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We investigate generalized Einstein-aether theories that are compatible with the Planck cosmic
microwave background (CMB) temperature anisotropy, polarization, and lensing data. For a given dark
energy equation of state, wde, we formulate a designer approach and we investigate their impact on the
CMB temperature anisotropy and matter power spectra. We use the equation of state approach to
parametrize the perturbations and find that this approach is particularly useful in identifying the most
suitable and numerically efficient parameters to explore in a Markov chain Monte Carlo analysis. We find
the data constrains models with wde ¼ −1 to be compatible with Λ cold dark matter (ΛCDM). For
wde ≠ −1 models, which avoid the gravitational waves constraint through the entropy perturbation, we
constrain wde to be wde ¼ −1.06þ0.08

−0.03 (CMB) and wde ¼ −1.04þ0.05
−0.02 (CMBþ Lensing) at 68% C.L., and

find that these models can be different from ΛCDM and still be compatible with the data. We also find that
these models can ameliorate some anomalies in ΛCDM when confronted with data, such as the low-l and
high-k power in the CMB temperature anisotropy and matter power spectra respectively, but not
simultaneously. We also investigate the anomalous lensing amplitude, quantified by Alens, and find that
for wde ¼ −1 models, Alens ¼ 1.15þ0.07

−0.08 (CMB) and Alens ¼ 1.12� 0.05 (CMBþ Lensing) at 68% C.L.
∼2σ larger than expected, similar to previous analyses of ΛCDM.
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I. INTRODUCTION

Cosmological observations suggest that we live in a
universe undergoing accelerated expansion, see for exam-
ple [1–4]. Moreover, the data is consistent with a cosmo-
logical constant, Λ, as the origin for this acceleration [5].
Initial observations of type Ia supernovae allowed signifi-
cant freedom for alternative dark energy and modified
gravity models to explain the accelerated expansion [6,7].
However, recent observations, and in particular of the
propagation of gravitational waves [8–10], have greatly
restricted the space of viable models.
A popular set of scalar-tensor (ST) models are the

Horndeski models [11,12], which are the most general
that can be constructed up to second order derivatives in the
scalar field. Its generality allows the testing of many
subclasses of models such as quintessence [13–15], k-
essence [16,17], fðRÞ [18–20], kinetic gravity braiding
(KGB) [21], Galileons [22], and many others. Until very
recently, the space of Horndeski models was relatively
unconstrained, in that many subclasses yielded acceptable
expansion histories and also were compatible with
data from the CMB, large scale structure, and clustering.

While cosmological data from these have helped in
restricting some specific manifestations of these models,
e.g., Galileons [23], observations of gravitational waves,
and more notably GW170817 and its electromagnetic
counterpart GRB170817A [8–10], have been used to
exclude many subclasses of Horndeski. In particular, the
observations have constrained their propagation speed to be
the speed of light, to very high precision. As several authors
have pointed out, see for example [24–28], this has left a
significantly reduced model space of viable subclasses in
Horndeski models and beyond. In fact, this was already
discussed prior to the detection of GW170817 and
GRB170817A, see for example [29–31]. As it stands,
current data is consistent with the Λ cold dark matter
(ΛCDM) model and other alternatives are not significantly
favored.
That is not to say that the cosmological constant is itself

without problems. It is well known that problems arise
when interpreting Λ as a vacuum energy in quantum field
theory, often dubbed the naturalness problem [32].
A related issue is the coincidence problem which is often
discussed in arguments against a cosmological constant.
This is related to why dark energy is only beginning to
dominate today, despite its energy density having a very
different evolution to that of matter and radiation, see for
example [33] for a discussion. While alternative models do
not necessarily themselves even solve these problems, at
the very least it suggests our understanding of dark energy,
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whether its origin is the cosmological constant or not, is
incomplete.
There are also a number of anomalies which currently

exist within ΛCDM when confronted with data. Perhaps
the most notable is the ∼3σ discrepancy between the value
of H0 determined directly from local distance measures,
H0 ¼ ð73.2� 1.7Þ km s−1Mpc−1 [34], and inferred from
the angular scale of fluctuations in the CMB,H0 ¼ ð66.9�
0.6Þ km s−1 Mpc−1 [4]. Another is that the data for the
CMB temperature angular anisotropy power spectrum,
CTT
l , for l≲ 30 is systematically below the prediction

from ΛCDM [35], also similar to the data for the matter
power spectrum, PðkÞ, at large k [36,37]. Recent work has
also highlighted the Planck Alens anomaly [38,39], rescaling
the lensing amplitude in the CMB spectra. This parameter
is a consistency check and is not physically motivated, with
an expected value of 1. However, the latest Planck analysis
puts this value at Alens ¼ 1.15þ0.13

−0.12 at 95% C.L., ∼2.3σ
larger than expected [40]. It is currently unknown whether
these anomalies are due to systematics or new physics and
provide more motivations for the field of modified gravity
and dark energy.
While models like Horndeski introduce a dynamical

scalar field instead of Λ to modify general relativity, an
alternative is to consider the introduction of a vector field.
Vector-tensor (VT) models of modified gravity have been
shown to be capable of leading to periods of accelerated
expansion and so provide an interesting line of dark energy
research, complementary to those already studied in the
context of the Horndeski class of models, see for example
[41–44].
In this paper, we study the dynamics of cosmological

perturbations in a class of VT models called generalized
Einstein-aether. First studied in [42] and then generalized in
[43], these models introduce a vector field, Aμ, known as
the aether field, that is constrained to have a timelike unit
norm. Under this constraint, Einstein-aether propagates
only one scalar degree of freedom, similar to ST models.
Its generalization comes about via noncanonical kinetic
terms parametrized by a free function F ðKÞ, where K is
defined as

K ¼ 1

M2
Kαβ

μν∇αAμ∇βAν; ð1Þ

and the rank-4 tensor is given as

Kαβ
μν ¼ c1gαβgμν þ c2δαμδ

β
ν þ c3δανδ

β
μ þ c4AαAβgμν: ð2Þ

Here, M has dimensions of mass and fcig are dimension-
less constants, which are the free parameters of the theory.
In particular, in this paper we study designer F ðKÞ models
that mimic ΛCDM and wCDM background cosmologies
but allow for the existence of nontrivial perturbations.
These designer F ðKÞ models were studied in [45] for

wde ¼ −1. In considering such models, it is only the
dynamics of the perturbations which will be important in
distinguishing these models from ΛCDM. Of course,
gravitational wave observations have also constrained this
class of models and it can be shown that it places the
restriction c1 þ c3 ¼ 0 or dF=dK ¼ 0 [27]. The implica-
tions of this are discussed later on in the paper.
In recent years, a large amount of effort has been directed

at developing parametrized frameworks for dark energy and
modified gravity theories, in order to explore the theoretical
landscape and departures from ΛCDM in a consistent
manner. The philosophy behind this approach is to com-
press the freedom within the numerous different models of
dark energy into a small number of phenomenological
functions. These in turn can then be used to explore the
parameter space of many different models. For example, in
Horndeski models a popular parametrization is via the
effective field theory approach and fαig functions, which
can be related back to the physical properties of a given
model [46,47]. These approaches also include the para-
metrized post-Friedmann framework [48,49], a general
theory of linear cosmological perturbations: ST and VT
theories [50,51] and the equation of state (EOS) approach
[52], and the ðμ; γÞ or ðμ;ΣÞ parametrization, for example
see [53,54]. The main difference between these frameworks
is the level at which they parametrize different models i.e.,
at the level of the action, the equations of motion, or the
solutions to the equations of motion. Of course, when
studying the effects of these models on cosmological
observables, the choice of framework should not matter.
In this paper we work with the EOS approach, where the

dark energy or modified gravity model is assumed to be a
nontrivial cosmological fluid. At the level of linear per-
turbations, this approach eliminates the internal degrees of
freedom introduced by the model and parametrizes the
scalar sector via the gauge invariant anisotropic stress, ΠS,
and entropy perturbation, Γ, in order to close the perturbed
conservation equations. Previous works have computed the
equations of state for elastic dark energy [55], fðRÞ gravity
[56], quintessence, k-essence, KGB [57], and more gen-
erally Horndeski theories [12]. It was also applied to
generalized Einstein-aether theories in [45] and this paper
continues that work by implementing this model in a
modified version of CLASS [58], called CLASS_EOS, a
modification to the Einstein-Boltzmann code that imple-
ments the EOS approach. For details of its numerical
implementation we refer the reader to [59], where it was
used to investigate designer fðRÞ models. We will call the
code used in this paper as CLASS_EOS_GEA

