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In this work we propose a novel dark energy model in the formalism of quintom scenarios in scalar-
tensor theories based on general relativity, taking into account generalized couplings between the scalar
fields and Gauss-Bonnet terms. By employing linear stability theory, we reveal the structure of the phase
space and analyze the dynamical effects of the Gauss-Bonnet couplings. We show that the present model
exhibits various classes of critical points, corresponding to distinct cosmological scenarios that affect the
dynamical evolution of the Universe. At the critical points, the cosmological scenarios correspond to either
an accelerated expansion or a stiff-fluid case in which the expansion is decelerated, while for some
solutions the expansion is neither accelerated nor decelerated. Finally, the present model also exhibits
scaling behavior at some of the critical points, in which the dark energy mimics the behavior of matter.
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I. INTRODUCTION

In today’s cosmological theory one of the most appealing
fundamental questions is related to the existence and
dynamical properties of the cosmic accelerated expansion
of the Universe, a discovery presented at the end of the last
millennium [1-3]. The exposition of such an intriguing
phenomenon lead to the development of various models in
theoretical physics, astrophysics, and cosmology. One of
the most applicable theoretical frameworks for the study of
the dark energy phenomenon is represented by scalar-
tensor theories of gravity, in which the accelerated expan-
sion can be explained by various modifications of the basic
theory of gravity [4,5]. Within these theories, the accel-
erated expansion is caused by the existence of scalar fields
minimally or nonminimally coupled with gravity. Within
these constructions, the quintom formalism [6] first
appeared as a possible explanation for the crossing of
the phantom divide line by the dark energy equation of
state, which has been indicated by astrophysical observa-
tions [7]. Despite the evolution of the theoretical models,
the phenomenology of the crossing of the phantom divide
line by the dark energy equation of state is still a curious
problem [8]. Various papers have analyzed the dynamical
features and physical properties of the quintom paradigm in
different cosmological scenarios [9-35]. For a more com-
prehensive review of the quintom paradigm in different
cosmological models, the reader should consult Ref. [6].
In recent times, the quintom cosmological models have
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been analyzed in the nonminimal coupling scenarios by
various authors [36—45].

In scalar-tensor theories of gravity, the Gauss-Bonnet
term represents a topological invariant [46] in a four-
dimensional space, originating from string theory [47],
and has been included in several theoretical models. The
inclusion of a Gauss-Bonnet term in cosmological theories
was first investigated by Nojiri et al. [48], where the
viability of such a construction was analyzed and it was
shown that the dark energy phenomenon can rise and the
cosmic big rip doomsday can be avoided. Within these
theories, the extension of modified gravity [49,50] in the
direction of a Gauss-Bonnet gravity has occurred naturally
[51] as a theory capable of explaining the late-time
accelerated expansion of the known Universe. A modified
gravity theory based on a Gauss-Bonnet blending term was
recently investigated, showing that such a theory is in
agreement with the current astrophysical observations
[52]. Furthermore, different papers in various theoretical
directions have analyzed the effects and implications of
Gauss-Bonnet coupling terms [53-75].

In a recent paper [76], Granda and Jimenez studied the
dark energy problem in the context of scalar-tensor
theories, taking into account nonminimal couplings
between the scalar field, Gauss-Bonnet invariant, and
gravitation. Within this model, they showed the implica-
tions and dynamical effects for the nonminimal couplings
in the phase space structure and tested the viability of such
a curious scalar construction. Furthermore, several similar
approaches that included the addition of Gauss-Bonnet
coupling terms were investigated in recent years in the
same formalism [56,77-85]. In scalar-tensor theories, the
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coupling of the scalars with Gauss-Bonnet terms represents
a viable modification to the action, which has interesting
and viable consequences for the late-time dynamical
features of the model that are in agreement with the current
evolution of the Universe at the level of background
dynamics. However, from another perspective [86—88]
the addition of a Gauss-Bonnet term to a scalar-tensor
theory may be problematic due to the ultraviolet instabil-
ities that affect the scalar and tensor perturbations [89].

Taking into account this direction for the quintom
paradigm, we shall further extend the quintom formalism
by allowing a nonminimal coupling between the quintes-
sence and phantom scalar fields with Gauss-Bonnet terms.
Hence, from a theoretical point of view such a scalar
construction represents a natural extension of the present
quintom scenarios in the theoretical framework of scalar-
tensor theories based on general relativity, and might
explain the dark energy phenomenon in the context of
current theories related to the observable Universe.

In this paper we propose a novel quintom scenario based
on the superposition of nonminimal couplings between the
canonical and negative kinetic scalar fields from the
quintom action with Gauss-Bonnet terms. After that, we
propose the corresponding action for our model in Sec. II,
and deduce the Klein-Gordon equations and modified
Friedmann relations which describe the dynamics of the
present quintom cosmological model. Then, in Sec. III we
analyze the dynamical effects of the Gauss-Bonnet cou-
plings by employing a linear stability method, revealing the
structure and properties of the six-dimensional phase space.
Finally, in Sec. IV we summarize the most important results
and present our conclusions related to the present model.

