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We show that both the baryon asymmetry of the universe and dark matter (DM) can be accounted for by
the dynamics of a single axionlike field. In this scenario, the observed baryon asymmetry is produced
through spontaneous baryogenesis—driven by the early evolution of the axion—while its late-time
coherent oscillations explain the observed DM abundance. Typically, spontaneous baryogenesis via axions
is only successful in regions of parameter space where the axion is relatively heavy, rendering it highly
unstable and unfit as a dark matter candidate. However, we show that a field-dependent wave function
renormalization can arise which effectively “deforms” the axion potential, allowing for efficient generation
of baryon asymmetry while maintaining a light and stable axion. Meanwhile, such deformations of the
potential induce nontrivial axion dynamics, including a tracking behavior during its intermediate phase of
evolution. This attractorlike dynamics dramatically reduces the sensitivity of the axion relic abundance
to initial conditions and naturally suppresses DM isocurvature perturbations. Finally, we construct an
explicit model realization, using a continuum-clockwork axion, and survey the details of its phenom-
enological viability.
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I. INTRODUCTION

A wide array of cosmological observations indicate that
the universe has a significant matter-antimatter asymmetry,
as quantified by the baryon-to-photon ratio [1,2]

ηB ≡ nb − nb̄
nγ

¼ ð6.10� 0.14Þ × 10−10; ð1:1Þ

in which nB ¼ nb − nb̄ is the baryon-number density and
nγ is the photon number density. An essential task of
fundamental physics is to explain this figure in terms of
microphysical processes in the early universe. Along these
lines, a set of necessary conditions for the production
of baryon asymmetry has been obtained [3]: (i) violation
of baryon number (B) symmetry,1 (ii) violation of the
discrete C and CP symmetries, and (iii) departure from

thermal equilibrium. Typically, satisfying these conditions
is a starting point for building any model of baryogenesis.
However, it is important to note that the last condition
includes an implicit assumption of CPT invariance. Indeed,
at thermal equilibrium, CPT symmetry guarantees that the
energy spectra and thermal distributions of baryons and
antibaryons are equal, thereby enforcing nb ¼ nb̄.
By contrast, dynamical scenarios can arise in which

CPT is violated spontaneously, effectively lifting this
degeneracy [4,5]. In this way, baryon asymmetry could
be generated at equilibrium, provided B-violating processes
occur at a sufficient rate in the plasma [i.e., that condition
(i) is satisfied]. A model of such “spontaneous baryo-
genesis” is typically realized by coupling the baryon
current JμB to a tensor field which attains some nonzero
vacuum expectation value (VEV). A straightforward exam-
ple comes in the form of a scalar field ϕ coupled derivatively
to the baryon current:

Leff ⊃
1

M
∂μϕ · JμB; ð1:2Þ

where M is a cutoff scale. It is often reasonable to assume
negligible spatial variation in ϕ, such that the interaction
reduces to M−1∂0ϕ · nB. In the absence of any scalar field
motion, this term has no effect. However, as soon as ∂0ϕ ≠ 0
an energy gap is induced between baryon-antibaryon pairs.
In other words, the “velocity” of the scalar field acts
as an effective chemical potential for baryon number.
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1In circumstances where sphaleron processes are in equilib-
rium, B violation is replaced by (B − L)-violation (where L is
lepton number), so that baryogenesis can also occur via lepto-
genesis.
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The production of nB through this mechanism proceeds as
long as B-violating processes are coupled to the thermal
bath. However, as the universe expands the bath cools, and
these eventually decouple, fixing the baryon asymmetry
of the universe (BAU).
A candidate for the scalar ϕ can emerge in a variety of

contexts: inflatons [6,7], flat directions [8,9], radions [10],
quintessence fields [11–13], scalar curvature [14], Higgs
fields [15,16], etc. However, scalars with an approximate
shift symmetry such as pseudo–Nambu Goldstone bosons
(pNGB) are particularly well-motivated in this context
[17–22]. These fields may couple linearly to total deriv-
atives, such as topological Chern-Simons interactions
with SM gauge fields ϕFeF. An axion coupling to the
weak gauge bosons in this way is equivalent to Eq. (1.2)
due to the electroweak anomaly, and thus naturally leads to
spontaneous baryogenesis.
In this respect, an axionlike particle [23–27]—which

