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We provide explicit formulas for the effective fluid approach of fðRÞ theories, such as the HuandSawicki
and designer models. Using the latter and simple modifications to the CLASS code, which we call
EFCLASS, in conjunction with very accurate analytic approximations for the background evolution, we
obtain competitive results in a much simpler and less error-prone approach. We also derive the initial
conditions in matter domination, and we find they differ from those already found in the literature for a
constant w model. A clear example is the designer model that behaves as ΛCDM in the background but
has nonetheless dark energy perturbations. We then use the aforementioned models to derive constraints
from the latest cosmological data, including supernovae, BAO, CMB, HðzÞ and growth-rate data, and find
they are statistically consistent to the ΛCDM model. Finally, we show that the viscosity parameter c2vis in
realistic models is not constant as commonly assumed but rather evolves significantly over several orders
of magnitude, something which could affect forecasts of upcoming surveys.
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I. INTRODUCTION

A few decades ago it became clear that a model of
the Universe including the cosmological constant Λ could
alleviate several problems in the cold dark matter (CDM)
scenario [1]. Although the standard model of cosmology
ΛCDM is in very good agreement with recent astrophysical
measurements [2,3], it is also well known that the huge
discrepancy between both predicted and inferred values of
Λ represents one of the biggest conundrums for funda-
mental physics [4,5].
In 1998, convincing evidence from observations of

Supernovae type Ia (SnIa) showed that the Universe is
undergoing a phase of accelerated expansion [6,7]. Ever
since, the standard cosmological modelΛCDM has become
the best phenomenological description for the Universe
[2,3,8]. The yet unsolved cosmological constant problem
has driven an effort towards alternative explanations for the
late-time accelerating phase of the Universe.
Different cosmological models have emerged, and nowa-

days one finds two leading approaches which avoid the
introduction of a cosmological constant. On the one hand,
there exist dark energy (DE) models [9] where yet
unobserved scalar fields would dominate the energy con-
tent at late times, avoiding fine-tuning issues as well as
accelerating the Universe [10,11]. On the other hand, there

are modified gravity (MG) models that instead modify the
current theory of gravity, namely, Einstein’s theory of
general relativity (GR) [12]. These modifications of GR
are, however, not easily achieved as several tests carried out
up to extragalactic scales are in very good agreement with
GR [13,14].
Both DE and MG models provide plausible, alternative

scenarios for explaining the late-time acceleration of the
Universe. It is known that both kinds of models can fit
background astrophysical observations, as well as the
standard model ΛCDM. These models are, therefore,
degenerated at the background level despite several efforts
to disentangle them with model independent approaches
[15,16]. Although the recent discovery of gravitational
waves by the LIGO Collaboration [17] allows us to rule
out some families of MG models [18–27] (e.g., from the
so-called Horndeski theories1 [29]), there remains a degen-
eracy between the two leading approaches.
Among the remaining MG models one finds an impor-

tant class: fðRÞ models [30–33]. Even though this kind of
model might be fully degenerated at the background level
(e.g., the so-called designer fðRÞmodels which can exactly
mimic the background dynamics of a dark energy model
with equation of state wðzÞ [34–37]), the linear order
perturbations could in principle be distinguishable from
ΛCDM [38]. This is relevant as in general the DE
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1However, a recent work claims that the reduction of viable
MG models is not as severe as previously announced [28].
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perturbations can have a strong effect in the determination
of the growth-index γ [39], even though with current
growth data it is not possible to draw definite conclusions
in favor of any fðRÞ model [40,41].
The study of perturbations in MG models is thus of great

importance and one can find different approaches in the
literature (e.g., [35,36,38,42–59]). In Ref. [60], the authors
restricted themselves to background histories consistent with
a flat ΛCDM model and parametrized changes in both
Poisson and anisotropy equations via two functions μða; kÞ
and γða; kÞ; these two functions take into account possible
deviations from GR in the relation between the Newtonian
potentials as well as the relation between the potentials and
matter perturbations. The parametric functions were imple-
mented in a modified version of the code CAMB2 [61]
dubbed MGCAMB.3 Since these parametrizations are only
valid at late times, in Ref. [62] the authors modified
MGCAMB to introduce new parametrizations which are
valid at all times.Adrawback in this approach toperturbations
inMGmodels is that it fixes the background toΛCDMwhile
it is known that viable fðRÞmodelsmight differ fromΛCDM
at the background level (e.g., Hu-Sawicki model [42]).
A different approach to study perturbations in MG

models was carried out in Ref. [63] where the author
studied perturbations in fðRÞ models which exactly mimic
the ΛCDM background by using the full set of covariant
cosmological perturbation equations; the author modified
the publicly available code CAMB, implemented this
approach, and released a code called FRCAMB.4 In
Ref. [64], the author extended FRCAMB to take into
account fðRÞ models with a background different from
ΛCDM; the code has not been released.
An effective field theory (EFT) approach [65] to DE and

MGmodels was pursued in Ref. [66] where authors had into
account a fairly general theorywith unbroken symmetries and
implemented it in a code called EFTCAMB

5 (i.e., a modified
version of CAMB). Although this approach does not use
any quasistatic approximation and evolves the full dynamics
of perturbations on linear scales, the mapping of specific
models into an EFT formalism might be cumbersome.
The Planck Collaboration used MGCAMB and EFTCAMB

in Ref. [67] to study cosmological constraints in both DE
and MG models. Although the results somehow depend on
which data sets are regarded as well as on some assump-
tions [e.g., the equation of state wðaÞ, the sound speed
c2sða; kÞ, the anisotropic stress πða; kÞ], the authors did not
find conclusive evidence for extensions to the standard
model of cosmology.6

In Ref. [69], authors proposed the so-called equation of
state (EOS) approach for perturbations. In this approach,
fðRÞ models can be expressed as a dark energy fluid at
background and linearized perturbation order [44,52], see
also [70–72]. The authors used an elegant gauge-invariant
formalism,without the subhorizon approximation, where the
modifications to GR are expressed as equation of statewðaÞ,
entropy perturbation Γða; kÞ, and anisotropic stress Πða; kÞ.
TheEOSapproachwas implemented in amodified versionof
the code CLASS7 [73] in Ref. [74] where good agreement
with previous studies and codes was found. In spite of
addressing the problem of perturbations in fðRÞ models in
an elegant way, the EOS approach is not physically very
intuitive: the interpretation of results and the perturbation
variables in this formalism is not straightforward.
In this paper, we will also express fðRÞ models as a dark

energy fluid, but differently to the EOS approach in [69], as
we will utilize the equation of state wðaÞ, the sound speed
c2sða; kÞ and the anisotropic stress πða; kÞ as variables
describing the fluid [75]. This makes the comparison with
popular DE models such as quintessence (wðaÞ ≥ −1,
c2s ¼ 1, πða; kÞ ¼ 0) and K-essence (wðaÞ, c2sðaÞ,
πða; kÞ ¼ 0) relatively easy. This is of paramount impor-
tance in the case of the anisotropic stress because in fðRÞ
models generically one has πða; kÞ ≠ 0whereas in standard
single-field DE models πða; kÞ ¼ 0, so that any convincing
evidence of anisotropic stress would rule out all standard
single-field DE models [75,76]. Likewise, nondetection of
anisotropic stress would get several classes of MG models
into difficulties.
Since current galaxy surveys do not reach scales compa-

rable to the cosmological horizon, one frequently uses a
quasistatic approximation for theperturbation equations. The
quasistatic approximation roughly amounts to neglecting
time derivatives in the linearized Einstein equations while
only keeping spatial derivatives; in addition one only takes
into account modes whose wavelength is shorter than the
cosmological horizon. Some previous studies and imple-
mentations (i.e., FRCAMB,EFTCAMB,CLASS_EOS_FR)
did not apply the subhorizon approximation to the perturba-
tion equations. Nevertheless, the quasistatic approximation
has been investigated in the context of MG theories in
Refs. [47,77] and has been implemented in MGCAMB. On
the one hand, in Ref. [47] authors argue that general fðRÞ
models do not satisfy the quasistatic approximation; how-
ever, the subhorizon approximation can be safely used in
fðRÞ models describing the current phase of accelerating
expansion and fulfilling solar system tests.
On the other hand, in Ref. [77], authors argue that the

quasistatic approximation breaks down outside the DE

sound-horizon k ≪ kJ, where kJðzÞ≡ HðzÞ
ð1þzÞcs is the physical

Jeans scale, rather than outside the cosmological horizon;

2https://camb.info/
3http://aliojjati.github.io/MGCAMB/home.html
4http://darklight.fisica.unimi.it/cosmonews/frcamb/
5http://eftcamb.org/
6However, in Ref. [68] authors found evidence for deviations

of GR (≳3σ) using various astronomical observations, including
data from Planck. 7http://class-code.net/
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the authors disregarded the anisotropic stress in their
analysis and also consider a constant DE c2s , both assump-
tions being not realistic for viable MG models. In this
paper, we will work out solutions to the perturbations
equations in fðRÞ models under the subhorizon approxi-
mation. We will derive analytical solutions for DE pertur-
bations and test them numerically showing that the
quasistatic approximation actually performs quite well
for this kind of MG model.
By placing MG and DE models on the same framework

one is, in principle, able to disentangle the two kinds of
models through different predictions for the equation of
state wðaÞ, the sound speed c2sða; kÞ, and the anisotropic
stress πða; kÞ. Both DE sound speed and DE anisotropic
stress are particularly important because they are closely
related to the growth of structures and, therefore, might
leave detectable traces in observables such as anisotropies
in the cosmic microwave background radiation (CMB)
and galaxy counts (GC) [38,78]. Although DE and dark
matter (DM) perturbations are invisible, they affect both
the CMB and the GC via, for instance, the integrated
Sachs-Wolfe (ISW) effect and the lensing potential [44].
While the presence of DE anisotropic stress can enhance
and stabilize the growth of matter perturbations [76,78–81],
the DE sound speed might alter the level of clustering
and the evolution of matter perturbations [82–84]. These
properties are very important because one can use them to
break background level degeneracies among different
models [85,86].
The most recent CMB data from the Planck satellite8 as