1.
Previous works, such as [60–63], have attempted to

constrain Einstein-aether and generalized Einstein-aether
using observational data. Before the gravitational waves

1https://github.com/fpace/class_FK_w-1 and https://
github.com/fpace/class_FK_pi_zero.
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constraint, these models provided more compelling alter-
natives to ΛCDM. However, in light of recent constraints,
these models have been severely restricted. In this work, we
constrain generalized Einstein-aether, in a similar way to
[61,62], but instead of a power law solution for the general
function F ðKÞ, we opt for a designer approach. In
particular, as well as studying models with wde ¼ −1,
which are now tightly constrained by gravitational waves,
we investigate whether models with wde ≠ −1 can still be
observationally interesting, while still being compatible
with the gravitational waves constraint. Such models will
typically require ΠS

de ¼ 0 and so the modification to gravity
is encoded solely by Γde, though there are caveats to this,
see for example [64]. Since the current constraints from the
data which apply to Γde are much weaker, we seek to
investigate models whose modification to gravity comes
about from a nonzero Γde only. The aim of this analysis is to
understand how such models will affect cosmological
observables and whether or not some of these models will
be able to ameliorate some of the mentioned anomalies in
ΛCDM. We will also investigate what the best parameters
to explore are in a Markov chain Monte Carlo (MCMC)
analysis, which we will see that the equation of state
approach is particularly useful for.
This paper is organized as follows. In Sec. II we review

generalized Einstein-aether models and construct designer
F ðKÞ models for a wCDM background. In Sec. III we
review the EOS approach to parametrizing the perturba-
tions and apply this to generalized Einstein-aether models.
Using this approach, we study the evolution of dark energy
perturbations in Sec. IV and analyze their impact on
cosmological observables in Sec. V. We then present
observational constraints on the parameters in designer
F ðKÞ models, from current CMB and lensing data in
Sec. VI. The effect of modifying the amplitude of the
lensed Cl via an Alens parameter is also investigated. We
then discuss our results and conclude in Sec. VII.
Natural units are used throughout with c ¼ ℏ ¼ 1 and

the metric signature is ð−;þ;þ;þÞ.

II. OVERVIEW OF GENERALIZED EINSTEIN-
AETHER AND DESIGNER F ðKÞ

In this section we briefly overview generalized Einstein-
aether theories and in particular, highlight important
features of designer F ðKÞ models discussed in [45].
Generalized Einstein-aether is defined by the action, in

the Jordan frame,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

16πG
Rþ LGEA

�
þ Sm; ð3Þ

where

16πGLGEA ¼ M2F ðKÞ þ λðgμνAμAν þ 1Þ: ð4Þ

The Lagrange multiplier term, λ, enforces the timelike unit
norm constraint for the aether field, Aμ. Also note that Aμ

does not couple directly to the matter sector, and so Lorentz
invariance will not be violated in the matter sector for these
models. It is possible to consider Lorentz violation in the
matter sector for Einstein-aether-like models, which
requires a coupling of this theory to matter, and was
studied in so-called Lorentz violating dark matter models.
We refer the reader to [65,66] for a study of such models
and cosmological constraints on Lorentz violation in these
models. We will take any Lorentz violating coupling to the
matter sector to be zero. In this paper, we will constrain
Lorentz violation in the gravitational sector via generalized
Einstein-aether models using cosmological data.
Variation of (3) with respect to the metric yields

Einstein’s equation in the form

Gμν ¼ 8πGTμν þUμν; ð5Þ
where Tμν is the standard matter energy-momentum tensor.
Written in this way, all contributions from the aether field
are included in Uμν and we will interpret this as the energy-
momentum tensor of a nontrivial cosmological fluid. The
full form of Uμν is given in [45]. We assume a background
cosmology described by the Friedmann-Lemaitre-
Robertson-Walker (FLRW) metric,

ds2 ¼ −dt2 þ aðtÞ2δijdxidxj; ð6Þ
and Aμ ¼ ð1; 0; 0; 0Þ to be compatible with the symmetries
from FLRW and also the timelike unit norm constraint.
Projecting out the energy density, ρGEA, and pressure,
PGEA, we have that

ρGEA ¼ 3αH2

�
FK −

F
2K

�
; ð7Þ

PGEA ¼ α

�
3H2

�
F
2K

− FK

�
− _FKH − FK

_H

�
; ð8Þ

where overdots denote differentiation with respect to
cosmic time, t, H ¼ _a=a is the Hubble factor,
FK ¼ dF=dK, α ¼ c1 þ 3c2 þ c3, and for later use we
will further define c13 ¼ c1 þ c3, c14 ¼ c1 − c4, and
c123 ¼ c1 þ c2 þ c3. We also have that

K ¼ 3αH2

M2
: ð9Þ

Note that due to the definition in (5), ρGEA and PGEA have
absorbed factors of 8πG. We will therefore also define
8πGρde ¼ ρGEA and 8πGPde ¼ PGEA, where the subscript
‘de’ and, later on, ‘m’ refers to dark energy and matter,
respectively.
The freedom in the background evolution is currently

governed by F ðKÞ, its derivative, and fcig via α and K, as
this dictates the evolution of ρGEA, PGEA, and hence
wde ¼ PGEA=ρGEA. One approach is to simply choose a
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form for F ðKÞ e.g., a power law as in [44], or more
complicated functions as in [67]. This would then allow us
to fine-tune its functional form in order to be compatible
with the observed background cosmology. Instead, we opt
for a designer approach where we link the evolution of aðtÞ
with F ðKÞ so that aðtÞ is identical to ΛCDM or wCDM.
While this is somewhat artificial, it has the virtue that only
the dynamics of the perturbations will be important in
distinguishing these models from the standard ΛCDM and
wCDM cosmologies.
In [45], it was found that for a given constant equation of

state, wde, and energy density parameter today, Ωde;0 ¼
8πGρde;0=ð3H2

0Þ, for a background cosmology indistin-
guishable from wCDM, F ðKÞ must obey

ð1þ wdeÞð2KFK − F Þ

¼ ð2KFKK þ FKÞ
�
Kþ 1

2
αwdeð2KFK − F Þ

�
; ð10Þ

assuming negligible radiation contribution, which is true
from matter domination and onwards, subject to the initial
conditions

F ðK0Þ ¼ F 0 and FKðK0Þ ¼
Ωde;0

α
þ F 0

2K0

; ð11Þ

where K0 ¼ Kða ¼ 1Þ and F 0 is the value of F ðKÞ today,
similar to the B0 parameter in designer fðRÞ theories.
Solving (10) will yield the behavior forF ðKÞ required for a
given wde and Ωde;0, provided F 0 is also given. It was
shown in [45] that the background evolution of F ðKÞ
was independent of the choice of fcig and that F0 was
degenerate with M. The mass parameter, M, was therefore
fixed at M ¼ H0 and will be for the rest of this paper.
In fact, (10) is more complicated than what is required by

CLASS_EOS_GEA, which is F as a function of time, or some
equivalent time variable e.g., scale factor or conformal
time. Therefore, (10) can be reduced to a first order
equation in a via the Friedmann equation,

ð1 − αFKÞ
�
H
H0

�
2

þ 1

6
F ¼ Ωm;0

a3
; ð12Þ

by demanding that the modifications to the Friedmann
equation in (12) evolve as a general dark energy fluid with
constant wde i.e.,

αFK

�
H
H0

�
2

þ 1

6
F ¼ Ωde;0

a3ð1þwdeÞ : ð13Þ

From (9), we can rewrite this as

F 0 ¼ −ϵH
�
F þ 6Ωde;0

a3ð1þwdeÞ

�
; ð14Þ

where primes denote differentiation with respect to log a
and ϵH ¼ −H0=H.