II. DYNAMICAL EQUATIONS FOR
THE QUINTOM SCENARIO WITH
GAUSS-BONNET COUPLINGS

In what follows, we consider a quintom dark energy
model with nonminimal Gauss-Bonnet couplings, where
the corresponding action has the following form [48,85]:

R 1 1
S=8,+ / d*x\/=g [5 - 58,4(158”45 + Eaﬂffa”ﬁ —Vi(¢)

Vi) - F(¢)iics - G(a)gcs} , )

where §,, is the decoupled part of the action describing the
matter sector in the cosmological model, R is the scalar
curvature, ¢ is the quintessence (canonical) scalar field, o is
the noncanonical phantom field, embedding the potential
part in the V(¢) and V,(o). In this representation, the
interaction of the two scalar fields and the Gauss-Bonnet
invariant term Jgp is mediated through the analytical form
of the two functions F(¢) and G(o), respectively. Next, in
order to perform the variations of the action (1) with respect

to the inverse metric and the two quintom fields, we first
need to specify the metric corresponding to this cosmo-
logical model. In the following calculations, we consider a
Friedmann-Robertson-Walker cosmological model with
the Roberston-Walker metric:

ds* = —di* + a*(1)8;;dx'dx/, (2)

where i, j = 1, 2, 3, a(t) is the cosmic scale factor, and 5
is the discrete Kronecker symbol, describing a Universe
expanding in a homogeneous and isotropic manner and
neglecting the cosmic curvature parameter. Concerning the
matter sector of the Universe, we consider the case of a
barotropic fluid with the equation of state p,, = w0,
where p,, represents the corresponding pressure, p,, is the
energy density, and w,, is the constant equation-of-state
barotropic parameter. The stress-energy tensor for the
matter sector is

Ty = (P =+ P Wylty + PGy (3)

where u, represents the four-velocity of the comoving

frame, uy = 58 =1 [90]. For the matter sector, the evolu-
tion is described by the following continuity equation:

where the dot represents derivation with respect to the
cosmic time, while H is the Hubble parameter defined in
the usual manner, H = a/a. For this specific metric, the
Gauss-Bonnet invariant, which is defined as ggg =
R? —4R,,R™ + R,,, R, is Gop = 24(HH? + H*).

If we perform the variation of the action (1) with respect
to the fields ¢ and 6 we can obtain the Klein-Gordon
equations, which express the time evolution of the two
quintom fields [48],

-- . dVi(@) | dF(),, _

¢+3Hp+ i + b 24(HH*> + H*) =0, (5)

-6 —3Hé + dva(o) + dG(o) 24(HH® + H*) =0. (6)
do do

The modified Friedmann relations for the present quin-
tom cosmological model are obtained by the variation of
the action (1) with respect to the inverse metric ¢**. For
further details of the calculations, the reader can consult
Refs. [46,48,85]. Hence, for our cosmological model, we
have the following:

H2 = (pm +pde)’ (7)

[OSEIE

—2H = 3H* = p,, + Pae, (8)
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where

dF(¢) ;

dG(o )

pae =5+ Vi) + 20 T - 262 4 vato) 4 24 L, 9)
1. d d? d d
pac =5 -vii) -8 DG -5 o o T - re
1 dG(c d*G dG(o dG(c
—Eéz—Vz(a) - 8H? df;) — 8H? d6(2 %) 2 _ 16HH ((,) - 16H? dE‘) (10)
The dark energy equation of state is then defined as wy, = pg./Pde>
1. d’ d d 1
e R R e R e e e L
g2 00 8H2‘[2G7(f>a'2 C16mir %99 4 16pp 4900 )a>
o o c do
1. d d -
X <§¢2+V1(¢) + 24H3 fo)(p %62+V2( )+ 24H3 GE:) (';) ) (11)

In the following, we introduce the density parameters
associated to the quintom dark energy model and the matter
component,

Pde
Q. = , 12
de 3H2 ( )
Pm
Q =—, 13
" 3H? (13)
resulting in the following constraint equation:
Qe +Q, =1. (14)

The total effective equation of state for the present
quintom cosmological model is then written as

_ Pm + Pde

Wit = . 15
h pm+pde ( )

Using the above Klein-Gordon equations and the def-
initions for the dark energy field energy density and
pressure, we can show that the quintom component satisfies
a continuity equation of the type

Pae +3H(pge + pae) =0, (16)

neglecting any interaction between the dark energy com-
ponent and the matter sector in the energy conservation
relations.

In order to study the properties of the present cosmo-
logical quintom dark energy model in the phase space,
we decompose the potential part into two exponential
functions,

V(p.o)=Vi()+ V(o) =Vige™ 1?4+ Vyge ™,  (17)
where Vg, V), 41,4, are constant parameters. In the
quintom models with nonminimal couplings, this specific
decomposition was recently considered in a cosmological
construction in teleparallel gravity [41].