well as data from the Dark Energy Survey9 are in good
agreement with the standard cosmological model ΛCDM
[2,3], but this situation could potentially change by combin-
ing different probes and from upcoming galaxy surveys,
stage IV CMB experiments, and gravitational wave obser-
vations (see, for instance, Refs. [25,87–107]). Despite the
success of the ΛCDM model when fitting current data sets,
its Bayesian evidence10 is not extremely different from ex-
tended models [110,111]. Furthermore, there remain unex-
plained issues with other data sets such as direct Hubble
constant measurements, weak lensing data, and cluster
counts where dynamically DE models or MG models
could play a part (see, for instance, Refs. [78,110,112–120]).
This paper is organized as follows. In Sec. II, we discuss

the standard equations for perturbations in a Friedmann-
Lemaitre-Robertson-Walker (FLRW) metric. First, in
Subsection II A, we explain how fðRÞ models can be
mapped into a DE fluid and give analytical solutions for DE
perturbations in general fðRÞ models under the subhorizon
approximation. Secondly, we present results for some

viable fðRÞ models in Subsection II B. In Sec. III, we
show that our analytical solutions derived using the sub-
horizon are in very good agreement with a full numerical
evolution of the perturbation equations. Furthermore, we
compare our implementation in the CLASS code with
available codes such as MGCAMB, CLASS_EOS_FR, and
FRCAMB. In Sec. IV, we clarify and discuss some points
about viscosity in viable fðRÞ models. Then, in Sec. V, we
present cosmological constraints for a few MG models
within our methodology by using a Monte Carlo Markov
chain (MCMC) approach. We conclude in Sec. VI and give
details about our analytical computations and CLASS
implementation in Appendixes A and B, respectively.

II. THEORETICAL FRAMEWORK

Let us assume that the Universe can be described at
the background level by a FLRW metric, then in order to
study the perturbations of various cosmological models, we
consider the perturbed FRWmetric, which in the conformal
Newtonian gauge can be written as

ds2¼aðτÞ2½−ð1þ2Ψðx⃗;τÞÞdτ2þð1−2Φðx⃗;τÞÞdx⃗ 2�; ð1Þ

where τ is the conformal time defined via dτ ¼ dt=aðtÞ and
we will follow the notation of Ref. [121].11

At this point we can assume an ideal fluid with an energy
momentum tensor

Tμ
ν ¼ Pδμν þ ðρþ PÞUμUν; ð2Þ

where ρ, P are the fluid density and pressure, while Uμ ¼
dxμffiffiffiffiffiffiffi
−ds2

p is its velocity four-vector given to first order by

Uμ ¼ 1
aðτÞ ð1 − Ψ; u⃗Þ, which as can easily be seen satisfies

UμUμ ¼ −1. Furthermore, u⃗ ¼ _x⃗, where _f ≡ df
dτ, and the

elements of the energy momentum tensor to first order of
perturbations are given by

T0
0 ¼ −ðρ̄þ δρÞ; ð3Þ

T0
i ¼ ðρ̄þ P̄Þui; ð4Þ

Ti
j ¼ ðP̄þ δPÞδij þ Σi

j; ð5Þ

where ρ̄; P̄ are defined on the background and are functions
of time only, while the perturbations δρ, δP are functions of
ðx⃗; τÞ and Σi

j ≡ Ti
j − δijT

k
k=3 is an anisotropic stress tensor.

8http://sci.esa.int/planck/
9https://www.darkenergysurvey.org/
10See, for instance, Refs. [108,109] for a discussion about

Bayesian evidence in cosmology.

11In more detail, our conventions are: (−þþþ) for the metric
signature, the Riemann and Ricci tensors are given by Vb;cd −
Vb;dc ¼ VaRa

bcd and Rab ¼ Rs
asb, while the Einstein equations are

Gμν ¼ þκTμν for κ ¼ 8πGN

c4 and GN is the bare Newton’s constant.
In what follows, we will set the speed of light c ¼ 1.
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Then, assuming GR we find that the perturbed Einstein
equations in the conformal Newtonian gauge are given
by [121]

k2Φþ 3
_a
a

�
_Φþ _a

a
Ψ
�

¼ 4πGNa2δT0
0; ð6Þ

k2
�
_Φþ _a

a
Ψ
�

¼ 4πGNa2ðρ̄þ P̄Þθ; ð7Þ

Φ̈þ _a
a
ð _Ψþ 2 _ΦÞ þ

�
2
ä
a
−

_a2

a2

�
Ψþ k2

3
ðΦ −ΨÞ

¼ 4π

3
GNa2δTi

i; ð8Þ

k2ðΦ − ΨÞ ¼ 12πGNa2ðρ̄þ P̄Þσ; ð9Þ

where we have defined the velocity θ≡ ikjuj, the aniso-
tropic stress ðρ̄þ P̄Þσ ≡ −ðk̂ik̂j − 1

3
δijÞΣij. We also need

the evolution equations for the perturbations, given by the
energy-momentum conservation Tμν

;ν ¼ 0 as

_δ ¼ −ð1þ wÞðθ − 3 _ΦÞ − 3
_a
a
ðc2s − wÞδ; ð10Þ

_θ ¼ −
_a
a
ð1 − 3wÞθ − _w

1þ w
θ þ c2s

1þ w
k2δ − k2σ þ k2Ψ;

ð11Þ

where we define the equation of state parameter w≡ P̄
ρ̄ and

the rest-frame sound speed of the fluid c2s ≡ δP
δρ. Following

Ref. [78], we eliminate θ from Eqs. (10) and (11), resulting
in a second-order equation for δ,

δ̈þ ð� � �Þ_δþ ð� � �Þδ
¼ −k2ðð1þ wÞΨþ c2sδ − ð1þ wÞσÞ þ � � �

¼ −k2
�
ð1þ wÞΨþ c2sδ −

2

3
π

�
þ � � � ; ð12Þ

where the (� � �) indicates the presence of complicated
expressions and we have defined the anisotropic stress
parameter of the fluid as π ≡ 3

2
ð1þ wÞσ. As also discussed

in Ref. [78] the k2 term will act as a source, driving the
perturbations. However, since the potential scales as Ψ ∼
1=k2 in relevant scales, the only terms that matter are the
sound speed and the anisotropic stress. Therefore, we can
define an effective sound speed as

c2s;eff ¼ c2s −
2

3
π=δ ð13Þ

that characterizes the propagation of perturbations as
well as the clustering properties on subhorizon scales.

We should also note that in principle the sound speed c2s can
be both time and scale dependent, i.e., c2s ¼ c2sðτ; kÞ. For
example, as noted in Ref. [122], the sound speed for a
scalar field ϕ in the conformal Newtonian gauge for small
scales is c2s;ϕ ≃

k2

4a2m2
ϕ
, where mϕ is the mass of the scalar

field. On the other hand, c2s is equal to one only in the scalar
field’s rest frame (see Chap. 11.2 of Ref. [122] for a quick
derivation). Of course, one has the same situation in fðRÞ
theories because in practice they only contain a scalar
degree of freedom12 [77]. Therefore, we expect the sound
speed to be scale dependent in modified gravity models,
when we are not in the rest frame of the equivalent
DE fluid.
Finally, in what follows we will use the scalar velocity

perturbation V ≡ ikjT
j
0=ρ ¼ ð1þ wÞθ instead of the

velocity θ. The former has the advantage that it can remain
finite when the equation of state w of the fluid crosses −1
(see also Ref. [124]). With this new variable, the evolution
equations, Eqs. (10)–(11), become

δ0 ¼ 3ð1þ wÞΦ0 −
V

a2H
−
3

a

�
δP
ρ̄

− wδ

�
; ð14Þ

V 0 ¼ −ð1 − 3wÞV
a
þ k2

a2H
δP
ρ̄

þ ð1þ wÞ k2

a2H
Ψ

−
2

3

k2

a2H
π; ð15Þ

where the prime 0 is a derivative with respect to the scale
factor a and HðtÞ ¼ da=dt

a is the Hubble parameter.

A. The f(R) models and the effective fluid approach

In this setup, we can study a plethora of MG models
either directly as in Ref. [38] or as an effective DE fluid
[69]. For example, in the case of the fðRÞ models, the
modified Einstein-Hilbert action reads

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ
fðRÞ þ Lm

�
; ð16Þ

where Lm is the Lagrangian of matter and κ ¼ 8πGN is a
constant with GN being the bare Newton’s constant.
Varying the action with respect to the metric, following
the metric variational approach, we arrive at the following
field equations [38],

FGμν −
1

2
ðfðRÞ − RFÞgμν þ ðgμν□ −∇μ∇νÞF ¼ κTðmÞ

μν ;

ð17Þ

12fðRÞ theories can be viewed as a nonminimally coupled
scalar field in the Einstein frame. See, for instance, Ref. [123].
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where F ¼ f0ðRÞ, Gμν is the Einstein tensor and T
ðmÞ
μν is the

energy-momentum tensor for the matter fields. By adding
and subtracting the Einstein tensor on the left hand side of
Eq. (17) and moving everything to the right hand side we
can rewrite the equations of motion as the usual Einstein
equations plus an effective DE fluid, along with the usual
matter fields [52]:

Gμν ¼ κ ðTðmÞ
μν þ TðDEÞ

μν Þ; ð18Þ
where

κTðDEÞ
μν ¼ ð1 − FÞGμν þ

1

2
ðfðRÞ − RFÞgμν

− ðgμν□ −∇μ∇νÞF: ð19Þ
Due to the diffeomorphism invariance of the theory, it is
very easy to show that the effective energy momentum
tensor given by Eq. (19), indeed satisfies the usual con-
servation equation:

∇μTðDEÞ
μν ¼ 0: ð20Þ

Clearly, the background equations are the same as in GR
[121]:

H2 ¼ κ

3
a2ðρ̄m þ ρ̄DEÞ; ð21Þ

_H ¼ −
κ

6
a2ððρ̄m þ 3P̄mÞ þ ðρ̄DE þ 3P̄DEÞÞ: ð22Þ

While we assume that matter is pressureless (P̄m ¼ 0), the
effective DE density and pressure are given by

κP̄DE ¼ f
2
−H2=a2 − 2FH2=a2 þH _F=a2

− 2 _H=a2 − F _H=a2 þ F̈=a2; ð23Þ

κρ̄DE ¼ −
f
2
þ 3H2=a2 − 3H _F=a2 þ 3F _H=a2; ð24Þ

where H ¼ _a
a is the conformal Hubble parameter.13

Using Eqs. (23) and (24), we see that the DE equation of
state for the fðRÞmodels in the effective fluid description is
given by

wDE ¼ −a2f þ 2ðð1þ 2FÞH2 −H _F þ ð2þ FÞ _H − F̈Þ
a2f − 6ðH2 −H _F þ F _HÞ ;

ð25Þ
which is in agreement with the expression found
in Ref. [38].

