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The distribution function of the relative velocity in a two-body reaction of nonrelativistic uncorrelated
particles is derived for general cases of given distribution functions of single particle velocities. The
distribution function is then used in calculations of thermonuclear reaction rates. As an example, we take
the Tsallis non-Maxwellian distribution and show that the distribution function of the relative velocity is
different from the Tsallis distribution. We identify an inconsistency in previous studies of nuclear reaction
rates within Tsallis statistics and derive revised nuclear reaction rates. Utilizing the revised rates, accurate
results of big bang nucleosynthesis are obtained for the Tsallis statistics. For this application, it is more
difficult to reduce the primordial 7Li abundance while keeping other nuclear abundances within the
observational constraints. A small deviation from a Maxwell-Boltzmann distribution can increase the D
abundance and slightly reduce 7Li abundance. Although it is impossible to realize a 7Li abundance at the
level observed in metal-poor stars, a significant decrease is possible while maintaining a consistency with
the observed D abundance.
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I. INTRODUCTION

Deviations of particle distribution functions from the
Maxwell-Boltzmann (MB) distribution are often found
in geophysical and astrophysical observations of systems
out of equilibrium [1–3]. For example, a power-law
distribution has been observed in the electron spectrum
of the magnetosphere [2]. A power-law distribution called
the kappa-distribution is also realized in Tsallis’s statis-
tical model in which a generalization of the entropy is
postulated to be Sq ≡ kð1 −P

W
i¼1 p

q
i Þ=ðq − 1Þ, where q is

a real parameter, k is Boltzmann’s constant, and pi are the
probabilities of i with the total configuration number W
[4]. See Ref. [3] for formulations of the Tsallis statistics
and relations between the Tsallis distribution function and
the power law. The Tsallis distribution function for q < 1
has also been found to be realized by a special pattern
of temperature fluctuation [5]. Moreover, nonrelativistic
baryons in equilibrium with a thermal bath of relativistic
electrons have been proposed [6] to obey modified MB
statistics.
Usually, one assumes a MB distribution for nonrelativ-

istic particles in calculations of thermonuclear reaction

rates. Especially, during big bang nucleosynthesis (BBN)
and stellar nuclear burning, the temperature is high enough
that very frequent scatterings quickly realize the MB
distribution of nuclei (e.g., [7,8]). Therefore, the standard
BBN (SBBN) theory is based upon the MB nuclear
distribution. However, in nonstandard BBN models such
as those involving scattering from relativistic electrons [6],
or the injection of nonthermal photons [9] and hadrons
[10,11] the particle distribution functions can deviate
significantly from a MB distribution.
Bertulani et al. [12] analyzed effects of the Tsallis

distribution function for nuclear velocities on BBN.
They assumed the Tsallis distribution for the whole energy
range and found that the thermonuclear reaction rates
strongly depend on the Tsallis parameter q. They then
concluded that the Tsallis parameter should be very close to
unity which corresponds to the MB distribution in order
to satisfy observational constraints on light element abun-
dances. An extended parameter search was made with
modifications to the 2-body reverse reaction rates taken
into account [13]. It was found that a slightly softer spectra
than the MB distribution results in a decrease of the 7Li
abundance.
In the SBBN model, theoretical primordial abundances
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Li abundance [14–16]. The discrepancy between the
theoretical prediction of the primordial Li abundance and
astronomical observations of metal-poor stars [17–30]
is called the Li problem. Therefore, this non-MB distribu-
tion is a possible solution to the Li problem of metal-poor
stars [14–16].
In this paper, we derive a new formulation of the relative

velocity distribution function for general distributions for
reacting nonrelativistic particles. In Sec. II, the relative
velocity distribution function is formulated, and an explicit
function is shown for the case of Tsallis statistics. In
Sec. III, the relative velocity distribution is calculated for
Tsallis statistics, and we show that our relative velocity
distribution is different from that adopted in previous
studies. In addition, thermonuclear reaction rates and
primordial light element abundances are calculated under
the Tsallis statistics. In Sec. IV, we summarize this study.
We note, however, that the correction derived here

applies to a variety of physical mechanisms that can
directly modify the particle velocity distribution functions.
There are many examples in the literature of physical
mechanisms that lead to such altered velocity distribution
functions. For example, such Tsallis distribution functions
have been shown to arise from the combined effects of local
magnetic and electric fields [31], or in space plasmas [32]
including the heliosheath [33], planetary magnetospheres,
the solar corona, solar dynamics, and cosmic rays. In
addition, we note that a modified Tsallis-like distribution
may also approximate the effect of relativistic electron
scattering during BBN [6] or sub-horizon temperature
fluctuations as in [34]. In this latter case the sub-horizon
local velocity distributions are indeed Maxwell-Boltzmann
and a Tsallis-like distribution only emerges when averaging
over a set of sub-horizon volumes at different temperature.
In such models, a direct application of the Tsallis distri-
bution to the relative velocity distribution as in Ref. [12] is
justified.

