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The success of present and future cosmological studies is tied to the ability to detect discrepancies in
complex data sets within the framework of a cosmological model. Tensions caused by the presence of
unknown systematic effects need to be isolated and corrected to increase the overall accuracy of parameter
constraints, while discrepancies due to new physical phenomena need to be promptly identified.We develop a
full set of estimators of internal and mutual agreement and disagreement, whose strengths complement each
other. These estimators take into account the effect of prior information andcompute the statistical significance
of both tensions and confirmatory biases. The estimators that we present optimally weight all parameter space
directions that are either fully constrained by the data or the prior, allowing for complete and fair degree of
freedom counting.We apply them to a wide range of state-of-the-art cosmological probes and show that these
estimators can be easily used, regardless of model and data complexity.We derive a series of results that show
that discrepancies indeed arise within the standard ΛCDM model. Several of them exceed the probability
threshold of 95% and deserve a dedicated effort to understand their origin.
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I. INTRODUCTION

Since the discovery of cosmic acceleration [1,2], the
description of our Universe based on general relativity with
a cosmological constant (Λ) and cold dark matter (CDM)
has provided a successful working model for cosmology.
The success of the ΛCDM model relies on its ability to
describe a wide array of different cosmological observa-
tions ranging from the spectrum of fluctuations in the
cosmic microwave background (CMB) to the clustering of
galaxies and gravitational lensing observables.
Nevertheless, discrepancies exist between the determi-

nation of ΛCDM parameters by different data sets [3–10].
Local measurements of the Hubble constant differ from the
value inferred from CMB observations of the Planck
satellite [11] by more than 3.4σ [12]. Measurements of
the galaxy weak lensing correlation function also show
disagreement with Planck CMB observations, involving
parameters that determine the amplitude of the weak
lensing signal, with a statistical significance that ranges
from 1.7σ to 2.3σ for the Dark Energy Survey [13] and the
Kilo Degree Survey [14], respectively. Furthermore, the
internal consistency of the Planck CMB spectra in both
temperature and polarization was analyzed in [11,15,16],
revealing some discrepancies between the temperature
spectrum and the reconstruction of its lensing signal.
The existence of such discrepancies is in large part due to

the advent of precision cosmology and the low statistical
errors of large surveys. When facing these and other
discrepancies, we have to understand whether they can
be attributed to residual systematic effects, an incorrect

modeling of the observables, or new physical phenomena.
The next generation of cosmological probes, like Euclid
[17], LSST [18], and CMB-S4 [19], are expected to further
raise experimental sensitivity. While these may resolve
current controversies, their increased modeling complexity
will also make it difficult to inspect the data sets or the
parameter posteriors to identify future discrepancies. This
will make it increasingly difficult to understand whether
data sets agree or not, and a failure to do so will
compromise their scientific return.
In this paper we discuss several new concordance and

discordance estimators (CDEs) that can be used to under-
stand the internal consistency of a data set and its agree-
ment with other cosmological probes. First, inspired by the
Bayesian evidence as a measure of goodness of fit (GoF),
we introduce a test that exploits the statistics of the
likelihood at maximum posterior. Its dependence on the
prior distribution allows a proper account of data and prior
constrained directions when counting degrees of freedom
(d.o.f.), while being significantly easier in practical appli-
cations with respect to the evidence. Second, we study the
statistics of the evidence ratio test of data set compatibility
in order to understand its biases. We show that in practical
applications the bias toward agreement of the evidence ratio
test is usually as large as its nominal value, making its
interpretation on the Jeffreys’ scale unreliable in determin-
ing agreement or disagreement. Third, we then define an
estimator based on the ratio of likelihoods at maximum
posterior, which maintains a close relationship with the
evidence ratio in limiting cases but allows for an easy
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assessment of statistical significance of the reported results.
Finally, we consider estimators that quantify shifts in the
parameters of two data sets, providing an implementation
that works in an arbitrary number of dimensions and priors.
These tools can be straightforwardly applied, regardless

of data and model complexity, and are based on a Gaussian
linear model for the data likelihood and the posterior
distribution that can be easily checked. In addition, they
are sensitive to both tensions between data sets and the
presence of confirmatory biases.
We illustrate their application on current data sets and

analyze known discrepancies between state-of-the-art cos-
mological probes. More specifically, we investigate the
internal consistency of CMB measurements, establishing a
set of benchmark results for the next release of the Planck
data and showing the following: The cross correlation
of the CMB temperature and E-mode polarization is a
bad fit to the ΛCDM model due to the likely presence of
residual, frequency-dependent systematics or foregrounds;
the discrepancy between the CMB spectra and lensing
reconstruction is present for both the temperature spectrum
and the E-mode polarization spectrum, at about the same
statistical significance; the measurement of the large angular
scale CMB fluctuations is in tension with the small scale
temperature and E-mode spectra with a statistical signifi-
cance at about the 95% confidence level.
We recover the known tensions between CMB and local

measurements ofH0 and weak lensing probes, showing that
the latter are slightly larger than those reported in the
literature, when considering the Canada-France-Hawaii
Telescope Lensing Survey and the Kilo Degree Survey on
large linear scales. This tension is also slightly larger than
what we estimate by looking at the S8 ≡ σ8Ω0.5

m parameter
since this is not one of the principal components of both
parameter covarianceswhile our estimator optimallyweights
all parameter space directions. We find that the CMB is in
tension with probes of the clustering of galaxies, which can
be attributed to the SDSSLRGDR4survey being toogoodof
an internal fit to different values of cosmological parameters.
This paper is organized as follows. In Sec. II we discuss the

technical aspects of several CDEs and their application to data.
In particular, the first part of the section contains a review of
the relevant statistical tools, while the second part contains the
discussion of different estimators and contains most of the
theoretical results that are new to this paper. In Sec. III we
detail the cosmological model and data sets, and we apply the
CDEs to them in Sec. IV. We summarize our conclusions in
Sec.V. InAppendixesA–G,wederive the statistical properties
of the CDEs and give details on their implementation.

II. CONCORDANCE AND DISCORDANCE
ESTIMATORS

In this section we introduce and review the concordance
and discordance estimators (CDEs) that we later apply to
cosmological data sets. This section is organized as

follows: In Sec. II A we discuss the requirements for and
limitations of the probabilistic interpretation of CDEs; in
Sec. II B we define the notation of subsequent sections; in
Sec. II C we review the Gaussian linear model; in Sec. II D
we apply it to quantify internal consistency of data sets; in
Secs. II E and II F we use it to discuss pairwise CDEs.

A. CDE measures

We loosely refer to a CDE as a statement about a data set
D or a collection of data sets D ¼ D1 ∪ … ∪ Dn, within a
given modelM, that quantifies agreement or disagreement
between the data and the model. In the case of a single data
set, these statements should quantify internal consistency
(or self-consistency), and in the case of multiple data sets,
mutual consistency.
Since we regard data as random, CDEs are random

variables as well, distributed over the space of data D.
When defining a CDE,

(i) we must be able to compute the distribution of the
CDE over the space of data realizations D, where D
can be a single data set or the union of multiple data
sets D ¼ D1 ∪ … ∪ Dn, depending on the defini-
tion of the CDE;

(ii) we report the probability PðCDE > CDEobsÞ so that
low (high) probabilities identify disagreement
(agreement) based on the observed value CDEobs.

The distribution over data space is usually high dimen-
sional and, though it is, in principle, possible to understand
it with Monte Carlo techniques, doing so is typically
extremely computationally intensive. For this reason we
apply, and test the validity of, Gaussian approximations to
analytically work out the distribution of these estimators.
Once probabilities over data space are computed, if

PðCDE > CDEobsÞ is too low, then this could point toward
the presence of tensions, and if it is too high, it could point
to the presence of confirmatory biases. Note that confir-
mation bias in this sense does not necessarily mean a
voluntary human action directed at confirming prior beliefs,
but it includes any subtle assumption that can bias results
toward accepting a fiducial model. These could include, as
an example, overestimating data covariances, assuming a
fiducial cosmology in the data reduction (e.g., converting
angles and redshifts to distances), calibrating numerical
algorithms around a given cosmology, and others. As
experimental precision increases, even subtle biases, if
not properly counterbalanced, would damage the scientific
return of the affected experiment.
Notice that the key point that allows us to define CDEs in

a frequentist-like fashion, from a Bayesian perspective, is
that the problem of data set compatibility is not a model
selection problem. We ask the statistical question of
whether two data sets agree or not, within a model, at a
fixed model while accounting for the fact that the param-
eters of the model are unknown.
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Many of the commonly employed estimators are pre-
sented in the literature without computing their statistics but
rather interpreting their observed value as an indication of
agreement or disagreement. This does not take into account
that CDEs can be biased, hCDEiD ≠ 0, toward agreement
or disagreement. Knowing the distribution over the data
space prevents us from being tricked into thinking that there
is agreement or disagreement when it is not the case.
We next warn the reader about caveats in interpreting

CDEs. CDEs can indicate agreement or disagreement but
do not reveal the cause. In particular, in the case of tensions
these could result from a problem with the data and
unknown systematic effects, a problem with the predictions
that stems from an incomplete modeling of the observable,
or a more fundamental problem with the model. CDEs do
not discriminate one from the other but rather quantify the
statistical level of unknowns in the given theoretical and
experimental situation.
Another limitation, common to all methods to quantify

agreement or disagreement within a model, is that they do
not quantify the need for model extensions. It is always
possible to relax tension with the addition of extra
parameters, which could describe systematic effects or
new physical aspects of the model, but doing so carries the
danger of overfitting. The methods that we describe in this
paper should not be used to justify model extensions
directly but rather motivate further studies with the appro-
priate statistical tools, like Bayesian model selection.
Just as no one CDE gives the probability of the model

given the data, not all CDEs result in the same assessment
of statistical significance for concordance or discordance.
There are multiple ways in which the model can be in
tension or agreement with the data. In fact, if the CDE is
selected after looking at the data, one can always find some
aspect of the data that deviates from the model just by
chance fluctuations. It is therefore advantageous to select,
before looking at the data, multiple CDEs that correspond
to meaningful quantities whose values we would want to be
probable given a model.
Finally, when looking at these multiple CDE results, we

should not naively combine them into a global probability.
To assess this, we would need to know the joint distribution
of the multiple tests. For example, the CDEs might be
correlated, making multiple concordance or discordance
results redundant. Even if the CDEs are uncorrelated, we
would expect that out of many tests, one might fail due to
chance fluctuations. We instead use the CDEs to flag
individual aspects of the data and model for further study
and multiple CDEs to assess the robustness of conclusions
from any single CDE.

B. Basic definitions

We now lay out some definitions to clarify the notation
of the subsequent sections.
We commonly employ the multivariate Gaussian dis-

tribution, over the space of θ, which we denote as

N Nðθ; θ̄; CÞ ¼ ð2πÞ−N=2jCj−1=2e−1
2
ðθ−θ̄ÞTC−1ðθ−θ̄Þ; ð1Þ

where detð·Þ≡ j · j, N corresponds to the number of
dimensions, θ̄ is the mean of the distribution, and C is
the covariance. Generally, throughout this paper we denote
parameter covariances as C and data covariances as Σ.
Given a model M and data D, the probability of the N
model parameters θ after the data D is given by

PðθjD;MÞ ¼ PðDjθ;MÞPðθjMÞ
PðDjMÞ ¼ LðθÞΠðθÞ

E
; ð2Þ

which we call the parameter’s posterior and where
PðθjMÞ≡ ΠðθÞ is the prior probability density function
(pdf), normalized to unity over parameter space,
PðDjθ;MÞ≡ LðθÞ is the likelihood, and PðDjMÞ≡ E
is the evidence. Usually, the normalization of the posterior
is not computed, and one has to work with the following:

PðθÞ≡ LðθÞΠðθÞ; ð3Þ
which we call the un-normalized posterior. The normali-
zation factor of the un-normalized posterior is the evidence

E ≡ PðDjMÞ ¼
Z

PðθÞdθ ¼
Z

LðθÞΠðθÞdθ: ð4Þ

Notice that, within a given model M, the evidence
defines the prior probability for observing data D. This
is especially relevant in cosmology where we do not have
the possibility of having truly different data realizations.
Thus, we have to fix the model that then predicts its
distribution of data realizations that would be drawn from
its evidence. In this sense we can define functions of the
data D and, within a model M, we can compute their
distributions and, for example, their average over data
realizations as

hfðDÞiD ¼
Z

fðDÞPðDjMÞdD; ð5Þ

where the measure over data space is the evidence
of the model. This aspect is key in the definition of
CDEs as frequentist-like statements, in a Bayesian
context. Since the problem of data set compatibility is posed
at a fixed model (with unknown parameters), the evidence
gives the probability distribution of the data and allows us to
define statistics over data draws and study their distribution.
As such, the evidence is always involved in frequentist-
like tests.
As for the prior distribution, we use four different

functional forms, depending on the application of interest:
(i) Flat prior: Given by a “top hat” function ΠðθÞ ¼

1=VΠ when all the nth parameter components are

included between θðnÞmax and θðnÞmin. The prior volume

is VΠ ¼ Q
N
n¼1 ½θðnÞmax − θðnÞmin�.
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(ii) Uninformative flat prior: A flat prior where
the range is chosen so that the prior is uninformative
with respect to the data, i.e., ðθðnÞmax − θðnÞminÞ2 ≫
CθðnÞθðnÞ .

(iii) Gaussian prior: Given by a multivariate Gaussian
ΠðθÞ ¼ N Nðθ; θΠ; CΠÞ with mean θΠ and covari-
ance CΠ. These priors are normalized to unity, and
their maximum value at θΠ is ð2πÞ−N=2jCΠj−1=2.

(iv) Delta prior: AGaussian prior in the limit CΠ → 0 or
ΠðθÞ ¼ δðθ − θΠÞ, a rather stubborn choice which
we use for pedagogical purposes.

Uninformative flat prior results can be related to the
Gaussian ones by appropriately setting the center parameter
as well as in the limit CΠ ≫ C. Moreover, the Gaussian
prior volume, which is formally undefined, can be taken as
VΠ ¼ ð2πÞN=2jCΠj1=2 to retain the same normalization as
ΠðθÞ ¼ 1=VΠ at the peak.
Flat priors are the ones that are used in most practical

applications but, to the best of our knowledge, it is not
possible to derive simple analytic results, in general. For this
prior choice some directions in parameter space might be
constrained by the data. When this is the case, they become
uninformative flat priors where analytic results can be
derived. When they are much more informative than the
data, on the other hand, their effect is closer to the delta prior
case. For the intermediate, partially informative case, we
approximate flat priors with Gaussian priors, taking into
account that, when the prior needs to be directly evaluated, it
would give ΠðθÞ ¼ 1=VΠ. This allows us to appreciate the
two most important features of flat priors: the shift between
the maximum likelihood and the maximum likelihood as
constrained by the prior; the information content of the prior,
asmodeled by the covariance of the bounded flat distribution

C ¼ ðθðnÞmax − θðnÞminÞ2=12. For practical applications we dis-
cuss the Gaussian approximation of the Markov chain
Monte Carlo (MCMC) sampled posterior in Appendix E.