we shall refer to simply as an “axion”—is an attractive
candidate for spontaneous baryogenesis models.Moreover,
it is interesting to consider whether the late-time coherent
oscillations of the axion field could also play the role of dark
matter (DM). Recent studies [18,19] suggest that axion
masses exceedingmϕ ≳ 105 GeV are necessary to generate
the observed BAU, which would ruin such a prospect.
In particular, a smaller curvature is associated with the
potential of a lighter axion. This property generally yields a
weaker chemical potentialM−1∂0ϕ and dynamics triggered
at lower temperatures, both of which impair spontaneous
baryogenesis. Other proposals have attempted to revive the
idea, such as driving early axion dynamics with the Gauss-
Bonnet term [20], effectively adding a linear term to the
axion potential at early times. While such a scheme is
interesting in that it can be implemented with the QCD
axion, it requires a fine-tuning of the misalignment angle,
or hierarchical mass scales, to obtain the observed DM
abundance and prevent significant baryonic backreaction or
isocurvature perturbations.
In this paper, we describe a novel approach to accom-

modate both the observed baryon asymmetry and DM
abundance. Namely, we consider scenarios in which “defor-
mations” to the sinusoidal axion potential arise from a field-
dependent wave function renormalization ZðϕÞ. A variation
in ZðϕÞ between different regions of the potential establishes
a mismatch in curvature between those respective regions.
This can have a dramatic effect on axion dynamics and the
overall evolution of the baryon asymmetry and DM abun-
dance. In particular, we motivate scenarios in which Z ≫ 1
toward the minimum of the potential, but Z ≃Oð1Þ else-
where. Indeed, this implies that in its early stages of
evolution the axion rolls through a region with relatively
large curvature, generating a large chemical potential, and
the appropriate baryon asymmetry is easily produced.
However, as the field falls toward the minimum of the
potential, the enhancement Z ≫ 1 effectively “flattens” it,

suppressing the axion mass. This enhancement also has the
effect of suppressing the rate of axion decays to Standard
Model (SM) particles. These two considerations taken
together imply a sufficiently stable DM candidate that can
simultaneously generate the observed BAU.
Notably, the intermediate region of such potentials can

give rise to highly non-trivial dynamics. In particular, we
find a period of tracking behavior, similar to that found
in quintessence models of dark energy. In this phase the
axion follows an attractorlike trajectory, with its equation-
of-state parameter converging rapidly to a value that
depends on the details of ZðϕÞ and the background
cosmology. Consequently, the axion relic abundance is
rendered insensitive to the initial misalignment of the field,
in contrast to traditional expectations. Furthermore, the
axionic isocurvature perturbations also evolve in a non-
trivial manner, experiencing a suppression in amplitude for
as long as tracking continues, which can be a considerable
duration. The generic suppression of this isocurvature
mode is one of several features which leads to a different
analysis of the cosmic microwave background (CMB)
constraints for such models.
The paper is organized as follows. In Sec. II, we

introduce a general model which forms the basis for our
analysis in the remainder of the paper. We first discuss
some of its important properties, illustrating the nontrivial
axion dynamics that arise and producing estimates for
the lifetime and relic abundance. We then incorporate the
spontaneous baryogenesis mechanism into the model,
outlining the different avenues by which baryon asymmetry
may be produced and underscoring the significance of
its interplay with the axion dynamics. We also discuss
the form of isocurvature perturbations that appear in the
model. The penultimate Sec. III is devoted to an explicit
realization, in which we demonstrate how the above
scheme could be furnished from a complete model con-
struction. To this end, we consider an extra-dimensional
“continuum-clockwork” model, where our axion corre-
sponds to the lightest state in a Kaluza-Klein (KK) tower of
axion modes. We determine the phenomenological viability
of this model and thereby a “proof of concept” showing
how the ideas in this paper may be applied within a specific
setting. Finally, in Sec. IV we provide a summary of our
main results and possible directions for future work.
This paper also contains two Appendices. In Appendix A

we provide a brief review of the classification of tracking
potentials relevant for our analysis. Meanwhile, a deriva-
tion of the Boltzmann evolution for (B − L) is detailed in
Appendix B, which carefully accounts for the various
subtleties of sphaleron equilibrium.