II. MODEL

Our model for the relative velocity distribution for general
statistics assumes three things: (1) that each nucleus is
described by a non–Maxwell-Boltzmann velocity distribu-
tion, (2) conservation of momentum, and (3) conservation
of energy. We show in this section that imposing these
conditions leads to a general relative velocity distribution
function that does not resemble the original distribution in
which velocities are replaced with the relative velocities and
masses are replaced by the reduced mass. To begin with, the
thermal rate for a two-body reaction of nonrelativistic
uncorrelated particles is given by

hσvi ¼
Z

dv1fðv1Þ
Z

dv2fðv2ÞσðEÞv; ð1Þ
where σ is the reaction cross section, vi is the velocity vector
of species i ¼ 1 and 2, fðviÞ is the velocity distribution

function of i, v ¼ jv1 − v2j is the relative velocity, and
E ¼ μv2=2 is the center of mass (CM) energy.
We use the CM parameter transformations as follows:

M ¼ m1 þm2 ð2Þ

μ ¼ m1m2

m1 þm2

ð3Þ

v ¼ v1 − v2 ð4Þ

V ¼ m1v1 þm2v2
m1 þm2

: ð5Þ

There is also a conservation of energy relation:

m1v21 þm2v22 ¼ MV2 þ μv2: ð6Þ
We use the variable transformations from v1 and v2 to v

and V (e.g., [35]). We define the distribution function of the
relative velocity v that satisfiesZ

dv1fðv1Þ
Z

dv2fðv2Þ ¼
Z

dvdVfðv1Þfðv2Þ

¼
Z

dvfrelðvÞ: ð7Þ

The distribution function frelðvÞ is then given by

frelðvÞ ¼
Z

dV½fðv1Þfðv2Þ�v; ð8Þ

where the quantity in brackets with the subscript v is
estimated for a fixed v.

A. The Maxwell-Boltzmann distribution

The MB distribution is given [4,12,13] by

fMBðviÞ ¼
�

mi

2πkT

�
3=2

exp

�
−
miv2i
2kT

�
; ð9Þ

where T is the temperature. If both of the reacting particles
are described by an MB distribution, i.e., fMB, the
integration over the velocities is given byZ

dv1fMBðv1Þ
Z

dv2fMBðv2Þ

¼ ðm1m2Þ3=2
ð2πkTÞ3

Z
exp

�
−
MV2 þ μv2

2kT

�
dvdV

¼ μ3=2

ð2πkTÞ3=2
Z

exp

�
−
μv2

2kT

�
dv: ð10Þ

Therefore, the CM distribution function of the relative
velocity for the case of MB statistics has the same form as
that of the individual particle distribution functions, i.e.,

frelMBðvÞ ¼
μ3=2

ð2πkTÞ3=2 exp
�
−
μv2

2kT

�
: ð11Þ
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B. Tsallis distribution

The Tsallis distribution is, however, given by

fqðviÞ¼Bqðmic2=kTÞ
�

mi

2πkT

�
3=2

�
1−ðq−1Þmiv2i

2kT

�
1=ðq−1Þ

;

ð12Þ

where Bqðmic2=kTÞ is a normalization constant determined
from the requirement

R
fqðviÞdvi ¼ 1. When both of the

reacting particles are described by this distribution with the
same q value, the product of the two distribution functions
is given by

fqðv1Þfqðv2Þ ¼ Bqðm1c2=kTÞBqðm2c2=kTÞ
ðm1m2Þ3=2
ð2πkTÞ3

×

�
1 − ðq − 1Þm1v21

2kT

�
1=ðq−1Þ

×

�
1 − ðq − 1Þm2v22

2kT

�
1=ðq−1Þ

: ð13Þ

We then have the following transformation:

Iqðv1; v2;m1; m2; TÞ

¼
�
1 − ðq − 1Þm1v21

2kT

�
1=ðq−1Þ�

1 − ðq − 1Þm2v22
2kT

�
1=ðq−1Þ

ð14Þ

¼
�
1− ðq−1Þm1v21þm2v22

2kT
þðq−1Þ2m1m2v21v

2
2

ð2kTÞ2
�
1=ðq−1Þ

ð15Þ

¼
�
1 − ðq − 1ÞMV2 þ μv2

2kT
þ ðq − 1Þ2m1m2v21v

2
2

ð2kTÞ2
�
1=ðq−1Þ

;