C. Gaussian linear model

To understand the statistics of the CDEs discussed in this
section, we need to make some simplifying assumptions.
We assume that the likelihood of the data is Gaussian
distributed in data space, and we expand our model
predictions to linear order in their parameter dependence.
This results in the Gaussian linear model (GLM), which
was discussed in [7,20], and whose treatment we mostly
follow. The assumptions of the GLM are somewhat
restrictive but find many applications in cosmology.
Most of the available data likelihoods are Gaussian dis-
tributions in the data, and many probes, notably the CMB,
constrain the parameters of the ΛCDM model sufficiently
well that the linear approximation is valid. Let us assume
that we have d Gaussian distributed data points x, with
mean m and covariance Σ. Their likelihood is a Gaussian
distribution in data space:

L ¼ N dðx;m;ΣÞ: ð6Þ

Our model M would predict m as a function of N
parameters θ. We thus expand in series the prediction
around a given parameter value θ̂:

mðθÞ ¼ mðθ̂Þ þ ∂m
∂θ

����
θ̂

ðθ − θ̂Þ þ � � �

≡ m̂þMðθ − θ̂Þ þ � � � ; ð7Þ

where we defined our central value for the expansion θ̂, the
corresponding data prediction m̂ ¼ mðθ̂Þ, and the Jacobian
of the transformation between data and parameter spaceM.
It is worth commenting on the properties of the Jacobian.
Since the dimension of the parameter space and data space
is usually different, the Jacobian is not square and thus not
invertible. We can, however, define

M̃ ¼ ðMTΣ−1MÞ−1MTΣ−1; ð8Þ

which has the following properties:
(i) M̃T ¼ Σ−1MðMTΣ−1MÞ−1 given that MTΣ−1M is

symmetric;
(ii) M̃M ¼ MTM̃T ¼ IN×N .

The two matrices M and M̃ can be used to define a
projector on the mðθ̂Þ tangent space:

P ¼ MM̃; ð9Þ

with the following properties:
(i) P2 ¼ P, i.e., P is a projector and its complement

is I − P;
(ii) PMθ ¼ Mθ, which leaves the tangent space ofmðθ̂Þ

invariant;
(iii) ðI − PTÞΣ−1P ¼ 0 so that the complementary pro-

jectors are orthogonal in the metric defined by Σ−1.
By decomposing the data residual (x −m) in a component
that is projected along the model, Pðx −mÞ, and a compo-
nent that is orthogonal to the model, ðI − PÞðx −mÞ, we can
now recast Eq. (6) into

L ¼ Lmax exp

�
−
1

2
ðθ − θMLÞTC−1ðθ − θMLÞ

�
; ð10Þ

with the maximum likelihood

Lmax ¼
exp ½− 1

2
ðx − m̂ÞTðI − PÞTΣ−1ðI − PÞðx − m̂Þ�

ð2πÞd=2jΣj1=2 ;

ð11Þ

and maximum likelihood parameters and covariance
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θML ¼ θ̂ þ M̃ðx − m̂Þ;
C ¼ ðMTΣ−1MÞ−1: ð12Þ

Notice that the maximum likelihood parameter value
depends on the data realization x. Figure 1 summarizes
the geometrical meaning of the GLM in a two-dimensional
data space with a one-parameter model.
Having computed the likelihood, we can get the posterior

of the data, for the GLM, with different prior choices. In the
case of Gaussian priors the posterior is still Gaussian
PðθjD;MÞ ¼ N Nðθ; θp; CpÞ with

Cp ¼ ðC−1Π þ C−1Þ−1 ¼ ðC−1Π þMTΣ−1MÞ−1;
θp ¼ Cp½C−1Π θΠ þ C−1θML�

¼ Cp½C−1Π θΠ þMTΣ−1ðx − m̂þMθ̂Þ�:
ð13Þ

If we consider an uninformative flat prior, then the posterior
is Gaussian PðθjD;MÞ ¼ N Nðθ; θML; CÞ. In the case of a
delta prior, instead the posterior is a delta function around
the chosen parameter value PðθjD;MÞ ¼ δðθ − θ̂Þ.

The evidence can now be computed in a given model and
for a given prior choice. In parameter space and for
Gaussian priors, the evidence is given by

ln E ¼ lnLmax þ
1

2
ln

jCj
jC þ CΠj

−
1

2
ðθML − θΠÞTðC þ CΠÞ−1ðθML − θΠÞ; ð14Þ

where the first line contains the familiar Occam’s razor term
and the second line a penalty for cases where the prior
center is not the maximum of the likelihood. We can
equivalently express this in terms of the likelihood evalu-
ated at the maximum posterior probability point θ ¼ θp,

ln E ¼ lnLðθpÞ þ
1

2
ln jCpj þ

N
2
lnð2πÞ þ lnΠðθpÞ: ð15Þ

This form also highlights the limit which coincides with the
case of uninformative flat priors where θp ¼ θML, Cp ¼ C
and ΠðθpÞ ¼ 1=VΠ:

ln E ¼ lnLmax þ
1

2
ln jCj þ N

2
lnð2πÞ − lnVΠ: ð16Þ

Likewise, it highlights the delta prior limit, θp ¼ θΠ, where
ln E ¼ lnLðθΠÞ, which is the limiting case of Gaussian
priors as the prior covariance goes to zero.
We can now write these results in data space by means of

the GLM. Figure 2 shows the graphical interpretation of the
GLM evidence, for different prior choices, in our two-
dimensional example. In the Gaussian prior case, shown in
panel (a) of Fig. 2, the evidence is a Gaussian distribution in
data space E ¼ PðDjMÞ ¼ N dðx;mΠ;Σ0Þ with

mΠ ¼ mðθΠÞ;
Σ0 ¼ ΣþMCΠMT: ð17Þ

In the uninformative flat prior case, the evidence is a
Gaussian distribution orthogonal to the projector

E ∝ e−
1
2
ðx−m̂ÞT ðI−PÞTΣ−1ðI−PÞðx−m̂Þ; ð18Þ

with a normalization factor such that the distribution
integrates to unity over the data space. Notice that we
have not defined this with the corresponding normal
distribution since the projection operation is not invertible
so that the determinant of ðI − PÞTΣ−1ðI − PÞ is singular. If
we consider delta priors, as in panel (c) of Fig. 2, the
evidence is still Gaussian in data space E ¼ N dðx; m̂;ΣÞ.
When studying the distribution of different quantities

over data realizations, the evidence provides the distribu-
tion of the data. It is then a noteworthy result that, within a
given model M, regardless of the parameters, for all the
considered prior choices, the data realizations provide

FIG. 1. Geometrical interpretation of the Gaussian linear
model. Here, ðx1; x2Þ represents data space and mðθÞ a one-
dimensional model, i.e., a curve in the ðx1; x2Þ space. The figure
also shows the linearization of the model and how to decompose
differences between a data realization and the model (at fixed
parameters) in the direction that is parallel and orthogonal to the
model. Note that mðθMLÞ shows the model corresponding to
the best-fit parameter values for the given data realization. The
dashed line shows a constant likelihood surface, where we
assume, for simplicity, that data covariance is proportional to
the identity matrix.
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evidence that is a Gaussian distribution, with different
mean and covariance.
The last aspect of the GLM that we discuss is the

dependence of the results on the expansion point θ̂. When
using the GLM to compute the distribution of different
estimators, the results do not depend on the arbitrary
expansion point unless we purposely make that point
special by prior choice.

D. Goodness-of-fit-type tests

The first application of the GLM consists in defining
GoF type measures. These are the only CDEs that we
consider that measure the internal consistency of a single
data set, within a model.
We first define the usual maximum likelihood GoF

measure as the quadratic form:

QML ¼ ðx − m̂ÞTðI − PÞTΣ−1ðI − PÞðx − m̂Þ: ð19Þ

Note that

QML ¼ −2 lnLmax þ 2hlnLmaxiD þ hQMLiD; ð20Þ

where the average is over data realizations; thus, up to these
constant offsets, QML is equivalent to −2 lnLmax, the
familiar effective χ2 at its minimum. This quadratic form
therefore quantifies the distance between the data and the
model at its best parameter point. Taken as a CDE, if
PðQML > Qobs

MLÞ is too low, then the data are a bad fit to the
model, and conversely, if it is too high, it is too good a fit to
the data, possibly indicating the presence of confirmatory
biases.

Equation (19) defines a quadratic form over data space,
and its distribution, in general, depends on the evidence, as
the probability of data given the model, which in turn
depends on the prior. However, in this case the projection
I − P in QML makes its statistical properties independent
of the prior and is given by QML ∼ χ2ðd − NLÞ (see
Appendix B; here and below “∼” denotes “distributed
as”). Here NL ¼ rank½P�, taking into account the fact that
the likelihood might not be sensitive to some parameters
if ∂mðθÞ=∂θ ¼ 0. If there are no irrelevant parameters,
NL ¼ N.
Implicit in the use ofQML as a goodness-of-fit statistic is

that the likelihood is maximized over all the relevant
parameters without reference to or bounds from the prior.
However, once the allowed model parameters are con-
strained by priors, we must adopt a different goodness-of-
fit statistic.
The prior distribution usually encodes physical require-

ments on the model, like Ωm ≥ 0, or a vague integra-
tion of previous experimental knowledge, like 20≤
H0½kms−1Mpc−1�≤100. We are not interested in a model
that fits the data well while violating physical requirements
or accepted previous results. The effect of the prior is to
penalize such situations.
To define a GoF measure that takes the effect of the prior

into account, we start from the evidence. To see why, we
consider a one-parameter (θ) model and a data set that
directly measures that parameter. The evidence is then
E¼Rþ∞

−∞ LðDjθÞΠðθÞdθ. Under the simplifying assumption
that the likelihood depends on the difference between the
parameter and the data (which in this example is just the
measured value of the parameter), the evidence, as a function

FIG. 2. Geometrical interpretation of the GLM evidence. In all panels ðx1; x2Þ represents data space and mðθÞ a one-dimensional
model, i.e., a curve in the ðx1; x2Þ space. The figure also shows the linearization of the model. The dashed lines correspond to the
evidence contours, for different prior choices, and different confidence levels. The contours show that, when drawing data realizations
from the evidence, these will be 68% of the time inside the 68% contour, 95% of the time inside the 95% contour, and so on. As in the
previous figure we assumed, for simplicity, that data covariance is proportional to the identity matrix. In the Gaussian prior case we also
assumed that mΠ ¼ m̂.
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of the data, becomes E ¼ Rþ∞
−∞ Lðθ −DÞΠðθÞdθ. This is the

convolution integral that gives the probability density of the
difference between the prior and the data.
The evidenceGoF is then defined by analogy toEq. (20) as

QE ≡ −2 ln E þ 2hln EiD þ hQEiD: ð21Þ

Unlike QML, the specific quadratic form QE describing the
data dependence of the evidence depends on the prior, so we
give its explicit form for the various cases below. This
statistics quantifies the compatibility between the prior and
the likelihood, defining a goodness-of-fit statistics that is
effectively conditioned on the prior. We then apply the GLM
to Eq. (21) for different prior choices.
If we consider uninformative flat priors, the evidence

quadratic form is given by

QE ¼ ðx − m̂ÞTðI − PÞTΣ−1ðI − PÞðx − m̂Þ; ð22Þ

just like QML, and it is chi-squared distributed with d − NL
d.o.f. This means that the evidence and maximum like-
lihood GoF statistics are identically distributed in the case
of uninformative flat priors as one might expect.
At the other extreme are delta priors. The evidence

goodness of fit is determined by

QE ¼ ðx −mΠÞTΣ−1ðx −mΠÞ; ð23Þ

where x ∼N dðx;mΠ;ΣÞ so that QE ∼ χ2ðdÞ. Notice that
d.o.f. counting is different than in the uninformative flat
prior case because the model cannot be optimized over the
parameter space.
For Gaussian priors we have that

QE ¼ ðx −mΠÞTðΣþMCΠMTÞ−1ðx −mΠÞ: ð24Þ

Since the distribution of data draws is Gaussian,
x ∼N dðx;mΠ;ΣþMCΠMTÞ, QE ∼ χ2ðdÞ just like the
delta prior case. Although the model can now be optimized
over the parameter space, QE pays a compensating penalty
from the prior.
These results for the evidence highlight two aspects that

are worth commenting on. The first is that the evidence
GoF is the optimal estimator to weight differences between
the prior and the data. In both the delta and Gaussian prior
cases, the difference between the model with priors and the
data draws x −mΠ is weighted with its inverse covariance.
We discuss in Appendix D what makes inverse covariance
weighting optimal. In the case of uninformative flat priors,
where there is no sense of preferred model parameters, this
reduces to the usual maximum likelihood GoF. The second
aspect is that there is a direct relationship between the
evidence GoF and maximum likelihood based GoF, which
is the result of a hidden symmetry. We can always regard
priors as external data so that the evidence GoF for

Gaussian priors is the same as the maximum likelihood
GoF if we add an additional data point for each Gaussian
prior. With Gaussian priors on all N parameters, the
maximum likelihood GoF would be distributed with
ðdþ NÞ − N ¼ d d.o.f., as the evidence GoF.
In practical applications we want to define a GoF

measure that retains the best properties of both the
maximum likelihood GoF and the evidence GoF. We want
the former measure to be easy to compute while accounting
for limitations that the prior places on optimizing param-
eters, which the latter measures.
Similar considerations in the literature for assessing

Bayesian goodness of fit, for the purpose of model
selection, has led to the use of the deviance information
criterion (DIC), which measures the improvement of the
likelihood, within the region of support of the prior, relative
to the number of effective parameters that the data con-
strain. The DIC is defined as [21–25]

DIC≡ −2 lnLðθpÞ þ 2Neff ; ð25Þ

where θp is an estimate of the true parameters. Here, Neff is
the Bayesian complexity:

Neff ≡ 2 lnLðθpÞ − 2hlnLiθ; ð26Þ

where the average is over the posterior. Note that θp could
be fixed to be the parameter mean or the maximum point of
the posterior. Note that with the commonly used flat priors,
the maximum likelihood point within the prior range is the
maximum of the posterior. We therefore take the latter case
for generality.
Now we can define, by analogy to Eq. (20), a new GoF

statistic

QMAP ¼ −2 lnLðθpÞ þ 2hlnLðθpÞiD þ hQMAPiD; ð27Þ

for the likelihood at the maximum a posteriori (MAP)
point. Since the specific quadratic form for QMAP depends
on the prior, we now consider each case separately.
In both the delta and uninformative flat prior cases, the

likelihood at maximum posterior is distributed as the
evidence QMAP ¼ QE . In the Gaussian prior case it defines
a quadratic form in data space:

QMAP ¼ ðx −mΠÞT ½ðI − PÞTΣ−1ðI − PÞ
þ M̃TC−1Π CpC−1CpC−1Π M̃�ðx −mΠÞ: ð28Þ

This case also illuminates the meaning of Neff . If
some directions in parameter space are not constrained by
the data, as it happens in many practical applications, the
quadratic form defined by Eq. (28) is lower rank; i.e., the
model cannot invest all its nominal parameters in improving
the goodness of the fit. Here,QMAP is distributed as a sum of
Gamma-distributed variables, and its distribution can be
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conservatively approximated by that of a chi-squared dis-
tributed variable with d − tr½ðCΠ þ CÞ−1CΠ� d.o.f. The trace
term is Neff under GLM with Gaussian priors,

Neff ¼ N − tr½C−1Π Cp�: ð29Þ

It can be interpreted as the effective parameters that a data set
is constraining. To seewhy, consider the limiting cases. If the
prior covariance is much wider than the data covariance, this
expression returns the full number of parameters N, whereas
in the opposite limit where all parameters are prior limited, it
returns zero. Thus, for any type of prior, 0 ≤ Neff ≤ N,
making the uninformative flat and delta case bounds on Neff
and limits of the statistics of QMAP.
For the case of flat priors which may be informative, we

can follow a similar procedure of identifying the effective
number of parameters using Eq. (29). While this approxi-
mation is not exact, it tends to be conservative. Furthermore,
being conservative for directions that areweakly constrained
by the data mitigates non-Gaussianity in the posterior. Along
these directions, it is more likely that the posterior is non-
Gaussian with slowly decaying tails.
To summarize, our procedure gives the exact distribution

of QMAP for all parameter space directions that are either
completely constrained by the prior or the data and, in these
limiting cases, reduces to the evidence GoF. Moreover, in
the case of completely data constrained parameters, it
further reduces to the maximum likelihood GoF measure.

E. Evidence ratio type tests

We next proceed to the application of the GLM to
estimators that aim at quantifying the compatibility of data
set couples. One that has been applied in the literature is
the evidence ratio estimator of data set compatibility
[6,13,26–35].
With the posterior distribution of two different data sets,

we want to test whether they can be described with the
same set of cosmological parameters. This amounts to
comparing the probabilities of two different statements:

(i) I0: the two data sets are described by the same
choice of unknown parameters;

(ii) I1: the two data sets are described by independent
choices of unknown parameters.