II. GENERAL MODEL DESCRIPTION

In this section, we delineate a general model for an
axionlike field which shall serve as the basis for our
analysis in this paper. We begin by defining the model
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and examining its dynamical evolution, and then we shift
focus to incorporating a mechanism for spontaneous
baryogenesis. Finally, we close the section with an analysis
of the isocurvature perturbation spectrum.

A. Axion dynamics and relic abundance

Let us consider a model for an angular axionlike field
θðxÞ with periodic potential UðθÞ and nontrivial wave
function renormalization ZðθÞ, such that the Lagrangian
contains a noncanonical kinetic term:

Leff ¼
f2

2
ZðθÞð∂μθÞ2 − Λ4UðθÞ þ � � � : ð2:1Þ

We have refrained fromwriting any topological interactions
since these will not affect our discussion of the dynamics
that follows. The two mass parameters that characterize
the model are determined by UV physics. Namely, f is the
spontaneous symmetry-breaking scale associated with our
axion, and Λ is the scale of some nonperturbative physics,
e.g., the confinement scale of a non-Abelian gauge theory.2

In this paper, we shall not further address the origin of these
parameters.
While a sinusoidal form UðθÞ ¼ 1 − cos θ may be

associated with a potential generated through instanton
effects, the wave function renormalization ZðθÞ is less
restricted. A field-dependent wave function renormalization
may arise from a variety of mechanisms, e.g., integrating-out
heavy degrees of freedom (d.o.f.) [28–30] or nonminimal
couplings to gravity [31,32]. The most activity in this area
has been with inflationary model building [33–35] or
kinetically driven quintessence [36–38]; however, apart
from some exceptions [39], the implications of these effects
have not been extensively explored in the context of axion
DM models.
Any non-trivial field dependence in ZðθÞ can signifi-

cantly influence how the axion evolution unfolds. In
particular, in a flat Friedmann-Robertson-Walker (FRW)
cosmology it follows the equation of motion

θ̈ þ 1

2Z
dZ
dθ

θ̇2 þ 3Hθ̇ þ Λ4

f2
1

Z
dU
dθ

¼ 0; ð2:2Þ

where H is the Hubble parameter and dots indicate time
derivatives ∂=∂t.
We can continue along these lines, analyzing the

dynamics according to Eq. (2.2). However, it is also
instructive to introduce the canonically normalized field

ϕðxÞ≡ f
Z

θðxÞ

0

ffiffiffiffiffiffiffiffiffiffi
ZðθÞ

p
dθ ð2:3Þ

and study its corresponding dynamics. In particular, the
equation of motion takes the more familiar form

ϕ̈þ 3Hϕ̇þ dVeff

dϕ
¼ 0; ð2:4Þ

where VeffðϕÞ≡ Λ4U½θðϕÞ�, and θðϕÞ is obtained by
inverting Eq. (2.3). In this picture, the influence of ZðθÞ
is captured solely through the deformations it induces on
the canonical potential VeffðϕÞ. Naturally, in regions of
field space where Z ≃Oð1Þ, the deformation is insignifi-
cant, and VeffðϕÞ is similar to the potential in the non-
canonical representation. However, in regions with an
enhancement Z ≫ 1, the effect is to “flatten” the canonical
potential, as seen explicitly through

dVeff

dϕ
¼ 1ffiffiffiffi

Z
p Λ4

f
dU
dθ

ð2:5Þ

and the curvature

d2Veff

dϕ2
¼ Λ4

f2
1

Z

�
d2U
dθ2

−
1

2Z
dZ
dθ

dU
dθ

�
: ð2:6Þ

In this paper, we examine the possibility that such an
axion can simultaneously (i) generate the observed BAU
through spontaneous baryogenesis and (ii) serve as a DM
candidate with the appropriate relic abundance. At first
glance, the ingredients necessary to realize this appear
incompatible. Indeed, in spontaneous baryogenesis the
production of baryon asymmetry is driven by the velocity
of the axion field ∂0θ, and thus ultimately depends on the
shape of the potential traversed by the axion during its early
evolution. In other words, a sufficiently steep region within
VeffðϕÞ is required for baryogenesis by these means. With
the usual sinusoidal axion potential, this is to equivalent
requiring a sufficiently large axion mass. However, pre-
vious studies suggest this mass must be so large that the
axion is rendered highly unstable and thus an unsuitable
DM candidate [18,19].
By contrast, we argue that deformations to VeffðϕÞ can

