A
SV =2, Al3
= (A13)
Finally, the total contribution from the SW and ISW
effects will be given by the sum of Egs. (A8) and (A12),

that is,

coal = C;W + C}SW. (A14)
In our analysis we used A, =23x107°, n, =1,
ko =0.05 h/Mpc, Q,0 =03 and Ty =2.726 K.
Note that to convert the result of Eq. (Al14) to uK?, as

is the standard in the CMB community, one needs to
multiply the C, with T35 x 10'2.

APPENDIX B: CLASS IMPLEMENTATION

In this section, we present our implementation of the
effective fluid approach in the CLASS code [73], which
we call EFCLASS. As shown in the previous sections,
even with these minimal changes our approach gives results
in agreement with other codes, such as EFTCAMB,
MGCAMB, FRCAMB and CLASS_EOS_FR.

The only changes we made in the code are in the
following two places:

(1) In the background.c file we included the correct
expansion history for the f(R) models. For the HS
model this is given by Eq. (58).

(2) In the perturbations.c file we included the proper
perturbations for the effective DE fluid given by
Egs. (7) and (9).

We found that the most straightforward and least error-
prone way to make these changes is to modify the ACDM
model equations in the aforementioned parts of the code.
First, we can just increment the background equations of
ACDM with the one of the HS model (for the DES model,
no change is needed). Second, since ACDM has no
perturbations we can just add the appropriate new terms
given by Egs. (7) and (9).

In more detail, first we consider the background evolu-
tion, where we consider two cases: that of the DES model,
where the background is fixed to that of the ACDM model,
and that of the HS model where the Friedman equation is
modified. For the DES model we obviously do not make
any change as the Hubble parameter for the ACDM is
already included in the CLASS code. For the HS model we
introduce the extremely accurate approximations for the
Hubble parameter given by Eq. (58). In Ref. [133] is shown
that this expression works to a level of accuracy better than
~107% for b € [0,0.1]. Finally, we also had to include an
expression for the equation of state parameter wpg and
effective density ppg. Both were calculated to second order
in b from Egs. (25) and (24) by using Eq. (58).

Regarding the perturbations, we treat both models
equally. In this case we found that the best place to
implement the modifications were in the perturb_einstein
routine of CLASS, which solves the Einstein equations in
the conformal Newtonian gauge given by Eqs. (7) and (9).
Then, it is simple to just add in the right-hand-side of the
aforementioned equations our expressions for the effective
fluid DE velocity and anisotropic stress given by Eqgs. (44)
and (45).

Our analytic approach has several advantages. First,
given that most viable f(R) models can be written as
small perturbations around ACDM model, such as the HS
model, it is always possible to derive extremely accurate
expressions for the background, as was shown in
Ref. [133]. Second, regarding the perturbations our
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improved subhorizon approximation gives much more
accurate results compared to codes that are based on the
default subhorizon approximation. Also, the accuracy is
comparable to codes that treat the perturbations exactly by

numerically solving the relevant equations. However, our
approach has a much smaller overhead in terms of new
lines of code and as a result is more straightforward and less
error prone.
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