Then we compute their probabilities and compare them:

C ¼ PðD1 ∪ D2jI0;MÞ
PðD1 ∪ D2jI1;MÞ ¼

PðD1 ∪ D2jMÞ
PðD1jMÞPðD2jMÞ ; ð30Þ

where PðD1 ∪ D2jMÞ is the joint evidence of the two data
sets while PðD1jMÞ and PðD2jMÞ are the evidence for the
single ones. Since we are working with two data sets, D1

and D2, we use the subscripts 1, 2, and 12 to indicate
quantities referring to the first, the second, and the joint
data sets, respectively.

Used in the form of Eq. (30), the evidence ratio does not
provide an estimate of the statistical significance of the
reported results. It is common in the literature to interpret
the outcome on a Jeffreys’ scale [36,37]: ln C < 0 indicates
tension between the data sets and ln C > 0 agreement; 3∶1
odds one way or the other is “substantial,” 10∶1 is “strong,”
30∶1 is “very strong,” and 100∶1 is “decisive.” This has the
disadvantage that the Jeffreys’ scale is not calibrated on the
specific application at hand, and using it might give
misleading results [29,38,39].
In the case of uninformative flat priors the Gaussian

approximation for the evidence ratio can be immediately
read from Eqs. (14) and (16):

ln C ¼ lnL12
max − lnL1

max − lnL2
max

þ 1

2
ln

jC12j
jC1jjC2j

þ ln
VðΠ1ÞVðΠ2Þ

VðΠ12Þ
−
N1 þ N2 − N12

2
lnð2πÞ; ð31Þ

and this shows that, when averaging this quantity over
D1 ∪ D2 realizations, several terms would not cancel out;
i.e., this CDE is biased. In the case of uninformative flat
priors, the calculation explicitly gives

hln Ci12 ¼ −
N1 þ N2 − N12

2
½1þ lnð2πÞ�

þ 1

2
ln

jC12j
jC1jjC2j

þ ln
VðΠ1ÞVðΠ2Þ

VðΠ12Þ
: ð32Þ

Notice that, in practical applications, the Occam’s razor
factors in the second line of Eq. (32) are much larger than
the first line, thus making the evidence ratio biased toward
agreement since I1 effectively involves two Occam’s
factors compared with one for I0. Priors are in fact
generally chosen to be as uninformative as possible, so
the posterior is almost always localized in a small fraction
of the prior volume, making the Occam factor due to prior
volume very large. This makes the application of the
evidence ratio likely to be misleading in practical applica-
tions, generally underestimating discrepancies. In the
literature a positive evidence ratio, ln C > 0, was usually
used as a sufficient criterion to claim consistency of two
different probes. We stress that one should really expect a
very large value of ln C if the data are truly consistent and
that discrepancies might be hidden by the bias computed in
Eq. (32). A smaller value, but still positive, only shows that
the data are possibly inconsistent but that the preferred
parameter values for the two subsets differ by an amount
that is small in comparison with the prior range.
We define the debiased evidence ratio test as

Δ ln C ¼ −2 ln Cþ 2hln Ci12: ð33Þ
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If Δ ln C is significantly greater than zero, this indicates
tension; if it is smaller than zero, it indicates confirmation
bias. The confidence level of the statement can be com-
puted using the GLM. The proofs of the results of this
section can be found in Appendix C.
In the case of uninformative flat priors,Δ ln C is, up to an

additive constant, chi-squared distributed with N1 þ N2 −
N12 d.o.f., and the observed value can be read from
Eqs. (31) and (32). In the case of delta priors the evidence
ratio is trivially distributed as Δ ln C ¼ 0 for all data draws.
For Gaussian priors, the distribution is more complicated

and is, in general, a sum of independent variance-gamma
distributed variables (see Appendix C). Notice that in this
case, to obtain the distribution of the Gaussian prior
evidence ratio from that of the maximum likelihood ratio,
treating the prior as additional data, we need to take into
account the fact that we add the prior to the analysis of both
D1, D2 and D12. If we now regard the prior as data, since
the prior does not change in the analysis of the different
data sets, data draws of D1 and D2 would be correlated by
the prior. The evidence in the Gaussian prior case is then in
correspondence with the maximum likelihood ratio of
correlated data sets.
As with GoF in the previous section, we aim at defining a

CDE that retains ease of use as the ratio of maximum
likelihoods, which does not require heavy use of numerical
integration to compute the statistical significance, like the
evidence ratio, but at the same time encodes the effect of the
prior. This suggests that we again examine the statistics of
the various likelihoods at their maximum posterior point.
We therefore consider the difference of log likelihoods at

their MAP point

QDMAP≡−2 lnL12ðθ12p Þþ2 lnL1ðθ1pÞþ2 lnL2ðθ2pÞ: ð34Þ

Note that in this case, the normalization factors in L, which
provide the offset mean values in Eq. (20), drop out of the
difference so long as 1 and 2 are independent data sets. If
data are drawn from the evidence with uninformative flat
priors and delta priors, the distribution of QDMAP is the
same as the distribution of the evidence ratio. In the
Gaussian prior case its distribution is conservatively
approximated with a chi-squared distribution:

QDMAP ∼ χ2ðN1
eff þ N2

eff − N12
effÞ: ð35Þ

Its exact distribution in terms of a sum of Gamma
distributed variables can be found in Appendix C.
This estimator quantifies the loss in goodness of fit when

combining two data sets. When considering single data
sets, the model parameters can be separately optimized
within the prior; when joining them, there is less freedom in
model parameter optimization. The ratio of likelihoods at
maximum posterior tells us whether this decrease in

goodness of fit is consistent with expectation from stat-
istical fluctuations or not.
The statistics ofQDMAP is the same as the evidence ratio,

once Occam’s factors are removed, for completely data or
prior constrained directions, while it differs over partially
constrained directions. Over these directions the statistical
significance of agreement or disagreement is underesti-
mated as a mitigation strategy against non-Gaussianities.
This discussion allows us to shed light on the deviance

information criterion (DIC) ratio estimator, as introduced in
[33] to assess the agreement between CFHTLenS and
Planck. Using Eq. (25), we can define the DIC ratio

lnI ¼−
1

2
½DICðD1 ∪D2Þ−DICðD1Þ−DICðD2Þ�: ð36Þ

Similarly to the evidence ratio, Eq. (36) is expected to
indicate agreement or disagreement between two posterior
distributions if it is found to be negative or positive,
respectively. Depending on the evaluation point θp for
DIC, the statistics of the DIC ratio changes accordingly. If
lnLðθpÞ in the DIC statistic is evaluated at maximum
posterior, then twice the DIC ratio is distributed as QDMAP,
up to a data-independent constant. If the maximum like-
lihood is taken without regard for the prior, the distribution
is chi squared, with N1 þ N2 − N12 d.o.f., similar to the
maximum likelihood ratio and the evidence ratio in the
uninformative flat prior case. This clarifies the relationship
between the evidence ratio, the DIC ratio, and QDMAP.
When the data are either informative or completely unin-
formative, these three quantities measure the same aspect of
agreement or disagreement with different mean values over
data space.

F. Parameter differences

The next application of the GLM is to understand the
distribution of quadratic forms in model parameters. These
are natural generalizations of the usual rule-of-thumb
estimator for tension and contain, as subcases, other
estimators that have been proposed in the literature.
If we consider two independent random variables θ1 and

θ2, the probability density of their difference, in one
dimension, Δθ≡ θ1 − θ2, is given by the convolution
integral of the two probability densities, Pθ1 and Pθ2 , as

PðΔθÞ ¼
Z þ∞

−∞
Pθ1ðθ̃ÞPθ2ðθ̃ − ΔθÞdθ̃: ð37Þ

Tension between the measurements would be indicated if
PðΔθÞ has most of its support at very negative or positive
Δθ. For the former case, there would be a low probability
for the difference to be greater than zero:

PðΔθ > 0Þ ¼
Z

∞

0

PðΔθÞdΔθ: ð38Þ
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To account for the possibility that the observed tension
could be in either direction, we take the smaller of
PðΔθ > 0Þ and PðΔθ < 0Þ. The probability of obtaining
a 1D parameter shift, T1, more extreme than the data, in
either direction, is then

PðT1 > Tobs
1 Þ ¼ 2 min½PðΔθ > 0Þ; PðΔθ < 0Þ�: ð39Þ

We refer to this as the 1D parameter shift tension statistic.
This holds for any two independent probability distribu-
tions and can be easily evaluated numerically.
If we assume that the two distributions, Pθ1 and Pθ2 , are

Gaussian, then we can evaluate this probability analytically.
Since the convolution of two Gaussians is another
Gaussian, with a variance given by the sums of the
individual Gaussians, the tension statistic becomes the
usual “rule-of-thumb difference in mean.” This consists
in comparing the difference in the best-fit values, or means,
of one parameter for two different data sets to the quad-
rature sum of the parameters’ variances:

T1ðθÞ≡ jθðD1Þ − θðD2Þjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2θðD1Þ þ σ2θðD2Þ

q ; ð40Þ

where θðDiÞ is the parameter best fit (or mean), for a given
model and data setDi, and σ2θðDiÞ denotes its variance. The
statistical significance of the 1D parameter shift then
becomes PðT1 > Tobs

1 Þ ¼ erfðT1=
ffiffiffi
2

p Þ, where erf is the
error function.
Because of its simplicity, this estimator is an easy and

intuitive proxy to understand tensions between data sets
and is also accurate if differences in a parameter are
manifest at the posterior level. However, there is no
guarantee that the overall consistency of two generic data
sets is properly signaled: The method needs to pick up the
“right” parameter where all tension is expressed; it would
not work right away in the multidimensional case as it does
not take into account the effect of priors.
When considering more than one dimension, we can turn

to the GLM to understand the statistics of tension estima-
tors that, like the rule-of-thumb difference in mean, are
defined in parameter space.
We consider differences in the posterior means of two

different data sets:

Δθ̄≡ θp1 − θp2; ð41Þ
which can be easily computed, from the results of Sec. II C,
as

Δθ̄¼ Cp1½C−1Π θΠþC−11 θML
1 �−Cp2½C−1Π θΠþC−12 θML

2 �; ð42Þ

for Gaussian priors, and

Δθ̄ ¼ θML
1 − θML

2 ; ð43Þ

in the case of uninformative flat priors. Note that under the
GLM, the parameter means are the same as the parameters at
the maximum posterior point.
Notice that both Eqs. (42) and (43) are defined in terms

of the parameters thatD1 andD2 have in common, so when
there are additional parameters describing systematic
effects in one data set, the corresponding distributions
have to be marginalized over them. When treating Gaussian
priors, we assume that the prior center is the same for both
data sets and equal to the prior center of their combination,
as we assumed in the previous sections.
Since the posterior means depend on the data, we now

turn to the computation of the statistics of their differences
over the space of joint data draws from D1 and D2.
Since Δθ̄ is a linear combination of correlated Gaussian

variables, it is Gaussian distributed. Furthermore, it can be
shown that, for both Gaussian and uninformative flat priors,

hΔθ̄i12 ¼ 0: ð44Þ

Notice that this holds if the prior center is fixed (to an
arbitrary value) for D1, D2 and D12. If this is not the case
and the prior center is different for the different data sets,
the expectation value of the parameter difference is
nonzero.
We are then left with computing the covariance of Δθ̄. In

the case of uninformative flat priors, this reads

CðΔθ̄Þ ¼ Cp1 þ Cp2; ð45Þ

while in the case of Gaussian priors, direct computation
from the GLM gives

CðΔθ̄Þ ¼ Cp1 þ Cp2 − Cp1C−1Π Cp2 − Cp2C−1Π Cp1: ð46Þ

These results can be directly obtained by means of the
covariance of the joint data draws reported in Appendix C.
Having computed the distribution of Δθ̄, we can com-

pute the distribution of a related quantity that carries the
same information but has useful properties when applied in
practice to data sets with non-Gaussian posteriors. This is
the difference between the mean parameters of one data set
and the mean parameters of the joint data set.
We refer to this quantity as the update difference in mean

since it quantifies the differences in parameters of one data
set when updating it with another one. If we assume that the
GLM applies to D1 and D2, then it also applies to D12 and
we can write the update difference in mean as

Δθ̄U≡θp1−θp12¼ Cp1ðCp1þC2Þ−1ðθp1−θ2Þ; ð47Þ

which still has zero mean and covariance:

CðΔθ̄UÞ ¼ Cp1 − Cp12; ð48Þ
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for both uninformative flat priors and Gaussian priors.
Since the CDEs discussed in this section are defined in
terms of the parameter space posterior only, it is simple to
derive all of the above results on parameter differences by
considering the two data sets and the prior as independently
measuring θ directly in parameter space using the projected
covariances C.
Notice that the previously discussed covariances have to

be positive definite or positive semidefinite. While this is
true when all distributions are well-defined Gaussians in the
application to real data, with covariances from MCMC
sampling, it might not be strictly true. We come back to the
problem of computing this estimator in Sec. IV D.
We are now in a position to define CDEs based on

quadratic forms of parameter differences. Given a positive
semidefinite matrix A, we define two types of quadratic
estimators, depending on the vector that we use to
define them.
If we consider Δθ̄ we have a difference in mean

quadratic CDEs defined as

QDM ¼ ðΔθ̄ÞTAðΔθ̄Þ; ð49Þ

while if we use Δθ̄U we have update difference in mean
quadratic CDEs defined as

QUDM ¼ ðΔθ̄UÞTAðΔθ̄UÞ: ð50Þ

All these quadratic forms are central and sometimes
degenerate, depending on the rank of A.
We have two estimators that belong to this family of

CDE that have been studied previously. The first one is the
difference in mean Δθ̄ with A ¼ C−1ðΔθ̄Þ (e.g., [40–42]).
The second one is the surprise that was introduced in [20]
and used in [7,39,43], and corresponds toΔθ̄with A ¼ C−11 ,
which is related to the Gaussian approximation of the
Kullback-Leibler divergence [44] between different data
sets’ posteriors. The consideration of quadratic forms for
the update Δθ̄U is new to this work as far as we are aware.
For either Δθ̄ or Δθ̄U, the optimal choice of A is the

inverse covariance of the parameter difference that is being
considered. Other measures, provided that their distribution
is properly calculated, can only underestimate rare events
by not weighting them properly compared to an optimal
measure. We discuss the criterion that makes inverse
covariance weighting optimal in Appendix D. This also
clarifies why the rule-of-thumb difference in mean in one
dimension works so well when all the tension is manifest in
one parameter where the choice in weighting of multiple
dimensions is absent.
We therefore consider onlyA ¼ C−1 in the following.With

this choice the quadratic forms of Eqs. (49) and (50) are
chi-squared distributed with d.o.f. hQDMi ¼ rank½CðΔθ̄Þ�
and hQUDMi ¼ rank½CðΔθ̄UÞ�, respectively.