In [45], it was found that the only cosmologically
interesting solution to (10) for wde ¼ −1 was

F ðaÞ ¼ ðF 0 þ 6Ωde;0Þ
H
H0

− 6Ωde;0; ð15Þ

which is consistent with (14). Note that if F 0 ¼ −6Ωde;0
then F reduces to a constant and so this theory would be
indistinguishable to ΛCDM at the perturbative level as
well. For constant wde ≠ −1, then the solution to (14) is
given by

F ðaÞ
6Ωde;0

¼ H
H0

�
1þ F 0

6Ωde;0
− β0

�
þ a−3ð1þwdeÞðβ − 1Þ; ð16Þ

where again we have assumed negligible radiation con-
tribution to the total matter density. We have also further
defined

β ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a3wde

Ωm;0

Ωde;0

s

× 2F1

�
1

2
;−

1þ wde

2wde
;
wde − 1

2wde
;−a3wde

Ωm;0

Ωde;0

�
; ð17Þ

with β0 ¼ βða ¼ 1Þ, and where 2F1ða; b; c; xÞ is the
standard Gaussian hypergeometric function. With
the inclusion of radiation and ultrarelativistic species the
solution is no longer analytical. However, given that we
will start the dark energy perturbations well into the matter
domination era, see Sec. IV, this assumption is reasonable.

III. EQUATION OF STATE APPROACH

We will now briefly outline the equation of state
approach and its application to generalized Einstein-aether
models. Our starting point is (5), where we treat all
modifications to general relativity as a fluid via Uμν

and by construction, must be covariantly conserved i.e.,
∇μUμν ¼ 0.
At linear order in perturbations, δUμν is decomposed as

δUμ
ν ¼ ðδρþ δPÞuμuν þ δPδμν

þ ðρþ PÞðδuμuν þ δuνuμÞ þ PΠμ
ν; ð18Þ

where the anisotropic stress, Πμ
ν, is further projected into

scalar, vector, and tensor components via [68,69]

Πij ¼
�
k̂ik̂j −

1

3
δij

�
ΠS þ 2k̂ðiðΠV1 l̂jÞ þ ΠV2m̂jÞÞ

þ Πþðl̂il̂j − m̂im̂jÞ þ Π×ðl̂im̂j − l̂jm̂iÞ; ð19Þ
where the unit vectors fk̂; l̂; m̂g form an orthonormal basis
in k space.
The metric is perturbed as

ds2 ¼ a2ðτÞ½−ð1þ 2ψÞdτ2 þ ðδij þ hijÞdxidxj�; ð20Þ
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in conformal time, τ. Similar to Πij, hij can be decomposed
as in (19). This, together with the entropy perturbation,

wΓ ¼
�
δP
δρ

−
dP
dρ

�
δ; ð21Þ

form the gauge invariant equations of state for the linear
perturbations. In keeping with this gauge invariant lan-
guage, we will work with a set of gauge invariant variables
formed from the metric and perturbed fluid variables
defined in Table I. Note that T is not gauge invariant,
but will not explicitly appear in the expressions for ΠS and
Γ. For further details see [56]. We also define the dimen-
sionless wave number K ¼ k=ðaHÞ.
After eliminating the internal degrees of freedom for the

scalar sector, we write ΠS and Γ as linear functions of the
gauge invariant perturbed fluid variables, and find that

wdeΠS
de ¼ cΠΔΔde þ cΠΘΘ̂de þ cΠXX þ cΠYK2Y; ð22Þ

wdeΓde ¼ cΓΔΔde þ cΓΘΘ̂de þ cΓWW þ cΓXX þ cΓYK2Y;

ð23Þ

where the fcΠ;Γg coefficients are in principle functions of
both scale and time.
The philosophy behind the EOS approach is that all

modifications to gravity are treated as a new nontrivial
cosmological fluid. To that end, we eliminate the metric
variables fW;X; Yg in favor of the perturbed fluid variables
fΔi; Θ̂ig via the Einstein equations,

2W ¼ Ωm

�
3δP̂m

ρm
þ 2wmΠS

m − 3Θ̂m

�

þ Ωde

�
3δP̂de

ρde
þ 2wdeΠS

de − 3Θ̂de

�
; ð24Þ

2X ¼ ΩmΘ̂m þ ΩdeΘ̂de; ð25Þ

−
2

3
K2Y ¼ ΩmðΔm − 2wmΠS

mÞ þ ΩdeðΔde − 2wdeΠS
deÞ;

ð26Þ

−
2

3
K2Z ¼ ΩmΔm þΩdeΔde: ð27Þ

Substituting into (22) and (23) yields

wdeΠS
de ¼ cΠΔde

Δde þ cΠΘde
Θ̂de þ cΠΔm

Δm

þ cΠΘm
Θ̂m þ cΠΠm

ΠS
m; ð28Þ

wdeΓde ¼ cΓΔde
Δde þ cΓΘde

Θ̂de þ cΓΔm
Δm

þ cΓΘm
Θ̂m þ cΓΓm

Γm; ð29Þ
where we have included Πm and Γm for generality, as these
are nonzero for ultrarelativistic matter species. Note that
cΠΔ and cΠΔde

are not the same since Y can be rewritten in
terms of fΔig via (26), similarly for cΓΔ and cΓΔde

. The
relationship between these coefficients and the previous
ones are given in Appendix A.
Their forms in generalized Einstein-aether were com-

puted in [45] in full generality and are given in Appendix A,
however they simplify significantly for wde ¼ −1 in
designer F ðKÞ models. From (15) we have an analytical
solution and in this case the fcΠ;Γg coefficients reduce to

cΠΔ ¼ c13
c14

; cΠΘ ¼ 1

2
ð1þ ϵHÞ −

c13
c14

;

cΠX ¼ 0; cΠY ¼ −
c13
3α

�
1þ F 0

6Ωde;0

�
H
H0

; ð30Þ

and

cΓΔ¼−cΓΘ¼−
dPde

dρde
¼1; cΓW ¼cΓX¼cΓY ¼0: ð31Þ

Together, these coefficients completely encode the modi-
fication to gravity due to a designer F ðKÞ model
with wde ¼ −1.
In a designer background, H is already determined and

so the only two parameters which will dictate how these
models impact cosmological observables are

P1 ¼
c13
c14

and P2 ¼
c13
α

�
1þ F 0

6Ωde;0

�
; ð32Þ

and it will be these parameters that we will explore over in
the MCMC analysis, see Sec. VI. Note that we have
reduced the initial 5 free parameters of this theory, i.e.,
fci;F 0g, to only 2. In principle, we could run the MCMC
analysis with these 5 parameters, but this would only show
us that degeneracies exist between these parameters, as
shown by (32), and so it is more numerically efficient to
directly use the 2 parameters P1 and P2. This is one of the
advantages of the EOS approach, in that it allows us to see
explicitly what combinations of parameters will directly

TABLE I. The dimensionless variables we choose to work with
in the EOS approach are given in this table, in both the conformal
Newtonian and synchronous gauges.

Variable Conformal Newtonian Synchronous

T 0 hk0

2HK2

W 1
HX0 − ϵHðX þ YÞ 1

HX0 − ϵHðX þ YÞ
X 1

HZ0 þ Y 1
HZ0 þ Y

Y ψ 1
HT 0 þ ϵHT

Z φ η − T
Δ δþ 3Hð1þ wÞθS δþ 3Hð1þ wÞθS
Θ̂ 3Hð1þ wÞθS 3Hð1þ wÞθS þ 3ð1þ wÞT
δP̂ δP δPþ P0T
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affect the observables and what degeneracies exist between
the original parameters. Note that imposing flat priors on
P1 and P2 is not equivalent to doing the same for the
original 5 parameters.
For F 0 ¼ −6Ωde;0 we have that P2 ¼ 0. This case is

indistinguishable from ΛCDM at the level of linear
perturbations as F is constant, corresponding to
FK ¼ 0. As we will see later, another case that recovers
ΛCDM is when c13 ¼ 0 and so P1 ¼ P2 ¼ 0, see Sec. IV.
Note that in [45] it was found that

c2s ¼
1

c14

�
c123 þ

2

3
αγ2

�
; ð33Þ

could be interpreted as a sound speed for perturbations i.e.,
the coefficient of k2δde in the δ̈de equation, however it need
not necessarily be so. After all, a sound speed is itself frame
dependent. For wde ¼ −1 models, we find that c2s ¼ 2

3
P1.

Indeed, (33) is also consistent with [70,71] where they
computed the wave speed of different modes in Einstein-
aether, in the Minkowski limit. However, as discussed in
[45], in designer F ðKÞ models where we have directly
coupled the evolution of F to aðtÞ, no sensible Minkowski
limit exists for this theory once this connection has been
made. It could be argued that on grounds of subluminal
propagation P1 should have a upper bound of 3

2
. However,

as previously mentioned it is not necessarily the sound
speed and if it was it would only refer to the phase velocity.
We will therefore leave the upper bound of P1 unrestricted.
In complete generality it is not clear what the equivalent

parameters to P1 and P2 are when wde ≠ −1. However, we
will see in the next section that the gravitational wave con-
straints significantly reduce the complexity of such models,
allowing us to identify the parameters in a general way.