Furthermore, for the generalized coupling functions
F(¢) and G(o) we also consider an exponential represen-
tation,

F($) = Fie™, (18)
G(G) = G[O]eﬁ”, (19)

where a, f5, F ], G|o) are constants, as in the recent paper by
Granda and Jimenez [76]. In the following section, we
study the dynamical effects in the phase space and analyze
the implications of the Gauss-Bonnet nonminimal cou-
plings encoded in the @ and S coefficients.

IT1. PHASE-SPACE FEATURES AND THE
EFFECTS OF GAUSS-BONNET COUPLINGS

In this section, we investigate the cosmic scenery within
the present quintom dark energy model, taking into account
the exponential behavior of the coupling functions and the
potential terms. By employing a linear stability analysis, we
reveal the fundamental dynamical properties of the phase
space and discuss the possible future evolution within this
model. In order to apply the linear stability method, we
introduce the following auxiliary variables [76,85]:
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Q =g Fm (20) encoded in u and v, which also allows negative values to be
" 3H?' easily verified.
. Next, we introduce the e-folding variable N = p =
= i (21) log(a)(' =4 45 and express the evolution of the present
VoH cosmologlcal scenario as a system of first-order differential
equations:
= , 22
Y= el (22) P
x’:——z—x—z, (28)
u =
3H* ' | i
, 6
=———-y— 29)
1% Y 2~V (
. 2(‘2)’ (24) V6H?> " H
3H )
dF(¢) - W = —Aux\6 — 2u£2, (30)
f= 8HW¢ =8Ha F(q’))qﬁ (25) H
dG(a) v = —JyvV6 — ZUE, (31)
=8H———=6 = 8HSG(0)6. (26) H?
Using the Friedmann constraint equation (7), we can fl = f H ¢ f + fxa\/_ (32)
reduce the dimensionality of our system from seven to six \f
independent auxiliary variables, where .
d=gm+ 5 94 gupVe (33)
s=1-x>—-u—f+y*—v—ag. (27) R7E sz\/_ gt

Moreover, we note that this particular choice of auxiliary
variables imposes a lesser restriction for the potential part
|

3,172 307

Iy

V2 _Ve —|—3H211u—3\/6H2x,
X X

In terms of the auxiliary variables (21)-(26), we can
write the following relations:

(34)
3172 3.
sgH sgH
&:\/27+\/2——3H2/12U—3\/6H2y, (35)
y y

1
- _f2y2 +4fx2y2 +92x2 4 4gx2y2 _ 4x2y2
X (f2H?y? — 6 fH2x2y*w,, — V6 f H2A uxy* — 2/ 6af H:xy>
+2fH*x*y? — ¢* H?x* — 6gH*x*y*w,, + \/EgHzﬂzvxzy - 2\/6ﬂgH2x2y3 +2gH*x*y? — 6H?ux’y*w,, — 6H>vx’y*w,,
— 6H>x*y*w,, + 6H>x*y*w,, + 6H?>x*y*w,, — 6H?>ux*y* — 6H?>vx*y? + 6H*x*y? — 6H*x*y* 4+ 6 H?x*y?). (36)

If we consider the definitions for the density parameters, we can arrive at the following relations:

Pde
=, 37
Pde + Wn 3H29
Wiot = 4 342 (38)

Furthermore, considering the auxiliary variables, we can write the dark energy barotropic parameter as
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1
307(f2 —4fx® +4x%) — 2% — 49’y ) (f + g+ u+ v+ 27 - y?)
+ 320y w,, — 92x%y*w,, — 32y w,, — 329wy, — 232 = 3f g xPw,, — 24F gx*y*w,, — 12fux’y*w,,
— 12fvx?y*w,, — 12fx*y?w,, + 12fx*y*w,, + 12fx*y*w,, — 2\/6f/11uxy2 - 4\/6afx3y2 + 16fx%y* = 3¢°x*w,,
- 3g%ux*w,, — 3> vx*w,, — 3¢°x*w,, — 9¢°x>y*w,, + 3g>x*w,, + ¢*x*> — 12gux*y*w,, — 12gvx*y*w,, — 12gx*y’*w,,,

+ 12gx2y*w,, + 129522 w,, + 2V/6gA,vx%y — 4V/6gx2y® 4+ 16gx2y% — 12ux?y? — 120x2y2 + 12x*y? — 12x2y4],

Wye = X 339wy + 312gy*w,, + 3f7uy’w,,

(39)
while for the effective total equation of state we have
1
= x [ + 12fx%2w,, + 2V6f A uxy? + 4V/6afx’y?
Wiot 3(—y2(f2 _ 4fx2 +4X2) +92X2 ¥ 4gx2y2) [f y fx Y Wn f juxy afx y
—16fx*y? — ¢?x* + 12gx%y*w,, — 2\/69/121»62)1 + 4\/8ﬂgx2y3 — 16gx2y* + 12ux?y*w,, + 120x*y*w,,
+ 12x%%w,, — 12x%y*w,, — 12x2y*w,, + 12ux?y? + 120x%y? — 12x*y? + 12x%y4). (40)