III. MODEL AND DATA SETS

Our baseline model is the six-parameter ΛCDM model
defined as follows: cold dark matter density Ωch2; baryon
density Ωbh2; the angular size of the sound horizon θMC;
the spectral index of the primordial spectrum of scalar
fluctuations ns and its amplitude lnð1010AsÞ; and the
reionization optical depth τ. We also include in the model
massive neutrinos, fixing the sum of their masses to the
minimal value allowed by flavor oscillation measurementsP

νmν ¼ 0.06 eV [45]. We discuss in Appendix F the
priors that we use throughout this work.
We analyze the level of agreement of several, publicly

available, cosmological data sets within the ΛCDM model.
The first data set that we consider consists of the mea-
surements of CMB fluctuations in both temperature (T) and
polarization (EB) of the Planck satellite [11,46]. We further
consider the Planck 2015 full-sky lensing potential power
spectrum [47] in the multipole range 40 ≤ l ≤ 400. We
exclude multipoles above l ¼ 400 as CMB lensing, at
smaller angular scales, is strongly influenced by the non-
linear evolution of dark matter perturbations.
We include the “joint light-curve analysis” (JLA) super-

novae sample [48], which combines SNLS, SDSS, and
HST supernovae with several low redshift ones. We also
use BAO measurements of BOSS in its DR12 data release
[49], the SDSS main galaxy sample [50], and the 6dFGS
survey [51]. We include the galaxy clustering power
spectrum data derived from the SDSS LRG survey DR4
[52] and the WiggleZ Dark Energy Survey galaxy power
spectrum as measured from 170,352 blue emission line
galaxies over a volume of 1 Gpc3 [53,54]. For both data
sets we exclude all the data points with k > 0.08 h=Mpc.
We consider the measurements of the galaxy weak

lensing shear correlation function as provided by the
Canada-France-Hawaii Telescope Lensing Survey
(CFHTLenS) [55] in their reanalyzed version of [33]
and the Kilo Degree Survey (KiDS) [14]. We apply
ultraconservative cuts that make both CFHTLenS and
KiDS data insensitive to the modeling of nonlinear evo-
lution, and we include uncertainties in the modeling of
intrinsic galaxy alignments, as in [14,33]. A posteriori we
notice that, when considering ultraconservative data cuts,
intrinsic alignment parameters are weakly constrained.
We use local measurements of the Hubble constant

derived by the Supernovae, H0, for the Equation of
State of Dark Energy (SH0ES) team [12] with the calibra-
tion of [56]. In addition we employ measurements derived
from the joint analysis of three multiply-imaged quasar
systems with measured gravitational time delays, from the
H0LiCOW Collaboration [57].
We combine the previously discussed data sets into

families probing similar physical processes: a CMB family
composed of CMB temperature, polarization, and CMB
lensing reconstruction; a background family joining super-
novae and BAO measurements; the combination of SDSS
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LRG and WiggleZ measurements probing the clustering of
galaxies; CFHTLenS and KIDS joined together in a weak
lensing probe; Hubble constant measurements from SH0ES
and H0LiCOW.
Notice that the background family does not measure the

Hubble constant as SN measurements are analytically
marginalized over intrinsic luminosity. The galaxy clustering
data set does not measure the present-day amplitude of CDM
perturbations σ8 as both power spectrum measurements are
separately marginalized over the power spectrum amplitude.
The H0LiCOW data set in turn not only measures H0 but a
combination ofH0 andΩm since we implement the full non-
Gaussian likelihood described in [57].
Table I summarizes the data sets, acronyms, and liter-

ature references for all the data sets used in this work. We
use the CAMB code [58] to compute the predictions for all
the cosmological observables described above, and we use
MCMC sampling of the posterior of the previously dis-
cussed experiments with CosmoMC [59].
Our results rest on two assumptions: linear theory

modeling of the observables and the accuracy of the
GLM. As a sanity check of the former, we compare the
parameter posterior and best-fit prediction of the data, as
obtained by neglecting and including nonlinear modeling
of the matter distribution, described by Halofit [61], with
the updated fitting formulas described in [62,63]. We find
that, with the above discussed setup, the parameter pos-
terior and best fits are not noticeably different.
All the techniques considered in this work rely on the

applicability of the Gaussian approximation to either the
likelihood or the posterior of the considered data set. Most
of the considered data sets have Gaussian likelihoods, with
the exception of the HSL and lowl data sets that we exclude

from tests requiring Gaussianity of the data likelihood. We
build the Gaussian approximation of the parameter space
posterior, and we check whether we can reliably use it, as
discussed in Appendix E. We find that the posterior of all
combinations of data sets containing the CMB power
spectrum can be well approximated by Gaussian distribu-
tions in the parameters. Single, weakly constraining data
sets, on the other hand, usually result in non-Gaussian
parameter posteriors.

IV. APPLICATION AND RESULTS

In this section we discuss the application of the CDEs in
Sec. II to cosmological data. This section is organized as
follows: In Sec. IVAwe discuss our recommended suite of
CDE tests for assessing internal and pairwise data con-
sistency; in Sec. IV B we present the results of internal
consistency tests; in Sec. IV C we show the results of the
application of compatibility tests for data set couples.

A. Methodology

To assess the internal consistency of a data set, we
consider the likelihood at maximum posterior as a good-
ness-of-fit measure:

QMAP ≡ −2 lnLðθpÞ − d lnð2πÞ − lnðjΣjÞ
∼ χ2ðd − NeffÞ;

Neff ≡ N − trðC−1Π CpÞ: ð51Þ

To test the compatibility of data set couples, D1 and D2,
we consider the ratios of likelihoods at their maximum
posterior:

TABLE I. Summary of data sets and data set combinations used in this work.

Acronym Data set Year Reference

lowl Planck low-l TEB 2015 [46]
CMBTT Planck high-l TT 2015 [46]
CMBEE Planck high-l EE 2015 [46]
CMBTE Planck high-l TE 2015 [46]
CMBL Planck CMB Lensing 2015 [47]
SN JLA 2014 [48]
BAO BOSS DR12þ SDSSMGSþ 6dFGS 2011–15 [50,51,60]
LRG SDSS LRG survey DR4 2006 [52]
WiggleZ WiggleZ survey 2012 [53,54]
CFHTLenS CFHTLenS survey 2016 [33]
KiDS KiDS survey 2016 [14]
H SH0ES 2016 [12,56]
HSL H0LiCOW 2016 [57]

CMB lowlþ CMBTTTEEEþ CMBL 2015 � � �
BG SN þ BAO 2011–15 � � �
GC LRGþWiggleZ 2006–12 � � �
WL CFHTLenSþ KIDS 2016 � � �
H0 H þHSL 2016 � � �
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QDMAP ≡ −2 lnL12ðθ12p Þ þ 2 lnL1ðθ1pÞ þ 2 lnL2ðθ2pÞ
∼ χ2ðN1

eff þ N2
eff − N12

effÞ; ð52Þ

which measures the decrease in, prior constrained, good-
ness of fit when combining two data sets.
This is paired with parameter shifts in their update form:

QUDM ≡ ðθ1p − θ12p ÞTðCp1 − Cp12Þ−1ðθ1p − θ12p Þ
∼ χ2ðrank½Cp1 − Cp12�Þ: ð53Þ

When possible we apply these CDEs to every data set alone
and to sets that define families of physical probes, to test
their internal consistency. Then we move to testing the
consistency of different families by probing all their
possible combinations.
Different tests applied to the same data sets provide

complementary information that is helpful in singling out
possible problems. Goodness-of-fit-type tests inform us of
the internal consistency of the data sets but do not
specifically highlight confirmation biases or tensions that
look like parameter changes. The ratios of likelihoods at
their maximum posterior and parameter shift tests, on the
other hand, are designed to isolate problems along param-
eter modes. In particular, the former estimator is sensitive to
shifts in all the parameters that two data sets jointly
constrain, while the latter is sensitive to shifts in the
constraints that one of the data sets improves over the other.
As an example, the goodness-of-fit test for a data set

might fail, indicating a tension. Still, parameter deviations,
probed by the other two tests, might not be statistically
significant, indicating that possible systematic effects or
new physics do not mimic the effect of a change in
parameters. In a cosmological context the matter power
spectrum could indicate the presence of an additional
physical scale resulting in a scale-dependent growth. With
sufficient experimental accuracy this will fail goodness-of-fit
tests, as growth in the ΛCDM model is scale independent.
On the other hand, this may not fail parameter shift tests as
none of the nominal ΛCDM parameters can exactly
describe this effect. Conversely, a smooth dark energy
component will generally result in a scale-independent
modification to the growth of structures that might mimic
the effect of a change in As or other cosmological param-
eters. This will not show up at the goodness-of-fit level but
might show up at the parameter level when we compare two
probes that have different sensitivities to the amplitude of
perturbations, for example, measuring it at different red-
shifts. In this case also, the joint goodness-of-fit test is not
guaranteed to fail as it might be dominated by the data set
with a larger number of data points.
In addition to these aspects, different tests, when applied

in practice, have different responses to the presence of non-
Gaussianities in the data and parameter spaces and thus
have different failure modes. Testing multiple ones ensures

that these are easily identified. In particular, if the posterior
of a given experiment is non-Gaussian because the low
probability tails decay slower than a Gaussian distribution,
the evidence ratio and parameter shift estimator have
different opposite responses. While the first one would
overestimate tensions and underestimate confirmation, the
second one is built to mitigate this and may underestimate
tensions.
In Appendix G we report, in table format, the full results

of the application of the CDEs that we discuss to data. In
addition, we also report the results that can be obtained with
the 1D parameter shifts and rule-of-thumb difference in
mean statistics, when evaluated with our data configuration
and analysis pipeline, to recover some known results that
we use as a benchmark for our estimators.

B. Goodness-of-fit type tests

In this section we present the application of the good-
ness-of-fit measures that were discussed in Sec. II D.
In applying these estimators to real data, there are two

major challenges. The first one consists in obtaining
accurate best-fit estimates. This involves global optimiza-
tion of the posterior and is complicated by the large number
of parameter space dimensions usually involved in cos-
mological studies. What proves particularly challenging in
this respect is the presence of mostly unconstrained
parameters that can create multiple local maxima in the
posterior. This can be mitigated by having well-converged
MCMC parameter chains whose sample best-fit estimate
provides a good starting point to eventually find the global
minimum with appropriate algorithms.
The second challenging aspect is to correctly estimate the

number of parameters that a data set is constraining, Neff .
Prior distributions are, in practice, often non-Gaussian, for
example, when some direct or derived parameter is limited to
be in a certain range. Nonetheless, in all cases, we adopt
Eq. (29) for its calculation. This is a reasonable approxima-
tion in that the comparison of the prior covariance CΠ to the
posterior covariance Cp always provides a criterion for when
the prior is informative and the parameter cannot be
optimized to the data. As a concrete example, consider
the top hat prior on a single parameter where CΠ ¼
ðθmax − θminÞ2=12. Equation (29) tells us that Neff ¼ 1=2
when the prior variance equals the data variance. For the top
hat prior, this occurs when the half-width is

ffiffiffi
3

p
times the rms

of the data constraint, i.e., between 1σ and 2σ of a Gaussian
data constraint.
Therefore, Eq. (29) suffices for an estimate even for this

highly non-Gaussian prior so long as we allow for errors in
each partially constrained direction at the level of a few
tenths of a parameter. We have verified this error estimate
with numerical simulations in one dimension, noticing that
the error depends on the value of Neff : It is small in the
two limits Neff ¼ 0 and Neff ¼ 1 where the distribution is
exact; it increases as Neff decreases from Neff ¼ 0.9 to
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Neff ¼ 0.1 approximately ranging from 0.1 to 0.4; in this
same range ofNeff , the distribution of theQMAP estimator is
increasingly conservative.
Evaluating Eq. (29) for Neff also requires well-sampled

parameter distributions to limit errors in parameter covari-
ance estimates. We thus require the Gelman and Rubin R
test [64,65] to satisfy R − 1 < 0.005 for the worst con-
strained covariance eigenvalue. We can then check sam-
pling errors on the number of effective parameters as their
variance across different MCMC chains, and we find that
these are usually of the same order as R − 1.
In order to have a reliable estimate ofNeff , we also need a

good knowledge of the prior covariance. This is built by
joining different blocks.We directlyMCMCsample the prior
on the base ΛCDM parameters because of priors on derived
parameters. Flat priors on nuisance parameters are uncorre-
lated with priors on the base parameters, and their diagonal
entry in the prior covariance is built out of the covariance of
the flat distribution. Some nuisance parameters have
Gaussian priors that are uncorrelated with other priors.
Their covariance entry can be easily set with the variance
of the Gaussian prior. Further details about the modeling of
the prior distribution can be found in Appendix F.
Once these technical aspects have been properly

addressed, we can check the estimate of the number of
effective parameters that a data set constrains against
physical intuition. We list in Table II the values of Neff
and the number of nominal parameters for the data sets that
we consider.
As we can see, the primary CMB spectra have seven, five,

and seven parameters for CMBTT, CMBEE, and CMBTE,
respectively, that are not constrained by the data. These are
nuisance parameters describing foregrounds and are instead
constrained by informative Gaussian priors [46]. CMB
lensing has four unconstrained parameters: τ, ns, Ωbh2,
and a calibration parameter. A combination of the other
cosmological parameters, mainly As and Ωch2, is well
constrained by the lensing amplitude, whereas the directions

constraining the shape of the potential are only partially
constrained. SN constrain three parameters, the total matter
density Ωm and two nuisance parameters, the intrinsic
supernovae color and stretch. The BAO data set constrains
three parameters, as it includes redshift space distortion
measurements, so that only τ and ns are unconstrained while
As is mostly unconstrained. The LRG andWiggleZ data sets
constrain slightly more than two parameters, which are
combinations of Ωm, Ωb, and H0, thanks to the detection
of the BAO feature in the matter power spectrum. Both
CFHTLenS and KiDS constrain two parameters, the ampli-
tude of theweak lensing signal and the amplitude of intrinsic
alignment. The latter, while not being detected, is slightly
constrained over the prior and thus enters in d.o.f. counting.
The number of effective parameters that combinations of

these data sets constrain is consistent with what we would
expect from these results. Notice that no physical knowl-
edge was input to get the results of Table II, which
automatically and accurately recover the physical results
to a fraction of a parameter.
We can now turn to the probabilities associated with the

values of QMAP in the various cases, as displayed in Fig. 3.
In applying these estimators to the data, we cannot use the
lowl andHSL data sets as their likelihood is not Gaussian in
the data points. We have to exclude theH data set as the full
data likelihood is not provided, and we just have the
parameter likelihood.
As we can see from both Fig. 3 and Table V, the CMBTT,

CMBEE, CMBL, SN, BAO, and WiggleZ data sets are a
reasonable fit to the data, showing no tension nor con-
firmation at high statistical significance. The CMBL result
showcases the use of maximum posterior as a goodness-of-
fit measure. This data set has no irrelevant parameters, and
if we were to count all its parameters as being optimized,
this would indicate the presence, at a 5% probability to
exceed, of tensions. Since the ΛCDM model cannot use all
its nominal parameters due to the priors, it is actually still a
good fit to the CMBL data.
The CMBTE data set in turn is not a good fit at high

statistical significance. The result is stable against d.o.f.
counting since the goodness of fit, in this case, is dominated
by the number of data points in the fit. Since, as noted in
[46], the coadded frequency spectrum is a good fit, we
suspect that this result is dominated by frequency-
dependent rather than cosmological effects, e.g., fore-
ground and systematics modeling, especially in the
100 GHz × 217 GHz and 100 GHz × 100 GHz spectra
that have been highlighted in [46], at about the same
statistical significance.
The full CMB goodness of fit is dominated by the TE

results, whose statistical significance gets diluted by the
increased number of data points in the joint data set. The
results for the CMBTTTEEE data set further confirm this,
showing that the discrepancy in the fit cannot be attributed
to CMBL measurements. Moreover, the goodness-of-fit

TABLE II. The number of effective parameters, Neff , and the
number of nominal parameters, N, for the different data sets that
we consider.

Data set Neff N

CMBTT 14.3 21
CMBEE 8.1 13
CMBTE 7.9 15
CMBL 2.5 7
SN 3.0 8
BAO 3.1 6
LRG 2.5 6
WiggleZ 1.9 6
CFHTLenS 1.8 7
KiDS 1.8 7
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results for all data sets joined together (ALL) are dominated
too by CMB results since this is the data set with the largest
number of data points.
At slightly lower statistical significance we find that the

CFHTLenS and KiDS data sets are a bad fit, and the
goodness of fit of their union further confirms this at high
statistical significance. Notice that this result is particularly
worrisome since both data sets are cut at linear cosmo-
logical scales and thus should not be influenced by the,
possibly improper, modeling of nonlinearities. The stat-
istical significance of the goodness of fit to the joint WL
data set is only slightly lower than the product of the single
data sets, showing that the bad fits are almost independent.
These results could be, at least in the case of the KiDS data
set, due to lack of modeling of survey geometry in the
covariance, as reported in [66]. The same explanation does
not apply to CFHTLenS whose covariance was obtained
through simulations.
At a statistical significance that is borderline between

significant and not significant, we find that the LRG data set
is confirmation biased. Notice that, in this case, proper
d.o.f. counting is crucial to the assessment of such effects.
If we were to assume that this data set measures all ΛCDM
parameters, this result will not be statistically significant. If
we further assume that the two bias parameters that have
been marginalized over are also constrained by the data, the
statistical significance of confirmation bias would decrease,
becoming 96% for Neff ¼ 3.5 and 93% for Neff ¼ 4.5.