Thus, it becomes clear that by working in the effective
fluid approach, we can assign a density, pressure, velocity
and anisotropic stress to the effective energy momentum
tensor as in the general case of Eqs. (3)–(5). Then, we can
find the effective quantities for the fðRÞ model using the
tensor of Eq. (19). As a result, the effective pressure,
density and velocity perturbations are given by

δPDE

ρ̄DE
¼ ð…ÞδRþ ð…Þ _δRþ ð…Þδ̈Rþ ð…ÞΨ

þ ð…Þ _Ψþ ð…ÞΦþ ð…Þ _Φ; ð26Þ
δDE¼ð…ÞδRþð…Þ _δRþð…ÞΨþð…ÞΦþð…Þ _Φ; ð27Þ
VDE ≡ ð1þ wDEÞθDE

¼ ð…ÞδRþ ð…Þ _δRþ ð…ÞΨþ ð…ÞΦþ ð…Þ _Φ:

ð28Þ
Moreover, in these models, it is easy to see from the field
equations that the difference of the potentials Φ and Ψ is
given by

Φ −Ψ ¼ F;R

F
δR; ð29Þ

which implies that the anisotropic stress can be written
as [121]

ρ̄DEπDE ¼ −
3

2

�
k̂ik̂j −

1

3
δij

�
Σij

¼ 1

κ

k2

a2
ðF;RδRþ ð1 − FÞðΦ −ΨÞÞ: ð30Þ

In Appendix A, we give some other useful expressions
related to the effective fluid variables.

1. Subhorizon approximation

Expressions in Eqs. (26)–(30) for DE perturbations
might be cumbersome. Therefore, it is very convenient
to work in the subhorizon approximation, i.e., with modes
deep in the Hubble radius (k2 ≫ a2H2), where we find that
terms with time derivatives are negligible compared to the
ones scaling as k2. For example, the perturbation in the
Ricci scalar is

δR ¼ −
12ðH2 þ _HÞ

a2
Ψ −

4k2

a2
Φþ 2k2

a2
Ψ

−
18H
a2

_Φ −
6H
a2

_Ψ −
6Φ̈
a2

; ð31Þ

≃ −
4k2

a2
Φþ 2k2

a2
Ψ; ð32Þ

where the last line follows from the subhorizon approxi-
mation. Then, using the equations of motion we find that
the potentials can be written as

13In what follows, we denote the usual Hubble parameter as
HðtÞ ¼ da=dt

a and the conformal one as HðτÞ ¼ da=dτ
a . The two are

related via HðτÞ ¼ aHðtÞ.
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Ψ ¼ −4πGN
a2

k2
Geff

GN
ρ̄mδm; ð33Þ

Φ ¼ −4πGN
a2

k2
Qeff ρ̄mδm; ð34Þ

where the effective Newton’s constant Geff and Qeff are
given by [38]

Geff=GN ¼ 1

F

1þ 4 k2

a2
F;R

F

1þ 3 k2

a2
F;R

F

; ð35Þ

Qeff ¼
1

F

1þ 2 k2

a2
F;R

F

1þ 3 k2

a2
F;R

F

; ð36Þ

where F ¼ dfðRÞ
dR , F;R ¼ d2fðRÞ

dR2 . Note, however, that in the
effective fluid approach we have to introduce the DE
density ρDE, which then means that from the Poisson
equation for Φ, we have

−
k2

a2
Φ¼4πGNðρ̄mδmþ ρ̄DEδDEÞ¼4πGNQeff ρ̄mδm; ð37Þ

or that

ρ̄mδm ¼ 1

Qeff − 1
ρ̄DEδDE; ð38Þ

which can be used to find the evolution of the DE density
perturbation in this regime.
The previous expressions are also useful as in the

subhorizon approximation one can derive a second-order
differential equation for the matter density contrast in terms
of Geff [38],

δ00mðaÞ þ
�
3

a
þH0ðaÞ

HðaÞ
�
δ0mðaÞ −

3

2

Ωm0Geff=GN

a5HðaÞ2=H2
0

δmðaÞ ¼ 0;

ð39Þ
where in this case primes 0 denote derivatives with respect
to the scale factor a.
Finally, we can also define the anisotropic parameters

η≡ Ψ−Φ
Φ and γ ≡ Φ

Ψ for which we then have

η ¼ 2 k2

a2
F;R

F

1þ 2 k2

a2
F;R

F

; ð40Þ

γ ¼ 1þ 2 k2

a2
F;R

F

1þ 4 k2

a2
F;R

F

: ð41Þ

We can now apply the subhorizon approximation and
derive relatively simple expressions for all the effective DE
perturbations in Eqs. (26)–(30). In practice, we have found
that the results depend on the way the approximation is
applied and this is one of the main results of our paper.

Since δR inEq. (31) has up to second-order derivatives ofΦ
and Eq. (26) contains up to second-order derivatives of δR,
this means that the pressure perturbation has up to fourth-
order derivatives of the metric perturbationΦ. Eliminating all
of the higher-order perturbations via the subhorizon approxi-
mation can cause significant deviations and instabilities in
the system of effective fluid equations. We found that a
better approach is to use Eq. (26) and repeatedly apply
Eq. (29), thus reducing the number of higher-order derivative
terms and increasing the accuracy of the solutions.
Following this prescription and using the Poisson equa-

tions for the potentials, we find that the effective density,
pressure and velocity perturbations are given by

δPDE

ρ̄DE
≃

1

3F

2 k2

a2
F;R

F þ 3ð1þ 5 k2

a2
F;R

F ÞF̈k−2
1þ 3 k2

a2
F;R

F

ρ̄m
ρ̄DE

δm; ð42Þ

δDE ≃
1

F

1 − F þ k2

a2 ð2 − 3FÞ F;R

F

1þ 3 k2

a2
F;R

F

ρ̄m
ρ̄DE

δm; ð43Þ

VDE ≡ ð1þ wDEÞθDE ≃
_F
2F

1þ 6 k2

a2
F;R

F

1þ 3 k2

a2
F;R

F

ρ̄m
ρ̄DE

δm: ð44Þ

Finally, the DE anisotropic stress parameter πDE is given by

πDE ¼
k2

a2 ðΦ −ΨÞ
κρ̄DE

≃
1

F

k2

a2
F;R

F

1þ 3 k2

a2
F;R

F

ρ̄m
ρ̄DE

δm

≃
k2

a2
F;R

F

1 − F þ k2

a2 ð2 − 3FÞ F;R

F

δDE: ð45Þ

Note that the DE anisotropic stress in Eq. (45) can also be
written as

πDEðaÞ ¼
k2

a2 f1ðaÞ
1þ k2

a2 f2ðaÞ
δDEðaÞ; ð46Þ

where f1ðaÞ ¼ F;R

Fð1−FÞ and f2ðaÞ ¼ ð2−3FÞF;R

Fð1−FÞ , which is

reminiscent of model 2 in Ref. [78], but with different
functions in the numerator and the denominator. This is
interesting as it seems that many popular Ansätze for the
DE anisotropic stress do not capture exactly all of the
features of the fðRÞ models.
On the other hand, using Eqs. (42) and (43), we see that

the DE sound speed is given by

c2s;DE ≃
1

3

2 k2

a2
F;R

F þ 3ð1þ 5 k2

a2
F;R

F ÞF̈k−2
1 − F þ k2

a2 ð2 − 3FÞ F;R

F

; ð47Þ

which implies that the DE effective sound speed is
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c2s;eff ≡ c2s;DE −
2

3
πDE=δDE

≃
ð1þ 5 k2

a2
F;R

F ÞF̈k−2
1 − F þ k2

a2 ð2 − 3FÞ F;R

F

: ð48Þ

As we will see later on, the effective sound speed at late
times tends to go to zero due to the fact that the F̈ term not
only is suppressed by k2, which in the subhorizon approxi-
mation is much larger than the Hubble parameter or related
quantities, but also because, for viable models, F in general
is a slowly varying function. This implies that for these
models there is no effective sound speed driving the DE
perturbations; thus, we expect that on large k and at late
times, the perturbations should become flat, in agreement
with Ref. [78].
It is clear that for the ΛCDM model, i.e., fðRÞ ¼

R − 2Λ, we have F ¼ 1 and F;R ¼ 0, which implies that
wDE ¼ −1 and ðδPDE; δρDE; πDEÞ ¼ ð0; 0; 0Þ as expected.
When the equation of state wDE for an fðRÞ model, e.g.,
the Hu and Sawicki (HS, hereafter) model, crosses the
so-called phantom divide line (wDEðaÞ ¼ −1), problems
could arise due to the presence of the 1þ w term in the
denominator in Eq. (11) [125]. However, we see that in our
case the perturbations remain finite despite the presence
of the 1þ w term in the denominator in Eq. (11) as we
can absorb the 1þ w term by introducing VDE ¼ ð1þ
wDEÞθDE as mentioned earlier. Furthermore, the combina-
tion ð1þ wDEÞθDE always remains finite for viable fðRÞ
models as can be seen in Eq. (44). The simple analytical
expressions given by Eqs. (42)–(44) are one of our main
results.
Finally, for our effective DE fluid in Eq. (19) the most

common energy conditions [126] can be written in terms of
the effective DE density and pressure:

NEC ⇒ ρ̄DE þ P̄DE ≥ 0;

WEC ⇒ ρ̄DE ≥ 0 and ρ̄DE þ P̄DE ≥ 0;

DEC ⇒ ρ̄DE ≥ 0 and ρ̄DE ≥ jP̄DEj;
SEC ⇒ ρ̄DE þ 3P̄DE ≥ 0 and ρ̄DE þ P̄DE ≥ 0;

where NEC,WEC, DEC and SEC correspond, respectively,
to the null, weak, dominant and strong energy conditions.
As expected for an accelerating universe [127,128], we
have checked that the SEC is violated. Since the condition
ρ̄DE ≥ 0 holds, we find that the NEC, WEC and DEC can
be translated into the following constraint for the DE
equation of state wDE ≥ −1. As can be seen in Fig. 1 for
the HS model, the NEC, WEC and DEC are violated for
redshifts z≳ 1.65 for reasonable values of the parameter b
(see Eq. (56) in the next section), for b ∈ ½0; 0.05�.