Using the auxiliary variables, the dark energy pressure can be written in the following form:

1
(2 —Afx +4AxP) + PxP F dghPy?
+ 92 H?* x>y’ w,, + 3f2H*y*w,, + 3f2H?y*w,, + f2H?y? + 3f ¢ H?>x*w,, + 24f gH*x*>y*w,, + 12fH*>ux*y*w,,
+ 12fH*0x?y?w,, + 12fH2x*y?w,, — 12fH2 2y w,, — 12f H2x2y2w,, + 2V 6 fH? A uxy? + 4vV/6af H2x3y?
— 16fH?*x*y? + 3¢ H*>x*w,, + 3g°H*ux’*w,, + 3¢ H*vx*w,, + 3> H*x*w,, + 9¢° H*x*y*w,, — 3¢ H?>x*w,,
— PH?x* + 12gH?ux*y*w,, + 12gH*vx*y*w,, + 12gH>x*y*w,,, — 12gH>x*y*w,, — 12gH*x*y*w,,
— 2V6gH? o uxty 4+ 4V6pgH Y — 16gH?x2y? + 12H?ux?y? + 12H?vx?y? — 12H2x*y?2 + 12H%x%4). (41)

X [_3f3H2y2Wm - 3f29H2y2wm - 3f2H2My2Wm - 3f2H27}y2Wm

Pde

|
Next, the critical points for the present quintom scenario  detail and search for possible constraints of the model’s
with nonminimal Gauss-Bonnet couplings are determined by ~ parameters that give rise to different cosmological behavior,
requiring that the right-hand side of Egs. (28)—(33) are equal ~ while taking into account the current evolution of the
to zero. The critical points of our model are listed in the  Universe. The existence conditions associated with the
Table I. In the following, we discuss each critical point in  critical point imply that the density parameters are physically

TABLE 1. The structure of the phase space: the location of the critical points in the current quintom dark energy model with
nonminimal Gauss-Bonnet terms.

X y u v f g
Z X V21 0 0 0 0
Z, X V-1 0 0 0 0
23 ﬁ 0 % 0 0 A2
1 1
4 2
Z, 0 ng 0 —n Azgz 0
Zs Vow,+v6 I wut1) 0 0 _ 90wy =1) 0wy +1)? 9w =1)(wy+1)?
2a B a* (3w, +1) B (3w, +1)
Z Vow, +v/6 3wy 0 3(wa=1) _ 90wy =1)(wy+1)? 0
6 2a \/;( e aal 22 o (3w, +1)
Z 3wy, Véw, +v6 _ 30wa=1) 0 0 9(Wu=1) Wy +1)*
4 \/'(/1, +1) Wz/; 7 FBw,t1)
Z V6w, +/6 3w 30831 302,=1) 0 0
§ e w 212 212
Zy (V6-2)2,22 (V6-2)222, (3V2-23)2(A2(2+6)-612) _ (3V22VB) R (A (23+6)-623) 0 0
2(V6-3)(22-22) 2(V6-3)(22-22) 6v2(V6-3)(22-22)? 6V2(V6-3)(22-12)>
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viable, which means that the relation0 < Q,, =1 -Q,, <1
1s satisfied. Moreover, another existence condition is related
to the fact that the critical points are in real space with a
corresponding denominator different than zero.

The first class of critical points expressed in Table I as Z;
represents a critical line that is also present in the minimal
coupling case [9], corresponding to a decelerated evolution,
where we observe an interrelation between the kinetic terms
of the two quintom fields. For this critical line, the effective
total equation of state is wy, = +1 and the dark matter
density parameter Q,, = 0, showing full domination of the
dark energy fields. From a physical point of view, we note
that we only feel the effects of the kinetic terms of the two
quintom fields, without any influence from the potential
terms or the nonminimal coupling functions. The existence
condition is related to the fact that the location of the critical
points is in real space, implying x> — 1 > 0. The eigenval-
ues for this class of critical points are

Ez = (0,vV6ax — 6,6 — V6i,x, —V6BV x> — 1 -6,
V6,V xE—1+6,3—3w,). (42)

Since one of the eigenvalues corresponding to the critical
line Z, is always zero, the linear stability method fails to
provide a suitable framework for the study of the stability
cases. Hence, one can only apply this method to cases
where this critical line exhibits saddle behavior, where one
eigenvalue has a positive real part and at least one
eigenvalue has a negative real part. Beyond this discussion,
one can study the stability only by using a different
technique, such as the Lyapunov method or a center
manifold. In the present context, due to the high complexity
of the phase space, we rely only on linear stability methods
for the stability analysis. Analyzing the sign of the
eigenvalues corresponding to the Z; critical line, we can
see that in the case of a pressureless matter component, one
eigenvalue is always greater than zero, and Z; cannot be
stable (it can only be a saddle or unstable). Taking into
account the existence conditions and the previous discus-
sion, the critical line Z; will exhibit saddle behavior
(corresponding to a stiff-fluid scenario) if the following
conditions are met for the case of a pressureless matter
component:

Cz = <<x21/\ (<g>x/\a< 6) \/aﬁO)) Y% <x+1§OA <<a+\/6>0/\?<x> \/a20>>>. (43)

We note that this condition is not exclusive, as there are
many situations that correspond to saddle physical
behavior.