Finally, we notice that the BG data set is a good fit, while
being dominated by the SN data set that has more data
points with respect to the BAO one. The same effect is seen
for the GC data set where the statistical significance of
confirmation in LRG measurements is overweighted by the
number of data points in the WiggleZ data set.

C. Evidence ratio type tests

In this section we present the application of the ratio of
likelihoods at maximum posterior estimator QDMAP, intro-
duced in Sec. II E, and discuss its relationship with the
evidence ratio.
The practical challenges in computing the QDMAP esti-

mator are the same as the maximum posterior goodness of fit
and are mitigated in the same way that was discussed in the
previous section. The only difference is that, in the previous
section, errors onNeff have a small effect for all data sets that
have a large number of data points. In this context, it is crucial
to properly identify parameters, as the number of considered
data points drops out of d.o.f. counting, as shown in Sec. II E.
As we show in Appendix G, see Table VI, the number of
effective parameters for the single and joint data sets agrees
well with physical intuition, and their difference appropri-
ately reflects the number of parameters that both data sets
measure.
Similarly to the previous section, we cannot use the lowl

and HSL data sets as their likelihood is non-Gaussian in the
data. In addition, we cannot apply this test to data set

FIG. 3. The statistical significance of the posterior goodness-of-fit estimator, QMAP, from Eq. (51), applied to different data sets and
data set combinations. The labels report different levels of statistical significance: P1 ≡ 32%, P2 ≡ 5%, P3 ≡ 0.3%, P4 ≡ 0.007%, and
P5 ≡ 0.00006%. The darker shaded area indicates results that are not statistically significant.
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couples that are correlated, and we have to exclude the
comparison of the primary CMB spectra.
Before turning to QDMAP we apply the evidence ratio

test to several data couples, as shown in Fig. 4, and
subtract its bias, as computed within the GLM. The
evidence is estimated with the Gaussian approximation to
the MCMC posterior, as discussed in Appendix E, and its
bias is computed using the statistics of that approximation.
The first noteworthy result that is shown in Fig. 4 is that

the observed value of the evidence ratio is usually of the
same order of the bias in the evidence ratio. This bias also
depends on the data set involved in the comparison
and has to be subtracted case by case. This shows the
limitations of the evidence ratio test judged on the
Jeffreys’ scale. The result is usually so biased that
the observed value alone cannot be used to judge agreement
or disagreement.
On the other hand, in Fig. 5, we show the statistical

significance of the QDMAP estimator. The reported results
confirm the picture that comes from the debiased evidence
ratio while providing an estimate of statistical significance.
The qualitative agreement between the two is due to the fact
that, when parameter space directions are either completely
constrained by the prior or the data, QDMAP is distributed as
the evidence apart for additive factors that do not depend
on the data realization and drop out of the statistical
significance.
We first consider the internal compatibility of data within

the set families.Aswe can see theSN andBAOdata sets agree

as well as theCFHTLenS andKiDS data sets, making the BG
andWL families internally consistent. The LRG andWiggleZ
data sets, on the other hand, show a marked indication of
disagreement. This is not surprising considering the indica-
tion of confirmation bias in the LRG data set, and it points
toward a significant difference in parameters between the two
probes. This difference is not signaled by the rule-of-thumb
difference in mean when applied to the Ωm and Ωb
parameters, pointing toward a correlated shift in parameters.
Notice that, in this case, the bias in the evidence ratio is larger
than the observed value. If we were to look at the latter and
judge its value of the Jeffreys’ scale, we would draw the
wrong conclusion that the two data sets agree.
Other interesting results concern the internal consistency

of the CMB family. The CMBTT and CMBEE data sets do
not agree with CMBL at about a 5% probability to exceed.
For both data sets, this is roughly the same statistical
significance of the deviation of the amplitude of the lensing
parameter, AL, from one, as reported in [11,16]. While
CMBTE and CMBL agree, the joint result of CMBTTTEEE
and CMBL is dominated by the tension in the temperature
spectrum, consistently with the results in [11,16]. Notice
that the evidence ratio result obtained with the Gaussian
approximation to CMBTT and CMBL agrees very well with
the result of numerical integration shown in [6].
We next apply the evidence ratio test to understand the

compatibility of different families of physical probes.
As we can see in Fig. 5 the CMB family agrees well with

the BG family but disagrees with the other three families of

FIG. 4. The evidence ratio estimator applied to different data set couples. We show the nominal observed value of the evidence ratio
test and its debiased value. Notice that for most of the data sets, the bias in the evidence ratio estimator is as large as its observed value.
The darker shade indicates that results would not be considered statistically significant on the Jeffreys’ scale.
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data sets that we consider. The disagreement between CMB
and GC families can be understood by considering the
indication of a confirmation bias in the LRG data set. The
statistical significance of the disagreement between these
two probes roughly matches the statistical significance of
confirmation in the LRG data set, pointing toward the
hypothesis that the latter data set might be confirmation
biased around parameter values that are not the CMB ones.
The CMB data set also shows high statistically significant
indications of tensions with the WL and H0 data sets. The
tension with Hubble constant measurements is known, and
we recover 0.088% probability to exceed compared with
the rule-of-thumb difference in mean result applied toH0 of
0.073% and the exact 1D shift that results in 0.078%. The
WL result is also known but is usually evaluated using the
full scale measurements of weak lensing, including scales
that are influenced by the nonlinear evolution of cosmo-
logical perturbations. Here we show that this tension
persists and remains statistically significant, specifically
at 0.1% probability to exceed, when restricting to linear
scales. Notice that the evidence ratio between the CMB and
H0 data set is the only one that is found to be negative. Still
interpreting at face value this ratio on the Jeffreys’ scale
would lead to the incorrect conclusion that the tension is
not significant.

The other data set families considered generally agree.
From a physical standpoint we know that they should
since they are either measuring different parameters or
weakly measuring the same parameters. This aspect is
properly recovered, and none of them is found to be in
tension or confirmation biased at relevant statistical
significance. The only exception is the test applied to
the BG and WL data sets against the GC data set. The first
is in tension with the latter as a consequence of its
agreement with CMB at about the same statistical signifi-
cance. The second one is in tension with the latter due to
the fact that both data sets have some problem at the
goodness-of-fit level. Their combination, not surprisingly,
signals disagreement of some sort.

D. Parameter differences

In this section we present the application of the param-
eter shift CDE discussed in Sec. II F.
The challenges in applying this CDEs to real data are

profoundly different than the ones that we discussed in the
previous sections. This allows for a larger degree of
complementarity between tests and ensures the robustness
of conclusions against possible contamination from non-
Gaussianities and other estimate problems.

FIG. 5. The statistical significance of different CDEs for various data set couples: the difference in log-likelihood at MAP,QDMAP from
Eq. (52); the update parameter shifts test, QUDM from Eq. (53); the exact 1D parameter shifts, T1 from Eq. (39); and the rule-of-thumb
difference in mean, as the Gaussian approximation of T1 from Eq. (40). Different colors indicate different tests, as shown in the legend.
The labels report different levels of statistical significance: P1 ≡ 32%, P2 ≡ 5%, P3 ≡ 0.3%, P4 ≡ 0.007%. Values that are identified as
failure modes of one of the estimators are not shown in the figure. The darker shaded area indicates results that are not statistically
significant.
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In the following we only use the parameter difference
estimatorQUDM with Eq. (50), which is defined through the
parameter update when combining two data sets. Parameter
difference estimators of the form QDM using Eq. (49) have
problems that are difficult to overcome in practical appli-
cations. In the case of uninformative flat priors, any such
test would be ill posed for directions that are unconstrained
by one of the data sets. If we consider Gaussian priors, then
the QDM itself can be formally defined. However, noise in
the determination of the covariances of the two experi-
ments, due to MCMC sampling, makes it difficult to
disentangle prior constrained and data constrained direc-
tions. In applying it to the data, we find this estimator to be
unreliable and numerical noise dominated for a wide
variety of algorithms used for the estimate.
Aside from numerical issues, differences in parameter

updates also have the clear advantage that corrections due
to non-Gaussianities are mitigated if the posterior of the
most constraining data set is Gaussian. In our cosmological
applications CMB data play this role since parameter
posteriors are nearly Gaussian for all ΛCDM parameters.
If the second data set has a non-Gaussian posterior, a direct
parameter difference would misestimate significance if the
mean of the first set is in the tail of the second set. For the
parameter update, GLM is effectively applied around the
mean of the first set by replacing the non-Gaussian
posterior of the second set with a Gaussian approximation
locally around that point.
To minimize numerical noise in the QUDM estimates, we

use the Karhunen-Loeve (KL) decomposition of the two
covariances that are involved. Recall that to compute the
observed value of the update parameter shift, we need to
evaluate

QUDM ≡ ðΔθ̄UÞTðCp1 − Cp12Þ−1ðΔθ̄UÞ: ð54Þ

The second data set can only add information on top of the
first data set, so (Cp1 − Cp12) has to be positive definite in
the absence of numerical noise. In the presence of numeri-
cal noise, it is better to first transform to the KL basis since
it is mutually orthogonal in the metrics defined by Cp1 and
Cp12. We solve the generalized eigenvalue problem to find
the KL modes, ϕa, of the two covariances:X

ν

Cμνp1ϕν
a ¼ λa

X
ν

Cμνp12ϕν
a: ð55Þ

Here the eigenmodes are defined to be orthonormal in the
Cp12 metric

X
μν

ϕμ
aCμνp12ϕν

b ¼ δab; ð56Þ

and since they are orthogonal in the Cp1 metric, but with
variance λaδab, the KL basis provides linear combinations

of the parameters that are mutually independent and
ordered by the improvement in the variance of 12 over 1.
If we now define the linear combination of parameter
differences in the KL basis as

Δpa ¼
X
μ

ϕμ
aΔθ̄μU ð57Þ

we obtain

QUDM ≡XNKL

a¼1

ðΔpaÞ2
λa − 1

: ð58Þ

While this transformation, when NKL is the full set of KL
modes, gives exactly the same value as Eq. (54), it also
highlights the problem of numerical noise. If 12 does not
improve over 1 substantially in a given mode, then λa ≈ 1
and numerical noise in the estimation of covariances creates
large errors in QUDM. The KL decomposition allows us to
place a well-defined lower cutoff on this improvement in
order to remove unwanted numerical noise from the
estimator. In practical applications there is a hierarchy of
KL modes so that noise and data modes are well separated
in the spectrum. We use a simple algorithm to find this
separation point and define the optimal cutoff for each data
set combination. To minimize numerical noise in theQUDM
estimates, we also notice that it is preferable to use the
mean of the parameters in the test rather than the best-fit
parameters, even though they are the same in the GLM.
We find that for parameter distributions that are well

approximated by Gaussian distributions, the cutoff is
usually in the range of 5%, while it can be as large as
15% in the case of non-Gaussian posteriors. In all cases we
limit the cutoff to be between 2% and 20%, and we cannot
extend it to zero or the estimator will be noise dominated.
Notice that this prescription also effectively defines

hQUDMi ¼ NKL; ð59Þ

and hence QUDM is chi-squared distributed with NKL d.o.f.
With this technique the estimator is stable but is left with

one case where the statistic returns a null result. When we
combine a data set that is very constraining with a data set
that is very weakly constraining, the improvement in the
KL modes might be below the threshold that separates data
dominated modes and noise dominated modes. In this case
the value of QUDM will be zero, and it distributed as a χ2

with zero d.o.f., i.e., zero for all data realizations. This
simply means that while there may be a true, but tiny,
parameter shift, it is too small to measure. In this case, the
procedure correctly returns the answer that neither tension
nor confirmation bias can be detected.
We start by applying the update difference in mean to

assess the consistency of data set families, and we report the
results in Fig. 5.
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As we can see the disagreement between the LRG and
WiggleZ data sets, at parameter level, is confirmed to be
statistically significant, as we found in the previous section.
The statistical significance of this result is, however,
slightly lower than what is reported by the likelihood at
the maximum posterior test. This effect can be attributed to
the different sensitivity of the two estimators to the effect of
non-Gaussianities in the parameter posteriors.
The parameter update results further confirm the internal

consistency of the BG and WL families, as found in the
previous section. On the other hand, we can extend here the
study of internal consistency of families of probes to
include H and HSL measurements. While the latter has a
likelihood that is non-Gaussian at the data level, at the
parameter level it can be well approximated by a Gaussian
distribution. As we can see the two data sets agree on the
determination of the Hubble constant while not showing
indications of tensions or confirmation.
Similarly, here we can extend the study of the CMB

internal consistency, even though the lowl likelihood is
non-Gaussian at the data level. The update parameter shift
test confirms the tension between CMBTT, CMBEE, and
CMBL and the agreement between CMBTE and CMBL, at
about the same statistical significance that was found in the
previous section.
If we now consider the same set of comparisons, with the

addition of the CMB large angular scale multipoles, we see
that the agreement between the primary CMB spectra and
CMBL improves to the point that it is not statistically
significant. This picture is consistent with the results of the
update parameter shift test applied between the lowl data
and the primary CMB spectra. As we can see from Fig. 5,
all four results are on the tension side and exceed 95% C.L.
for the CMBEE spectrum. These are also in qualitative
agreement with the rule of thumb and 1D shift when
applied to the τ parameter. The tension is reported to be
slightly larger because the direction that is selected by the
KL decomposition takes into account degeneracies with
other cosmological parameters.
The discrepancy between these three probes can be

physically understood because at fixed Ase−2τ, lowering
τ reduces As and hence reduces the gravitational lensing
potential and the smoothing of the CMB peaks. At high
multipoles the CMB measurements of Planck have enough
precision to be sensitive to gravitational lensing; hence
other parameters shift to compensate for the decreased
smoothing of the peaks. This is achieved by increasing
Ωmh2 and Ase−2τ, while reducing ns and Ωbh2, as dis-
cussed in [15]. The best-fit solution to the lowlþ CMBTT
has known oscillatory residuals at high multipoles [15]
because of the lack of power at large angular scales.
Without the lowl data set, these oscillatory residuals can
be fit by raising τ, which is balanced by also raising As and
Ωmh2, which, overall, give a larger CMB lensing signal that
is in conflict with lensing reconstruction of the CMBL data

set. This tension can then be isolated by adding a new
parameter that describes the amplitude of the lensing of the
CMB, AL, which allows us to fit the oscillatory residuals in
the primary spectra and is found to deviate from unity at
about the statistical significance of the tensions that we
report here.
We can now proceed to the application of the update

parameter shift test to different data set families. These
results are largely in agreement with the ones reported in
the previous section, with some noticeable differences. As
shown in Appendix G these results do not depend strongly
on the inclusion of the lowl data set that leaves them largely
unchanged.
While the tension between CMB and H0 is confirmed

and in good agreement with the benchmark results,
specifically at 0.087% agreement probability, the tension
between the CMB and WL data sets is markedly lower than
the QDMAP result, specifically at 1.6% agreement proba-
bility. This is expected since the WL data set shows a non-
Gaussian posterior with slowly decaying tails. Still, this
tension is noticeably higher with respect to the rule-of-
thumb estimate applied to the S8 parameter, which yields
7.1% agreement probability, and the exact 1D shift that
takes into account the non-Gaussianity of the posterior and
results in 6.7% agreement probability.
In this case the QUDM test indicates, through the number

of d.o.f., that this tension is evaluated along one parameter
space direction, hQUDMi ¼ 1. This direction is built to be
the optimal one for both data sets. The S8 parameter, in
turn, does not exactly describe the amplitude of the lensing
signal, at the redshifts of the combinedWL surveys that we
are considering, and is not the best constrained parameter.
We find that, for the WL data set, σ8Ω0.7

m is better con-
strained, and the rule-of-thumb test signals a tension similar
to that of the QUDM estimator.
Finally, we can easily see an example of the null result

mode of the estimator by looking at data set combinations
involving the GC data set. This data set is very weakly
constraining, when compared with the CMB data set, so its
improvement on the parameter constraints cannot be
distinguished from numerical noise. Furthermore, the
GC data set is very weakly constraining along the param-
eter space directions that are constrained by theWL data set,
so the result is again dominated by noise and our KL
procedure properly identifies this as a null update result.