B. Results for specific f(R) models

So far, our analysis has been quite general and here we
work out a couple of examples. In this section, we will
present our results for two specific models, namely, the HS

model and the so-called designer (DES) model which has
an expansion history equal to the ΛCDM model. These
models are interesting because they satisfy solar system
tests and give a proper matter era. Note, however, that in the
literature one finds other fðRÞ models sharing these
properties (see, for instance, Refs. [49,129,130]), but to
simplify our presentation we only focus on the two
aforementioned models.
Since modifications to GR are expected to become

important at late times, we consider a universe only
containing matter and an effective DE fluid.14 The system
of differential equations that we are interested in is, hence,
given by Eqs. (6), (9), (14), (15),

δ0m ¼ 3Φ0 −
Vm

a2H
; ð49Þ

V 0
m ¼ −

Vm

a
þ k2

a2H
Ψ; ð50Þ

δ0DE ¼ 3ð1þ wDEÞΦ0 −
VDE

a2H
−
3

a

�
δPDE

ρ̄DE
− wDEδDE

�
; ð51Þ

V 0
DE ¼ −ð1 − 3wDEÞ

VDE

a
þ k2

a2H
δPDE

ρ̄DE

þ ð1þ wDEÞ
k2

a2H
Ψ −

2

3

k2

a2H
πDE; ð52Þ

k2

a2
Φþ 3H2ðaΦ0 þ ΨÞ ¼ −

3

2
ðΩmδm þ ΩDEδDEÞ; ð53Þ

FIG. 1. The DE equation of state wDEðzÞ for the HS model for
Ωm0 ¼ 0.3, n ¼ 1 and for a variety of values of the parameter b,
with b ∈ ½0; 0.05�. As can be seen, the equation of state crosses
wDE ¼ −1 at approximately the same redshift z ∼ 1.65. At early
times, we have 1þ wDE < 0, thus violating the SEC.

14In this paper, we focus on the late-time evolution of the
Universe, but it is possible that MG theories play a part in earlier
stages as well, namely, the inflationary period. There exist fðRÞ
models that give a unified description of early- and late-time
accelerating phases of the Universe [131,132] and our effective
fluid approach could in principle also be applied in these
scenarios.
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k2

a2
ðΦ −ΨÞ ¼ 3ΩDEπDE; ð54Þ

where the prime 0 denotes a derivative with respect to scale
factor a, we have assumed that the matter component is
cold (wm ≃ 0) and pressureless (c2s;m ≃ 0), Ωm ¼ Ωm0a−3,
ΩDE ¼ H2 −Ωm, and finally that the effective DE density,
pressure and velocity perturbations are given by Eqs. (42),
(43) and (44), respectively.

1. The HS model

The HS model [42] has a Lagrangian15 given by

fðRÞ ¼ R −m2
c1ðR=m2Þn

1þ c2ðR=m2Þn ; ð55Þ

where c1, c2 are two free parameters,m2 ≃Ωm0H2
0 is of the

order of the Ricci scalar R0,H0 is the Hubble constant,Ωm0

is the dimensionless matter density today, and m and n are
positive constants with n usually taking positive integer
values i.e., n ¼ 1; 2;…. In the rest of our paper, we
assume n ¼ 1.
After simple algebraic manipulations, Eq. (55) can also

be written as [133]

fðRÞ ¼ R −
m2c1
c2

þ m2c1=c2
1þ c2ðR=m2Þn

¼ R − 2Λ
�
1 −

1

1þ ðR=ðbΛÞn
�

¼ R −
2Λ

1þ ðbΛR Þn
; ð56Þ

where Λ ¼ m2c1
2c2

and b ¼ 2c1−1=n
2

c1
. In this form, it is clear that

this model can be arbitrarily close to ΛCDM, depending on
the parameters b and n. Moreover, for n > 0, it has the
limits [133]

lim
b→0

fðRÞ ¼ R − 2Λ; lim
b→∞

fðRÞ ¼ R: ð57Þ

Since the HS model tends to ΛCDM for b → 0, it can be
considered as a small perturbation around the ΛCDM
model. Therefore, it should come as no surprise that the
HS model can successfully pass the solar system tests.
Furthermore, in Ref. [133] it was shown that for small

values of the parameter b one is always able to find an
analytic approximation to the Hubble parameter that works
to a level of accuracy better than ∼10−5% when the
parameter b is of the order of b ∼ ½0.001–0.1�, thus making
the approximations very useful. Then, the Hubble param-
eter HðtÞ ¼ da=dt

a can be well approximated by

HHSðaÞ2 ¼ HΛðaÞ2 þ bδH1ðaÞ2 þ b2δH2ðaÞ2 þ � � � ;
ð58Þ

where the functions δH1ðaÞ and δH2ðaÞ are given in the
Appendix of [133].
From Eqs. (25), (56), (58) and considering a universe

only containing matter and DE, we can calculate the DE
equation of state as a series expansion in terms of b

wDEðaÞ ≃ −1 −
12ða3ðΩm0 − 1ÞΩm0ða3ðΩm0 − 1Þ −Ωm0Þð8a3ðΩm0 − 1Þ þΩm0ÞÞ

ðΩm0 − 4a3ðΩm0 − 1ÞÞ4 bþ � � � ; ð59Þ

while the DE anisotropic stress will be given by

πDEðaÞ ¼
1

F

k2

a2
F;R

F

1þ 3 k2

a2
F;R

F

ρ̄m
ρ̄DE

δm

≃
�
k2

a2
1

H2
0

4a9ð1−Ωm0Þ2
3ðΩm0 þ 4a3ð1−Ωm0ÞÞ3

bþ � � �
�

ρ̄m
ρ̄DE

δm:

ð60Þ

From the system of differential equations (49)–(54)
and the DE perturbations (42)–(45), we can derive approxi-
mate solutions in a matter-dominated regime (HðaÞ2=
H2

0 ≃Ωm0a−3),

wDEðaÞ ≃ −1 −
12a3bð1 −Ωm0Þ

Ωm0

þ � � � ; ð61Þ

δPDEðaÞ
ρ̄DEðaÞ

≃ bð1 −Ωm0Þ2
�

8a7k2

9Ω3
m0H

2
0

−
66a5H2

0

k2Ωm0

þ � � �
�

×
ΩmðaÞ
ΩDEðaÞ

δm; ð62Þ

πDE ≃ b

�
4a7k2ð1 −Ωm0Þ2

3Ω3
m0H

2
0

þ � � �
�

ΩmðaÞ
ΩDEðaÞ

δm; ð63Þ

15The Starobinsky model [49] has a Lagrangian fðRÞ ¼ R−
c1m2½1 − ð1þ R2=m4Þ−n�, and the results we obtain are very
similar to those for the HS model. To keep our presentation
simple, we will only present results for the HS model.
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δmðaÞ ≃ δ0

�
aþ 3Ωm0H2

0

k2

�
; ð64Þ

VmðaÞ ≃ −δ0
ffiffiffiffiffiffiffiffiffiffiffi
aΩm0

p
þ � � � ; ð65Þ

δDEðaÞ ≃ −δ0bð1 −Ωm0Þ
�

a5k2

3Ω2
m0H

2
0

þ 8a4

35Ωm0

−
495a3H2

0

13k2

−
594a2H4

0Ωm0

5k4
þ � � �

�
; ð66Þ

VDEðaÞ ≃ δ0bð1 − Ωm0Þ
�
−
396a5=2H2

0

ffiffiffiffiffiffiffiffiffi
Ωm0

p
13k2

−
32a7=2

5
ffiffiffiffiffiffiffiffiffi
Ωm0

p þ � � �
�
; ð67Þ

ΦðaÞ ≃ −
3

2
δ0

Ωm0H2
0

k2
þ � � � ; ð68Þ

where ΩmðaÞ ¼ Ωm0a−3 and in this limit ΩDEðaÞ≃
1 − Ωm0. Also, as can be seen from the above expressions,
the dominant contributions in the subhorizon limit and in
the mater-dominated regime are δDE ∝ k2a5 and VDE ∝
a7=2. When numerically solving the system of differential
equations (49)–(54), we will use the above solutions as
initial conditions.

2. The DES model

The DES model [34,35,37], which has a background
exactly that of the ΛCDM model, has a Lagrangian
given by

fðRÞ ¼ R − 2Λþ αH2
0

�
Λ

R − 3Λ

�
c0

× 2F1

�
c0;

3

2
þ c0;

13

6
þ 2c0;

Λ
R − 3Λ

�
; ð69Þ

where c0 ¼ 1
12
ð−7þ ffiffiffiffiffi

73
p Þ and α is a free dimensionless

parameter.
While for the DES model the background is much

simpler than for the HS model (in the DES model the
expansion history matches that of the ΛCDM model, i.e.,
H2

DESðaÞ ¼ H2
ΛCDMðaÞ, Eq. (69) makes more complicated

the expressions for all the effective DE quantities. We have
found an approximation around a ≃ 0 that works very well
in the range a ∈ ½0; 1�; it reads

FðaÞ

≃ 1þ fR;0
Ω−c0−1

m0

2F1ðc0 þ 1; c0 þ 3
2
; 2c0 þ 13

6
; 1 −Ωm0Þ

a3ð1þc0Þ

þOða3ð2þc0ÞÞ; ð70Þ

where fR;0 ≡ Fða ¼ 1Þ − 1. For viable models, the param-
eter fR;0 has typical values on the order fR;0 ∼ −10−4 (see,
for instance, Ref. [36]).16

