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The Einstein constraint equations describe the space of initial data for the evolution equations, dictating
how space should curve within spacetime. Under certain assumptions, the constraints reduce to a scalar
quasilinear parabolic equation on the sphere with various singularities and nonlinearity being the prescribed
scalar curvature of space. We focus on self-similar Schwarzschild solutions. Those describe, for example,
the initial data of black holes. We construct the space of initial data for such solutions and show that the
event horizon is related with global attractors of such parabolic equations. Lastly, some properties of those
attractors and its solutions are explored.
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I. INTRODUCTION

The Einstein equations model gravity through spacetime
as ten coupled partial differential equations. Six of those
evolve space in time, whereas the other four constrain the
initial data or, intuitively, dictate how space is curved and
embedded in the bigger framework of spacetime.
We focus on time-symmetric spacetime, namely, solu-

tions such that the embedding of space in spacetime is
trivial and hence its extrinsic curvature vanishes. Hence,
those four constraint equations are reduced to only one that
indicates how space can bend intrinsically, known as the
Einstein Hamiltonian constraint. See Ref. [1].
Exact solutions of such an equation with a prescribed

function T00 describing its energy density are called
pressureless perfect fluids, that is, fluids without pressure,
viscosity, and heat conduction. See Chap. 4 in Ref. [2].
Such fluids are commonly used in stellar models for
idealized distributions of matter, such as stars or black
holes. See Ref. [3].
A simple case among the perfect fluids are the spheri-

cally symmetric ones. Mathematically, space is described
by a three-dimensional Riemannian manifold S with metric
g. Assume that the space S can be written in spherical
coordinates, that is, S ≔ Rþ × S2 with r ∈ Rþ being the
radial foliation of two-dimensional spheres ðθ;ϕÞ ∈ S2. In
the shear-free case, the metric splits as

g ¼ u2dr2 þ r2ω; ð1:1Þ

where ω is the standard metric in S2, and the component
u ¼ uðr; θ;ϕÞ is the unknown. For a list of known exact
spherically symmetric solutions, see Tables I and II in
Ref. [4].

Computing the scalar curvature RðgÞ of S, Bartnik [5]
claimed that u satisfies the following parabolic equation,
which fails to be parabolic at r ¼ 0:

2rur ¼ u2ΔS2uþ uþ r2RðgÞ − 2

2
u3: ð1:2Þ

This parabolic curvature equation was also computed
in the Appendix of Smith [6] and is a pure geometric fact
of the chosen space S and metric g with no relation to the
Einstein equations. This connection is made by prescribing
a matter model given by a smooth function T00 and relating
it with the scalar curvature RðgÞ through the Einstein
Hamiltonian constraint equation,

RðgÞ ¼ 16πT00; ð1:3Þ

as in the work by Rendall [1] and Bartnik [5].
A simple solution of (1.2) is given by the Schwarzschild

metric, obtained in vacuum, RðgÞ≡ 0, and when u is
independent of the angle variables. This yields a solution
uðrÞ ¼ ð1 − 1=rÞ−1=2, which blows up at r1 ≔ 1. Note that
this solution is only valid for r > r1, since for r ≤ r1 the
metric is not Riemannian. It models the exterior of black
holes, where the surface r1 is known as the event horizon, a
singularity due to coordinates choice, whereas a physical
singularity occurs at r0 ≔ 0. For a mathematical theory of
black holes, see the work by Chandrasekhar [7].
We seek to understand the interior structure of black

holes. In particular, we construct their initial data, as well as
relate the interior and the event horizon. The nature of
interior of black holes is still debatable. Some possibilities
are the constructions of Schwarzschild in Eq. (35) of
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Ref. [8], Synge’s formulas (4.2) or (4.6) in Ref. [9], or
Florides in Eq. (2.13) of Ref. [10].
An alternative approach, in order to mimic the exterior