The next critical point, denoted in the table as Z,,
represents an analogous case to Z; (a stiff-fluid solution)
that is also present in the minimal coupling case [9].
In this case, we note that the kinetic term of the phantom
field is positive, with the effective total equation of state
Wit = +1, and the dark matter density parameter €2, = 0.
At this critical line we have the same existence condition,
x> —1 >0, with the eigenvalues

Ez = (0, Voéax — 6,6 — \@l]x, \@ﬁ\/ x2—1-6,
6 — V61V x2—1,3-3w,,). (44)

Considering the existence conditions and the nonexclu-
sive case where one eigenvalue is real and negative and the
other eigenvalue is real and positive, in Fig. 1 we show one
possibility in which we obtain saddle behavior for the Z,
critical line.

The next critical point, denoted in the table as Z;,
represents a solution in which the kinetic and potential
terms of the canonical scalar field dominate, along with
effects from the Gauss-Bonnet couplings for the phantom
field. For this particular solution, the kinetic and potential

|
terms for the quintessence field are related to the parameter
A1 which describes the strength of the potential part
corresponding to the canonical scalar field. Moreover,
the constant representing the strength of the potential part
of the canonical scalar field is related to the auxiliary
variable g, corresponding to the nonminimal coupling for

FIG. 1. We have represented here one of the multitude of cases
where the critical line Z, exhibits saddle behavior.
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the phantom field. For this critical point, the dark energy
equation of state is equal to the total effective equation of
state, wy, = Wiy = —%, describing a Universe that is
neither accelerating nor decelerating. The density param-
eter associated with the matter component is equal to
Q,, =0, a solution dominated completely by the dark
energy fields. The single existence condition for this point
is related to the relation 4; # 0. At this point, we have the
eigenvalues

2
Es = <7“—2,2,2,—1—i\/§,—1+ix/§,—3wm—1>, (45)

3
1

which represents saddle behavior in the present context.
The Z, critical point represents similar behavior to the
Z5 critical point, which is a solution in which the kinetic
and potential terms for the phantom field ¢ dominate,
together with the Gauss-Bonnet coupling for the canonical
field ¢. In this case, we notice that the position in phase
space is influenced mainly by the strength of the potential
term for the noncanonical field represented by the coef-
ficient 4,. The dark energy field completely dominates the
|

Q,=1-Q, =

@?(2p* 4 21) = 215 = 9(a® = *)w;, + 3(a® = f*)wy, + (o? (64 + 33) = 335%)w,,

cosmic picture in terms of the density parameters, Q,, = 0,
and the effective equation of state corresponds to neither an
accelerated nor a decelerated expansion, w;, = Wy, = —%.
Analyzing the signs of the eigenvalues,

2
Ez = (f_z,z,z,—1—i¢§,—1+i\/§,—3wm—1), (46)

we notice a saddle behavior, and the dynamical stability is
not influenced by any of the coupling parameters or
potential constants in this model. At this point, the
existence condition is related to the requirement that
Ay #0.

In the case of the Z5 critical point, we notice that the
solution represents the domination of the kinetic contribu-
tion for the two quintom fields, as well as the manifestation
of the nonminimal couplings with the Gauss-Bonnet
invariant terms for the scalar fields. Moreover, we can
see that the potential terms do not affect the location of this
particular solution. For this solution, the matter density
parameter is equal to

while the effective total equation of state corresponds to a
scaling behavior: w,,, = w,, = w,,. At this point, the value
of the kinetic term for the quintessence field is affected by
the matter equation of state through the coefficient w,, and
the parameter « related to the coupling function for the
canonical scalar field. For the kinetic term of the nonca-
nonical scalar field, we notice that we have an inverted
situation: the coefficient w,, and the parameter § influence
this aspect of the solution. Furthermore, the nonminimal
Gauss-Bonnet couplings affect this type of solution and the
associated dynamical properties. The existence conditions
associated with this critical point imply that the location is
in real space and the density parameters are physically
viable, which satisfies the relations 0 < Q,, =1-Q,, <1
and a, f # 0. Taking this physical condition into account,
in Fig. 2 we show the existence conditions associated with
the previously discussed relation. In the case where the
parameter w,, is not set, the eigenvalues at this critical point
are complex and the formulas are too cumbersome to be
written here. However, if we consider the case of a
pressureless matter component (w,, = 0) we obtain the
following values:

_ 34
£ =321, (49)

, 47
20%4*(3w,, + 1) (47)
Erp) =3-22, (49)

5 p
£ R =, (50)
o (s1)

20
g 30

FIG. 2. Various existence conditions for the Z5 critical point.
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3@ = 9) + V3V F (126" + 5257 = 477) + o* (9548" = 525°) — 477 + 9a?)