Following the same approach as for the HS model, we
have found approximate solutions in a matter-dominated
regime,

wDEðaÞ ¼ −1; ð71Þ

δPDE

ρ̄DE
≃
�
−
2ðc0 þ 1ÞfR;0k2a3c0þ4Ω−c0−2

m0

9g0
þ � � �

�

×
ΩmðaÞ
ΩDEðaÞ

δm; ð72Þ

πDE ≃
�
−
ðc0 þ 1ÞfR;0k2a3c0þ4Ω−c0−2

m0

3g0
þ � � �

�

×
ΩmðaÞ
ΩDEðaÞ

δm; ð73Þ

δmðaÞ ≃ δ0

�
aþ 3Ωm0H2

0

k2

�
; ð74Þ

VmðaÞ ≃ −δ0
ffiffiffiffiffiffiffiffiffiffiffi
aΩm0

p
þ � � � ; ð75Þ

δDEðaÞ ≃
δ0fR;0a1þ3c0Ω−1−c0

m0 ðað1þ 2c0Þk2 þ 36c0Ωm0Þ
9g0ð1 −Ωm0Þ

þ � � � ; ð76Þ

VDEðaÞ ≃ 0þ � � � ; ð77Þ

ΦðaÞ ≃ −
3

2
δ0

Ωm0H2
0

k2
þ � � � ; ð78Þ

where g0 ¼ 2F1ð1þ c0;
3
2
þ c0;

13
6
þ 2c0; 1 −Ωm0Þ. In the

next section, we will use these approximations as initial
conditions for the numerical evolution in the effective fluid
approach.
Note that in Ref. [124] the authors derived approxima-

tions to the evolution of the DE density contrast δDE ≃
δ0ð1þ wÞð a

1−3w þ 3H02Ωm0

k2 Þ and velocity perturbation
VDE ≃ −δ0ð1þ wÞH0

ffiffiffiffiffiffiffiffiffi
Ωm0

p
a1=2. Clearly, in both cases

when w ¼ −1, as is the case for the DES model, we would
have that ðδDE; VDEÞ ¼ ð0; 0Þ as expected. However, we
have seen that the DE perturbations in the DES model
(despite having wDE ¼ −1) have in general a dependence
on the scale factor a which is quite different. Therefore,
care should be used when applying the expressions of
Ref. [124] as initial conditions and instead one should
derive again the correct expressions as we have done.

16For illustration purposes, we note that the right-hand side of
Eq. (70) evolves roughly as FðaÞ ≈ 1þ 0.85 fR;0 Ω−0.57

m0 a3.386.
We, however, do not use this expression in our computations.
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III. NUMERICAL SOLUTION OF THE
EVOLUTION EQUATIONS

A. Evolution of perturbations

Here, we present the results of the numerical solution
of the evolution equations (49)–(54). In all cases, we will
assumeΩm0¼0.3, k¼300H0, fR0¼−10−4 and σ8;0 ¼ 0.8,
where fR;0 ¼ Fða ¼ 1Þ − 1, unless otherwise specified.
We set the initial conditions well inside the matter-
dominated regime at a ¼ 10−3. The reason we choose
the specific value of k ¼ 300H0 ∼ 0.1 h=Mpc for the wave
number is that it corresponds to the largest value of k we
can choose without entering the nonlinear regime.
Before we proceed with the discussion of our results, it is

instructive to show the evolution of theDE sound speedc2s;DE
and the DE effective sound speed c2s;eff given by Eqs. (47)
and (48), respectively, for both the HS andDESmodels. The
plots are shown in Fig. 2, where we show c2s;DE (left) and
c2s;eff (right) for both the HS (dotted line) and DES (dashed
lines)models.As can be seen, for bothmodels, theDE sound
speed remains close to c2s;DE ∼ − 2

3
while the effective sound

speed is close to c2s;eff ∼ 0þ. On the one hand, this behavior
implies that at early times while the DE effective sound
speed is positive, the DE perturbations are expected to grow.
On the other hand, at late times as the DE effective sound
speed goes to zero asymptotically the DE perturbations are
expected to reach a plateau and stop growing.
In Figs. 3 and 4, we present our results for the

perturbation variables ðδm; Vm; δDE; VDEÞ and the potentials
ðΦ;ΨÞ, respectively. As noted before, the DE perturbations
reach a plateau and then flatten out for both models, as
expected from the fact that the DE effective sound speed
goes to zero at late times (see Fig. 2). Also, in all cases, the
DE velocity perturbation remains significantly suppressed
with respect to the rest of the variables. Furthermore, the
potentials remain approximately equal until a ∼ 0.1, which

as seen in Fig. 2 corresponds to the epoch when roughly
c2s;eff ∼ 0, and then diverge from each other significantly
due to the presence of the anisotropic stress.

B. Growth rate of matter perturbations

Next we will also present our results for the growth rate
of matter perturbations parameter fσ8ðaÞ≡ fðaÞ · σðaÞ,
where fðaÞ ¼ dlnδ

dlna is the growth rate and σðaÞ ¼ σ8;0
δðaÞ
δð1Þ is

the redshift-dependent root mean square (rms) fluctuations
of the linear density field within spheres of radius
R ¼ 8 h−1 Mpc, while the parameter σ8;0 is its value today.
This parameter is important as it can be shown to be not
only independent of the bias b0, but also a good discrimi-
nator of DE models [134].
In this section, we will also compare our results with

those of Ref. [36] that follow a direct brute-force solution of
the differential equations of the fðRÞ model, dubbed “Full
fðRÞ” from now on. There is of course also the equation of
state approach of Ref. [69] and we have explicitly checked
that our results are in excellent agreement with it; thus, to
avoid an overload in both the presentation and the plots, in
what follows we will only present the comparison with the
“Full fðRÞ” approach.
Both aforementioned approaches are exact, in the sense

of having no approximations, however the one of Ref. [36]
suffers from the problem that the relevant equations are
extremely stiff numerically, while in the one of Ref. [69] the
fluid equations are written in terms of a gauge-invariant
entropy perturbation which cannot be easily translated to
simple analytic expressions for the effective pressure,
density contrast and velocity perturbations such as
Eqs. (42), (43) and (44) presented here.
In Figs. 5 and 6, we show the evolution of the fσ8ðzÞ

parameter for the HS and DES models, respectively, for
Ωm0 ¼ 0.3, k ¼ 300H0, fR;0 ¼ −10−4 and σ8;0 ¼ 0.8 vs the
fσ8 data compilation from Ref. [135]. On the left panel we

FIG. 2. The DE fluid sound speed c2s;DE (left) and the DE effective sound speed c2s;eff (right) given by Eqs. (47) and (48) for both the HS
(dotted line) and DES (dashed lines) models for Ωm0 ¼ 0.3, k ¼ 300H0 and fR;0 ¼ −10−4. As can be seen, for both models the DE
sound speed remains close to c2s;DE ∼ − 2

3
while the DE effective sound speed is close to c2s;eff ∼ 0þ.
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FIG. 3. The evolution of the matter and effective DE perturbation variables ðδm; Vm; δDE; VDEÞ for the HS (left) and the DES (right)
models for Ωm0 ¼ 0.3, k ¼ 300H0, δ0 ¼ 1, and fR;0 ¼ −10−4. As described in the text, the DE perturbations reach a plateau and then
flatten out for both models, as expected from the fact that the DE effective sound speed given by Eq. (48) goes to zero at late times (see
Fig. 2). Also, in all cases, the DE velocity perturbation remains significantly suppressed with respect to the rest of the variables.

FIG. 4. The evolution of the potentials Φ and Ψ for the HS (left) and the DES (right) models for Ωm0 ¼ 0.3, k ¼ 300H0, δ0 ¼ 1, and
fR;0 ¼ −10−4. Due to a nonvanishing DE anisotropic stress, the potentials diverge from each other at late times.

FIG. 5. The evolution of the fσ8ðzÞ parameter for the HS model for Ωm0 ¼ 0.3, k ¼ 300H0, fR;0 ¼ −10−4 and σ8;0 ¼ 0.8 vs the fσ8
data compilation from Ref. [135]. On the left panel we show the theoretical curves for the “Full fðRÞ” brute-force solution based on
Ref. [36] (magenta line), our effective fluid approach which we call “Eff. Fluid” (blue dashed line), the ΛCDM model (black line) and
the numerical solution of Eq. (39) dubbed “ODEGeff” (dotted blue line). On the right panel we show the difference of the
aforementioned theoretical curves with respect to that of the ΛCDM model. As can be seen, the agreement with all approaches is
excellent.
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show the theoretical curves for the “Full fðRÞ” brute-force
solution based on Ref. [36] (magenta line), our effective fluid
approach which we call “Eff. Fluid” (blue dashed line), the
ΛCDM model (black line) and the numerical solution of
Eq. (39) dubbed “ODEGeff” (dotted blue line). On the right
panel, we show the difference of the aforementioned theo-
retical curveswith respect to that of theΛCDMmodel.As can
be seen, the agreement with all approaches is excellent.

C. CMB power spectrum

We now also present the results for the CMB power
spectra for both models and we compare our predictions
with those of several other codes. As we show in
Appendix B, our implementation of the effective fluid
approach in the CLASS code [73], while much simpler,
also gives results in excellent agreement with other codes,
such as EFTCAMB [66], MGCAMB [60], FRCAMB [63],
CLASS_EOS_FR [74]. In all cases, we took extreme care
in order to match the various cosmological parameters
between the codes and we explicitly tested that in the limit
of the ΛCDMmodel, all codes agree with each other within
the numerical errors. The fact that our implementation is
consistent with that of Ref. [74], which is exact, shows the
subhorizon approximation can be safely applied in the
models we discussed (see Fig. 7). This agrees with results
in Ref. [47]: for fðRÞ models that predict an accelerated
expansion of the Universe and satisfy the local gravity
constraints, the subhorizon approximation is accurate.
In order to check with other results for the DES model in

the literature, we find it advantageous to introduce the B0

parameter defined as

B0 ¼
F;R

F
R0ðaÞ

aH0ðaÞ=HðaÞ
����
a¼1

: ð79Þ

The main reason for this choice is that the effects of the
modified gravity models on the ISW would be small for
fR;0 ¼ −10−4 that we used in the previous plots. Thus, in
order to make the effect more visible and still be able to
compare with other analyses, we will choose the value
B0 ¼ 1, which corresponds to fR;0 ≃ −0.159285 for the
DES model for Ωm0 ¼ 0.3. For the HS model we will use
fR;0 ¼ −10−1 and in both cases the rest of the parameters
are as in the previous plots.
We also fix the spectral index ns and amplitude As to