Schwarzschild solution to its interior, is to require the same
blowup rate looking from the exterior ðr → 1þÞ and interior
ðr → 1−Þ of the event horizon. This was proposed by
Fiedler et al. [11], and they showed that a plethora of angle-
dependent metrics can occur inside a black hole, with the
same horizon. Indeed, plugging the Schwarzschild solution
in (1.1), we obtain the metric g ¼ j1 − 1=rj−1dr2 þ r2ω,
which is Riemannian and solves (1.2) for r < 1 with a
prescribed curvature RðgÞ. For example, if RðgÞ ¼ 4=r2

and the solution is independent of the angle variables, then
uðrÞ ¼ ð1=r − 1Þ−1=2 is a solution of (1.2) for r < 1. This
type of solution models the interior of black holes, in which
the metric blows up at the event horizon at r1 with the same
rate in the exterior and interior, and has a curvature
singularity at r0.
We are interested in Schwarzschild self-similar interior

solutions of (1.2), as

uðr; θ;ϕÞ ¼
�
1

r
− 1

�
−1
2

vðr; θ;ϕÞ ð1:4Þ

for r < 1. In particular, we construct the space of initial data
in order to rigorously study the dynamics of Einstein
evolution equations, such as the stability of black holes.
The term ð1=r − 1Þ−1=2 is the interior Schwarzschild blow
up rate of the solution u.
Through the self-similar glasses (1.4), v satisfies the

following equation for some prescribed scalar curvature
RðgÞ, given by (1.3),

2ð1 − rÞvr ¼ v2ΔS2v − vþ r2RðgÞ − 2

2
v3: ð1:5Þ

Note that the parabolicity of the equation breaks down at
the even horizon r1 ≔ 1, since there is no radial derivative.
Moreover, it is the backward heat equation for r > r1,
which is not well posed. To overcome such a problem
outside the horizon, Smith [12] uses the coordinates system
u satisfying Eq. (1.2).
For r > r1 and certain curvature RðgÞ, u was constructed

by Smith [12] using the Schwarzschild self-similar exterior
solutions of (1.2) given by u ¼ ð1 − 1=rÞ−1=2v. For exam-
ple, he constructed the metric for certain choices of RðgÞ,
and therefore our interior construction can be glued to an
exterior solution with such a smooth metric. For r ∈
ðr0; r1Þ with r0 > 0, and curvature RðgÞ ¼ ðλþ 2Þ=r2 with
λ ∈ Rþ, it was shown that there are several nonspherical
symmetric solutions in the radial direction bifurcating from
the solution v≡ 1, by Fiedler et al. [11].
It is the aim of this paper to study the structure at the

event horizon r1 ≔ 1 from a dynamical point of view,
depending on the interior of a static black hole.

For that, rescale the equation through r ¼ 1 − e−2t so
that the breakdown of parabolicity at r1 ≔ 1 is now
represented as t → ∞ in

vt ¼ v2
�
ΔS2vþ r2RðgÞ − 2

2
v −

1

v

�
: ð1:6Þ

Note that this is a degenerate quasilinear parabolic
equation, and hence one can study its initial value problem
with initial data at t ¼ 0, corresponding to r ¼ 0.
We are dealing with time-independent solutions of

the Einstein equations. Even though t is usually called
time in parabolic equations, its interpretation here is
different: it is a rescaled radial distance from the black hole
singularity at t ¼ 0 such that the event horizon r1≔1
occurs at t ¼ ∞.
We recall that horizons occur at spheres in the spatial

foliation for some fixed radius, which is a minimal surface
such that no other leaf has positive mean curvature; see
Ref. [12]. Since each leaf S2 has mean curvature
H ¼ 2=ðruÞ ¼ ½2ð1 − rÞ1=2�=½r3=2v�, horizons occur either
at r1 ≔ 1 or whenever v is unbounded.
The main result is now presented: the construction of

the space of initial data for such solutions with only one
horizon, including the relation of the horizon with global
attractors, describing the structure of the metric at r1.
Equation (1.6) generates a semiflow denoted by ðt;v0Þ↦

vðtÞ in the phase space X ≔ C2αþβðS2Þ ∩ fv > 0g where
α; β ∈ ð0; 1Þ are, respectively, a fractional power exponent
and the Hölder exponent and a fractional power exponent.
See Ref. [13]. Note that from Lemma 1 in Ref. [12] if
v0 > 0 then vðtÞ > 0 for t > 0 and the space of positive
functions is invariant guaranteeing strict parabolicity
of (1.6).
We suppose that the prescribed scalar curvature RðgÞ

is such that the semiflow vðtÞ is slowly nondissipative,
that is, solutions are global, but they may grow up and
become unbounded as t → ∞. Such solutions would
have a different grow-up rate than the Schwarzschild
solution. Sufficient conditions for semilinear equations
are in Ref. [14], whereas conditions for quasilinear equa-
tions are still not known. Because of such an assumption,
we disregard blow up solutions, that is, solutions with other
apparent horizons. We consider solutions with a single
horizon at r1.
Moreover, slowly nondissipativity guarantees the exist-