ð16Þ

where v21 and v22 can be expressed as functions of V and
v by

v21 ¼ V2 þ 2
m2

M
V · vþ m2

2

M2
v2 ð17Þ

v22 ¼ V2 − 2
m1

M
V · vþ m2

1

M2
v2: ð18Þ

The distribution function of the relative velocity for the
Tsallis particles is then given by

frelq ðvÞ ¼
Z

½fqðv1Þfqðv2Þ�vdV: ð19Þ

The integration ranges of V and v are derived as follows.
For q > 1, the velocities for two species are limited [3] to be

miv2i ≤
2kT
q − 1

: ð20Þ

The integration ranges are then given by

0 ≤ V ≤

ffiffiffiffiffiffiffiffiffiffiffi
2kT
q − 1

s ffiffiffiffiffiffi
m1

p þ ffiffiffiffiffiffi
m2

p
M

ð21Þ

0 ≤ v ≤ v1;max þ v2;max ¼
ffiffiffiffiffiffiffiffiffiffiffi
2kT
q − 1

s �
1ffiffiffiffiffiffi
m1

p þ 1ffiffiffiffiffiffi
m2

p
�
: ð22Þ

For a fixed v, the distribution function of v is then trans-
formed to

frelq ðvÞ ¼ 2π

Z
1

−1
d cos θ

Z
Vmax

0

V2dVfqðv1Þfqðv2Þ

¼ 2πBqðm1c2=kTÞBqðm2c2=kTÞ
ðm1m2Þ3=2
ð2πkTÞ3

×
Z

1

−1
d cos θ

Z
Vmax

0

V2dV

× IqðV; cos θ;m1; m2; T; vÞ; ð23Þ

where the function Iq is given by

IqðV; cos θ;m1; m2; T; vÞ

¼
8<
:

h
1 − ðq − 1Þ m1v21

2kT

i
1=ðq−1Þh

1 − ðq − 1Þ m2v22
2kT

i
1=ðq−1Þ

�
1 − ðq − 1Þ m1v21

2kT > 0 and 1 − ðq − 1Þ m2v22
2kT > 0

�
0 ðotherwiseÞ

ð24Þ

v21 ¼ V2 þ 2
m2

M
Vv cos θ þ m2

2

M2
v2 ð25Þ

v22 ¼ V2 − 2
m1

M
Vv cos θ þ m2

1

M2
v2: ð26Þ

This distribution function is manifestly different from
that employed in previous studies [12,13], which adopted
exactly the same Tsallis function as the single particle
velocity distribution with the mass replaced by the reduced
mass. Thus, E1E2 is replaced by ðμv2=2ÞðMV2=2Þ in
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Eq. (17) of Ref. [12]. As a result, they separate the
distribution functions of the relative velocity and the CM
velocity. Their calculations below Eqs. (17) and (13) which
are based uponEq. (17) are then inconsistentwithmomentum
conservation in Tsallis statistics [36]. Equations for thermo-
nuclear reaction rates are given in a subsequent paper [13,
Eqs. (3) and (4)]. These are based upon the same formulation
as in Ref. [12]. Therefore, for the case of a pure Tsallis
distribution, the results in [13] are also inconsistent with
momentumconservation.As noted above, although the forms
of the distribution function are the same forvi andv in theMB
case, they are different in the case of general statistics.
The thermonuclear reaction rate for Tsallis statistics is

then given by

hσvi ¼
Z

dvfrelq ðvÞσv: ð27Þ

When the particles are nonrelativistic, i.e., xi ¼ mic2=
ðkTÞ ≫ 1, the BqðxiÞ factor does not depend on xi. In the
present case of the nuclear distribution during the BBN
epoch, nuclei are nonrelativistic. In this case, the distribu-
tion function of v reduces to

frelq ðvÞ ¼ B2
q

ð2πÞ2 ðx1x2Þ
3=2

Z
1

−1
d cos θ

Z
Vmax

0

V2dV

× IqðV; cos θ;m1; m2; T; vÞ; ð28Þ

IqðV;cosθ;m1;m2;T;vÞ¼
8<
:
h
1−ðq−1Þx1v21

2

i
1=ðq−1Þh

1−ðq−1Þx2v22
2

i
1=ðq−1Þ

�
1−ðq−1Þx1v21

2c2 >0 and1−ðq−1Þx2v22
2c2 >0

�
0 ðotherwiseÞ

ð29Þ

v21 ¼ V2 þ 2
m2

M
Vv cos θ þ m2

2

M2
v2 ð30Þ

v22 ¼ V2 − 2
m1

M
Vv cos θ þ m2

1

M2
v2; ð31Þ

where we adopt the natural units of k ¼ c ¼ 1.