A. Constraints from gravitational waves

Recent observations of gravitational waves, and in
particular detections with a coincident gamma ray burst,
have provided strong constraints on the deviation of the
speed of gravitational waves, cgrav, from light, cγ .
Specifically, GW170817 and GRB170817A [8–10] have
constrained this deviation to be

−3 × 10−15 <
cgrav − cγ

cγ
< 7 × 10−16: ð34Þ

Taken as it is, it suggests that gravitational waves must
propagate at the speed of light. In generalized Einstein-
aether, c2grav is given by

c2grav ¼ ð1þ c13FKÞ−1; ð35Þ
and hence we require c13 ¼ 0 or FK ¼ 0. The latter is the
case of a cosmological constant and so we will focus on the
potentially more interesting case of c13 ¼ 0.

We note that there may be a caveat to the constraints
from gravitational waves that was pointed out in [64].
Namely, that a scale dependence in the gravitational wave
speed could alleviate this constraint on cosmological
scales. While in Einstein-aether there is no scale depend-
ence in cgrav (35), in [72] it was shown that in a UV
complete extension from the Horndeski action, the extra
terms would indeed provide a scale dependence and so a
scale dependent gravitational wave speed would be
expected. Similarly, Einstein-aether has been shown to
be equivalent to extended Hořava gravity [73,74] in the low
energy IR limit [75], i.e., extended Hořava gravity can be
thought of as the UV complete extension of Einstein-aether
models. Indeed, the extra terms in extended Hořava gravity
contribute fourth and sixth-order spatial derivatives, which
in turn will mean that gravitational waves will obey a
higher-order dispersion relation with a scale dependence
[76], analogous to a UV extended Horndeski action as
discussed in [72]. Note that there is a further condition that
the vector field, Aμ, is also hypersurface orthogonal, in
what is dubbed the Khronon. However, this is not important
for this discussion as this will only lead to a redefinition of
the fcig constants in the kinetic tensor (2) [45].
From (A1)–(A4) we see that all fcΠg coefficients are

proportional to c13 and hence the gravitational waves
constraint sets ΠS

de ¼ 0. Therefore, the modification to
gravity in these models is encoded solely in Γde. Under
this constraint, the fcΓg coefficients (A5)–(A9) can be
written as

cΓΔ ¼ 3ð1þ wdeÞ
ϵH½a4þ3wdeðP4 − P3β0ÞðHH0

Þ þ aP3β�
− wde; ð36Þ

cΓΘ ¼ 2

3
ðϵH − 1Þ − ϵ0H

3ϵH
; ð37Þ

cΓW ¼ 1

2
cΓX ¼ −3cΓY ¼ 1þ wde

ϵH
; ð38Þ

and the new parameters we choose to explore are

P3 ¼
c14
c2

and P4 ¼
c14
c2

�
1þ F 0

6Ωde;0

�
: ð39Þ

These choices are motivated by the forms of P1 and P2 in
(32) for wde ¼ −1 models.
In principle, the gravitational waves constraint of either

FK or c13 ¼ 0 could also be applied to wde ¼ −1 models.
However, as mentioned previously, this would correspond
to ΛCDM at the level of perturbations, rendering the
MCMC analysis for such models unnecessary. In such
cases, either P1 ≠ 0 but P2 ¼ 0, corresponding to FK ¼ 0,
where such models are degenerate with ΛCDM for any
value of P1, or P1 ¼ P2 ¼ 0, corresponding to c13 ¼ 0,
and so there are no parameters to explore. However, it will
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still be instructive to consider the dynamics of wde ¼ −1
models without the gravitational waves constraint applied,
which will aid our understanding of the dynamics when
wde ≠ −1 and see whether the MCMC analysis will pick
out wde ¼ −1 models that are consistent with either FK¼0
or c13 ¼ 0, without information from gravitational waves.

IV. COSMOLOGICAL DYNAMICS

We now move on to investigate the evolution of
cosmological perturbations, both analytically and numeri-
cally, in designer F ðKÞ models.

A. Dynamics of linear perturbations

For simplicity wewill assume that radiation is negligible,
which is true for the times that we are interested in and so
ΠS

m ¼ Γm ¼ 0. The perturbed conservation equation gives
2 coupled first order differential equations for each species,
given by

Δ0 − 3wΔþ gKϵHΘ̂ − 2wΠS ¼ 3ð1þ wÞX; ð40Þ

Θ̂0 þ 3

�
dP
dρ

− wþ 1

3
ϵH

�
Θ̂

− 3
dP
dρ

Δ − 2wΠS − 3wΓ ¼ 3ð1þ wÞY; ð41Þ

where gK ¼ 1þ K2

3ϵH
. The initial conditions are chosen such

that dark energy perturbations are negligible at zini ¼ 100

i.e., Δde ¼ Θ̂de ¼ 0, ΩmΔm ¼ − 2
3
K2Z, ΩmΘ̂m ¼ 2X, and

X ¼ Y ¼ Z. The exact starting point for the evolution of
the dark energy perturbations is somewhat arbitrary pro-
vided we are sufficiently into the matter dominated era. If
this is the case then the results are not sensitive to the
precise value of zini.
The behavior of the Newtonian potentials was studied in

[45] and in particular it was found that the gravitational slip
η ¼ ϕ=ψ → 1 for K ≫ 1 i.e., ϕ ¼ ψ , or equivalently
ΠS

de ¼ 0, for K ≫ 1. Therefore, we would expect complete
consistency with ΛCDM in the CMB temperature angular
anisotropy power spectrum at high-l. However, for low-l,
we would expect differences as the late-time integrated
Sachs-Wolfe (ISW) effect is sensitive to ΠS

de and, in
particular, to the variation of ϕ and ψ . Furthermore, it is
these large scale modes that enter the horizon at late times
when the dark sector component is dominating. It should be
noted that ifΠS

de ≠ 0 forK ≫ 1, then it is still possible to be
consistent with ΛCDM at high-l, see, for example, [59]
in fðRÞ.
In [45] it was found that for K ≫ 1 the perturbed

conservation equations, for wde ¼ −1, could be written
as 2 coupled second order differential equations, given by

Δ00
m þ ð2 − ϵHÞΔ0

m −
3

2
ΩmΔm ¼ 3

2
ΩdeΔde; ð42Þ

Δ00
deþð5−ϵHÞΔ0

deþ
2

3
cΠΔde

K2Δde¼−
2

3
cΠΔm

K2Δm; ð43Þ

provided the fΘ̂ig terms were small relative to the fΔig
terms. This will be true for small scales where K ≫ 1, as
can be seen from the Einstein equations (25) and (26). This
regime corresponds to modes which are within the horizon
during matter domination. From (43) we see that Δde will
tend to the attractor solution

Δde ¼ −
cΠΔm

cΠΔde

Δm; ð44Þ

shown in Fig. 1. The ΛCDM background cosmology
was set such that h ¼ H0=100 km s−1Mpc−1 ¼ 0.68,
Ωde;0 ¼ 0.69, and Ωbh2 ¼ 0.022. We see that initially
Δde grows to match −cΠΔm

=cΠΔde
Δm and oscillates about

the attractor solution. These oscillations are a consequence
of setting the dark energy perturbations to be zero at
zini ¼ 100. If the initial conditions are set at earlier times,
the amplitude of the oscillations is suppressed since the
attractor solution will be closer to zero. We will therefore
set the initial condition for Δde in CLASS_EOS_GEA to match
the attractor. This is numerically more efficient and in doing
so the oscillations will be suppressed.
Substituting (44) into (42) yields the standard evolution

equation forΔm inΛCDM, but with an effective Newtonian
gravitational constant, given by

Geff

G
¼ 1 −

ΩdecΠΔm

ΩmcΠΔde

: ð45Þ

This parameter is important in explaining the dynamics of
cosmological perturbations and hence the cosmological
observables. We can write the value of Geff today as

FIG. 1. The evolution of ΩdeΔde is shown for k ¼
0.001 Mpc−1, 0.01 Mpc−1, and 0.1 Mpc−1, for logP1 ¼ 1.0
and P2 ¼ 1.0 fixed, compared with the attractor solution for
each scale (black dashed lines).
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Geff;0