ence of an unbounded global attractor A of (1.6), which
attracts all bounded sets as t → ∞. This attractor can be
decomposed as the set of equilibria (bounded and
unbounded) and heteroclinics between them. See Ref. [14].
A particular case is when the dynamical system is

dissipative, and solutions stay bounded at r1. Therefore,
no grow-up occurs, and v has the same grow-up rate as the
Schwarzschild solution. Sufficient growth conditions on R
for dissipativity with r ∈ ð0; r1Þ are
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Rðr; θ;ϕ; v; 0Þ < 2

r2v2���� r
2v3

2
Rp

���� · ð1þ jpjÞ þ
���� r

2v3

2
R − v

���� < f1ðjvjÞ þ f2ðjvjÞjpjγ
���� ∂∂θ

�
r2v3

2
R − v

�����þ
���� ∂∂ϕ

�
r2v3

2
R − v

����� < ½f3ðjvjÞ þ f4ðjvj; jpjÞ�ð1þ jpjÞ3; ð1:7Þ

where the first line above holds for jvj large enough,
uniformly in ðθ;ϕÞ; the second line above holds for all
ðr; θ;ϕ; v; pÞ, given continuous f1; f2 and γ < 2; the third
line above holds for f3 nonnegative continuous and
monotonically increasing, f4 continuous, monotonically
increasing in jvj and tends to 0 as jpj → ∞ uniformly with
bounded jvj. Also, Rp denotes both the derivative of R with
respect to vθ and vϕ. See Chap. 5, Sec. III in Ref. [15].
Hence, for any bounded initial data v0 ∈ X at t ¼ 0 and a

scalar curvature RðgÞ such that vðtÞ is slowly nondissipa-
tive, there exists a metric vðt; θ;ϕÞ in phase space for all
t ∈ ð0;∞Þ. Moreover, if R does not depend on r and ∇v,
the solution v will approach an equilibrium in A as t → ∞,
due to the existence of a Lyapunov function,

L ≔
Z
S2

j∇vj2
2

− Fdω; ð1:8Þ

where F is the primitive of −v−1 þ ðr2R − 2Þv=2. This
yields

dL
dt

¼ −
Z
S2

�
vt
v

�
2

dω ð1:9Þ

along trajectories of (1.6). Note that v > 0 in the phase-
space X. If R depends on ∇v, there exists a Lyapunov
function for axially symmetric solutions, as in Ref. [13].
For more general radial foliations, we could possibly obtain
a fully nonlinear parabolic equation, instead of (1.2). In this
case, a Lyapunov function for axisymmetric solutions can
be available by incorporating the weight from Ref. [13]
to Ref. [16].
In other words, for any bounded initial data v0 ∈ X at the

singularity r0 ≔ 0 of self-similar Schwarzschild solutions,
there exists a metric vðr; θ;ϕÞ for r ∈ ð0; r1Þ such that v
converges to an equilibrium of A as r → r1. This means
that self-similar metrics at the horizon vðr1; θ;ϕÞ are given
by equilibria v1ðθ;ϕÞ ∈ A through vðr1; θ;ϕÞ ¼ v1ðθ;ϕÞ,
and the attractorA describes the possible metrics at r1. The
bounded equilibria v models horizons with same blow up
rate as the Schwarzschild solution, whereas the unbounded
equilibria yield horizons with a different blow up rate than
the Schwarzschild solution.
Then, we use Smith’s construction in Ref. [12] with such

equilibria vðr1; θ;ϕÞ ∈ A as initial data at the horizon r1,

yielding a metric for r > r1, if one supposes that the scalar
curvature RðgÞ is compactly supported and satisfies