C. Reduced equations

1. Tsallis statistics

We defined a thermal velocity vth such that the distribu-
tion function for the relative velocity amplitude frelðvÞ
for MB statistics is maximal at that velocity. The distri-
bution function fðvÞ satisfies

R
fðvÞdv ¼ R

fðv Þdv ¼
4π

R
fðvÞv2dv under the assumption of isotropy [37]. The

thermal velocity is given by

vth ¼
ffiffiffiffiffiffiffiffi
2kT
μ

s
: ð32Þ

We then normalize all velocity variables in terms of the
thermal velocity as follows:

y ¼ V
vth

ð33Þ

ymax ¼
Vmax

vth
¼

( m1
ffiffiffiffiffi
m2

p þm2
ffiffiffiffiffi
m1

pffiffiffiffiffiffi
q−1

p
M3=2

ðfor q > 1Þ
∞ ðfor q ≤ 1Þ

ð34Þ

r ¼ v
vth

¼
ffiffiffiffiffiffi
E
kT

r
ð35Þ

ri ¼
vi
vth

ð36Þ

r1ðy; cos θ;m1; m2; rÞ2 ¼ y2 þ 2
m2

M
yr cos θ þ m2

2

M2
r2

ð37Þ

r2ðy; cos θ;m1; m2; rÞ2 ¼ y2 − 2
m1

M
yr cos θ þ m2

1

M2
r2:

ð38Þ

Using this transformation,we derive the distribution function
for Tsallis statistics, i.e.,

frelq ðvÞ ¼ B2
q

ð2πÞ2
�
4m1m2

μ2

�
3=2

v−3th

Z
1

−1
d cos θ

×
Z

ymax

0

y2dyIqðy; cos θ;m1; m2; rÞ; ð39Þ

Iqðy;cosθ;m1;m2;rÞ¼
�
1− ðq−1Þm1r21

μ

�
1=ðq−1Þ

×

�
1− ðq−1Þm2r22

μ

�
1=ðq−1Þ

: ð40Þ

2. The 1 particle Tsallis distribution for the reduced mass

Equation (12) with the mass replaced with μ is given by

fqðvÞ ¼ Bq
1

π3=2
1

v3th

�
1 − ðq − 1Þ E

kT

�
1=ðq−1Þ

: ð41Þ
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3. MB distribution

For comparison, the MB distribution function can be
written as

fMBðvÞ ¼
1

π3=2
1

v3th
exp

�
−

E
kT

�
: ð42Þ

The quantity corresponding to Iq in the Tsallis statistical
case for the MB case is given by

IMBðy;m1; m2; rÞ ¼ exp

�
−
�
M
μ
y2 þ r2

��
: ð43Þ

We find that the normalized distribution functions
v3thf

relðvÞ only depend on E=T [and m1 and m2 for the
Tsallis case: Eq. (39)], and these shapes do not essentially
evolve along with the cosmic expansion.

D. Reverse reaction rates

The detailed balance relations [38] between cross sec-
tions of forward and reverse reactions for 1ð2; γÞ3 and 1
(2,3)4 are given by

σ3ðγ;2Þ1 ¼
g1g2

ð1þ δ12Þg3

�
μ12E12

E2
γ

�
σ1ð2;γÞ3 ð44Þ

σ4ð3;2Þ1 ¼
ð1þ δ34Þg1g2m1m2E12

ð1þ δ12Þg3g4m3m4E34

σ1ð2;3Þ4; ð45Þ

where the gi are the statistical weights of the respective
nuclear species i, while μij and Eij are, respectively, the
reduced mass and the CM energy of the iþ j system.

1. Photodisintegration reactions

Under the assumption that nuclei are nonrelativistic
and that photons have a Planckian energy distribution,
the photodisintegration rates do not depend on the nuclear
distribution function. The photodisintegration rate is then
given by

hσci ¼
Z

dEγfðEγÞσðEγÞc ð46Þ

fðEγÞ ¼
E2
γ=½expðEγ=kTÞ − 1�R

dEγE2
γ=½expðEγ=kTÞ − 1�

¼ E2
γ=½expðEγ=kTÞ − 1�

2ζð3ÞðkTÞ3 ; ð47Þ

where Eγ is the photon energy, fðEγÞ is the distribution
function of the photon energy, σðEγÞ is the photodisinte-
gration cross section, c is the light speed, and ζð3Þ ¼
1.2021 is the Riemann zeta function of 3. As far as the
photon distribution follows the Planck distribution, the

photodisintegration rate is the same as that of the SBBN [39].
Therefore, we adopt the standard rates.

2. Two-nuclear reactions

The thermal reaction rate for the reverse reaction of the
type 4(3,2)1 is

hσvi34 ¼
Z

dv3fðv3Þ
Z

dv4fðv4Þσ4ð3;2Þ1ðE34Þv34; ð48Þ

where the subscript 34 indicates physical quantities of the
3þ 4 system, and the subscripts 3 and 4 indicate physical
quantities of particles 3 and 4, respectively. When the
distribution functions for all nuclei are the Tsallis distri-
bution, this rate is reduced with Eqs. (39) and (40) to

hσvi34 ¼
Z

dv34frelq ðv34Þσ4ð3;2Þ1ðE34Þv34: ð49Þ

We calculate reverse reaction rates using this equation and
the detailed balance relation [Eq. (45)].