ðns; AsÞ ¼ ð1; 2.3 × 10−9Þ, so that we can isolate the effects
of the fðRÞ models from the effects of a nonflat primordial
spectrum. As we have mentioned in previous sections, for
large values of the parameter b the HS model behaves as a
matter-dominated model, and we actually expect the CMB
spectrum at low multipoles to be nearly completely flat
(also due to our choice of ns ¼ 1).
In Fig. 7, we present the low multipoles of the CMB

TT power spectrum for the HS model (left panel) and
the DES model (right panel). We compare several codes:
our own modifications to CLASS which we call
EFCLASS, the codes MGCAMB and FRCAMB for
the HS model and the codes CLASS_EOS_FR and
EFTCAMB for the DES model. We find that in the case
of the DES model all approaches are in very good
agreement, but in the case of the HS model, which also
requires modifying the background evolution, there is
significant disagreement at l ∈ ½2; 5� as the codes
MGCAMB and FRCAMB do not take into account
the change of the background properly.
Although disagreement between the codes for the HS

model can be explained by the fact that the other codes do
not treat the background properly, we also compare our
results with a direct theoretical calculation of the ISW
effect, see Fig. 8. The relevant formulas for the theoretical

FIG. 6. The evolution of the fσ8ðzÞ parameter for the DES model for Ωm0 ¼ 0.3, k ¼ 300H0, fR;0 ¼ −10−4 and σ8;0 ¼ 0.8 vs the fσ8
data compilation from Ref. [135]. On the left panel we show the theoretical curves for the “Full fðRÞ” brute-force solution based on
Ref. [36] (magenta line), our effective fluid approach which we call “Eff. Fluid” (blue dashed line), theΛCDMmodel (black line) and the
numerical solution of Eq. (39) dubbed “ODEGeff” (dotted blue line). On the right panel we show the difference of the aforementioned
theoretical curves with respect to that of the ΛCDM model. As can be seen, the agreement with all approaches is excellent.
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calculation of the ISW effect are given for completeness in
Appendix A. In Fig. 8, we show the comparison of the low
multipoles of the CMB TT power spectrum (l ∈ ½2; 5�) for
the HS and ΛCDMmodels between our own modifications
to CLASS (EFCLASS) and a direct theoretical calculation.
We find that in both cases there is excellent agreement.
For this plot again we assume ðns; AsÞ ¼ ð1; 2.3 × 10−9Þ,
fR;0 ¼ −10−1, while the rest of the parameters are as in the
previous plots. We find that in the case of the HS model, the
agreement between the direct theoretical calculation and

our CLASS modifications (green and cyan lines, respec-
tively) is well below ∼2%.

IV. EVOLUTION OF THE VISCOSITY
PARAMETER

In principle, the anisotropic stress parameter is the lowest
multipole in the Boltzmann hierarchy after the density and
velocity perturbations. As a result, it should also follow an
evolution equation. Since the properties of DE are currently
unknown, one can assign a viscosity parameter c2vis and a
phenomenological evolution equation as in Ref. [82],

_σ þ 3H
c2a
w
σ ¼ 8

3

c2vis
1þ w

θ ¼ 8

3

c2vis
ð1þ wÞ2 VDE; ð80Þ

whereas in previous sections, we have introduced the
parameter VDE ¼ ð1þ wÞθ and the adiabatic sound speed
is c2a ¼ w − _w

3Hð1þwÞ ¼ w − aw0
3ð1þwÞ where dots are conformal

time derivatives and primes scale factor derivatives. Also,
note that there is a difference in the definition of the
anisotropic stress compared to Ref. [82]. Since we follow
the notation of Ref. [121] we have πDE ¼ wΠWH, where
πDE ¼ 3

2
ð1þ wÞσ is the anisotropic stress in this paper and

ΠWH is the anisotropic stress parameter of Ref. [82].
The parametrization of Eq. (80) is also useful if one

wants to explore the properties of a generalized dark matter
fluid, as was done in Ref. [136] or place constraints in
imperfect fluids [80]. In our case, we actually know the
underlying DE model, which is our fðRÞ effective fluid, so
using Eq. (80) we can reconstruct the viscosity parameter,
something which would be of great interest for forecasts for
upcoming surveys.

FIG. 7. The low multipoles of the unlensed CMB TT power spectrum for the HS model (left panel) and the DES model (right panel).
We compare several codes: our own modifications to CLASS which we call EFCLASS, the codes MGCAMB and FRCAMB for the HS
model and the codes CLASS_EOS_FR and EFTCAMB for the DES model. We find that in the case of the DES model all approaches are
in very good agreement, but in the case of the HS model, which also requires modifying the background evolution, there is significant
disagreement at l ∈ ½2; 5� as the codes MGCAMB and FRCAMB do not take into account the change of the background properly. For
these plots we assume ðns; AsÞ ¼ ð1; 2.3 × 10−9Þ, fR;0 ¼ −10−1 for the HS model and B0 ¼ 1, which corresponds to fR;0 ≃ −0.159285
for the DES model for Ωm0 ¼ 0.3, while the rest of the parameters are as in the previous plots.

FIG. 8. A comparison of the low multipoles of the unlensed
CMB TT power spectrum (l ∈ ½2; 5�) for the HS and ΛCDM
models between our own modifications to CLASS (EFCLASS)
and a direct theoretical calculation using the expressions for the
ISW effect given in Appendix A. We find that in both cases there
is excellent agreement. For this plot again we assume ðns; AsÞ ¼
ð1; 2.3 × 10−9Þ and fR;0 ¼ −10−1, while the rest of the param-
eters are as in the previous plots.
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After changing variables from conformal time to
scale factor in Eq. (80) we can solve for the viscosity
parameter as:

c2vis ¼
aHð1þ wÞ
4VDEw

ð3c2að1þ wÞπDE þ wðaπ0DE − 3wπDEÞÞ:

ð81Þ
In the case of the HS model, it can easily be seen from

the previous equation that at early times, in matter
domination in particular, the viscosity parameter scales as

c2vis ≃
14

3

1 −Ωm0

Ω2
m0

bk2a4: ð82Þ

In the case of the DES model, we have that while c2vis → 0

there is clearly anisotropic stress in this model as in the
RHS of Eq. (80) the term (1þ w) in the denominator
cancels out with c2vis to give a nonzero result.
In Fig. 9, we show the evolution of the viscosity

parameter c2vis given by Eq. (81) as a function of scale
factor a for the HS model forΩm0 ¼ 0.3, fR;0 ¼ −10−4 and
values of the wave number k=H0 ¼ ½50; 100; 300�. As can
be seen, the parameter changes by more than 7 orders of
magnitude over the range a ∈ ½10−3; 1�which means that in
realistic models, like the HS fðRÞmodel, c2vis clearly cannot
be considered as a constant parameter, as is the usual
assumption when performing forecasts for future surveys
like Euclid [91].

V. COSMOLOGICAL CONSTRAINTS

A. Data

Here, we present the results of our analysis from fitting
the latest cosmological observations including the super-
novae type Ia (SnIa), Baryon Acoustic Oscillations (BAO),

CMB, the Hubble expansion H(z) and growth fσ8 data.
In particular, we use the Pantheon SnIa data of Ref. [137],
the BAO points from 6dFGS [138], SDDS [139], BOSS
CMASS [140], WiggleZ [141], MGS [142] and BOSS
DR12 [143]. We also use the CMB shift parameters based
on the Planck 2015 release [112], as derived by
Ref. [144].17

The Hubble expansion HðzÞ data are in general derived
in two ways: by the differential age method and by the
clustering of galaxies or quasars. The former is related to
the redshift drift of distant objects over significant time
periods, usually a decade or longer, since in GR the Hubble

FIG. 9. The evolution of the viscosity c2visðaÞ parameter for the
HS model for Ωm0 ¼ 0.3, fR;0 ¼ −10−4 and values of the wave
number k=H0 ¼ ½50; 100; 300�. As can be seen, the parameter
changes by more than 7 orders of magnitude over the range
a ∈ ½10−3; 1�.

TABLE I. TheHðzÞ data used in the current analysis (in units of
km s−1 Mpc−1). This compilation is partly based on those of
Refs. [147,148].

z HðzÞ σH Reference

0.07 69.0 19.6 [149]
0.09 69.0 12.0 [150]
0.12 68.6 26.2 [149]
0.17 83.0 8.0 [150]
0.179 75.0 4.0 [151]
0.199 75.0 5.0 [151]
0.2 72.9 29.6 [149]
0.27 77.0 14.0 [150]
0.28 88.8 36.6 [149]
0.35 82.7 8.4 [152]
0.352 83.0 14.0 [151]
0.3802 83.0 13.5 [147]
0.4 95.0 17.0 [150]
0.4004 77.0 10.2 [147]
0.4247 87.1 11.2 [147]
0.44 82.6 7.8 [141]
0.44497 92.8 12.9 [147]
0.4783 80.9 9.0 [147]
0.48 97.0 62.0 [150]
0.57 96.8 3.4 [139]
0.593 104.0 13.0 [151]
0.60 87.9 6.1 [141]
0.68 92.0 8.0 [151]
0.73 97.3 7.0 [141]
0.781 105.0 12.0 [151]
0.875 125.0 17.0 [151]
0.88 90.0 40.0 [150]
0.9 117.0 23.0 [150]
1.037 154.0 20.0 [151]
1.3 168.0 17.0 [150]
1.363 160.0 33.6 [153]
1.43 177.0 18.0 [150]
1.53 140.0 14.0 [150]
1.75 202.0 40.0 [150]
1.965 186.5 50.4 [153]
2.34 222.0 7.0 [154]

17As of writing, the likelihoods of the Planck 2018 data release
are not publicly available.
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parameter can also be written in terms of the rate of change
of the redshiftHðzÞ ¼ − 1

1þz
dz
dt [145]. The latter approach is

related to the clustering of galaxies or quasars and it
provides direct measurements of the Hubble parameter

by measuring the BAO peak in the radial direction [146].
The compilation of Hubble parameter HðzÞ data that we
used in our analysis are shown in Table I along with the
corresponding references.
We use the growth-rate data compilation of Ref. [135]

which is presented in Table II with the corresponding
references. In Ref. [135], the authors analyzed com-
binations of subsets in the data set and used Bayesian
model comparison to show that this particular data set is
internally robust. The growth-rate data used in our analysis
come from measurements of redshift-space distortions,
which are probes of the Large Scale Structure (LSS) and
in fact measure the combination fσ8ðaÞ≡ fðaÞ · σðaÞ,
where fðaÞ ¼ dlnδ

dlna is the growth rate, σðaÞ ¼ σ8;0
δðaÞ
δð1Þ is

the redshift-dependent rms fluctuations of the linear density
field within spheres of radius R ¼ 8 h−1Mpc, and the
parameter σ8;0 is its value today.
It is important to stress that fσ8ðaÞ can be measured

directly from the ratio of the monopole to the quadrupole
of the redshift-space power spectrum. This depends on
the combination β ¼ f=b0, where f is the growth rate
and b0 is the bias, with all quantities defined assuming
linear theory [125,134,168]. Then, fσ8ðaÞ can be shown
to be independent of bias, as in this combination it
completely cancels out. Indeed, this combination has
been shown to be a good discriminator of DE models
[134]. For details on the covariances of the data and how
to properly correct for the Alcock-Paczynski effect, see
Refs. [135,169,170], while for previous related analyses
see Refs. [171–173].