RðgÞ < 1

r2
ð1:10Þ

in ðr1;∞Þ × S2, and RðgÞ ¼ 0 for ½r1; r1 þ δÞ for δ > 0
small. There is no other horizon for r > r1, due to the
choice of the standard spherical metric for the foliation.
The above construction shows the following theorem.
Theorem 1.1. Horizons and Attractors Suppose that

space is given by a spherically symmetric Riemmanian
manifold ðS; gÞ, that is, S ≔ Rþ × S2. If the scalar curva-
ture RðgÞ yields a slowly nondissipative semiflow vðtÞ of
(1.6) satisfying (1.10), then for any function v0ðθ;ϕÞ ∈ X,
there exists a metric for all r ∈ Rþ given by

g ¼ v2ðr; θ;ϕÞ
j 1r − 1j dr2 þ r2ω; ð1:11Þ

where ω is the standard metric on S2. Moreover, such
solutions display only one horizon at r1 ≔ 1, which is
described by a (possibly unbounded) function vðr1; θ;ϕÞ,
an equilibrium of the unbounded global attractorA of (1.6).
Above, we consider the solutions v that are possibly

unbounded at r1 and hence have a different grow-up rate
compared to the Schwarzschild solution. If instead of
assuming R yields a slowly nondissipative semiflow we
suppose that it satisfies (1.10), then vðtÞ is dissipative.
Therefore, the attractor A is bounded, and hence the
equilibria are within. In this case, solutions have the same
grow-up rate as the Schwarzschild solutions.
Recall that the interior region r ∈ ½0; r1Þ of the event

horizon does not influence the Cauchy development of the
exterior r ∈ ½r1;∞Þ of the horizon; see Ref. [17]. This is a
claim about time. The above Theorem is a claim about
space; the event horizon can not be arbitrary for each fixed
time, but it depends on the metric v inside the black hole
r ∈ ½0; r1Þ, in particular at the singularity r0 ¼ 0.
Therefore, the initial data in the horizon cannot be freely
specified as Smith [18] but has additional constraints;
namely, it has to be within the global attractor of (1.6).
Therefore, a given shape of the metric at the event

horizon imposes that only certain possibilities are allowed
for the inside of black holes: elements in the basin of

SPACE OF INITIAL DATA FOR SELF-SIMILAR … PHYS. REV. D 99, 043509 (2019)

043509-3



attraction of vðr1; θ;ϕÞ, i.e., the stable manifold of such
equilibrium. Moreover, the evolution dynamics of the
Einstein equations of event horizons might constrain even
more what is inside a black hole. Even though we cannot
know for sure what is inside black holes, the above method
tells us what cannot be inside them.
Bartnik’s conjecture, stating that quasispherical metrics

are typical in the space of smooth metrics, is still an open
problem in its full generality. See Ref. [19]. I also mention
that the quasispherical structure is related to the quasilocal
mass. Therefore, constructing the phase space for such
metrics might shine a light in the problem of properly
defining a suitable quasilocal mass through a dynamical
approach. For instance, one can consider the length of the
curve vðrÞ within the stable manifold, between the metrics
at v0 and vðr1Þ.
Also, the metric (1.1) is not as general as Bartnik’s

original [5], since we consider shear-free metrics, that is,
we do not allow mixed terms β1drdθ and β2drdϕ. Metrics
with shear satisfy a coupled system, as in Ref. [20], instead
of satisfying a scalar partial differential equation given by
(1.2), and hence only local existence is proved. It is not
known which sufficient conditions yields a dissipative
system, as (1.10), and hence global solutions. Also, the
system with shear does not necessarily have a Lyapunov
function, and the possible metrics at the event horizon are
not necessarily equilibria. Therefore, shear-free metrics
allow concrete computations of simplified equations relat-
ing global attractors and event horizons.
The inverse problem is of interest; consider a metric

vðr1; θ;ϕÞ, which is in A at the event horizon r1 with
prescribed RðgÞ, and find its basin of attraction. Hence, for
one given metric at the r1, one can find a zoo of possibilities
of metrics inside the horizon. Similarly, one can prescribe
the metric at the r1 and ask which energy density described
by the curvature R realizes such equilibria. A similar
problem was treated by Fiedler and Rocha [21].
To study the existence of other apparent horizons

and their interplay, as in Ref. [11], one should drop the
slowly nondissipative assumption and allow blow up
solutions. In this case, the metric v blows up for r < r1,
and other horizons occur inside the event horizon. In such a
case, the metric between an apparent horizon and an event
horizon could be constructed by a heteroclinic within the
attractor A.
In other words, we can pin down the space of initial data

for the Einstein equations for time-symmetric spherically
symmetric self-similar Schwarzschild solutions with one
horizon.
Corollary 1.2. Space of Initial data Suppose that space

is given by a time-symmetric Riemmanian manifold ðS; gÞ
with spherical coordinates S ≔ Rþ × S2 having shear-free
metric g with standard spherical metric ω in each leaf S2