w,, =0
Ea b= PO ~9) + 9ap") -
0] — 3(a (98 = 2) + 31/ a2 (125 + 527 — 477) + a* (954" — 52/8°) — 477a*° — 9ap®) 53
Zs [ ] - 4(a3ﬂ(2ﬁ2 _ 9) + 9aﬂ3) : ( )
In the case of radiation w,, = % we have the following: EZIZI /3 3] = % ( N ), (56)
Er=P) = 4—%, (54)
W= 1
ol %7 (55) En=' 4] = S (V17 -1), (57)
|
=13 B3R+ 8) + /S (1534% + 15844% + 3136) — 16a*4* (9947 + 392) + 3136a%4° — 8aff®
F2 Rl=- 2(a’B(36 +8) - 8ap’) S
i3] = o (=B)(3B* + 8) + /B (1534* + 15844% + 3136) — 16a*f* (9947 + 392) + 3136a%4° + 8aff (59)

Z 2(PH(3F" + 8) — 8ap)

From these expressions, it can be seen that the Z5 critical
point always exhibits saddle behavior, due to the presence
of at least one positive eigenvalue and one negative
eigenvalue.

The next solution Z4 represents a situation where the
kinetic terms of the quintom fields dominate, together with
the potential term associated with the phantom field and the
Gauss-Bonnet coupling of the canonical scalar field
(quintessence). It can be seen that the barotropic parameter
w,, for the matter component dictates the location in phase
space, together with an influence from the parameters o and
A>. These parameters are associated with the coupling
function of the quintessence field and the potential strength
of the noncanonical scalar field, respectively. This solution
also exhibits a scaling behavior, with the barotropic
parameter associated with the effective equation of state
Wit = Wge = W,,. The density parameter for the matter
component is

o L _60wm+1)% 360w, —1)(wy +1)?
"4 o’ a*(3w,, + 1)
6(w, + 172 6—6w?
W +1)7 | 6= 6w +4>. (60)
12 AZ

As in the previous case, if we take into account the
physical existence conditions 0 < Q,, =1-Q,, <1 and

I
a, 4, # 0, we obtain Fig. 3. If we set w,, =0 and 1, = a,
then we have the following eigenvalues:

B =22 (61)

3a-34
=2,

Ez,[2]

FIG. 3.
solution.

Different explicit existence conditions for the Zg
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3 (2(16 +9a* + \/40512 —252a'0 — 1215a% 4 8+/a'®(2a® + 9)*(4a* — 120> + 189))

Ez 3,4 =— , 63
2.4 40*(2a2 +9) (63)
3 <—2a5 —9a* + \/4(112 —252a'0 — 12150 + 8/a'°(20® + 9)*(4a* — 120> + 189)>
Ez |5,6] = , 64
z[5.6 4ot (20% +9) (64
I
while the matter density parameter Q,, = 1 — 3. If we 1 /6(w, + 1) 36(w, —1)(w, +1)?
consider the existence condition 0 <Q, =1-Q,, <1 Q, = 4 B - B Bw, + 1)
and the requirement that this solution exhibits saddle 6 02 6w — 1
behavior (by considering only the signs of the Ez [1,2] _ <ij ) + (sz_ )_|_ 4)’ (65)
eigenvalues, Ez [1] > 0, Ez [2] < 0), we obtain the non- A A

exclusive intervals for the model’s parameters depicted in
the Fig. 4.

For the Z; solution we have a similar behavior as in the
previous case: the kinetic terms for the two quintom fields
dominate, together with the potential term of the quintes-
sence field and the nonminimal coupling of the nonca-
nonical scalar field. At this point, we note that the kinetic
term of the canonical scalar field is related to the matter
equation of state and the strength of the potential term
associated with the quintessence field. For the kinetic term
of the phantom field, we notice a relation with the matter
equation of state and the strength of the nonminimal
coupling of the noncanonical scalar field. Concerning
the potential of the quintessence field, we notice that it
is influenced by the matter equation of state and the
parameter A; that represents the strength of the potential
term of the canonical scalar field. For this solution, the
matter density parameter is

FIG. 4. Nonexclusive conditions where the Z critical point is a
saddle point (see the discussion).

while the total effective equation of state corresponds
to a scaling behavior, w, = w,, = w,,. If we take into
account the existence conditions for this type of solution,
0<Q,=1-Q,4 <1and 2, p#0, we arrive at Fig. 5.
In the following, we analyze the dynamical stability at
this critical point by looking at the signs of the correspond-
ing eigenvalues. As in the previous case, the expressions
for the eigenvalues in the general case where w,, #0
are too complex to be written here. Hence, we focus on
some specific models that lead to stable behavior. If
we set w,, = 0, 4, = 2, and 4; = 1 we obtain the following
simpler expressions for the corresponding eigenvalues:

Ez[1] = 3(a-1). (66)

Ez[2]=3- Z, (67)