III. RESULTS

A. Relative velocity distribution

Figure 1 shows normalized distribution functions for
the CM kinetic energy E. The Tsallis parameter is set to
q ¼ 1.075 [13]. That value has been suggested [13] as
the value for which the Li problem is solved. Solid and
dash-dotted lines are functions for the Tsallis statistics

FIG. 1. Normalized distribution function for the CM kinetic
energy E for q ¼ 1.075. Solid and dash-dotted lines are for
Tsallis statistics, i.e., ðA1; A2Þ ¼ ð1; 1Þ, (2,2) (dash-dotted line),
(4,3), (3,2), (2,1), (3,1), and (7,1) from the top to the bottom,
respectively. The dashed line corresponds to the erroneous
distribution taken from the one-particle Tsallis distribution.
The dotted line is the MB distribution. Upper vertical lines show
the ratios Epeak=T f for the freeze-out of 2H and 7Be nuclides (see
Table I).
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[Eqs. (39) and (40)] for sets of nuclear mass numbers of
ðA1; A2Þ ¼ ð1; 1Þ, (2,2) (dash-dotted line), (4,3), (3,2),
(2,1), (3,1), and (7,1) from the top to the bottom,
respectively. The dashed line corresponds to the previ-
ously assumed distribution, i.e., the one-particle Tsallis
distribution [Eq. (41)]. The dotted line is the MB dis-
tribution [Eq. (42)]. The MB distribution v3thf

rel
MBðvÞ

depends only on E=T. The previously assumed distribu-
tion v3thfqðvÞ also depends only on E=T for a fixed q. The
distribution function for the Tsallis statistics v3thf

rel
q ðvÞ

depends on the nuclear masses as well as E=T for a
fixed q. This is one of the important differences from MB
statistics.
In addition, the Tsallis distribution functions for the

relative velocity have extended high energy tails compared
with the previously assumed function. The maximum
velocity [Eq. (22)] is always larger than that of the one
particle Tsallis distribution for the same reduced mass.
Therefore, the extended high energy tails are realized in the
exact distribution function.
We note that the assumption of the same Tsallis

distribution for the relative velocity [Eq. (41)] independent
of masses of reacting nuclei [12,13] induces an incon-
sistency if q ≠ 1 and therefore unphysical. As shown
above, the relative velocity distribution is derived from
the velocity distribution functions of nuclei, and its relation
to the nuclear distribution functions depends on the nuclear
masses. If one supposes that the relative velocity distribu-
tion, which is in fact a physical quantity derived from
distribution functions of respective nuclear velocities,
generally follows the Tsallis form, solutions for distribution
functions of respective nuclei cannot be found except for
the trivial case of q ¼ 1.

B. Thermonuclear reaction rates

Table I shows the eleven important reactions of BBN
[40,41] (the first column), and references to the available
cross section data that we adopted in this study (the second
column).

We calculated the freeze-out temperature Tf [T9f ¼
Tf=ð109 KÞ] for one chosen nuclide i participating in
one reaction a which satisfies the freezeout condition that
its abundance rate of change equals the cosmic expansion
rate HðTÞ, i.e.,

HðTfÞ ¼
jðdni=dtÞaj

ni
¼ nknlhσvðTfÞikl

ni
; ð50Þ

where nj is the number density of nuclide j, while k and l
are nuclides in the initial state of the reaction a, and
hσvðTÞikl is the average reaction rate as a function of T.
The third and fourth columns in Table I show the nuclide
whose abundance freezes out and its freeze-out temper-
ature, respectively. The fifth column shows the ratio of the
peak energy to Tf , where the peak energy has the largest
contribution to the integrand in deriving the average
reaction rate. We checked that the change in the peak
energy is small if the Tsallis q value is not changed
significantly, i.e., jq − 1j≲ 0.1.
Figure 2 shows contours of the functions Iq¼1.075

[Eq. (40)] (solid lines) and IMB [Eq. (43)] (dashed lines)
in the (y,cos θ) plane for the 3Heþ 4He system at T9 ¼ 0.4
for the energies of r ¼ 1 (a) and 3 (b), respectively. From
this figure, a difference in the contributions of the param-
eter regions to the reaction rate between the Tsallis and
MB cases is apparent. We considered the 7Be production
reaction and its freeze-out temperature T9f ¼ 0.4 for this
figure. In panel (a), it is seen that Iq values are hindered
compared to the MB case. In addition, the Iq value
significantly depends on the angle θ between V and v,
which is different from the function IMB. Near parallel or
anti-parallel scatterings are hindered as seen from the
curved contours of Iq. In the regions of cos θ ≳ −1 and
cos θ ≲ 1, r21 or r22 becomes maximally large leading to
small values of Iq [Eq. (40)]. For intermediate cos θ values,
both of r21 and r