and scalar curvature RðgÞ satisfying (1.10). Then, the space
of initial data for self-similar Schwarzschild solutions with

one horizon at r1 ¼ 1 is given by g as in (1.11) such that v
lies in the set,

X∶ ¼ fv ∈ C0ð½0;∞Þ; XÞ ∩ C1ðð0;∞Þ; XÞ such that

vðr1Þ ∈ A an equilibriumg; ð1:12Þ

where X ≔ C2αþβðS2Þ ∩ fv > 0g.
The stability of black holes has been widely studied over

the past years, as in Ref. [22]. Usually, only linear stability
is treated. For the nonlinear stability, the problem is open,
and knowing which space the initial conditions belong to,
and hence satisfy the constraints, identifies what is rigor-
ously meant by a perturbation of a solution of the Einstein
equations, and neighborhoods of solutions in the phase
space (1.12).
Other types of self-similar solutions can be pursued,

following the idea of (1.4), such as Kerr self-similar
solutions to model rotating black holes; Reissner-
Nordström self-similar solutions to model charged black
holes; de Sitter-Schwarzschild self-similar solutions; or a
Schwarzschild metric in the exterior of the horizon, and a
regular interior in order to model dense stars. Once space of
initial data has been constructed for the latter, one can
rigorously study the dynamics of stars and its collapse into
black holes, as in Ref. [23].
For the Kerr case of rotating black holes, we consider the

metric

g ¼ u2dr2 þ ðr2 þ acos2ðθÞÞω

þ a
�
1þ r

r2 þ acos2ðθÞ
�
sin4ðθÞdϕ2; ð1:13Þ

where ω is the standard metric in S2; a is related to the
rotation of the hole, recovering the Schwarzschild case
when a ¼ 0; and the component u ¼ uðr; θ;ϕÞ is the
unknown.
We have to find the equation the unknown u satisfies

through the scalar curvature of such ametric (1.13), in case of
trace-free extrinsic curvature. This will decouple the con-
straints, so u satisfies a scalar equation. Note that above we
only have the spatial metric components, which constrains
intrinsic properties of space within the set of initial data. The
mixed space and time terms, namely, the shift vectors, will
come from the extrinsic curvature of the embedding of space
in spacetime, which have to solve the momentum constraint
equations, constraining the embedding of space within
spacetime. Moreover, we would seek Kerr self-similar
solutions of the type u¼½ðr2þacos2ðθÞÞ=ðr2−rþaÞ�−1=2v.
On the other hand, note that spatially Reissner-

Nordström solutions occur as angle-independent solutions
of (1.2) when RðgÞ ¼ ð4 − 2qr−2Þr−2, where q ≥ 0 is a
constant related to the charge of the black hole, yielding
the blow up solutions uðrÞ ¼ ðr−1 − qr−2 − 1Þ−1=2 which
blows up at r� ≔ 2−1ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4q
p Þ, known as the event
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horizon at rþ, and an interior horizon at r−. Note that if
q ¼ 0 we recover the Schwarzschild case. Also, the
horizons occur in the same distance, rþ ¼ r− ¼ 1=2, when
q ¼ 1=4, and correspond to extremal black holes.
The Reissner-Nordström self-similar solutions, namely,

solutions of (1.2) of the type

uðr; θ;ϕÞ ¼
�
1

r
−

q
r2

− 1

�
−1
2

vðr; θ;ϕÞ; ð1:14Þ

will imply that v satisfies the following equation for some
prescribed scalar curvature RðgÞ, given by (1.3):

2½ð1 − rÞ − qr−1�vr
¼ v2ΔS2v − ½1 − qr−2�vþ r2RðgÞ − 2

2
v3: ð1:15Þ

Note that the parabolicity of the equation breaks down at
the horizons r ¼ r�, since there is no radial derivative.
Moreover, strict parabolicity holds for rð1 − rÞ > q.
On a similar account, the Schwarzschild-de Sitter self-

similar solutions, namely, solutions of (1.2) as

uðr; θ;ϕÞ ¼
�
1

r
þ Λ

3
r2 − 1

�
−1
2

vðr; θ;ϕÞ; ð1:16Þ

where Λ is the cosmological constant, will imply that v
satisfies the following equation for some prescribed scalar
curvature RðgÞ, given by (1.3),