TABLE II. Compilation of the fσ8ðzÞ measurements used in
this analysis along with the reference matter density parameter
Ωm0

(needed for the growth correction) and related references.

z fσ8ðzÞ σfσ8ðzÞ Ωref
m;0 Reference

0.02 0.428 0.0465 0.3 [155]
0.02 0.398 0.065 0.3 [156,157]
0.02 0.314 0.048 0.266 [157,158]
0.10 0.370 0.130 0.3 [159]
0.15 0.490 0.145 0.31 [160]
0.17 0.510 0.060 0.3 [134]
0.18 0.360 0.090 0.27 [161]
0.38 0.440 0.060 0.27 [161]
0.25 0.3512 0.0583 0.25 [162]
0.37 0.4602 0.0378 0.25 [162]
0.32 0.384 0.095 0.274 [163]
0.59 0.488 0.060 0.307115 [164]
0.44 0.413 0.080 0.27 [141]
0.60 0.390 0.063 0.27 [141]
0.73 0.437 0.072 0.27 [141]
0.60 0.550 0.120 0.3 [165]
0.86 0.400 0.110 0.3 [165]
1.40 0.482 0.116 0.27 [166]
0.978 0.379 0.176 0.31 [167]
1.23 0.385 0.099 0.31 [167]
1.526 0.342 0.070 0.31 [167]
1.944 0.364 0.106 0.31 [167]

FIG. 10. The 68.3%, 95.4% and 99.7% confidence contours (top) and the one-dimensional marginalized likelihoods (bottom) for
various parameter combinations for the ΛCDMmodel. The red point and black dashed lines correspond to the concordance Planck 2015
ΛCDM parameters given in Table III. The black point indicates the mean value from the MCMC analysis.
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B. Methodology

Our total likelihood function Ltot can be given as the
product of the various likelihoods as

Ltot ¼ LSnIa × LBAO × LHðzÞ × Lcmb × Lgrowth;

which can also be translated to the total χ2 via χ2tot ¼
−2 logLtot or

χ2tot ¼ χ2SnIa þ χ2BAO þ χ2HðzÞ þ χ2cmb þ χ2growth: ð83Þ

In order to study the statistical significance of our
constraints, wewill use the well-known Akaike information
criterion (AIC) [174]. Assuming Gaussian errors, the AIC
estimator is given by

AIC ¼ −2 lnLmax þ 2kp þ
2kpðkp þ 1Þ
Ndat − kp − 1

; ð84Þ

where Ndat and kp indicate the total number of data points
and the number of free parameters (see also [175]) of our
models, respectively. In our case, we have 1048 data points
from the Pantheon set, 3 CMB shift parameters, 9 BAO
points, 22 growth-rate data and 36 HðzÞ points for a total
of Ndat ¼ 1118.
The usual interpretation of the AIC estimator is that a

smaller value implies a better fit to the data. However, in
order to compare different models, we need to use the pair
difference which can be written as ΔAIC ¼ AICmodel−
AICmin. This relative difference can be interpreted with the
Jeffreys’ scale as follows: 4 < ΔAIC < 7 indicate a positive
evidence against themodel with higher value of AICmodel and
ΔAIC ≥ 10 suggests strong evidence. Finally, when we have

FIG. 11. The 68.3%, 95.4% and 99.7% confidence contours (top) and the one-dimensional marginalized likelihoods (bottom) for
various parameter combinations for the DES model. The red point and black dashed lines correspond to the concordance Planck 2015
ΛCDM parameters given in Table III. The black point indicates the mean value from the MCMC analysis.
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that ΔAIC ≤ 2 then this is interpreted as an indication of
the consistency of the two models. However, note that the
Jeffreys’scale in general has been shown to lead tomisleading
conclusions, thus it has to be interpreted with care [176].
To summarize, our χ2 is given by Eq. (83) and the para-

meter vectors (assuming a flat Universe) are given by:
pΛCDM ¼ ðΩm0; 100Ωbh2; h; σ8;0Þ for the ΛCDM; and
pfðRÞ ¼ ðΩm0; 100Ωbh2; α; h; σ8;0Þ for the fðRÞ models
(when studying the DES model α ¼ fR;0 whereas for the
HS model α ¼ b). Then, the best-fit parameters and their
uncertainties were obtained via the MCMC method based
on a Metropolis-Hastings algorithm written by one of the
authors.18 Moreover, we assumed priors for the parameters

given by Ωm0 ∈ ½0.1; 0.5�, Ωbh2 ∈ ½0.001; 0.08�,
α ¼ ð−fR;0; bÞ ∈ ½0; 1�, h ∈ ½0.4; 1�, σ8;0 ∈ ½0.1; 1.8� and
obtained approximately ∼105 points for each of the three
models.

C. Results

In Figs. 10–12, we show the 68.3%, 95.4% and
99.7% confidence contours for the ΛCDM, the DES
and the HS models, respectively, along with the one-
dimensional marginalized likelihoods for various para-
meter combinations. In these plots, we also highlight, with
either a red point or a black dashed line, the Planck 2015
concordance cosmology. The latter is based on the
TT;TE;EEþ lowP spectra, a flat ΛCDM model and
the values are shown in Table III. In all cases, we find
the best-fit σ8;0 parameter is roughly ∼2.5σ away from the

FIG. 12. The 68.3%, 95.4% and 99.7% confidence contours (top) and the one-dimensional marginalized likelihoods (bottom) for
various parameter combinations for the HS model. The red point and black dashed lines correspond to the concordance Planck 2015
ΛCDM parameters given in Table III. The black point indicates the mean value from the MCMC analysis.

18The MCMC code for MATHEMATICA used in the analysis is
freely available at http://members.ift.uam-csic.es/savvas.nesseris/.
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Planck 2015 best-fit, thus reaffirming the mild tension
between low redshift probes and Planck [169]. However, it
should be mentioned that there exist several minima in the
likelihood with respect to the modified gravity parameters
fR;0 and b due to the presence of degeneracies in the growth
factor, something which has already been studied in
standard GR DE models in Ref. [177].
Furthermore, we find that a mild tension between Planck

and low redshift probes remains even in the case of the
fðRÞ models since in general these cannot predict a
decreasing Geff which is required by the growth data, in
agreement with Refs. [169,178]. It should be stressed
though, that the first year results from the Dark Energy
Survey, whose precision is now comparable to that of
Planck [3], hints that the tension might be decreasing.
Although the central values measured by the Dark Energy
Survey for σ8;0 and Ωm0 are a bit lower compared to those
of Planck, it was shown in Ref. [3] that the corresponding
Bayes factor are similar; thus, the two data sets are
becoming more consistent.
In Tables IV and V, we show the best-fit, mean values of

the model parameter, and also the values for the χ2 and AIC
parameters for the ΛCDM, the DES and the HS models,
respectively. As can be seen from Tables IV and V, we find
that as the difference in the AIC parameters is roughly ∼2,

then all three models seem to be statistically consistent
with each other.

VI. CONCLUSIONS

In this paper, we discussed in depth the effective fluid
approach and perturbation theory in the context of fðRÞ
theories. We presented several new results, in particular
regarding the effective DE fluid components of the energy
momentum tensor, the effective velocity of the fluid VDE
given by Eq. (44), the effective pressure and sound speed
given by Eqs. (42) and (48). We used these expressions in
our modifications of the popular CLASS code, which we
call EFCLASS. They provide a much simpler and less
error-prone approach in including the effects of modified
gravity models.
We then considered specific fðRÞmodels: thewell known

designer fðRÞ model (DES), which mimics exactly ΛCDM
at the background level, and the Hu-Sawicki (HS) model
which can evade solar system tests. For these models, we
calculated the solutions of the DE fluid in the matter-
dominated era, which we later used as initial conditions
for the numerical solution of the system. In this regard, we
anticipated the evolution of the numerical solutions by
studying the behavior of the DE effective sound speed at
both early and late times. As shown, the DE effective sound
speed is positive at early times, but then quickly it goes to
zero at late times and as a result, the DE perturbations first
grow quickly, but then at late times flatten out and reach a
plateau. We also found that the numerical solutions of the
matter perturbations are in good agreementwith the fσ8 data
and we later on used them in our MCMC analysis. Finally,
we also confirmed that for these models the strong energy

TABLE III. ΛCDM parameters with 68% limits based on
TT;TE;EEþ lowP and a flat ΛCDM model (middle column)
or a wCDM model (right column); see Table 4 of Ref. [112] and
the Planck chains archive.