G
¼ 1

1þ P2

2P1
Ωde;0

: ð46Þ

As mentioned previously, if P2 ¼ 0, corresponding to
FK ¼ 0, then we recover ΛCDM and we find that Geff;0 ¼
G and in fact so is GeffðaÞ for all a. As we will see later, for
c13 ¼ 0 where P1 ¼ P2 ¼ 0, there are no growing modes
in Δde and hence we recover the standard ΛCDM evolution
equation in (42) upon setting Δde ¼ 0, with the standard
Newtonian gravitational constant.
A similar analysis can applied to wde ≠ −1 models. We

find that, for K ≫ 1, (42) still holds, but now

Δ00
de þ ½ð2 − 3wdeÞ − ϵH�Δ0

de

þ ðwde þ cΓΔde
ÞK2Δde ¼ −cΓΔde

K2Δm: ð47Þ
Hence, the attractor solution is modified to

Δde ¼ −
cΓΔm

wde þ cΓΔde

Δm; ð48Þ

and the effective Newtonian gravitational constant becomes

Geff

G
¼ 1 −

ΩdecΓΔm

Ωmðwde þ cΓΔde
Þ : ð49Þ

Note that the value of Geff;0 in these models can be
written as

Geff;0

G
¼ 6

6þ P4Ωde;0
; ð50Þ

i.e., Geff;0 is independent of wde and depends only on P4

and in principle P3, since

P4 ¼
�
1þ F 0

6Ωde;0

�
P3: ð51Þ

Note that there is not a direct link between fP1;P2g and
fP3;P4g, since the former parametrizes ΠS

de in wde ¼ −1
models where Γde is fixed and contains no free parameters
and the latter parametrizes Γde in wde ≠ −1 models where
c13 ¼ 0 and so ΠS

de ¼ 0.

B. Dynamics under the gravitational wave constraint

Consider again the gravitational waves constraint which
demand eitherFK ¼ 0 or c13 ¼ 0. It is clear that the case of
FK ¼ 0 will yield a model identical to ΛCDM and hence
there will be no dark energy perturbations. However, we
find that this is also true if c13 ¼ 0 and wde ¼ −1.
To see this, recall that ΠS

de ¼ 0 if c13 ¼ 0 and so (43)
becomes

Δ00
de þ ð5 − ϵHÞΔ0

de ¼ 0: ð52Þ
In the matter dominated era ϵH → 3=2 and so the solution
to (52) has no growing modes, i.e., if c13 ¼ 0 then there are
no dark energy perturbations, since any nonzero initial
condition for Δde would quickly decay. Therefore, the

constraint that c13 ¼ 0 restricts designer F ðKÞ models to
those which are indistinguishable from ΛCDM both at the
level of background cosmology and linear perturbations, if
wde ¼ −1. Therefore, to explore cosmologically interesting
models which are different from ΛCDM and compatible
with the gravitational waves constraint, we cannot restrict
ourselves to wde ¼ −1. However, as mentioned previously,
it will still be interesting and instructive to study the impact
of such models on cosmological observables which we can
use to aid our understanding of models with wde ≠ −1.

V. IMPACT ON COSMOLOGICAL OBSERVABLES

We now study the impact of designer F ðKÞ models on
cosmological observables, and in particular on the CMB
temperature angular anisotropy and matter power spectra.
In doing so we will use the results derived in Sec. IVand in
particular Geff which will directly affect the growth of
matter and the Newtonian gravitational potentials.

A. wde = − 1
The impact of these models on the CMB temperature

angular anisotropy power spectrum depends on the time
variation of the Weyl potential, 2Φ ¼ ψ þ ϕ. In particular,
the late-time ISW effect is proportional to the integralR
_Φdz, for redshift z along the line of sight, and so the

presence of a nonzero ΠS
de which will modify the behavior

of Φ will also affect the late-time ISWeffect. Note that it is
still possible for Φ to be different from ΛCDM even if
ΠS

de ¼ 0, as long as Γde ≠ 0. In the absence of ΠS
de the

gravitational slip η ¼ 1 because ψ ¼ ϕ, but their behavior
will still be modified due to a nonzero Δde in the Poisson
equations for ψ (26) and ϕ (27).
From Fig. 2, we observe that for Geff;0=G > 1 ð< 1Þ, Φ

is enhanced (suppressed) with respect to ΛCDM. For
Geff;0=G > 1 we see that Φ initially grows before decaying
again due to dark energy. The growth can be explained
from considering the matter power spectrum, since
Geff;0=G > 1 would enhance clustering and hence give
rise to a larger Φ. In these cases we would expect the late-
time ISW effect to be larger. For Geff;0=G < 1, Φ is
suppressed relative to ΛCDM as expected and naively
we may expect that the late-time ISW effect to be switched
off for sufficiently low values of Geff;0. However, as seen in
Fig. 3 we observe a larger late-time ISW effect relative to
ΛCDM as _Φ is still larger in these cases as well, see Fig. 2.
Therefore, there is a minimum in the late-time ISW effect
for some value of Geff;0 before the late-time ISW effect
grows again. Of course, it will not only depend onGeff;0 but
also the overall behavior of GeffðaÞ.
Since Geff also directly affects Δm via (42), the matter

power spectrum, PðkÞ, will be enhanced or suppressed
according to the behavior ofGeff . Note that this will only be
true for small scales as we have assumed we are in the
regime K ≫ 1. Hence, designer F ðKÞ models will
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simultaneously modify the low-lCMB temperature angular
anisotropy power spectrum and PðkÞ for large k. Indeed,
this is what we find for PðkÞ as shown in Fig. 3. For large
scales PðkÞ is unaffected.
We note models where there is a weakening in Geff such

that Geff;0=G < 1 sometimes signifies instabilities in the

perturbations. One way of checking for this is by treating
(43) as an equation for a harmonic oscillator, where
stability would require cΠΔde

> 0. In terms of the fP1;P2g
parameters, we have that

cΠΔde
¼

P1ðHH0
Þ þ 1

2
Ωde;0P2

ðHH0
Þ þ Ωde;0P2

: ð53Þ

From (46)we see thatGeff;0=G < 1 occurs if bothP1 andP2

are the same sign. If they are both positive then cΠΔde
(53) is

also positive and there is not issuewith stability. On the other
hand, if both are negative then we would require
jΩde;0P2j > H=H0, at least from when the dark energy
perturbations are switched on at zini ¼ 100. SinceH is larger
in the past, this in principle would set a constraint of jP2j ≳
800 ifP1 < 0 as well. However, as discussed previously,P1

is related to the sound speed of perturbations, though there
may be a caveat to this. Indeed, when computing the
cosmological observables in CLASS_EOS_GEA, we find that
P1 must be positive otherwise the perturbations become
unstable and this transfers into the gravitational potentials,
where they grow exponentially. We therefore choose to
explore over the parameter space for logP1 which will be
more suitable to ensurewe only look at positive values ofP1

FIG. 2. The Weyl potential, 2Φ ¼ ψ þ ϕ, (solid lines) and its
derivative (dashed lines) as a function of scale factor for different
values of Geff;0, corresponding to P2 ¼ 1, 0, and −1, with
logP1 ¼ 0.1, wde ¼ −1, and K0 ¼ 1 fixed. The ΛCDM potential
is denoted by the black dotted line.

FIG. 3. Left panels: The matter power spectrum relative to ΛCDM (top panel) and CMB temperature angular anisotropy power
spectrum (bottom panel) for P2 ¼ 1 and wde ¼ −1 fixed. The late-time ISW component is shown by the dashed lines. The black dotted
line denotes ΛCDM. Right panels: As the left panels but with logP1 ¼ 0.1 fixed.
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in a MCMC analysis. Therefore, for the models which we
are interested in and are stable, P1 will always be positive
and hence no further constraints are needed to ensure
stability other than P1 > 0, which is ensured by exploring
over logP1.
In principle there are 2 independent functions which are

required to describe the behavior of the Newtonian poten-
tials, ψ and ϕ. What we callGeff is sometimes referred to as
Gmatter or μϕ, which parametrizes modifications to the
Poisson equation for ϕ, for example see [64]. However
there is an equivalent function which also modifies ψ ,
sometimes referred to as Glight or μψ. Therefore, to fully
describe the behavior of Φ ¼ ψ þ ϕ we require knowledge
of both Gmatter, what we call Geff , and Glight. However, as
mentioned previously, for designer F ðKÞ models with
wde ¼ −1 we have that η → 1 for K ≫ 1. This means that
for subhorizon modes, where the expression for Geff holds,
the behavior of ψ and ϕ are identical. Therefore, only 1
function,Geff , is required to describe both the behavior of ψ
and ϕ. Note that this will also be true for our analysis of
wde ≠ −1 models as we set c13 ¼ 0 which gives ΠS

de ¼ 0

and so η ¼ 1 at all scales.