V. CONCLUSIONS

We studied statistical estimators of CDEs between
cosmological probes and applied them to state-of-the-art
cosmological data sets.
We discussed the likelihood at maximum posterior as a

measure of the goodness of fit. Unlike the maximum
likelihood, this quantity depends on the prior on cosmo-
logical parameters and allows us to disentangle parameter
space directions that are constrained by the data and by the
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prior. This disentanglement provides a fair d.o.f. counting
when performing the goodness-of-fit test.
We studied the distributionof the evidence ratio test of data

set compatibility over the space of data realizations. This
allowed us to uncover the fact that the evidence ratio is
usually biased toward agreement and that, in practical
applications, this bias is as large as the observed value,
making the Jeffreys’ scale unreliable as an indicator of
agreement or disagreement. We then defined a similar
estimator based on the ratio of likelihoods at maximum
posterior that allows for an assessment of statistical signifi-
cance of the reported results. While being equivalent to the
evidence ratio in the limiting cases where parameter space
directions are completely constrained by either the data or the
prior, this estimator is significantly easier to apply.
We investigated the statistics of parameter shifts devel-

oping methods that work in an arbitrary number of dimen-
sions. These estimators optimallyweight the parameter shifts
andmitigate the fact that tensionsmight not be identifiable at
the single parameter level because they are hidden by the
process of marginalization over a high dimensional param-
eter space. We introduce a robust regularization scheme
based on the Karhunen-Loeve decomposition which iden-
tifies and discounts the small parameter shifts due to
sampling noise in MCMC posteriors.
When applying these estimators to cosmological data,

we find several noteworthy results. As a benchmark for the
estimators we recover the known result regarding tensions
between the Planck measurements of the CMB spectra and
local measurements of the Hubble constant and the
amplitude of the galaxy weak lensing signal. Concerning
the latter, we find that, when considering the Canada-
France-Hawaii Telescope Lensing Survey and the Kilo
Degree Survey on large linear scales, the statistical sig-
nificance of the disagreement with CMB measurements is
between 98.4% and 99.9%. This is somewhat higher than
what is estimated by looking at the posterior of the S8 ≡
σ8Ω0.5

m parameter alone, as we optimally weight all param-
eter space directions.
We investigated the consistency of CMB measurements

of the Planck satellite, establishing a set of results that allow
us to prioritize the analysis of the next release of the Planck
data. In particular, we find the following: The CMB TE
cross correlation is a bad fit and this seems to be related to
the presence of residual, frequency-dependent foregrounds;
the discrepancy between the CMB TT spectrum and its
lensing reconstruction is also present in the E-mode
spectrum at about the same statistical significance; the
measurements of the large angular scale multipoles,
l < 30, are in tension with the small scale temperature
and E-mode spectra at about 95% probability.
Moreover, we find CMB results to be in tension with

probes of the clustering of galaxies. This disagreement can
probably be attributed to the SDSS LRG DR4 survey being
slightly confirmation biased toward a different set of
cosmological parameters.

We also find that most of the other combinations of data
sets are in agreement and can thus be safely combined and,
in particular, that there is agreement between SN and BAO,
between the two WL surveys that we consider, between
strong lensing time delay measurements of the Hubble
constant and direct measurements from the distance ladder,
and between CMB measurements and SN and BAO.
Overall, we find that the statistical significance of the

discrepancies identified in this work is not yet sufficient to
firmly establish whether they are due to residual systematic
effects or new physical phenomena. In this sense their
statistical significance is not yet to the point where we can
clearly draw a line between data sets that should not be
combinedwith others because of unaccounted for systematic
effects. We highlight that the resolution of these discrepan-
cies, or their unequivocal identification, is likely to come as a
result of further improvements of the quality of the data.
The work toward understanding the consistency of

present cosmological probes and preparing for the analysis
of the next generation of probes is far from complete.
Future efforts in these directions include the generalization
of the techniques presented in this paper to consider non-
Gaussian corrections. Moreover, we need to develop
statistical estimators that work on more than two data sets
at a time, allowing us to compute the joint distribution of
multiple tests. These will allow us to understand the global
consistency of the ΛCDM model with a large and diverse
set of experimental data. In addition, these would allow us
to perform analyses targeted at identifying the most out-
lying data set, within a larger pool of data sets.
Finally, these tests should be applied as we gather new

and more precise cosmological data sets to make sure that
inconsistencies due to systematic effects or incomplete
modeling of cosmological observables are identified and
corrected and that discrepancies due to new physical
phenomena are promptly found.
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APPENDIX A: QUADRATIC FORMS IN
GAUSSIAN RANDOM VARIABLES

In this appendix we briefly outline how to practically
deal with the statistics of the many quadratic forms that
appear in the main text. This material is mostly taken from
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[67] and reproduced here to ease the comprehension of the
main text.
A quadratic form in the p dimensional random Gaussian

variable X is defined by

Q ¼ XTAX; X ∼N pðx; μ;ΣÞ: ðA1Þ
The first two moments of the quadratic form are

hQiX ¼ tr½AΣ� þ μTAμ;

VarðQÞ ¼ 2tr½ðAΣÞ2� þ 4μTAΣAμ: ðA2Þ
In the following we only consider the case of central
quadratic forms hXi ¼ μ ¼ 0. We find that all distributions
in the main text satisfy this requirement. For the generali-
zation of the following results to the case where μ ≠ 0, we
refer the reader to [67].
Over the subspace where Σ is invertible, Q admits a

decomposition of the form

Q ¼ XTAX ¼
Xp
j¼1

λjU2
j ; ðA3Þ

where λ ¼ eigenvalðAΣÞ, P ¼ eigenvecðAΣÞ and
U ¼ PTΣ−1=2ðx − μÞ ∼N pðx; 0; IÞ: ðA4Þ

Given that Uj is a normally distributed variable, U2
j is a

χ2ð1Þ variable, and so Q is, in general, distributed as the
sum of scaled χ2ð1Þ variables which are themselves known
as Gamma distributed variables.
If A is any projection of Σ−1, i.e., A ¼ PTΣ−1P where

P2 ¼ P, then all the eigenvalues λj ∈ 0; 1 and Q would be
the sum of independent χ2ð1Þ variables, Q ∼ χ2ðrÞ, with
r ¼ rankðPÞ d.o.f. This includes the trivial case where
A ¼ Σ−1.
More generally, if all the eigenvalues λj ≥ 0, then

analytic expressions for the probability density of Q exist
[67], and probabilities can be computed with dedicated
algorithms [68] once the eigenvalues of AΣ are obtained.
Alternately, the distribution of Q can be approximated

by that of a chi-squared variable matching some of the
moments of Q. We refer to these as Patnaiks’ type
approximations [69]. The first approximation matches
the mean to a (single) chi-squared distribution:

Q ¼
X
j

λjX2
j ≃ χ2ðtr½AΣ�Þ; ðA5Þ

where ≃ stands for “approximately distributed as.” The
second approximation matches the mean and variance to
that of (single) Gamma distribution:

Q ¼
X
j

λjX2
j ≃ cχ2ðνÞ; ðA6Þ

where

c≡X
j

λ2j=tr½AΣ�; ν≡ ðtr½AΣ�Þ2=
X
j

λ2j : ðA7Þ

Notice that in both approximations the number of d.o.f. of
the (scaled) chi-squared distribution is usually not integer.
We use the first approximation in practice, matching only

the mean. When 0 ≤ λ ≤ 1, this approximation is conser-
vative as the second approximation and the full distribution
have smaller variance. These types of approximations are
usually relevant over parameter space directions that are
partially constrained by the prior, where the full posterior
of the data set that we consider is usually highly non-
Gaussian. Underestimating their contribution to the statis-
tical significance of the reported results is then a mitigation
strategy against non-Gaussianities.

APPENDIX B: PROOFS OF SEC. II D

In this appendix we provide the proofs for the results
contained in Sec. II D as a working example of how to use
the GLM in practice.
We first consider the maximum likelihood:

−2 lnLmax¼XTðI−PÞTΣ−1ðI−PÞXþd lnð2πÞþ lnðjΣjÞ;
ðB1Þ

where, here and below, X ≡ x − m̂, with m̂ ¼ mΠ for
convenience, involves the component of the data vector
that is in the complement of the model space ðI − PÞX. For
any prior, this data vector is distributed as

ðI − PÞX ∼N rððI − PÞX; 0; ðI − PÞΣðI − PÞTÞ; ðB2Þ

where r ¼ rankðI − PÞ, since the projector nulls the part of
the data draw covariance that lives on parameter space. The
data dependent piece of the maximum likelihood statistic
contains

QML ¼ ½ðI − PÞX�TΣ−1½ðI − PÞX�; ðB3Þ

which is a quadratic form for this data vector. Considering
now the results of the previous section, the statistics ofQML
is determined by the eigenvalues

λ¼eigenval½Σ−1ðI−PÞΣðI−PÞT �¼eigenvalðI−PÞ; ðB4Þ

which implies QML ∼ χ2ðrÞ. If we assume that the model
has N relevant parameters, then P projects the data vector
onto an N dimensional subspace and therefore its comple-
ment has r ¼ d − N.
We now turn to the distribution of the evidence. For

uninformative flat priors, the evidence quadratic form is
identical to the maximum likelihood quadratic form and is
therefore also distributed as χ2ðd − NÞ. In the case of delta
priors, the evidence quadratic form in data space is
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QE ¼ XTΣ−1X; ðB5Þ
where X is normally distributed with covariance Σ. Thus,
QE is chi-squared distributed with full rank χ2ðdÞ.
In the case of Gaussian priors the quadratic form defined

by the evidence becomes

QE ¼ XTΣ−1
0 X; ðB6Þ

where X is normally distributed with covariance
Σ0 ¼ ΣþMCΠMT . Thus, QE is again distributed as χ2ðdÞ.
We next derive the distribution of the likelihood at

maximum posterior for different prior choices. In the case
of delta priors, we have

−2 lnLðθpÞ ¼ −2 lnLðθΠÞ
¼ XTΣ−1X þ d lnð2πÞ þ lnðjΣjÞ; ðB7Þ

which, up to a constant, defines a quadratic form in data
space:

QMAP ¼ XTΣ−1X; ðB8Þ
which is distributed as χ2ðdÞ.
In the case of uninformative flat priors the likelihood at

maximum posterior is just the maximum likelihood,
so QMAP ¼ QML.
Gaussian priors stand in between these cases. The data

dependent part, QMAP, of the likelihood at maximum
posterior is given by

QMAP ¼ −2 lnLðθpÞ − d lnð2πÞ − lnðjΣjÞ
¼ XT ½ðI − PÞTΣ−1ðI − PÞ
þ M̃TC−1Π CpC−1CpC−1Π M̃�X: ðB9Þ

This quadratic form has d − N eigenvalues with λi ¼ 1

together with the N eigenvalues of C−1Π Cp that are bounded
as 0 ≤ λi ≤ 1. From this set of eigenvalues the exact
distribution can be computed or approximated as in
Appendix A. If we take the first approximation,
Eq. (A5), that matches the mean, then QMAP ≃
χ2ðd − N þ tr½C−1Π Cp�Þ ¼ χ2ðd − NeffÞ. This approximation
is exact for all parameter space directions that are data
dominated C−1Π Cp → 0 or completely prior dominated
C−1Π Cp → 1 and approximated for cases in between.
As long as the number of partially constrained directions

in parameter space remains small compared with the total
number of d.o.f., the approximation works very well. When
the number of partially constrained directions is large,
Eq. (A5) systematically underestimates the statistical

significance of results. In such cases, however, it is likely
that the distributions that are being considered are highly
non-Gaussian, so results should be interpreted with caution
anyway.

APPENDIX C: PROOFS OF SEC. II E

In this appendix we report the proofs of the results
contained in Sec. II E.
We start by discussing the statistics of the ratio between the

maximum likelihoods of two experiments and their joint
maximum likelihood. In data space this can be written as

−2Δ lnLmax ≡ −2 lnL12
max þ 2 lnL1

max þ 2 lnL2
max: ðC1Þ

Since we assume that the two data sets are uncorrelated, the
data independent part cancels so that −2Δ lnLmax defines a
quadratic form in data space:

QDML ¼ XT
12ðI12 − P12ÞTΣ−1

12 ðI12 − P12ÞX12

− XT
1 ðI1 − P1ÞTΣ−1

1 ðI1 − P1ÞX1

− XT
2 ðI2 − P2ÞTΣ−1

2 ðI2 − P2ÞX2; ðC2Þ
where X12 ≡ x12 − m̂12, X1 ≡ x1 − m̂1, X2 ≡ x2 − m̂2, and
we assume that the two data sets are independent so
that Σ12 ¼ diagðΣ1;Σ2Þ.
The projector P12 takes data realizations of the joint data

set ðx1; x2Þ and projects them on the model tangent space. It
can be explicitly written as

P12 ¼ M12ðMT
12Σ−1

12M12Þ−1MT
12Σ−1

12

¼
�
M1C12MT

1Σ−1
1 M1C12MT

2Σ−1
2

M2C12MT
1Σ−1

1 M2C12MT
2Σ−1

2

�
; ðC3Þ

to verify that it is a projector P2
12 ¼ P12 and that it leaves

the tangent space of the model invariant P12M12 ¼ M12.
Notice that the projector of the joint data set cannot be
written as the direct sum of the two single projectors
diagðP1;P2Þ, but it can be shown by direct calculation that
they commute:

P12diagðP1;P2Þ ¼ diagðP1;P2ÞP12 ¼ P12: ðC4Þ
This implies that the subspace thatP12 spans is contained in
the subspace that diagðP1;P2Þ spans, P12 ⊂ diagðP1;P2Þ.
Conversely, diagðI − P1; I − P2Þ ⊂ I − P12.
Now, by noticing that m̂12 ¼ ðm̂1; m̂2Þ, we can write

Eq. (C2) as

QDML¼XT
12

"
ðI12−P12ÞTΣ−1

12 ðI12−P12Þ−
�ðI1−P1ÞTΣ−1

1 ðI1−P1Þ O

O ðI2−P2ÞTΣ−1
2 ðI2−P2Þ

�#
X12; ðC5Þ
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where X12 is distributed according to the evidence of the
joint data set.
In the delta prior case the joint evidence is given by E12¼

N d1þd2ðx12;m̂12;Σ12Þ, while the uninformative flat prior
case is E12¼N d1þd2ðx12;m̂12;½ðI−P12ÞTΣ−1

12 ðI−P12Þ�−1Þ
and the Gaussian case has E12 ¼ N d12ðx12;m12Π;Σ12þ
M12CΠMT

12Þ.
When we compute the eigenvalues of the product of the

matrix defining the quadratic form in Eq. (C5) and the
covariance of the joint data draws, it is sufficient to notice
that in all three cases the projector would null everything
along the model joint tangent space and so would
diagðI − P1; I − P2Þ since it is contained in I − P12. We
can then apply Theorem (5.1.6) in [67] to show that
Eq. (C5) is distributed as