repair this incompatibility. For the moment, we interpret the
wave function renormalization ZðθÞ simply as a vehicle for
supplying the necessary deformations. Then, an enhance-
ment Z ≫ 1 around the minimum of the potential—but
Z ¼ Oð1Þ elsewhere—can furnish a model with both an
adequate baryon asymmetry, as well as a suppressed axion
mass and decay rates.
To explore the implications of such a model more

explicitly, let us consider the wave function

ZðθÞ ≃
8<:

1 for θ ¼ Oð1Þ
1=θ2n for ϵ≲ jθj < Oð1Þ
1=ϵ2n for jθj≲ ϵ

; ð2:7Þ2For example, in the case of the QCD axion, f is associated
with the scale at which the Peccei-Quinn Uð1ÞPQ symmetry is
spontaneously broken, and Λwith the confinement scale of QCD.
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where n > 0 is an integer. Along with n, the small
parameter ϵ > 0 determines the strength of the deforma-
tion. Namely, the effective axion mass is suppressed as

m2
ϕ ≡ d2Veff

dϕ2

����
ϕ¼0

¼ ϵ2n
Λ4

f2
: ð2:8Þ

The dynamics that arises in response is generally non-
trivial and reveals trajectories qualitatively different from
the traditional axion dynamics. In the following, we outline
the various periods of field evolution. A schematic of the
canonical potential VeffðϕÞ is shown in Fig. 1, with regions
labeled by their associated dynamics. We shall discuss the
timeline of axion field evolution, moving sequentially from
right to left in the figure.

1. Slow-roll and fast-roll periods

Let us assume the global symmetry associated with the
axion is broken either before or during inflation, and that
the field is initially misaligned at some angle jθinj ¼ Oð1Þ.
Then, according to Eq. (2.7), our initial conditions have
Z ≃ 1. Furthermore, we shall only consider scenarios in
which the axion is a light field during inflation and the
subsequent reheating epoch, such that

Λ2

f
≪ H; ð2:9Þ

where H ¼ HðtÞ is the Hubble parameter during that era.
The damping imposed by the Hubble term holds the field
to a slow-roll trajectory [40]

ϕ̇ ≃ −
1

5H
dVeff

dϕ
ð2:10Þ

as the radiation-dominated epoch is approached. The slow-
roll evolution continues for as long as the following
condition is satisfied:

1

5H2

���� d2Veff

dϕ2

���� ≪ 1: ð2:11Þ

The Hubble damping H ∼ 1=t eventually falls suffi-
ciently to violate Eq. (2.11). The field then enters a transient
“fast-roll” period in whichH ≈ Λ2=ð ffiffiffi

5
p

fÞ, and the velocity
of the field reaches its maximum value over the evolution
j∂0ϕj ∼ Λ2=

ffiffiffiffiffiffi
5Z

p
.

The temperature of the thermal bath at this point is
approximately

TFR ≈
�

18

π2g�

�1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mϕMP

ϵn

r
; ð2:12Þ

in which g� is the effective number of relativistic d.o.f. and
MP ≡ 1=

ffiffiffiffiffiffiffiffiffi
8πG

p
≈ 2.4 × 1018 GeV is the reduced Planck

scale. The inverse dependence on the small parameter
∼1=

ffiffiffiffiffi
ϵn

p
is particularly noteworthy, as it implies the fast-

roll period is driven to increasingly higher temperatures as
the potential is more acutely deformed.