B. wde ≠ − 1
The behavior of the spectra for wde ≠ −1 is straightfor-

ward to understand. From Fig. 4, we see that wde is
anticorrelated with the amplitude of clustering, as in
wCDM quintessence models [77]. For more negative
wde, dark energy domination begins later than more less
negative values. Therefore, matter is more gravitationally
bounded, enhancing the growth of structure. Similar to the
wde ¼ −1 models, this in turn affects the gravitational
lensing potential, Φ, enhancing the late-time ISW compo-
nent of the CMB spectrum, as can be seen in Fig. 4.
As before with P1 and P2, Geff;0 (50) can be used to

explain the impact of P4 on cosmological observables for
wde ≠ −1 models. We do not show the effect of varying P3

only as this is degenerate with P4 via (51). The arguments
that were made previously for wde ¼ −1 also hold here. In
fact, the behavior for different wde can also be explained via
Geff . Even though the value of Geff;0 in (50) is independent
of wde, the behavior of GeffðaÞ is dependent on wde, with
more negative values of wde causing Geff to be larger over
its evolution, on average, compared to less negative wde.

FIG. 4. Left panels: The matter power spectrum relative to ΛCDM (top panel) and CMB temperature angular anisotropy power
spectrum (bottom panel) in wCDMmodels, compatible with the gravitational waves constraint c13 ¼ 0, for different wde and P3 ¼ 1 and
P4 ¼ −1 fixed. The late-time ISW component is shown by the dashed lines. The black dotted line denotes ΛCDM. Right panels: As
with the left panels, but for models with different P4 and wde ¼ −1.1 and P3 ¼ 1 fixed. All other cosmological parameters are fixed to
ΛCDM values given previously.
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It is interesting to note that in these models ΠS
de ¼ 0 but

we still observe differences in the late-time ISWeffect. This
suggests that even in models where ΠS

de ¼ 0 and hence
ϕ ¼ ψ , the late-time ISW effect can still be sensitive to a
nonzero Γde.
We will also briefly mention the effect of ignoring the

fΘ̂ig terms in (29) for these models. From (47), it was
possible to derive a second order equation of motion forΔde

coupled to Δm assuming the fΘ̂ig terms were negligible in
the K ≫ 1 regime. In these models, the coefficients of
wdeΓde written as (29) are given by

cΓΔde
¼ 6ð1þ wdeÞ

fðP3;P4Þ½2ϵH − 3Ωdeð1þ wdeÞ�
ð54Þ

þΩdeð1þ wdeÞð1þ 6wdeÞ − 2wdeϵH
2ϵH − 3Ωdeð1þ wdeÞ

; ð55Þ

cΓΘde
¼ 4ðϵH − 1ÞϵH − 2ϵ0H

3½2ϵH − 3Ωdeð1þ wdeÞ�
ð56Þ

−
Ωdeð1þ wdeÞð1þ 3wdeÞ
2ϵH − 3Ωdeð1þ wdeÞ

; ð57Þ

cΓΔm
¼ −cΓΘm

¼ 1

3
ð1þ wdeÞ; ð58Þ

where we have defined fðP3;P4Þ ¼ a4þ3wdeðP4 −
P3β0Þ H

H0
þ aP3β from (36). Since wde will be close to

−1, cΓΘm
will be close to zero and since the fΔig terms will

dominate anyway for K ≫ 1, a simplified model can be
obtained by simply setting cΓΘde

¼ cΓΘm
¼ 0. In doing so

we essentially ignore superhorizon modes, but it is inter-
esting to see how much an effect this has on the spectra. We
find that the error due to this simplification compared to the
full model, when varying wde and P4, is below 1% down to
l ≈ 10 for CTT

l and values of k down to k ≈ 10−2h Mpc−1

for PðkÞ. As expected, for the largest scales, the spectra
become increasingly inaccurate from ignoring the super-
horizon modes in Γde.
Similar to wde ¼ −1 models, when Geff;0=G < 1 we

should look at the stability of such models as it can signify
instabilities in the perturbations. However, this is a much
more difficult task as the expressions are more complicated.
As before, we treat (47) as a harmonic oscillator and so we
would require wde þ cΓΔde

> 0 when P4 > 0 for Geff;0=
G < 1 (50). As we have said, the expressions are more
complicated so any constraints derived from this are not as
straight forward. However, if we check these coefficients
numerically we find that wde þ cΓΔde

will generically
change sign for the parameters fwde;P3;P4g. It could
be argued that wde þ cΓΔde

> 0 must hold true for all a on
grounds of stability, however we argue that this does not
necessarily need to be the case since Δde is not directly
observable. In particular, suppose wde þ cΓΔde

became

negative but only for a relatively short period in cosmo-
logical time. These models could still be considered as
stable if the instabilities do not have enough time to grow,
and so the cosmological observables would still be “well
behaved.” We therefore argue that no systematic set of
stability constraints can be derived from wde ≠ −1 models
with c13 ¼ 0 when Geff;0=G < 1.

VI. CONSTRAINTS FROM COSMOLOGICAL
OBSERVABLES

In this section we present observational constraints for
designer F ðKÞ models using CMB and CMBþ Lensing
data sets, from the Planck 2015 public likelihoods for low-l,
high-l temperaturewith polarization, and lensing [4].We do
not consider data set combinations with baryon acoustic
oscillations (BAOs), as these constrain only distance mea-
surements and, as discussed in [45], fci;Fg would be
insensitive to these, since they do not affect the background
evolution. The caveat to this is that BAOs could give tighter
constraints on other cosmological parameters which could
then also affect the constraints on fPig, however we do not
consider this further. We reiterate that the main purpose of
this analysis is not to get the best constraints for the
parameters in this theory, but to understand how these
models affect cosmological observables and if they can be
used to solve some previously mentioned anomalies.
For the MCMC sampling of the parameter space we use

the MONTEPYTHON code [78]. In this analysis, we vary the 6
base cosmological parameters and the required Planck
nuisance parameters with the same priors as the Planck
Collaboration.
We consider 2 sets of models: one which mimics a

ΛCDM background where wde ¼ −1 and one which
mimics wCDM. As discussed in Sec. III, these two sets
of models have different parameters to sample other than
wde. The 68% C.L. constraints for these parameters are
shown in Table II. For comparison we also show the
68% C.L. constraints we obtain for wde and σ8 in the
standard cases, with the same data sets, in Table III. Note
that for wCDM, in this case, the parameters are poorly
constrained due to the lack of BAO data which would
constrain the background and hence wde. This is not the
case for F ðKÞ models because the perturbations play a
more important role than in the standard Quintessence case.
For both sets of background cosmologies, we see that σ8

decreases when lensing data is included. As seen previ-
ously, these models only affect the CMB temperature
anisotropy on large angular scales, where the data are
limited by cosmic variance. Hence, we expect the lensing
power spectrum to more tightly constrain these models.
Indeed, with the inclusion of lensing, models with larger σ8
are disfavored. For wde ¼ −1, this pushes logP1 higher,
corresponding to a value of Geff;0=G closer to 1 (46). As
seen from Fig. 7, the higher values of logP1 have
weakened the constraints on P2 compared with CMB data
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only, though it is still consistent with zero. As mentioned
previously, models with P2 ¼ 0 are indistinguishable from
ΛCDM at the perturbative level, which our constraints are
consistent with. With P1 ≠ 0, this also tells us that designer
F ðKÞ models that mimic a ΛCDM background prefer
FK ¼ 0, as opposed to c13 ¼ 0, though these constraints
from CMB data do not provide anything nearly as stringent
as the gravitational waves constraint.
For models with wde ≠ −1, compatible with c13 ¼ 0, we

find that a more negative value of wde is preferred, though
still consistent with −1 (68% C.L.). The parameter P3 is
poorly constrained by the data compared withP4. Including
lensing data does little to improve this. It does, however,
more tightly constrain P4 closer to zero, corresponding to a
value of Geff;0=G closer to 1 (50). As mentioned previously
this does not necessarily mean that GeffðaÞ ¼ 1 for all a.
Lensing data also more tightly constrains wde pushing it
closer to −1. The contour plot is shown in Fig. 8. It is worth
noting that even with the gravitational waves constraint,
which severely restricts many models, if wde ¼ −1 is
relaxed, then these designer F ðKÞ models are still able to
be compatiblewith the data but are also distinct fromΛCDM
due to the presence of a nonzero Γde.
For wde ¼ −1 models, the best fitting values for the

parameters are logP1 ¼ 0.10, P2 ¼ −0.33 (CMB), and
logP1 ¼ −1.12, P2 ¼ −0.0055 (CMBþ Lensing). The
spectra for these models are shown in Fig. 5. We see that
for CMB only, the best fitting parameters have the low −
lCTT

l below that for the ΛCDM prediction, hence giving a
better fit to the data. This is one of the current anomalies with
the data mentioned previously [35]. However, this comes at
the cost of an enhanced matter power spectrum and hence a
larger σ8, at odds with galaxy clustering observations