2½ð1 − rÞ − Λ3−1r3�vr
¼ v2ΔS2v − ½1þ Λr2�vþ r2RðgÞ − 2

2
v3; ð1:17Þ

where strict parabolicity holds for 3r−3ð1 − rÞ > Λ.
Note that in the last two equations, modeling Reissner-

Nordström and Schwarzschild-de Sitter spaces, even
though we can rescale tðrÞ so that the left-hand sides in
(1.15) and (1.17) have no radial dependence, and become
vt, the right-hand side will still have radial terms in the
linear term in vacuum, for example. Therefore, we still need
a deeper understanding of nonautonomous parabolic
equations to develop those interior black hole initial data.
For example, for such nonautonomous equations, wewould
not have decay to an equilibrium due to the lack of a
Lyapunov function. Therefore, it is desirable to understand
the dynamics within global attractors of nonautonomous
equations.
Nevertheless, since the Laplacian is still Oð3Þ equi-

variant, we can use the symmetry breaking methods of
Fiedler et al. [11].
Also, the Hamiltonian constraint above is one out of

four constraints. In the non–time symmetric case, one can

rewrite them as a system of equations, as in Ref. [20], to be
studied in the future.
Because of the no-hair theorem, black holes are fully

described by their mass, charge, and angular momentum.
The Schwarzschild self-similarity studied here describes
the possible metrics at the event horizon knowing its mass,
if the black hole is chargeless and has no momentum. The
proposals above, namely, studying Reissner-Nordström
self-similar solutions, and studying the four constraint
equations could describe the full space of initial data for
black holes.
Therefore, we see that the connection between event

horizons and global attractors opens many doors, yielding
new problems to be tackled, with the dynamical perspective
of the constraint equations.
In the next section, we explore particular cases of the

above theorem, when the global attractor can be explicitly
computed, yielding the number of possible equilibria
metrics, or when certain symmetry within the attractor
is known.

II. FURTHER EXPLORATION

From now on, we expose two corollaries describing
properties of the global attractor A at the event horizon:
one describes the possible axisymmetric self-similar
Schwarzschild metrics at r1. The other describes some
symmetries of a certain metric at r1. Both are rigorously
proved in Refs. [13,24,25].
For the first corollary, we are interested in a more detailed

study of the structure of the attractor A that describes the
possible metrics at the event horizon r1. For such, we
consider axially symmetric solutions and suppose that the
metric vðr; θÞ is independent of the angle ϕ ∈ S1.
Axially symmetric solutions in general relativity have

been extensively studied and are also known in the
literature as Ernst solutions due to Ref. [26]. For a
collection of case studies, see Ref. [27]. A numerical
simulation for the dynamics of interaction, pulsation, or
collapse of axisymmetric stars was done in Ref. [28].
Therefore, restricting the semiflow to the invariant sub-

space of axisymmetric solutions Xaxi ⊆ X, one obtains a
subattractor Aaxi ⊆ A of the flow of

vt ¼ v2
�
vθθ þ

vθ
tanðθÞ

�
− vþ r2RðgÞ

2
v3 ð2:1Þ

with Neumann boundary conditions in θ ∈ ½0; π�.
In this case, the subattractor Aaxi within the axisym-

metric subspace Xaxi can be computed explicitly for any
prescribed R satisfying (1.10). This was done for the
quasilinear case in Ref. [24] and generalized for the case
of a singular boundary in Ref. [13]. We choose a particular
scalar curvature so that the attractor at the event horizon r1
is known.
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Corollary 2.1. A Prescribed Scalar Curvature Given
the scalar curvature R¼2r−2½v−2þλv3ðv−1Þð2−vÞ�,
where λ ∈ ðλk; λkþ1Þ and λk is the kth eigenvalue of the
spherical Laplacian with k ∈ N0, then, the semiflow vðtÞ is
dissipative, the attractor Aaxi is compact, and the axisym-
metric self-similar Schwarzschild metric at the event
horizon r1 ≔ 1 is given by one of the 2kþ 3 equilibria
v1;…; v2kþ3 within the Chafee-Infante type attractor in
Fig. 1, in which points denote bounded equilibria and
arrows are heteroclinic connections.
Indeed, the above choice of RðgÞ yields the equation