2. Tracking period

In the conventional axion dynamics [i.e., a model with
ZðθÞ ¼ 1 for all θ] the field would now transit into a
harmonic region of the potential and undergo coherent
oscillations. However, in our model, as the field enters
jθj≲Oð1Þ, the wave function changes form to
ZðθÞ ≃ 1=θ2n. This change, and its associated deformation
in VeffðϕÞ, dramatically alters the field trajectory and
introduces a new segment of evolution. In explicit terms,
the canonical potential in this region is

VeffðϕÞ ≃
1

2
ϵ2Λ4

(
e2jϕj=f−2 for n ¼ 1

½n − ðn − 1Þ ϵn−1f jϕj�− 2
n−1 for n > 1

:

ð2:13Þ

The sort of dynamics induced by such a potential is well
known in the literature of quintessence models [41,42].
In particular, VeffðϕÞ yields so-called “tracker” solutions:

FIG. 1. A schematic of the effective potential VeffðϕÞ for the
canonically normalized field ϕ, associated with the wave function
renormalization ZðθÞ in Eq. (2.7). The nontrivial field depend-
ence in ZðθÞ induces deformations in the potential and alters the
axion dynamics. The periods of evolution—slow roll, fast roll,
tracking, and coherent oscillations—are labeled in their respec-
tive regions. The initial misalignment of the axion ϕin is assumed
to be toward the edge of field space.
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attractorlike field trajectories which have an identical late-
time evolution for a wide range of initial conditions [43,44].
These are characterized by an equation-of-state parameter
(for axion pressure Pϕ and energy density ρϕ)

wϕ ≡ Pϕ

ρϕ
¼

1
2
ϕ̇2 − VeffðϕÞ

1
2
ϕ̇2 þ VeffðϕÞ

ð2:14Þ

which converges to some fixed value, depending on
parameters in the potential and the background cosmology.
In Sec. A 1 we have provided a brief overview of the
identification and classification of tracker solutions. Using
that technology, we deduce that tracker solutions exist with
VeffðϕÞ for n ≥ 1, which drive the axion equation-of-state
parameter to

wϕ ¼ 1þ w − n
n

ð2:15Þ

for background parameter w.
In other words, n determines whether the axion energy

density ρϕ ∝ a−3ð1þwϕÞ dissipates less rapidly than the
dominant component in the universe, which we assume
is the radiation component (w ¼ 1

3
). The case of an

exponential potential (n ¼ 1) is unique, since it implies
wϕ simply traces the background w and the axion abun-
dance Ωϕ ≡ ρϕ=ð3M2

PH
2Þ remains fixed. For potentials

with larger n, the axion component behaves increasingly
like vacuum energy, causing Ωϕ to grow and eventually
dominate if tracking lasts sufficiently long. Note that since
we assumed n is a positive integer, there is a bound wϕ ≤ w
and the axion energy density never dissipates more rapidly
than the dominant component.

3. Coherently oscillating period

The tracking dynamics continues for as long as the
angular field is confined to the ϵ≲ jθj≲Oð1Þ region,
i.e., for as long as the potential has the form in
Eq. (2.13). However, as the field falls to jθj≲ ϵ it exits
the tracking regime, and the wave function is frozen at a
constant value ZðθÞ ≃ 1=ϵ2n. The potential is then approx-
imately quadratic:

VeffðϕÞ ≃
1

2

ϵ2nΛ4

f2
ϕ2 for jϕj≲ f

ϵn−1
ð2:16Þ

and does not support a tracker solution.
To determine the field evolution during this final phase,

we should compare the Hubble damping H to the axion
mass mϕ ¼ ϵnΛ2=f at the time tracking completes. If we
find that 3H ≲mϕ, then the field will promptly begin to
undergo coherent oscillations. On the other hand, if we find
3H ≳mϕ, then it will sit in an overdamped phase until H
has dropped sufficiently for oscillations to commence.

Assuming tracking lasts sufficiently long for the field to
converge to the tracker trajectory, we can use Eq. (A2),
(A4), and (2.15) to show that

3H
mϕ

≈
ffiffiffiffiffiffiffiffiffiffiffiffiffi
9n

6n − 4

r
ð2:17Þ

at the time the field exits the tracking region. The ratio
above is contained within 1.2≲ 3H=mϕ ≲ 2.1, so the field
commences coherent oscillations relatively soon after,
regardless of n. Neglecting the minor n-dependence and
any “overshooting” effect, the axion energy density at the
time of oscillations is given approximately by