<

FIG. 5. Various existence conditions associated with the 2,
critical point.
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3 <2ﬁ3 + \/ 5240 — 128 — 99987 + 8+/B* (2% — 9)*(B* + 168> + 36) — 9ﬂ>

EZ7 [3] == 4ﬂ(2ﬂ2 _ 9) ’ (68)
3 (—2/}3 + \/ 5240 — 12p3* — 9998 + 8./ (2> — 9)2(B* + 168> + 36) + 9ﬁ>

Falll = WO -9) | )
3 <2ﬁ3 + \/ 526° — 123* — 9998> — 8./ (28> — 9)*(B* + 168> + 36) — 9ﬂ)

EZ7 [5} == 4,3(2,52 _ 9) ’ (70)
3 <—2ﬂ3 + \/ 5249 — 128 — 99947 — 8/ (2> — 9)*(B* + 168> + 36) + 9ﬁ>

Ez 6] = (71)

while in this case the matter density parameter is
Q, = % — 2. Taking into account the signs of the eigen-
values, we have determined the possible constraints on the
parameters a and S that lead to stable scaling behavior,
displayed in Fig. 6. By analyzing the evolution of the
dynamical equations (28)—(33), we show in Fig. 7 a
trajectory towards the Z; critical point for specific values
of the coupling constants. These conditions are not exclu-
sive, in the sense that we have considered a fine-tuning of the
model’s parameters so that a stable scenario is present for
this scaling solution, in the case where the matter component
is a pressureless cold gas and the parameters A, , are set.
Note that in this specific stable case where the parameters
A1, a, and f are set the dark energy density parameter €,
associated with the Z; critical point is not zero.

In the case of the Zj critical point we notice the domination
of the kinetic and potential terms of the two quintom fields. As
it can be seen from Table I, the location in phase space is

FIG. 6. Nonexclusive conditions associated with the critical
point Z; where the stable scaling behavior is present: w,, = 0,
/12 - 2,/’{1 - 1

4B - 9) |

|

affected by the matter equation of state and the strength of the
potential terms, represented by the values of the parameters 4,
and 1,. The first initial existence condition is related to the
location in phase space and the requirement that the param-
eters 1; and 1, are not null. At this specific point, we have the
following value for the matter density parameter:

3 3 3 3

Qy=—>+5+|5—7|wn+1 72
=zt g 7
The second existence condition implies that the density
parameter at this point satisfies the relation 0 < Q,, =
1 -Q, <1. In the case where the potential parameters
are positive 4, , > 0 and w,, = 0, this condition reduces to

evaluating the following expression:

Qm
Wi
0.76 015"
0.10
0.75
0.05
0.74
0.00 4 6 8 10
-0.05
0.73
-0.10
2 4 6 8 10" o015
X u
1.235 1.53
1.230 1.52 \
1.225 1.51
1.220 / 1.50
0.60 061 062 063 064 238 -236 -234 9
FIG. 7. Numerical evolution of the dynamical system of

differential equations toward the Z; critical point (w,, =0,1; =1,
Ah=2,a=0,=1.95).
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| 2124212
CZS—<0</11<\/3wm+3/\/11§/12ﬁx/§ —H)v(ﬂz\/3wm+mzzzm). (73)

For this point, we have the following eigenvalues in the general case, assuming 4;, > 0O:

Ez[1] =

, (74)

, (75)

Ez[3] = %(—3)(,/9w3,, 2wy =T — Wy + 1), (76)
EZS[4]:%(\/9wﬁ1—2wm—7+wm—l), (77)

3 + W = 1\/=247 + (773 + 24) + 2408 = B)wh, + (43 (94 + 48) — 482wy, — A W)

Ez[5] =

4017 ’

(78)

Ezg [6] =

3(=Aida + VW = 1/ =2405 + (173 1 24) + 248 = ZB)wih, + (B (943 + 48) = 487w, + Aadowin)

In order to determine stability, we investigate the sign of
the eigenvalues corresponding to a specific case. We note
that if we set 4; = 1, then the matter density associated
with this specific point is equal to 1, describing a full
matter-dominated point. Furthermore, in the case of a cold
matter component without pressure w,, =0, we find a
specific region which corresponds to a stable scaling
solution for this critical point, depicted in Fig. 8. Hence,
the Zg critical point represents a scaling solution

FIG. 8. Nonexclusive regions that correspond to a stable scaling
solution at the Zjg critical point (w,, = 0,4, = ;).

4214y

(79)

|
(Wit = W,,,) that can be stable under certain conditions,
depending on the values of the parameters.