Parameter Value (ΛCDM) Value (wCDM)

Ωbh2 0.02225� 0.00016 0.02229� 0.00016

Ωch2 0.1198� 0.0015 0.1196� 0.0015

ns 0.9645� 0.0049 0.9649� 0.0048
H0 67.27� 0.66 >81.3
Ωm 0.3156� 0.0091 0.203þ0.022

−0.065
w −1 −1.55þ0.19

−0.38
σ8 0.831� 0.013 0.983þ0.100

−0.055

TABLE IV. The best-fit (top row) and mean (bottom row) parameters for the ΛCDM, the DES and the HS models, respectively. Note
that α ¼ ð−fR;0; bÞ.
Model Ωm0 100Ωbh2 log10ðαÞ h σ8;0

Best-fit values
ΛCDM 0.313� 0.006 2.226� 0.013 − 0.674� 0.004 0.760� 0.029
DES 0.314� 0.006 2.226� 0.014 −8.821� 1.946 0.674� 0.005 0.753� 0.043
HS 0.315� 0.006 2.224� 0.014 −8.186� 1.510 0.674� 0.005 0.757� 0.036

Mean values
ΛCDM 0.314� 0.006 2.224� 0.014 − 0.674� 0.004 0.760� 0.029
DES 0.314� 0.006 2.225� 0.014 −6.391� 1.916 0.674� 0.005 0.738� 0.043
HS 0.314� 0.006 2.225� 0.014 −6.176� 1.567 0.674� 0.005 0.750� 0.035

TABLE V. The χ2 and AIC parameters for the ΛCDM, the DES
and the HS models, respectively.

Model χ2 AIC ΔAIC

ΛCDM 1086.62 1094.660 0
DES 1086.63 1096.684 2.028
HS 1086.61 1096.664 2.008
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condition (SEC) is violated, in agreement with the expect-
ation for an accelerating Universe.
With these at hand, we then presented EFCLASS, namely

our modifications of the CLASS code, and compared it
with other codes in the literature, such as EFTCAMB,
CLASS_EOS_FR and FRCAMB. The differences between our
modifications, discussed in Appendix B, are twofold. First,
in contrast to other codes we treat the background of the
fðRÞ models properly by including the correct evolution of
the Hubble parameter. In particular, in the case of the HS
model we implement very accurate (better than <10−5%)
second-order analytic approximations for the Hubble
parameter HðzÞ. Second, our modifications are overall
much simpler and less error prone than the ones found
in other codes, as we use the effective fluid approach
variables, namely the effective velocity of the fluid VDE
given by Eq. (44) and the anisotropic stress given by
Eqs. (45). As a result, since we also properly modify the
background in the case of fðRÞ model, we clearly go
beyond the simple comparison of Boltzmann codes as was
done in Ref. [179]. While for the DES model we find that
our results are in good agreement with expectations and
other codes, we find a big difference in the case of the HS
model, as the other codes currently ignore the necessary
modifications to the background.
An important and related issue is also that the viscosity

parameter c2vis actually is not constant as commonly
assumed, but rather evolves significantly, as shown in
Fig. 9 where we can see the parameter change by more
than 7 orders of magnitude over the range a ∈ ½10−3; 1�.
This means that in realistic models, like the Hu-Sawicki
fðRÞ model, c2vis clearly cannot be considered as a constant
parameter, as is the usual assumption when performing
forecasts for future surveys, something which in the future
should be taken into account.
Finally, we also presented results from our MCMC

analysis using the latest cosmological probes including
SnIa, BAO, CMB,HðzÞ and growth fσ8 data. We presented
a complete analysis and a Bayesian comparison of the
ΛCDM, DES and HS models. The confidence contours and
one-dimensional marginalized likelihoods from the
MCMC analysis were shown in Figs. 10–12, while in
Tables IVand V we showed the best-fit, mean values of the
model parameters, but also the values for the χ2 and AIC
parameters for the ΛCDM, the DES and the HS models,
respectively. We found that as the difference in the AIC
parameters is roughly ∼2, then all three models can be
assumed to be statistically consistent with each other.
To summarize, we showed that by using our new

expressions for the DE effective fluid description of the
fðRÞ models as described earlier and the simple modifi-
cations to the CLASS code in conjunction to the very
accurate analytic approximations for the background evo-
lution, we can obtain competitive results in a much simpler
and less error-prone approach. In particular, the correct

treatment of the background evolution is very important, as
in the near future we will have access to cosmological data
that constrain the background to less than 1 percent; thus,
our theoretical predictions must also be at least as accurate.
Numerical analysis files: The numerical codes

(FORTRAN, C, MATHEMATICA and PYTHON) used by the
authors in the analysis of the paper and our modifications to
the CLASS code, which we call EFCLASS, will be released
upon publication of the paper.
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APPENDIX A: USEFUL FORMULAS
AND ISW EFFECTS

In this section, we present some useful formulas related
to the effective fluid approach and the ISW effect. Using
the definitions of the effective pressure perturbation, the
anisotropic stress and the effective sound speed one can
easily obtain the following expressions:

δPDE ¼ 1

3
T; ðA1Þ

Σi
j ¼ Ti

j −
1

3
δijT; ðA2Þ

ðρ̄þ P̄Þσ ¼ −
�
k̂ik̂j −

1

3
δij

�
Σij; ðA3Þ

πDE ¼ 3

2
ð1þ wÞσ; ðA4Þ

c2s;effδρDE ¼ δPDE −
2

3
ρ̄DEπDE; ðA5Þ

which lead to

ρ̄DEπDE ¼ −
3

2

�
k̂ik̂jTij −

T
3

�
ðA6Þ

and

c2s;effδρDE ¼ k̂ik̂jTij ðA7Þ
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where T ¼ Ti
i, k̂i is a unit vector in Fourier space and in the

above expressions we have only kept the first-order parts.
In what follows, we present the theoretical expressions

used to calculate the low multipoles for Fig. 8. In this
regard, we mostly follow Ref. [180]. The contribution of
the ISW effect on the angular CMB power spectrum is
given by [180]:

CISW
l ¼ 4π

Z
dk
k
IISWl ðkÞ2 9

25

k3Pζ

2π2
; ðA8Þ

where we have used the fact the power spectrum Pζ is given
in terms of the primordial power spectrum times a transfer
function

k3Pζ

2π2
¼ As

�
k
k0

�
ns−1

TðkÞ2; ðA9Þ

where As is the primordial amplitude, k0 is the pivot scale
and TðkÞ is the usual matter-radiation transfer function (see
Eq. (7.71) in Ref. [181]). Furthermore, the kernel IISWl ðkÞ is
given by

IISWl ðkÞ ¼ 2

Z
dz

dG
dz

jlðkrðzÞÞ; ðA10Þ

where jnðxÞ is the spherical bessel function, rðzÞ ¼R
z
0 dz=HðzÞ is the comoving distance and the function
Gðz; kÞ is the scale dependent potential growth rate

Gða; kÞ ¼ Φða; kÞ þΨða; kÞ
Φðaini; kÞ þΨðaini; kÞ

: ðA11Þ

Also, the contribution to the spectrum due to the usual
Sachs-Wolfe (SW) effect is given by:

CSW
l ¼ 2π

25
As

Γð3
2
ÞΓð1 − ns−1

2
ÞΓðlþ ns−1

2
Þ

Γð3
2
− ns−1

2
ÞΓðlþ 2 − ns−1

2
Þ ; ðA12Þ

where ΓðxÞ is the usual Gamma function. The previous
expression for ns ¼ 1 simplifies to the well-known result
for the SW plateau

lðlþ 1Þ
2π

CSW
l ¼ As

25
: ðA13Þ

Finally, the total contribution from the SW and ISW
effects will be given by the sum of Eqs. (A8) and (A12),
that is,

Ctotal
l ¼ CSW

l þ CISW
l : ðA14Þ

In our analysis we used As ¼ 2.3 × 10−9, ns ¼ 1,
k0 ¼ 0.05 h=Mpc, Ωm0 ¼ 0.3 and TCMB ¼ 2.726 K.
Note that to convert the result of Eq. (A14) to μK2, as

is the standard in the CMB community, one needs to
multiply the Cl with T2

CMB × 1012.

APPENDIX B: CLASS IMPLEMENTATION

In this section, we present our implementation of the
effective fluid approach in the CLASS code [73], which
we call EFCLASS. As shown in the previous sections,
even with these minimal changes our approach gives results
in agreement with other codes, such as EFTCAMB,
MGCAMB, FRCAMB and CLASS_EOS_FR.
The only changes we made in the code are in the

following two places:
(1) In the background.c file we included the correct

expansion history for the fðRÞ models. For the HS
model this is given by Eq. (58).

(2) In the perturbations.c file we included the proper
perturbations for the effective DE fluid given by
Eqs. (7) and (9).

We found that the most straightforward and least error-
prone way to make these changes is to modify the ΛCDM
model equations in the aforementioned parts of the code.
First, we can just increment the background equations of
ΛCDM with the one of the HS model (for the DES model,
no change is needed). Second, since ΛCDM has no
perturbations we can just add the appropriate new terms
given by Eqs. (7) and (9).
In more detail, first we consider the background evolu-

tion, where we consider two cases: that of the DES model,
where the background is fixed to that of the ΛCDM model,
and that of the HS model where the Friedman equation is
modified. For the DES model we obviously do not make
any change as the Hubble parameter for the ΛCDM is
already included in the CLASS code. For the HS model we
introduce the extremely accurate approximations for the
Hubble parameter given by Eq. (58). In Ref. [133] is shown
that this expression works to a level of accuracy better than
∼10−5% for b ∈ ½0; 0.1�. Finally, we also had to include an
expression for the equation of state parameter wDE and
effective density ρDE. Both were calculated to second order
in b from Eqs. (25) and (24) by using Eq. (58).
Regarding the perturbations, we treat both models

equally. In this case we found that the best place to
implement the modifications were in the perturb_einstein
routine of CLASS, which solves the Einstein equations in
the conformal Newtonian gauge given by Eqs. (7) and (9).
Then, it is simple to just add in the right-hand-side of the
aforementioned equations our expressions for the effective
fluid DE velocity and anisotropic stress given by Eqs. (44)
and (45).
Our analytic approach has several advantages. First,

given that most viable fðRÞ models can be written as
small perturbations around ΛCDM model, such as the HS
model, it is always possible to derive extremely accurate
expressions for the background, as was shown in
Ref. [133]. Second, regarding the perturbations our
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improved subhorizon approximation gives much more
accurate results compared to codes that are based on the
default subhorizon approximation. Also, the accuracy is
comparable to codes that treat the perturbations exactly by

numerically solving the relevant equations. However, our
approach has a much smaller overhead in terms of new
lines of code and as a result is more straightforward and less
error prone.
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