χ2ðrankðI − P12Þ − rankðI − P1Þ − rankðI − P2ÞÞ
¼ χ2ðd12 − N12 − d1 þ N1 − d2 þ N2Þ
¼ χ2ðN1 þ N2 − N12Þ; ðC6Þ

where we used the fact that the rank of a block diagonal
matrix is the sum of the ranks of the diagonal blocks,
having allowed different data sets to have different irrel-
evant parameters and noticing that d12 ¼ d1 þ d2.
The same result can be obtained by bringing Eq. (C2) in

parameter space to show that

QDML ¼ ðθ2ML − θ1MLÞTðC1 þ C2Þ−1ðθ2ML − θ1MLÞ; ðC7Þ

and considering θ1ML and θ2ML to be drawn independently
from a Gaussian distribution with covariance C1 and C2,
respectively.
We now consider the distribution of the evidence ratio. In

the case of delta priors the distribution is trivial:

−2Δ ln E ≡ −2 ln E12 þ 2 ln E1 þ 2 ln E2

¼ −2 lnL12ðθΠÞ þ 2 lnL1ðθΠÞ þ 2 lnL2ðθΠÞ
¼ 0: ðC8Þ

Notice that we assume that the prior is the same for the
analysis of the joint data set and the single data sets. If this
is not the case and the prior is changed between the analysis
of different data sets, the distributions of this appendix
would be more complicated and, in general, noncentral.
In the uninformative flat prior case the distribution of the

data dependent part of the evidence ratio follows that of the
maximum likelihood QDE ¼ QDML.
In the Gaussian case the distribution is more complicated

and can be written starting from

−2Δ ln E ¼ −2 lnL12ðθ12p Þ þ 2 lnL1ðθ1pÞ þ 2 lnL2ðθ2pÞ

− 2 ln
Π12ðθ12p Þ
Πmax

12

þ 2 ln
Π1ðθ1pÞ
Πmax

1

þ 2 ln
Π2ðθ2pÞ
Πmax

2

þ ðN1 þ N2 − N12Þ lnð2πÞ

þ 2 ln
V12
Π

V1
ΠV

2
Π
þ ln

jCp1jjCp2j
jCp12j

: ðC9Þ

The data dependent part of Eq. (C9) defines a quadratic
form in data space:

QDE ≡XT
12AX12

¼XT
12

�
ðΣ12þM12CΠMT

12Þ−1

−
�ðΣ1þM1CΠMT

1 Þ−1 O

O ðΣ2þM2CΠMT
2 Þ−1

��
X12;

ðC10Þ

where X12 ≡ x12 −m12ðθΠÞ and the covariance of the joint
data draws is explicitly given by

Σ12 þM12CΠMT
12

¼
�Σ1 O

O Σ2

�
þ
�
M1CΠMT

1 M1CΠMT
2

M2CΠMT
1 M2CΠMT

2

�
: ðC11Þ

By direct computation of the product between the two
matrices,

λ ¼ eigenval½AðΣ12 þM12CΠMT
12Þ�

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eigenval½ðI − C−1Π Cp2ÞðI − C−1Π Cp1Þ�

q
: ðC12Þ

This means that QDE does not define a positive-definite
quadratic form. The expression for the probability density
of indefinite quadratic forms can be found in [67]. Here we
notice that the decomposition of QDE can be written as

QDE ¼
X2N
j¼1

λjX2
j ¼

XN
i¼1

λiX2
i þ

XN
j¼1

λjY2
j ¼

XN
i¼1

jλijðX2
i −Y2

i Þ

ðC13Þ

where both X and Y are independently distributed normal
variables with zero mean and unit variance and we exploit
the fact that the evidence ratio has two equal eigenvalues of
opposite sign. It is now possible to show, by matching the
moment-generating function, that the evidence ratio for
Gaussian priors is distributed as a sum of independent
variance-gamma distributed variables. Summing all the
eigenvalues shows that the distribution is zero mean, and
in the limit where Cp1; Cp2 → CΠ, it recovers delta prior
results.
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We now turn to the statistics of the ratio of likelihoods at
maximum posterior. In both the delta and uninformative flat
prior cases, this follows the statistics of the data indepen-
dent part of the evidence ratio. The Gaussian case instead is
given by

QDMAP ≡ −2Δ lnLp

¼ −2 lnL12ðθp12Þ þ 2 lnL1ðθp1Þ þ 2 lnL2ðθp2Þ;
ðC14Þ

which defines a quadratic form in data space that can be
easily written with Eq. (B9). This quadratic form is central
and positive definite and, as before, it can be written as the
difference of two quadratic forms. By direct calculation it
can be shown that its eigenvalues are given by

λ ¼ eigenval

�
A B

C D

�
; ðC15Þ

where

A ¼ I − C−1Π Cp1 − C−1p1Cp12 þ C−1Π Cp12;

B ¼ C−1p1Cp12 − C−1Π Cp12 þ C−1Π Cp1 − C−1Π Cp1C−1Π Cp1;

C ¼ C−1p2Cp12 − C−1Π Cp12 þ C−1Π Cp2 − C−1Π Cp2C−1Π Cp2;

D ¼ I − C−1Π Cp2 − C−1p2Cp12 þ C−1Π Cp12: ðC16Þ

The quadratic form defining QDMAP is positive definite,
so its eigenvalues are all positive and they recover the two
limits of uninformative flat priors and delta priors.
Equation (C15) can be used if one wants to compute the
exact distribution of QDMAP. On the other hand, it is
convenient to approximate this distribution by a chi-
squared distribution, as discussed in Appendix A, withX

λ ¼ N1
eff þ N2

eff − N12
eff ðC17Þ

d.o.f. since this would generally down-weight the contri-
bution of partially constrained parameter space directions.

APPENDIX D: OPTIMAL QUADRATIC FORMS

Given that there seems to be no general rule to select the
matrix defining the quadratic forms in Eq. (A1), in this
appendix we discuss how to choose a quadratic form that is
“optimal” in some sense. For this purpose it is worth noticing
that a quadratic form defined by Eq. (A1), if rescaled by a
positive quantity α, would give the same statistical signifi-
cance of results, i.e., PðQ > QobsÞ ¼ PðαQ > αQobsÞ. This
means that, for our purpose, the quadratic forms defined by
A and αA are equivalent.
As a consequence, all quadratic forms, in one dimension,

give the same statistical significance. This explains why the
rule-of-thumb difference in mean, discussed in Sec. II F,

when it can be applied and is representative of the full
tension, works so well. In one dimension all parameter
quadratic forms are equivalent, and the rule of thumb is the
one for which we can immediately read the statistical
significance.
In multiple dimensions the same does not apply and,

apart from a constant rescaling, different choices of the
matrix A would lead to a different statistical significance.
We follow [70] in looking for a quadratic form that is
optimal according to some criterion. Since the quadratic
form defined by Eq. (A1) is central, i.e., hXi ¼ 0, all the
cumulants of the quadratic form pdfs are given by

κm ¼ ðm − 1Þ!Tr½ðAΣÞm�: ðD1Þ

Starting from this, one can compute all moments.
The mean is given by μ1 ¼ κ1 ¼ Tr½ðAΣÞ� and the

variance by μ2 ¼ κ2 þ κ21 ¼ 2Tr½ðAΣÞ2�. For all other
moments we refer the reader to [67].
We define the optimal parameter quadratic form to

minimize the variance and all other moments. This can
be achieved if the quadratic form minimizes all cumulants.
The trivial solution to our optimization problem is A ¼ 0
which is not particularly informative and can be excluded
from the solution to our problem. We can look for other
solutions by demanding that the quadratic form should not
have zero mean. Since, for our purposes, all quadratic
forms that are just rescaled by a constant are equivalent, we
can assume that they all have the same mean, without loss
of generality. Thus we need to minimize

fðAÞ ¼ ðm − 1Þ!Tr½ðAΣÞm� þ α½Tr½ðAΣÞ� − κ1�; ðD2Þ

over all positive matrices A and for all cumulants greater
than one. Notice that we implemented the constraint on the
average as a Lagrange multiplier α. Taking the derivative of
f with respect to the Lagrange multiplier would give us the
finite mean constraint. Writing the trace in terms of the λq
eigenvalues of AΣ, we have

fðAÞ ¼ ðm − 1Þ!
XN
q¼1

λmq þ α

�XN
q¼1

λq − κ1

�
; ðD3Þ

which has to be minimized over all positive, nonzero λq.
Setting ∂f=∂λq ¼ 0 we can easily find that f is minimized
when all λq are the same, so AoptΣ ¼ I, which gives

Aopt ¼ Σ−1: ðD4Þ

That is, in multiple dimensions, the quadratic form that
minimizes the variance and all moments is the inverse
covariance one.
To have an intuition of this result, let us consider a two-

dimensional space and two quadratic forms Qopt and Q2.
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The first one is the optimal, inverse covariance weighted,
for which κoptm ¼ 2ðm − 1Þ!. The second one has a direction
rescaled, with respect to the inverse covariance, by a
positive constant λ so that all cumulants are given by
κ2m ¼ ðλm þ 1Þðm − 1Þ!. We could now say that we can
make the moments of the second form arbitrarily small by
properly choosing λ, but this does not take into account
invariance under rescaling. We thus rescale the second
quadratic form by the ratio of the two averages, in this case
2=ðλþ 1Þ, so that all cumulants are given by
κ2m ¼ 2mðλm þ 1Þ=ðλþ 1Þmðm − 1Þ!, and we can see that
the second quadratic form has cumulants that are always
bigger than the first one.
We can now ask what happens to the statistical signifi-

cance of the reported results, in our simplified example. Let
us suppose that we have two uncorrelated parameters and
that the observed difference between them is given by
Δθ ¼ nðσ21; σ22ÞT so that Qopt ¼ 2n2 and Q2 ¼ n2ðλþ 1Þ.
The eigenvalues of AΣ in the first case are just (1,1), and
Qopt is chi-squared distributed with 2 d.o.f. The eigenvalues
of AΣ in the second case are given by ðλ; 1Þ so thatQ2 is the
sum of a Gamma distributed and a chi-squared distributed
variable. Both distributions can be easily integrated numeri-
cally to show that statistical significance is the same for
λ → 1=λ and that Q2, for all values of positive λ, will
underestimate both confirmation biases and tensions. This
is why we picked, as a criterion for defining an optimal
quadratic form, the minimization of the moments higher
than the mean, as this is related to a lower probability of
extreme events and would thus make our concordance or
discordance estimator more sensitive to the presence of
tensions that might be hidden by other estimators.

APPENDIX E: GAUSSIAN APPROXIMATION
OF MCMC POSTERIOR

In this section we describe how we approximate the
posterior obtained from MCMC sampling with a multi-
variate Gaussian. This approximation is useful when
computing some of the statistical results of this paper
and can be obtained by properly accounting for all the
factors that are usually neglected when performing the
sampling. While we adopt CosmoMC [59] conventions,
similar results would apply for other samplers.
The un-normalized posterior that CosmoMC produces

can be approximated by

lnP ¼ lnLðθ̃Þ − lnVΠ −
1

2
ðθ − θ̃ÞTC−1

θ̃
ðθ − θ̃Þ þ ln

Πðθ̃Þ
Πmax

;

ðE1Þ

where θ̃ is the parameter around which the expansion is
performed, Cθ̃ ¼ hðθ − θ̃Þðθ − θ̃Þiθ the covariance of the
parameter samples around that point, and Lðθ̃Þ the like-
lihood at that point. We also included a prior term that takes

into account that some parameters, i.e., some nuisance
parameters, might have Gaussian priors. There are mainly
three points that we can use to define our Gaussian
approximation: the parameters’ mean, the maximum pos-
terior parameters, and the parameters from maximum
posterior in the MCMC samples.
It is possible to define the best Gaussian approximation

by computing the KL divergence [44] between the
Gaussian approximation and the full posterior for the three
expansion points and select the approximation that has the
smallest difference in information content with respect to
the full posterior.
Having Ns samples θi of the parameter posterior, the KL

divergence DKL between the (normalized) full posterior
Pfull and one of the Gaussian approximations PG can be
written as

DKLðPfulljjPGÞ≡
Z

PfullðθÞ ln
�
PfullðθÞ
PGðθÞ

�
dθ

≃
1

Ns

XNs

i¼1

ln

�
PfullðθiÞ
PGðθiÞ

�
þ C ðE2Þ

where the samples θi are drawn from Pfull and PG is easily
computed with Eq. (E1). The normalization constant C is
the ratio between the evidence of the full posterior and the
evidence of the Gaussian approximation C ¼ lnðEG=EfullÞ.
Notice that, for the purpose of comparing performances of
different Gaussian approximations, there is no need for an
accurate estimate of the full posterior evidence.
Equation (E2) is trivially generalized to weighted samples.
Given the Gaussian approximation of the MCMC

posterior, we can compute the evidence as

ln E ¼ lnLðθ̃Þ − lnVΠ þ N
2
lnð2πÞ þ 1

2
ln jCθ̃j þ ln

Πðθ̃Þ
Πmax

;

ðE3Þ

which is usually called the Laplace or saddle-point
approximation, and we account for Gaussian priors on
some parameters.
In general, one cannot test whether a distribution is truly

Gaussian, but we can perform several null tests to warn us
against non-Gaussianities in parameter space. In particular,
we check

(i) that the marginalized 1D posterior is visually well
approximated by the marginalized 1D Gaussian
approximation, for all constrained parameters;

(ii) that the best fit obtained by explicitly minimizing the
data residuals, the best fit fromMCMC samples, and
the mean do not show relevant shifts in units of their
covariance, for all the constrained parameters.

Whenever one of the Gaussian approximations fails to
comply with these requirements, we flag the results and
express caution in interpreting them.
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APPENDIX F: PARAMETER PRIORS

The estimate of most of the results in the main text
depends on the prior, especially in quantifying how many
directions a data set constrains compared to it. In this
appendix we discuss how we approximate the prior
distribution.
In many cases these are informative flat priors, and we

approximate them with Gaussian priors of the same
covariance to compute the statistics discussed in the main
text while taking into account that explicit evaluations of
the prior would give ΠðθÞ ¼ 1=VΠ. In order to make these
approximations, we sample the parameter space for the
various flat priors listed in Table III to obtain the covariance
and volume. To make our approach more efficient and
transparent, we do not sample Gaussian priors but rather
account for their variance analytically as described below.
While approximate, this approach works very well in

practice. It is faster and computationally less expensive
than resampling the parameter posterior and is less noisy
with respect to the results obtained by importance sampling
the MCMC samples with a Gaussian prior. Its robustness
stems from the fact that the most important information that
we need to extract from the prior is whether a parameter is
constrained or not. Other situations that fall in between are
not usually relevant to the end results.
In addition to the parameters in Table III, the likelihood

of most experiments will add nuisance parameters describ-
ing systematic effects. We include them by analytically
augmenting the prior covariance matrix and volume. In the
case of flat priors on nuisance parameters, we fill the
corresponding entrance in the prior covariance with
C ¼ ðθmax − θminÞ2=12, which corresponds to the variance
of the flat distribution between θmax and θmin. Some
nuisance parameters, noticeably some foreground param-
eters in CMB observations, have tight uncorrelated
Gaussian priors. In this case the corresponding prior
covariance entrance can be easily read from the parameter
prior variance.
The prior on the base ΛCDM parameters deserves a

closer look. We choose a parameter basis that has 100θMC
instead of the Hubble constant, but we also impose physical
constraints on matter density Ωm to be positive definite and

smaller than unity. Furthermore, we impose a prior cut on
the Hubble constant to be between 20 km s−1Mpc−1

and 100 km s−1Mpc−1.
These two joint boundary constraints on derived quan-

tities make the prior volume nontrivial in shape and the
prior covariance matrix nondiagonal in the base parameters.
In Fig. 6 we show the 2D marginalized distribution of the
prior to show that the two constraints on derived parameters
are still locally flat in the interior, but the shape of the
boundary induces a covariance between the parameters.
When we marginalize these flat but shaped priors to

obtain the marginal distributions in 1D on the three ΛCDM
background parameters, we obtain Fig. 7. As we can see the
prior distribution for Ωbh2 and Ωch2 seems to have
curvature on the same scale of the prior range while the
prior on 100θMC is more constraining. This shape of the 1D
prior will not influence the posterior distribution for

TABLE III. Nominal flat priors on the six cosmological
parameters of the ΛCDM model used for all analyses in this
work.