vt ¼ v2
�
vθθ þ

vθ
tanðθÞ þ λvðv − 1Þð2 − vÞ

�
ð2:2Þ

for λ ∈ R. The unknown w ≔ v − 1 satisfies the Chafee-
Infante equation with quasilinear diffusion coefficient
ðwþ 1Þ2. Hence, the equilibria v≡ 1, corresponding to
Schwazrschild, have the role of the bifurcating equilibria
w≡ 0 in the usual Chafee-Infante equation, and each time
λ crosses an eigenvalue of the spherical Laplacian, the
Schwarzschild solution bifurcates to an axisymmetric
solution.
It would be interesting to compute the attractor for the

prescribed scalar curvature from Ref. [11], namely,
R ¼ ðλþ 2Þ=r2. This yields a slowly nondissipative non-
linearity with nonhyperbolic equilibria. That is, solutions v
might now stay bounded as r → r1 and grow-up may occur.
This will be done in the near future.
Note that in order to construct the attractor Aaxi one

needs to know the zero number of the difference of
solutions v − vkþ2, where the trivial solution vkþ2 ≡ 1
represents the Schwarzschild solution in self-similar var-
iables. Roughly speaking, one needs to know how many
intersections other equilibria have with vkþ2. This encodes
the information of how much such equilibria deviate from
the Schwarzschild solution vkþ2, and whenever a solution

intersects with the trivial solution, it means that vðr; θÞ ¼ 1
and the metric looks like the Schwarzschild solution at that
fixed radius r.
The second main result regarding certain elements

of the event horizon answers partially the question of how
the symmetry of the sphere dictates a symmetry of some
solutions in the attractorA. This is doneprecisely inRef. [25].
A function v ∈ C1ðS2Þ has axial extrema if its maxima

and minima in ϕ occur as an axis from the north to
south pole. In other words, if vϕðθ0;ϕ0Þ ¼ 0 for a fixed
ðθ0;ϕ0Þ ∈ S2, then vϕðθ;ϕ0Þ ¼ 0 for any θ ∈ ½0; π�. In that
case, the extrema depend only at the position in ϕ. Note that
if RðgÞ is analytic then the solution v of (1.6) is also, as in
Ref. [29]. Then, the set of axial extrema is finite, and we
denote them by fϕigNi¼0 where ϕ0 ≔ ϕN .
Axial extrema are leveled if all axial maxima ϕi have the

same value uðθ;ϕiÞ ¼ MðθÞ, and all axial minima ϕi also
have the same value uðθ;ϕiÞ ¼ mðθÞ.
Corollary 2.2. Symmetry at the Event Horizon

Suppose the scalar curvature R is analytic and vðr1; θ;ϕÞ is
an equilibrium of (1.6) within the attractor A that only
has axial extrema fϕigNi¼0 where ϕ0≔ϕN . Then ϕi¼
ðϕi−1þϕi−1Þ=2, and the self-similar Schwarzschild metrics
at the event horizon has the reflection symmetry

vðr1; θ;ϕÞ ¼ vðr1; θ; Rϕi
ðϕÞÞ ð2:3Þ

for all i ¼ 1;…; N, where ðθ;ϕÞ ∈ ½0; 2π� × ½ϕi−1;ϕi� and
Rϕi

ðϕÞ∶ ¼ 2ϕi − ϕ.
This theorem raises the mathematical question of

whether such a result holds for other domains, such as
the torus or the hyperbolic disk. Subsequently, it raises
the physical question of space foliated by other two-
dimensional surfaces than the sphere and if the resulting
equation for the scalar curvature is still parabolic and of the
same form as (1.2). Even though Hawking’s theorem in
Ref. [30] states that event horizons for certain black holes
are topologically S2, other stellar objects of interest could
carry different topology. For example, it was found numeri-
cally that dust collapse might yield a toroidal horizon
before reaching its spherical shape in Ref. [31]. Therefore,
it is expected that the set X from Corollary 1.2 and the set
of initial data for toroidal foliations are connected to each
other in phase space.
Lastly, this theorem was achieved by trying to prove a

symmetrization of Gidas, Ni, and Nirenberg type: positive
solutions of parabolic equations on the sphere are axial.
This has been achieved for elliptic equations with domain
being subsets of the sphere; see Ref. [25] and references
therein. If this conjecture of symmetrization on the sphere
was true, and positive solutions were axial, then we the
phase-space X, which consists of positive solutions, would
constitute only of axially symmetric functions. Therefore,
X ¼ Xaxi, and A ¼ Aaxi.FIG. 1. Global attractor A of Chafee-Infante type.
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