2
2 values are intermediate, and the hindrance

of Iq is minimal. In panel (b), vertical dashed lines
correspond to IMB ¼ e−10; e−13;…; e−28, from the left to
right, respectively, that is a hindrance factor depending
on y, exactly the same as those in panel (a). The solid
lines show the contours of Iq¼1.075 ¼ e−13, e−18, and e−28,
respectively. Curvatures are larger than in panel (a), which
indicates that the contribution from the intermediate cos θ
satisfying m1r21 ¼ m2r22 is exclusively important.
Figure 3 shows the average rates for the reactions

2Hðd; pÞ3H (upper panel) and 3Heðα; γÞ7Be (lower panel)
as a function of temperature T9 ≡ T=ð109 KÞ. The former
reaction is one of two most important reactions for D
destruction. We note that the rate of the other reaction,
i.e., 2Hðd; nÞ3He is very similar to that of 2Hðd; pÞ3H. The
3Heðα; γÞ7Be reaction is the most important 7Be production
reaction. Therefore, the two reactions in Fig. 3 determine
the final freeze-out abundances of D and 7Be, respectively.

TABLE I. Important BBN reactions.

Reaction Reference Nuclide T9f
Epeak

Tf

1Hðn; γÞ2H [42] (Fig. 3) 2H 0.53 0.68
3Heðn; pÞ3H [43] 3He 0.54 0.78
7Beðn; pÞ7Li [43] 7Be 0.44 0.66
2Hðp; γÞ3He [44] ([43] for E>2MeV) 2H 0.74 2.1
7Liðp; αÞ4He [43] 7Li 0.18 4.3
2Hðd; pÞ3H [44] ([43] for E>0.6MeV) 2H 0.55 2.0
2Hðd; nÞ3He [44] ([43] for E>0.6MeV) 2H 0.53 2.1
3Hðd; nÞ4He [43] 3H 0.12 3.2
3Heðd; pÞ4He [43] 3He 0.40 3.5
3Hðα; γÞ7Li [43] 7Li 0.21 4.1
3Heðα; γÞ7Be [43] 7Be 0.41 4.9
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The solid line is for theTsallis statistics,while the dashed line
is based upon the one-particle distribution function as
previously assumed. The dotted line corresponds to the
MB distribution.
For this specific q value and the temperature range of

T9 ¼ ½10; 0.1�, the 2Hðd; pÞ3H reaction rate for the Tsallis
statistics is smaller than that of the MB statistics. Since the
distribution function at high energies is smaller than that
of the MB function, the reaction rate is hindered by the
Coulomb penetration factor. The difference between cases
of the Tsallis statistics and the previously assumed function
is small.
The reaction rate of 3Heðα; γÞ7Be for the Tsallis statistics

is also smaller than that of the MB statistics because of the
more effective Coulomb suppression factor. We find a
significant difference between the reaction rates of the

Tsallis statistics and the previously assumed case. For a
fixed CM energy, the Coulomb penetration factor is sup-
pressed more than that of the reaction 2Hðd; pÞ3H because
of the larger atomic numbers and reduced mass. Therefore,
the thermal reaction rate is contributed from higher ener-
gies, where the difference in the distribution function
frelðvÞ between the Tsallis and the previous case is largest
(see Fig. 1). The averaged reaction rates of 3Heðα; γÞ7Be
then differ more than those of 2Hðd; pÞ3H.

C. BBN calculation

We adopt the SBBN code as described in Refs. [40,41]
and have updated reaction rates of nuclei with mass
numbers ≤ 10 using the JINA REACLIB Database [45]
(updated to December, 2014). The neutron lifetime is the
central value of the Particle Data Group, 880.2�1.0s [46].

FIG. 3. The average rates for the reactions 2Hðd; pÞ3H (upper
panel) and 3Heðα; γÞ7Be (lower panel) as a function of T9. The
Tsallis parameter is set to q ¼ 1.075. The solid line is for the
Tsallis statistics, while the dashed line is erroneously based on
the one-particle distribution function. The dotted line corresponds
to the MB distribution. The lower vertical lines show the freeze-
out temperatures of 2H (upper panel) and 7Be (lower panel),
respectively (see Table I).