[79–81], as with fðRÞ models [59]. With CMBþ Lensing
the conclusion is similar, but we find that the effects at the
low-l spectrum and high-kmatter power spectrum are much
more subtle. We, therefore, find no strong reason to favor
these models over ΛCDM for wde ¼ −1 fixed.
For wde ≠ −1 models, the best fitting values for the

parameters are wde ¼ −1.06;P3 ¼ 11.4, P4 ¼ −0.66
(CMB), and wde ¼ −1.01;P3 ¼ −35.2, P4 ¼ −0.60
(CMBþ Lensing). We see that, similar to wde ¼ −1
models, the best fitting parameters have suppressed power
at low-l at the cost of a larger σ8. The inclusion of lensing
data causes the matter power spectrum to look more like
ΛCDM, as before, however, there is slightly more sup-
pression of power at low-l compared to wde ¼ −1 models.

A. Gravitational lensing of the CMB power spectra

As photons travel from the last scattering surface they are
lensed from travelling through gravitational potentials. This
gravitational lensing smooths the acoustic peaks of the
CMB and polarization power spectra. The amount of
lensing is something which can be calculated very accu-
rately once the cosmological parameters are fixed [39]. In
[38] the parameter Alens was introduced as a consistency
check. This parameter modifies the amount the CMB is
lensed viaCTT;lensed

l ¼ CTT;unlensed
l þ AlensĈ

TT
l , where ĈTT

l is
the lensed contribution to the unlensed spectrum. A theory
which ignores gravitational lensing has Alens ¼ 0, while
Alens ¼ 1 is the expected amount of lensing. We run the
MCMC analysis on ΛCDM with Alens, shown in Table IV,
and find that Alens ¼ 1 is inconsistent (68% C.L.), indicat-
ing more lensing is observed than expected in ΛCDM. This
conclusion is compatible with previous analyses [38–40].

TABLE II. The posterior mean (68% C.L.) for wde, σ8, logP1, P2, P3, and P4 for 2 sets of models that mimic a ΛCDM and wCDM
expansion history. The ellipses indicate parameters that are not used for that set of models. Note that for the wCDMmodels we study, P1

and P2 are set to zero and hence logP1 → −∞.

CMB (F ðKÞ ΛCDM) CMBþ Lensing (F ðKÞ ΛCDM) CMB (F ðKÞ wCDM) CMBþ Lensing (F ðKÞ wCDM)

wde −1 −1 −1.06þ0.08
−0.03 −1.04þ0.05

−0.02
σ8 0.84� 0.02 0.82� 0.01 0.86þ0.02

−0.03 0.83þ0.01
−0.02

logP1 1.7þ2.3
−1.9 4.1þ1.9

−1.3 −∞ −∞
P2 −0.4� 0.5 1.8þ0.9

−3.2 0 0

P3 � � � � � � 1.3þ17.0
−19.0 −0.7þ19.9

−17.9

P4 � � � � � � −1.7þ1.2
−0.9 −1.0þ1.0

−0.5

TABLE III. For comparison, the posterior mean (68% C.L.) for wde, σ8, for the standard ΛCDM and wCDM
models.

CMB (ΛCDM) CMBþ Lensing (ΛCDM) CMB (wCDM) CMBþ Lensing (wCDM)

wde −1 −1 −1.54þ0.18
−0.38 −1.36þ0.31

−0.46
σ8 0.83� 0.01 0.82� 0.01 0.98þ0.11

−0.06 0.91þ0.13
−0.03
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In order to investigate this further, we also include theAlens
in our analysis of designer F ðKÞ models. Since this will
modify the amount of gravitational lensing, a model which
modifies the gravitational lensing potentials should also
affect Alens. We have already seen that these designer
F ðKÞ models can significantly modify Φ in Fig. 2. It is
therefore interesting to see if the parameters in these models
are degenerate with Alens and hence could push Alens to be
more consistent with 1. For illustrative purposes we
will only considermodels withwde ¼ −1 togetherwithAlens.
In Fig. 6 we show the high-l peaks of the lensed CMB

temperature angular anisotropy power spectrum. We see

that the spectrum for higher values of Alens have increas-
ingly smoothed peaks. We compare this to a designerF ðKÞ
model with Alens ¼ 1 and see that a similar behavior is
observed by varying P2. Indeed, this is to be expected as
this parameter, along with logP1, directly affects the
lensing potential Φ. Prima facie, it seems that there should
be a degeneracy between these new parameters and Alens,
and that there may be a way to ameliorate the Alens anomaly
through P1 and P2. However, Alens exclusively modifies
the lensed high-l CMB peaks, while P1 and P2 would
affect both the high-l peaks and low-l late ISW effect,
which would likely break the degeneracy. We again sample

FIG. 5. Left panels: The matter power spectrum (top panel) and CMB temperature angular anisotropy power spectrum (bottom)
relative to ΛCDM for the best fitting values of logP1 and P2, with wde ¼ −1, for CMB (red) and CMBþ Lensing (yellow). All other
parameters have been kept fixed at the ΛCDM values. Right panels: As the left panels, but for the best fitting values of P3, P4, and
wde ≠ −1, in wCDM models compatible with the gravitational waves constraint of c13 ¼ 0. The oscillations observed at high-l are due
to a slightly different background cosmology which has shifted the peaks of the CMB spectrum.

TABLE IV. The posterior mean (68% C.L.) for σ8, logP1, P2, and Alens in a designer F ðKÞ model with wde ¼ −1 compared to the
usual ΛCDM model.

CMB (F ðKÞ ΛCDM) CMBþ Lensing (F ðKÞ ΛCDM) CMB (ΛCDM) CMBþ Lensing (ΛCDM)

σ8 0.80� 0.02 0.81� 0.01 0.81þ0.01
−0.02 0.81� 0.01

Alens 1.15þ0.07
−0.08 1.12� 0.05 1.13� 0.07 1.12þ0.05

−0.06
logP1 5.4þ2.1

−1.1 6.4þ1.4
−0.7 � � � � � �

P2 28:9þ9.0
−30.3 40:0þ14.1

−41.3 � � � � � �
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over the parameter space for designer F ðKÞ models with
wde ¼ −1, along with the same datasets as before.
However, this time we also include the Alens parameter.
These constraints are shown in Table IV.
For CMB only, we find that Alens ¼ 1.15þ0.07

−0.08 (CMB) and
Alens ¼ 1.12� 0.05 (CMBþ Lensing) at 68% C.L.
Therefore, these models are not able to solve the Alens
anomaly. Indeed, there does not seem to be any degeneracy
between fP1;P2g and Alens, due to the fact that fP1;P2g
also modifies the low-l CMB as shown in Fig. 3. With Alens
we find that P2 becomes very poorly constrained. It is
interesting to note that, unlike previously, the inclusion of
lensing data pushes σ8 slightly higher. This is due to the
degeneracywithAlens andσ8 that can be seen inFig. 9.We see
that larger values of Alens corresponds to lower σ8. However,
as the Cφφ

l spectrum does not exhibit the Alens anomaly [4],
with the inclusion of lensing data, this pushes Alens slightly
closer to 1, which in turn means that σ8 is larger.