Parameter Prior range

Ωbh2 [0.005, 0.1]
Ωch2 [0.001, 0.99]
100θMC [0.5, 10]
τ [0.01, 0.8]
ns [0.8, 1.2]
lnð1010AsÞ [2, 4]

FIG. 6. The two-dimensional marginalized prior distribution of
physical matter density Ωmh2 and the Hubble constant H0. The
shaded area shows parameter choices that satisfy the constraints
0 ≤ Ωm ≤ 1 and 20 ≤ H0½km s−1 Mpc−1� ≤ 100. This projection
highlights that priors on derived quantities leave the prior
distribution flat but introduce a nontrivial shape to the boundaries
of the prior volume.

FIG. 7. The one-dimensional marginalized prior distribution on
the background ΛCDM parameters. Notice that the actual range
of 100θMC is much smaller than the nominal one reported in
Table III.
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constraining data sets as the prior is locally flat, but it does
change the parameter ranges and combinations out to which
the prior influences weaker data constraints. In particular,
the range of 100θMC is modified, with respect to its face
value in Table III, and not taking that into account would
lead to wrong d.o.f. counting, for data sets that do not
constrain it.
Moreover, we show in Fig. 8, the prior correlation

between different parameters to highlight that the prior
on the background parameters are also correlated because
of the nontrivial shape induced by priors on derived
quantities. This correlation is also important when judging
parameter shifts and counting d.o.f.
The remaining three parameters fτ; ns; lnAsg have flat

distributions and no covariance between themselves or the
other parameters. Their covariance is also well approxi-
mated by the covariance of the uniform distribution as
C ¼ ðθmax − θminÞ2=12. Small correlation values in Fig. 8
are due to the MCMC sampling.
In summary, throughout this work we use a Gaussian

approximation to the prior for the six base parameters by
using the covariance extracted from the prior MCMC
samples.

FIG. 8. The correlation between the base ΛCDM parameter
priors, as obtained from the prior MCMC samples. Notice the
correlation between background parameters induced by the
boundaries of the prior volume.

TABLE IV. The rule-of-thumb difference in mean and 1D exact parameter shift estimators applied to different data sets and data set
combinations. The second column indicates the parameter that is being used in the test, while the third and fourth columns report its
value and error for the two data sets considered. The last two columns indicate the probability to exceed (P.T.E.) the tests and neffσ , as
computed from the results of Sec. II F. All results that are higher than 95% and lower than 5% P.T.E. are highlighted as statistically
significant confirmation bias and tension, respectively. This table contains mostly known results that we use as a benchmark for other
concordance and discordance estimators.

PðT1 > Tobs
1 Þ

Data set D1 vs. D2 Parameter D1 result D2 result Rule of thumb Exact 1D shift

LRG vs WiggleZ Ωm 0.212� 0.043 0.37� 0.11 16.0% (1.4 σ) 15.0% (1.4 σ)
SN vs BAO Ωm 0.297� 0.034 0.358� 0.042 26.0% (1.1 σ) 28.0% (1.1 σ)
CFHTLenS vs KiDS σ8Ω0.5

m 0.369� 0.071 0.281� 0.087 43.0% (0.8 σ) 43.0% (0.8 σ)
H vs HSL H0 73.0� 1.7 72.3� 2.6 82.0% (1.3 σ) 85.0% (1.4 σ)
CMB vs H0 H0 67.25� 0.73 73.0� 1.5 0.073% (3.4 σ) 0.078% (3.4 σ)
CMB vs BG Ωm 0.316� 0.01 0.32� 0.026 87.0% (1.5 σ) 87.0% (1.5 σ)
CMB vs LRG Ωm 0.316� 0.01 0.212� 0.043 2.0% (2.3 σ) 4.5% (2.0 σ)
CMB vs GC Ωm 0.316� 0.01 0.31� 0.075 94.1% (1.9 σ) 77.0% (1.2 σ)
CMB vs CFHTLenS σ8Ω0.5

m 0.4595� 0.0071 0.369� 0.071 20.0% (1.3 σ) 20.0% (1.3 σ)
CMB vs KiDS σ8Ω0.5

m 0.4595� 0.0071 0.281� 0.087 4.0% (2.1 σ) 2.1% (2.3 σ)
CMB vs WL σ8Ω0.5

m 0.4595� 0.0071 0.354� 0.058 7.1% (1.8 σ) 6.7% (1.8 σ)
BG vs GC σ8Ω0.5

m 0.448� 0.03 0.35� 0.1 36.0% (0.9 σ) 32.0% (1.0 σ)
BG vs GC Ωm 0.32� 0.026 0.31� 0.075 90.0% (1.6 σ) 76.0% (1.2 σ)
BG vs WL σ8Ω0.5

m 0.448� 0.03 0.354� 0.058 15.0% (1.4 σ) 16.0% (1.4 σ)
BG vs WL Ωm 0.32� 0.026 0.3� 0.13 86.0% (1.5 σ) 70.0% (1.0 σ)
GC vs WL σ8Ω0.5

m 0.35� 0.1 0.354� 0.058 96.9% (2.2 σ) 92.3% (1.8 σ)
GC vs WL Ωm 0.31� 0.075 0.3� 0.13 93.1% (1.8 σ) 83.0% (1.4 σ)
CMBTT vs lowl τ 0.137� 0.035 0.067� 0.021 8.6% (1.7 σ) 9.9% (1.6 σ)
CMBEE vs lowl τ 0.191� 0.063 0.067� 0.021 6.1% (1.9 σ) 8.8% (1.7 σ)
CMBTE vs lowl τ 0.094� 0.057 0.067� 0.021 65.0% (0.9 σ) 74.0% (1.1 σ)
CMBTTTEEE vs lowl τ 0.115� 0.026 0.067� 0.021 14.0% (1.5 σ) 15.0% (1.4 σ)
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APPENDIX G: TABLES OF RESULTS

In this appendix we report the full results of the
application of the CDEs in Sec. II to cosmological data,
in table format. Specifically, we report exact 1D parameter
shifts, T1, and the rule-of-thumb difference in mean, as the

Gaussian approximation of T1, described in Secs. II F
and IV D, in Table IV; the likelihood at maximum posterior
goodness of fit QMAP, described in Secs. II D and IV B, in
Table V; the difference of log likelihoods at maximum
posterior QDMAP, described in Secs. II E and IV C, in

TABLE V. The likelihood at MAP goodness-of-fit estimator applied to different data sets and combinations. The second column
reports the data likelihood at maximum posterior; the third the number of effective parameters Neff , as estimated using Eq. (29); the
fourth the number of nominal parameters N; the fifth the number of data points Ndata ¼ d; and the seventh the P.T.E. forQobs

MAP assuming
our best estimate of the d.o.f. Ndata − Neff . Values higher than 95% or lower than 5% P.T.E. are highlighted as statistically significant
confirmation bias and tension, respectively. The remaining columns list the P.T.E.s assuming the minimal DoF Ndata − N and the
maximal DoF Ndata, which place conservative bounds on tension and confirmation, respectively.

PðQMAP > Qobs
MAPÞ

Data set σ −2 lnLMAP Neff N Ndata Min (DoF) Best (DoF) Max (DoF)

CMBTT 757.6 14.3 21 765 57.0% (0.8 σ) 42.0% (0.8 σ) 36.0% (0.9 σ)
CMBEE 739.8 8.1 13 762 71.0% (1.1 σ) 64.0% (0.9 σ) 59.0% (0.8 σ)
CMBTE 924.6 7.9 15 762 0.0045% (4.1 σ) 0.0019% (4.3 σ) 0.00089% (4.4 σ)
CMBL 5.3 2.5 7 8 73.0% (1.1 σ) 44.0% (0.8 σ) 2.1% (2.3 σ)
CMBTTTEEE 2417.1 19.0 33 2289 3.1% (2.2 σ) 1.6% (2.4 σ) 0.93% (2.6 σ)
SN 695.1 3.0 8 740 88.0% (1.6 σ) 86.0% (1.5 σ) 83.0% (1.4 σ)
BAO 5.4 3.1 6 11 90.9% (1.7 σ) 70.0% (1.0 σ) 37.0% (0.9 σ)
LRG 4.1 2.5 6 14 99.49% (2.8 σ) 97.5% (2.2 σ) 85.0% (1.4 σ)
WiggleZ 189.5 1.9 6 196 62.0% (0.9 σ) 58.0% (0.8 σ) 50.0% (0.7 σ)
CFHTLenS 86.8 1.8 7 56 0.52% (2.8 σ) 0.32% (2.9 σ) 0.07% (3.4 σ)
KiDS 58.4 1.8 7 30 0.14% (3.2 σ) 0.07% (3.4 σ) 0.0064% (4.0 σ)
CMB 2432.2 18.9 33 2297 2.5% (2.2 σ) 1.2% (2.5 σ) 0.71% (2.7 σ)
BG 702.2 5.0 8 751 90.0% (1.6 σ) 87.0% (1.5 σ) 86.0% (1.5 σ)
GC 204.7 2.5 6 210 59.0% (0.8 σ) 54.0% (0.7 σ) 47.0% (0.7 σ)
WL 146.5 2.7 8 86 0.0052% (4.0 σ) 0.0024% (4.2 σ) 0.00044% (4.6 σ)
ALL 3516.2 22.8 37 3345 1.9% (2.3 σ) 0.96% (2.6 σ) 0.59% (2.8 σ)

TABLE VI. Evidence ratio type estimators applied to different data set combinations. The first three columns report the number of
effective parameters of the first, second, and joint data sets. The fourth column reports the number of effective parameters that both data
sets constrain. The fifth column reports the observed value of the evidence ratio and the sixth one its expected value when averaged over
data realizations of D1 ∪ D2. The last column reports the significance of the observed value of the ratio of likelihoods at maximum
posterior (DMAP), as estimated using the results of Sec. II E. All results that are higher than 95% and lower than 5% P.T.E. are
highlighted as statistically significant confirmation bias and tension, respectively.

Data set Neff
1 Neff

2 Neff
12 ΔNeff log10 C hlog10 Ci12 PðQDMAP > Qobs

DMAPÞ
LRG vs WiggleZ 2.5 1.9 2.5 1.8 1.0 3.0 0.31% (3.0 σ)
SN vs BAO 3.0 3.1 5.0 1.1 2.4 2.6 20.0% (1.3 σ)
CFHTLenS vs KiDS 1.8 1.8 2.7 0.9 2.4 2.4 25.0% (1.2 σ)
CMBTT vs CMBEE 14.3 8.1 16.9 5.6 10.2 10.6 25.0% (1.2 σ)
CMBTT vs CMBL 14.3 2.5 14.3 2.5 3.3 4.8 1.8% (2.4 σ)
CMBEE vs CMBL 8.1 2.5 8.4 2.3 2.6 4.1 1.4% (2.5 σ)
CMBTE vs CMBL 7.9 2.5 8.0 2.4 3.9 4.2 18.0% (1.3 σ)
CMBTTTEEE vs CMBL 19.0 2.5 18.9 2.6 3.2 4.8 1.3% (2.5 σ)
CMB vs BG 18.9 5.0 21.0 3.0 4.2 3.8 75.0% (1.2 σ)
CMB vs GC 18.9 2.5 18.9 2.6 2.2 3.5 2.3% (2.3 σ)
CMB vs WL 18.9 2.7 20.8 0.8 0.3 2.3 0.1% (3.3 σ)
CMB vs H0 18.9 1.4 19.0 1.3 −0.6 2.5 0.088% (3.3 σ)
BG vs GC 5.0 2.5 5.5 2.1 1.8 3.1 2.3% (2.3 σ)
BG vs WL 5.0 2.7 6.9 0.9 2.0 2.3 12.0% (1.6 σ)
GC vs WL 2.5 2.7 4.3 0.9 1.6 2.9 0.74% (2.7 σ)
GC vs H0 2.5 1.4 3.2 0.7 1.3 1.6 9.7% (1.7 σ)
WL vs H0 2.7 1.4 3.6 0.4 1.9 1.9 22.0% (1.2 σ)
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TableVI; the parameter updateQUDM, described in Secs. II F
and IV D, in Table VII.
In this appendix we also report probabilities (P) in terms

of an equivalent number of standard deviations (nσ). This
should be interpreted as an effective definition correspond-
ing to a Gaussian distribution:

neffσ ðPÞ≡ ffiffiffi
2

p
erf−1ð1 −min½P; 1 − P�Þ; ðG1Þ

where erf−1 is the inverse error function. Notice that
by defining the correspondence with min½P; 1 − P� instead
of 2 min½P; 1 − P� as in Eq. (39), we are equating the
tension and confirmation tails of the non-Gaussian CDE
distribution separately to the sum of probabilities in the two
tails of the Gaussian. As an example, a tension event with
probability to exceed of P ¼ 4.55% would correspond to a
“2σ” significance. Note that neffσ should not be confused
with the number of standard deviations from the mean
ðQobs − hQiÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðQÞp
.

TABLE VII. The update difference in mean estimator, QUDM, applied to different data set combinations. The first
column reports the observed value, as computed from Eq. (50). The second column is the number of effective KL
parameters retained,NKL ¼ hQUDMiD, for which the second data set significantly improves constraints over the first
one. The third column reports the significance of the observed value of the update difference in mean, as estimated
using the results of Sec. II F. All results that are higher than 95% and lower than 5% P.T.E. are highlighted as
statistically significant confirmation bias and tension, respectively. When NKL ¼ 0, QUDM ¼ 0, and we do not
report statistical significance.

Data set QUDM NKL PðQUDM > Qobs
UDMÞ

LRG vs WiggleZ 5.5 1 1.9% (2.3 σ)
BAO vs SN 1.0 1 33.0% (1.0 σ)
CFHTLenS vs KiDS 0.1 1 75.0% (1.2 σ)
H vs HSL 0.3 1 62.0% (0.9 σ)
CMBTT vs CMBL 7.0 1 0.82% (2.6 σ)
CMBEE vs CMBL 6.6 1 1.0% (2.6 σ)
CMBTE vs CMBL 0.3 1 59.0% (0.8 σ)
CMBTTTEEE vs CMBL 7.3 1 0.68% (2.7 σ)
lowl vs CMBTT 3.9 1 4.9% (2.0 σ)
lowl vs CMBEE 8.5 2 1.4% (2.4 σ)
lowl vs CMBTE 3.2 2 20.0% (1.3 σ)
lowl vs CMBTTTEEE 3.1 1 7.6% (1.8 σ)
lowl + CMBTT vs CMBL 1.5 1 22.0% (1.2 σ)
lowl + CMBEE vs CMBL 1.1 2 59.0% (0.8 σ)
lowl + CMBTE vs CMBL 0.1 1 77.0% (1.2 σ)
lowl + CMBTTTEEE vs CMBL 2.0 1 16.0% (1.4 σ)
lowl vs CMBTT + CMBL 0.0 1 88.0% (1.6 σ)
lowl vs CMBEE + CMBL 2.5 2 29.0% (1.1 σ)
lowl vs CMBTE + CMBL 3.1 2 22.0% (1.2 σ)
CMB vs BG 0.4 1 52.0% (0.7 σ)
CMB vs GC 0.0 0 −
CMB vs WL 5.8 1 1.6% (2.4 σ)
CMB vs H0 11.1 1 0.087% (3.3 σ)
lowl + CMB vs BG 0.4 1 55.0% (0.8 σ)
lowl + CMB vs GC 0.0 0 −
lowl + CMB vs WL 5.9 1 1.5% (2.4 σ)
lowl + CMB vs H0 10.7 1 0.11% (3.3 σ)
BG vs GC 0.0 0 −
BG vs WL 0.7 1 42.0% (0.8 σ)
BG vs H0 0.4 1 55.0% (0.8 σ)
GC vs WL 0.0 0 −
GC vs H0 0.6 2 72.0% (1.1 σ)
WL vs H0 0.2 2 90.7% (1.7 σ)
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