FIG. 2. Contours of the functions Iq¼1.075 and IMB in the
ðy; cos θÞ parameter plane for the 3Heþ 4He system at
T9 ¼ 0.4. Panel (a) corresponds to the energy r ¼ 1. The solid
and dashed lines from left to right show contours of e−2,
e−5;…e−20, as labeled. Panel (b) is for r ¼ 3. The solid lines
are for Iq¼1.075 values ofe−13,e−18, and e−28, respectively,while the
dashed lines are for IMB ¼ e−10, e−13;…; e−28 from the left to right,
respectively.
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The baryon-to-photon ratio is taken to be ð6.094�
0.063Þ × 10−10 calculated using a conversion [47] of
the baryon density in the standard ΛCDM model
(TTþ lowPþ lensing) determined from the Planck obser-
vation of the cosmic microwave background, Ωmh2 ¼
0.02226� 0.00023 [48]. For 11 important reactions of
BBN, the reaction rates are calculated for the different
distribution cases. Two-body reverse reaction rates are
calculated with the detailed balance relation using
Eqs. (44)–(47) and (49). Since the effect of the
Planckian distribution is small [49], we make the usual
approximation of replacing the Planck distribution with an
exponential.
Figure 4 shows the evolution of nuclear abundances as a

function of T9. X and Y are mass fractions of 1H and 4He in
total baryon matter, respectively. For other nuclear abun-
dances, the number ratios to 1H, i.e., A=H, are shown. In the
upper panel, the solid lines are for the Tsallis statistics,
while the dashed lines are for the previously assumed
relative velocity distribution function. The dotted lines are
results for the MB statistics, i.e., SBBN. The Tsallis
parameter is set to q ¼ 1.075.
For q > 1, the high energy region of the velocity

distribution functions of nuclei is suppressed. Therefore,
rates of charged-particle reactions are significantly reduced
since the cross sections are larger at high energies. For
q < 1, the opposite situation is realized. On the other hand,
rates of neutron reactions are unaffected because there is no
Coulomb penetration factor.
In the upper panel of Fig. 4, since the reaction rate of

deuteron destruction via 2Hðd; pÞ3H and 2Hðd; nÞ3He is
smaller than in SBBN (Fig. 3, upper panel), the freeze-out
D abundance is larger [12]. Since 3He and 3H are produced
via the same reactions, the higher D abundance results in
higher production rates of 3He and 3H. Therefore, the final
abundances of 3He and 3H are higher than in SBBN. The
neutron abundance is slightly larger at late times for
which T9 ≲ 0.7. This is because of the larger D abun-
dance. The neutron abundance is determined from the
forward and reverse reactions of 1Hðn; γÞ2H. The forward
rate is slightly larger and the reverse rate is the same as
that of the SBBN. The 1H abundance is almost the same
in the Tsallis case and SBBN. Therefore, after the D
destruction freezes out at a higher level, the n abundance
is kept higher via the photodisintegration 2Hðγ; nÞ1H. The
final 7Be abundance is smaller than in SBBN because of
the smaller reaction rate for 3Heðα; γÞ7Be (Fig. 3, lower
panel). Since the reaction rate is underestimated in the
previous calculations [12,13], our 7Be abundance is larger
than the previous estimate. The 7Li destruction rate via
7Liðp; αÞ4He is also smaller than in SBBN. Therefore, the
freeze-out 7Li abundance is larger.
The lower panel shows abundances for Tsallis statistics

with q ¼ 0.9 (dashed line), 1 (dotted), and 1.1 (solid),

respectively. When the q-value increases, rates of charged-
particle reactions are smaller. For the same reason
explained for the upper panel, the abundances of D, 3H,
3He, n, and 7Li increase while the 7Be abundance decreases.
Calculated BBN results are compared to observational

constraints on light element abundances. Constraints on
the primordial 4He abundance come from observations of
metal-poor extragalactic H II regions. We use two different
determinations of Yp ¼ 0.2446� 0.0029 [50] and Yp ¼
0.2551� 0.0022 [51]. The primordial D abundance is con-
strained with observations of metal-poor Lyman-α absorp-
tion systems towards quasi-stellar objects. We use the
weighted mean value of D=H ¼ ð2.527� 0.030Þ × 10−5

[52]. 3He abundances in Galactic H II regions are determined

FIG. 4. Evolution of nuclear abundances as a function of T9. X
and Y are mass fractions of 1H and 4He in total baryon matter,
respectively. Other nuclear abundances are shown by the number
ratios to 1H, i.e., A=H. In the upper panel, the solid lines are for
the Tsallis statistics, while the dashed lines are for the previously
assumed relative velocity distribution function. The dotted lines
are results for the MB statistics. The Tsallis parameter is set to
q ¼ 1.075. The lower panel shows abundances for Tsallis
statistics with q ¼ 0.9 (dashed lines), 1 (dotted), and 1.1 (solid),
respectively.
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using the 8.665 GHz hyperfine transition of 3Heþ ion.
The primordial 3He abundance can evolve during Galactic
chemical evolution. However, the net effect of Galactic
chemical evolution is uncertain since stars can both destroy
and synthesize 3He. Moreover, it is not expected that the 3He
abundance has decreased significantly over Galactic history
as thiswould require that a large fraction ofGalactic baryonic
material has been absorbed in stars that destroy 3He,while the
present interstellar deuterium abundance limits the amount
of astration to not more than about a factor of two. We then
only adopt the 2σ upper limit from the abundance 3He=H ¼
ð1.9� 0.6Þ × 10−5 [53] in Galactic H II regions.We also use
the abundance logð7Li=HÞ¼−12þð2.199�0.086Þ derived
by observations of Galactic metal-poor stars using a three-
dimensional nonlocal thermal equilibrium model [54].
Figure 5 shows calculated light element abundances as