Finally, for the last critical point Z¢ we notice that the
cosmic picture is dominated by the kinetic and potential
terms of the two quintom fields, with the location in phase
space being determined by the strength of the potentials
given by the values of the two coefficients A; and 4,. At this
point the dark energy completely dominates in terms of
density parameters, implying Q,, = 1 — Q,, = 0. Hence,
from the physical point of view, this solution always
satisfies the existence conditions provided by 4; # £4,.
The total effective equation of state is:

_ 3 -AA+3)

Wiot = Wye = (80)
- 3(41 = 43)

In order to have acceleration (w;,; < — %) the parameters 4,
and 4, have to satisfy the following conditions:

ng:/11<—

V422
122 222
V- 2,/7<M< 24 ———
V2 2242 V2 2242

VAl > V2% (81)
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At this point, we obtain the following eigenvalues:

3(V6+2)(9v6 — 22)8 (- o)
2V6-3P (B -7)

Eg[1] = . (82)

_ 3(V6+2)(9v6 —22)4145(a = 4y)
2(V6-3)*(21 - 3) .

Ez[2] = (83)

The rest of the eigenvalues Ez, [3.4,5,6] have very
complicated expressions and are difficult to analyze ana-
lytically. Hence, in order to extract information related to
the dynamical properties for the Z critical point, one has to
rely on fine-tuning methods for the parameters of the
present model. For example, if we consider the case where
A =01,4 =3,w, =0,a= -1, and f = -3, we obtain
an accelerated solution and a stable critical point where all
of the eigenvalues have negative real parts. In Fig. 9 we
show the particular crossing of the phantom divide line by
the effective equation of state near the Zq critical point,
which is a specific effect of a quintom scenario.
Furthermore, by analyzing the real parts of the eigenvalues
of the Jacobian we obtain possible constraints for the
constants a and S constants that correspond to a stable
scenario (where the real parts of all of the eigenvalues are
strictly negative), which we show in Fig. 10. However, this
case corresponds to the situation when the potential is
negative. It can be shown that for various regions of the
model’s parameters we can obtain stability for this critical
point, leading to an accelerated expansion. If we impose the
condition that the potential part is non-negative, then this
would require that # and v at the Z4 critical point are equal
to zero, and Z¢ reduces to the Z| , critical line for a specific
relation between the potential constants A; and A,. This
situation corresponds to a decelerated expansion, a critical
point that represents a particular solution of the Z, , type.

Wiot

-1.0

-1.2 s ‘ s : 'N
0 1 2 3 4 5

FIG. 9. Crossing of the phantom divide line for the effective
equation of state in the evolution of the dynamical system of
equations toward the Z4 critical point (w,, = 0,4, =0.1,4, =3,
a=-1,=-3).

20F

10

5 10

FIG. 10. A possible stable region for the Z, solution
w, =0,4 =0.1,4 = 3).

IV. CONCLUSIONS

In this paper we have proposed a new quintom dark
energy model, taking into account possible nonminimal
interactions between the quintom fields and the Gauss-
Bonnet coupling terms. After deducing the Klein-Gordon
equations and the modified Friedmann relations for the
present quintom dark energy model with independent
Gauss-Bonnet couplings for the two scalar fields, we
studied the dynamical effects for the evolution of the
Universe within this model. The implications of the non-
minimal Gauss-Bonnet couplings for the dynamical fea-
tures of the present quintom scenario have been analyzed
by employing the linear stability method, revealing
the structure and the basic fundamental properties of the
corresponding phase space. Our study revealed that the
phase-space structure is complex and exhibits various
distinct cosmological scenarios that are capable of explain-
ing the current accelerated expansion of the Universe. For
all of the critical points of the dynamical autonomous
system of differential equations, we have investigated the
stability criteria and determined possible constraints for
various parameters of our model that correspond to differ-
ent types of stability. In our analysis, we have identified
several classes of solutions corresponding to the critical
points. The first class of dynamical features is represented
by stiff-fluid solutions, in which the expansion of the
Universe is decelerated due to a positive effective baro-
tropic parameter. We analyzed a second class of dynamical
features in which the cosmic expansion is neither accel-
erated nor decelerated—an interesting type of solution for
the present dark energy model—due to a zero effective term
on the right-hand side of the acceleration equation.
Furthermore, some of the critical points exhibit scaling
behavior, in which the dark energy field mimics matter
behavior. In these scaling solutions, although the dark
energy field dominates the cosmic picture, the total
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effective equation of state corresponds to a matter epoch,
imitating matter behavior at the level of background
dynamics. Notice that in our analysis we have studied
the critical points in the general case and not taken into
account that some of them might have negative potentials,
since in many theories the effects of negative potentials
have been considered (see Refs. [91-93] and references
therein). The reader can observe that the critical points that
are related to a negative potential are Z,¢g. For the Zy
critical point, if we impose that the potential is non-
negative, then this point represents a particular solution
of the Z,, type, representing a decelerated expansion.
Scaling behavior is also valid if we impose that the
potential is non-negative, appearing in the case of the
saddle dynamics of Z5 or for the stable solution Z5. As it
can be noted from the results presented in the previous

sections, a quintom scenario with Gauss-Bonnet couplings
represents an interesting dark energy model capable of
explaining the current evolution of the cosmic expansion.
We can conclude that in terms of physical properties, the
current dynamical dark energy model represents an inter-
esting one, showing a higher complexity of physical
features at the level of large-scale background dynamics,
which makes it a viable cosmological model in scalar-
tensor theories of gravity.
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