VII. DISCUSSION AND CONCLUSIONS

In this paper we have investigated cosmologically viable
generalized Einstein-aether theories, by which we mean

models that are compatible with measurements of the
expansion history of the Universe, data from the CMB
photons, their polarization, and gravitational lensing poten-
tial, and also the gravitational waves constraint. In designer
F ðKÞmodels, the expansion history can be fixed to wCDM
and the form of such an F ðKÞ for generic constant wde was
derived, given by (16). These designer models are particu-
larly useful for investigating the role of perturbations since
they have the virtue that only the dynamics of the
perturbations can be used to distinguish these models from
ΛCDM or wCDM.
To study the effect of such models on cosmological

observables, we have used the EOS approach, implemented
in a modified version of CLASS, dubbed CLASS_EOS_GEA.
We have seen that a strength of this approach is that it has
very readily identified the degeneracies that exist between
the original parameters of the theory. This allows us to
greatly reduce the number of parameters to explore in a
MCMC analysis by constructing new parameters made
from combinations of the previous ones, which are more
suitable to explore over. In our case, the 5 original
parameters fci;F 0g could be reduced to 2, fP1;P2g
and fP3;P4g for wde ¼ −1 and wde ≠ −1 with c13 ¼ 0,
respectively. Doing this is numerically more efficient and
speeds up the computational analysis.
We found that for designer F ðKÞ models with wde ¼ −1,

the data seems to prefer models with a small derivative, i.e.,
FK ≈ 0, corresponding toP2 ≈ 0. Suchmodels are consistent
with the gravitational waves constraint, but are also indis-
tinguishable from ΛCDM. The other way to satisfy the
constraint is to have c13 ¼ 0, however this was also shown
to cause the models to be indistinguishable from ΛCDM.
While there exists a choice of parameters which would
suppress power at low-l for the CMB temperature angular
anisotropy power spectrum, see Fig. 5, this came at the cost of
an increasedσ8.Moreover, these effectswerediminishedwith
the inclusion of lensing data. This is due to the lensing data
disfavoring models with large values of σ8. Therefore, these
models do not provide a significant alternative to ΛCDM.
Since c13 ¼ 0 causes the previous set of models to be

indistinguishable from ΛCDM, to explore cosmologically
viable, but also interesting models, the case of wde ≠ −1
was investigated. We found that in such models, wde was
constrained to be wde ¼ −1.07þ0.08

−0.03 (CMB) and wde ¼
−1.04þ0.05

−0.01 (CMBþ Lensing) at 68% C.L. Since wde is
anticorrelated with σ8 it is not surprising that the value of
wde is pushed closer to −1 with the inclusion of lensing
data. We find wde ¼ −1 to be consistent, i.e., these models
need to be close to ΛCDM in order to be compatible with
the data. However, they do not need to be exactly ΛCDM
and there is some leeway for these models to fit the data but
to also have noticeable differences. In particular, the
gravitational waves constraint does not severely restrict
these models since those constraints pertain only to those
with significant ΠS

de, which these models avoid, since the

FIG. 6. Top panel: The lensed CMB temperature angular
anisotropy power spectrum, for high-l peaks, in ΛCDM is
shown. The amount of lensing is modified by Alens. A value of
Alens ¼ 1 is the expected amount of lensing. Bottom panel:
Similar to the top panel, but now in a designer F ðKÞ model
with wde ¼ −1. Here, Alens ¼ 1 but the amount of lensing is
affected by varying P2, with logP1 ¼ −0.5 fixed.
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constraints on Γde are much weaker. Similar to before, there
exists a choice of parameters to suppress power for the
low-l CMB temperature angular anisotropy power spec-
trum, but at the cost of a larger σ8. Again, while these
models are in principle cosmologically viable, we do not
see any reason to favor these models over ΛCDM.
However, it is interesting to note that some of the anomalies
with ΛCDM can be rectified in these alternative dark
energy models, although not simultaneously. For example,
it is possible to suppress power at high-k for PðkÞ, as shown
in Fig. 3, but at the cost of enhanced power for the low-l
CMB spectrum, and vice versa.
When investigating the Alens anomaly within F ðKÞ, we

found comparable constraints on Alens with previous
analyses, i.e., Alens ¼ 1 is not consistent in these models.
Since the data suggests that these models need to be close to
ΛCDM in order to be cosmologically viable, this is not
surprising. It is currently unclear whether these previously
mentioned anomalies are due to unaccounted systematics in
the data, or whether there is new physics to be understood.
It may be possible to construct models which are able to
simultaneously alleviate these anomalies, i.e., low-l CMB,
high-k matter power spectrum, and the Alens anomaly. As
we have seen, these can be linked to the Weyl potential, Φ,
which is affected by Geff only in our case, though 2
functions are required in general when ΠS ≠ 0. Therefore,
it may be possible to construct models with a suitable Geff
by choosing fcΠ; cΓg, which then could be used to
investigate these anomalies further and see what properties
models would need in order for these anomalies to be
solved in some way. We leave this for future work.
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APPENDIX A: COEFFICIENTS IN THE
EQUATIONS OF STATE APPROACH

The coefficients for the equations of state in generalized
Einstein-aether theories are presented here. From (22) and
(23), we have that

cΠΔ ¼ c13
c14

; ðA1Þ

cΠΘ ¼ c13
3c123 þ 2αγ2

�
1 − 2

�
ϵHγ2 þ

c13
c14

��
; ðA2Þ

cΠX ¼ 2c13γ1ð1þ 2γ2Þ
ð2γ1 − 1Þð3c123 þ 2αγ2Þ

�
2

�
c13
c14

þ ϵHγ2

�
− 1

�
;

ðA3Þ

cΠY ¼ 2c13γ1
3αð1 − 2γ1Þ

; ðA4Þ

cΓΔ ¼ αð1þ 2γ2Þ
3c14

−
dPde

dρde
; ðA5Þ

cΓΘ ¼ α

3ð3c123 þ 2αγ2Þ
��

1 −
2c13
c14

�
ð1þ 2γ2Þ

− 6ϵHγ2

�
1þ 2

3
γ3

��
þ dPde

dρde
; ðA6Þ

cΓW ¼ 2γ1ð1þ 2γ2Þ
3ð2γ1 − 1Þ ; ðA7Þ

cΓX ¼ 4αγ1
3ð2γ1 − 1Þð3c123 þ 2αγ2Þ

��
1þ c13

c14

�
ð1þ 2γ2Þ2

þ 3c13
α

�
1þ 2γ2

�
1 − ϵH

�
1þ 2

3
γ3

����
; ðA8Þ

cΓY ¼ 2γ1ð1þ 2γ2Þ
9ð1 − 2γ1Þ

; ðA9Þ

where γ1 ¼ KFK=F , γ2 ¼ KFKK=FK, and γ3 ¼
KFKKK=FKK. Using the Einstein equations (24)–(27) to
eliminate the metric variables fW;X; Yg, we obtain

ð1–3cΠYΩdeÞwdeΠS
de¼

�
cΠΔ−

3

2
cΠYΩde

�
Δdeþ

�
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1

2
cΠXΩde

�
Θ̂de−

3

2
cΠYΩmΔmþ

1

2
cΠXΩmΘ̂mþ3cΠYΩmwmΠS
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ðA10Þ
1

2
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2
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dρ

����
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3
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3
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�
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3
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dρ

����
de

�
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2
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�
cΓX − 3cΓW
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APPENDIX B: CONTOUR PLOTS FOR DESIGNER F ðKÞ PARAMETERS

In this section we provide the 2D posterior distribution marginalized cosmological contour plots between P1, P2, and σ8
in Fig. 7, as well as Alens in Fig. 9, and also for P3, P4, σ8, and wde in Fig. 8.

FIG. 7. The 68% and 95% constraint contours for logP1, P2, and σ8 are shown for wde ¼ −1 models. Note that the correlation
between logP1 and σ8 is removed once lensing data is included. We see that for CMB only, there is a preference for P2 to be close to
zero, with a slight preference for negative values at larger logP1. From (46) we see that this corresponds to Geff=GN > 1, but only
slightly as it is suppressed by a larger logP1, allowing larger values of σ8. Once lensing data is included, σ8 is more strongly constrained
to lower values and pushes these models to be similar toΛCDM, corresponding to either P2 ≈ 0, or a larger logP1 which setsGeff ≈ GN.
This in turn allows for larger values of P2, since its effect is suppressed in Geff by a larger logP1.
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FIG. 8. The 68% and 95% constraint contours for P3, P4, σ8, and wde. Note the anticorrelation between σ8 and wde as in wCDM
quintessence models. As expected, there is a degeneracy between P3 and P4. We note a feature of the contours for P3 in that they are
symmetric with wde and σ8. This is a consequence of treating P3 as a free parameter when in fact it is directly proportional to P4 (51),
and so these contours show us the cases for when fP3;P4g are the same or opposite sign.
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