a function of the parameter q. Boxes show the 2σ obser-
vational limits on D=H and 7Li=H. The dashed and dotted
lines show abundances of 7Be and 7Li, respectively, immedi-
ately after BBN. Long after BBN, 7Be nuclei electron
capture to produce 7Li nuclei. Therefore, the sum of 7Be
and 7Li abundances becomes the primordial Li abundance.
The 3He abundance is predominantly contributed by 3He,

plus a small abundance of 3H produced during BBN (see
Fig. 4) has been added. The vertical line is at q ¼ 1 and
corresponding to the SBBN case. The plotted range is
allowed by the 2σ limit on the 4He abundance of
Ref. [50] and excluded by that of Ref. [51]. Also this region
is allowed by the 2σ upper limits on 3He=H [53].
The reasons for the abundance changes of D, 3He, 7Be,

and 7Li have been explained above. The one percent level
of change for the final 4He mass fraction Yp is caused by
different neutron abundances during the 4He synthesis.
For larger q, the D destruction rate is smaller and the D
abundance is larger. As a result of the balance of forward
and reverse reactions of 1Hðn; γÞ2H (see above), the n
abundance is kept higher and more neutrons are lost by
β-decay before 4He synthesis is completed. The final 4He
abundance is therefore smaller.
It is seen that the D abundance increases and the 7Li

abundance decreases with increasing q value. At q≈
1.01–1.02, the theoretical result for the D abundance is
consistent with the observation. On the other hand, for
q≳ 1.055, the 7Li abundance agrees with the observation.
However, in this parameter region, the D abundance is
enhanced to above D=H ¼ 3 × 10−5, which requires an
additional mechanism for later D destruction. Because of
their fragility, deuterons can be destroyed easily if there
is a source of nonthermal photons in the early universe
(e.g., [9,55]). Then, the D destruction by nonthermal
photons can reproduce the primordial elemental abundan-
ces consistent with observations of all light nuclei. This can
happen for example, in a model including photon cooling
by an axion condensate [56].
Unless a later D destruction mechanism is induced, the D

enhancement is very problematic. Therefore, the observed D
abundance places an upper limit on q. We find that in the
range of q ≈ 1.01–1.02 where the observed D abundance
is reproduced, the 7Li abundance is smaller than in the SBBN
by ∼30%–60%. This level of Li reduction is significant but
not enough. On the other hand, there are other astrophysical
processes which can further reduce the Li abundance, i.e., a
chemical separation of 7Liþ ions during structure formation
[57] or a depletion on stellar surfaces [58–60].

IV. SUMMARY

We have reformulated the thermal rate of two-body
reactions of a gas of nonrelativistic uncorrelated particles
with general velocity distribution functions. Taking the
Tsallis distribution as an example of a non-MB distribution,
we derived the distribution function of the relative velocity,
i.e., frelq ðvÞ. It was found that in general the distribution
function frelðvÞ contains a complicated integration over the
CM velocity V. By defining a normalized distribution
function v3thf

relðvÞ, the MB distribution can be expressed in
terms of the ratio of the CM energy to the temperature, i.e.,
E=T. However, we found that the normalized distribution

FIG. 5. Light element abundances versus the Tsallis parameter
q. Boxes show the 2σ observational limits on D=H and 7Li=H. In
the panel for 7Li=H, dashed and dotted lines show abundances of
7Be and 7Li, respectively, immediately after the BBN. The vertical
line is at q ¼ 1, i.e., the SBBN case.
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function for the Tsallis statistics has additional depend-
ences on the nuclear masses (Sec. II).
We showed differences in the relative velocity distribu-

tion function between the Tsallis and MB statistics
(Sec. III A). Using calculated distribution functions, reac-
tion rates that are important for BBN were derived
(Sec. III B). Finally, we performed the BBN nuclear
reaction network calculation, and analyzed effects of
changing the Tsallis q parameter. An increase of q results
in softer nuclear spectra, and an upper cutoff of the CM
energy appears for q > 1. We observed that the increase of
q reduces rates of reactions between charged particles, and
explained reasons that abundances of D, 3H, 3He, n, and 7Li
increase while the 7Be abundance decreases. Predicted
abundances as a function of the parameter q were calcu-
lated. We found the following points: (1) A slight deviation

from the MB statistics, i.e., q ≈ 1.01–1.02, can lead to D
abundances consistent with observations, which are larger
than the SBBN prediction; (2) The D observation provides
the most stringent constraint on the q parameter; (3) In that
q region, the primordial Li abundance is reduced from the
SBBN value by ∼30%–60% (Sec. III C).
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