ρϕ ≈ VeffðϕÞ ≈
1

2
ϵ2Λ4: ð2:18Þ

Once coherent oscillations begin, the axion equation-of-
state parameter averages to hwϕi → 0 and thus the axion
behaves as matter. Ideally, the matter it constitutes would
be abundant enough today to comprise the entirety of the
DM. To calculate the relic abundance, we use that the
temperature at which oscillations first occur is given
approximately by 3H ≈mϕ:

T4
osc ≈

90M2
Pm

2
ϕ

g�π2
: ð2:19Þ

Then, employing conservation of entropy density, we find
a relic abundance3

Ωϕh2 ≈
ϵ2ð1−nÞ

g1=4�

ffiffiffiffiffiffiffiffiffiffi
mϕ

7 eV

r �
f

1012 GeV

�
2

ð2:20Þ

for a sufficiently long-lived axion.
It is important to note that for n ≠ 1 a deformation in the

potential enhances the relic abundance, while for n ¼ 1 it is
independent of ϵ. Moreover,Ωϕ is independent of the initial
misalignment angle θin, as a result of the tracking dynamics
encountered in the field evolution. This insensitivity reveals
a significant departure from the traditional axion cosmol-
ogy and also leads to a natural suppression of axionic
isocurvature perturbations. We shall discuss the perturba-
tions in more detail below and also provide a model-
specific analysis in Sec. III.
Meanwhile, the lifetime of the axion is also enhanced if

it decays primarily through an anomalous coupling to the
electroweak sector. That is, the enhancement in ZðθÞ near the
origin generically implies a decay width Γϕ ∝ m3

ϕ=½f2Zð0Þ�
and thus an enhanced lifetime

3We shall often assume a temperature regime sufficiently high
for this dynamics that the effective relativistic g� and entropy
d.o.f. g�S are approximately equal.
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τϕ ≈
6.6 × 1030 s

ϵ2n

�
f

1012 GeV

�
2
�
7 eV
mϕ

�
3

; ð2:21Þ

alleviating constraints from axion decays as the potential is
deformed with ϵ ≪ 1.

B. Incorporating the baryogenesis mechanism

Let us now shift focus to embedding the mechanism for
spontaneous baryogenesis in our model. We shall begin by
describing the interactions necessary and discussing how
they may appear in the UV theory. We then construct the
Boltzmann equations for the matter-antimatter asymmetry
and catalog the different ways in which production can
occur.

1. Spontaneous CPT violation

We must include interactions that spontaneously violate
CPT in the axion background, such as the effective
coupling between the axion θ and the baryon current JμB:

Leff ⊃
1

N
∂μθ · J

μ
B ð2:22Þ

where N is a constant that we clarify in what follows. The
baryon current is given by

JμB ¼ 1

3

X
k

ðq†kσ̄μqk þ u�kσ̄
μuk þ d�kσ̄

μdkÞ; ð2:23Þ

where qk, uk, and dk are two-component Weyl spinors
for the left-handed quark doublets, right-handed up-type
quarks, and right-handed down-type quarks, respectively.
Note also that we have suppressed SUð3Þc and SUð2ÞL
indices and the σμ are the Pauli matrices.
The homogeneity of the axion field in space implies its

gradient is negligible and that Eq. (2.22) effectively reduces
to an interaction

Leff ⊃
1

N
∂0θ · J0B: ð2:24Þ

Indeed, such a term spontaneously breaks CPT symmetry
once the field is set in motion, inducing an energy gap
between baryons and antibaryons. If B-violating inter-
actions are occurring in the thermal bath, then a baryon
asymmetry is generated.
There are several ways to motivate the appearance of an

interaction such as Eq. (2.22) in the effective Lagrangian.
For instance, we may consider a spontaneous breaking
of the baryon number symmetry Uð1ÞB at high scales, in
which θ is the corresponding Nambu-Goldstone boson
(NGB), which in general would appear as the phase of
some complex scalar field. In such a scenario, it is also
necessary to specify the relationship between the axion

potential and Uð1ÞB, as well as the effect of B-violating
operators after integrating-out the radial scalar field.
However, other avenues exist through which we may

generate such an interaction, even if θ is neutral under
Uð1ÞB. By rotating the quark phases according to

qk → eiθ=N qk

uk → eiθ=N uk

dk → eiθ=N dk; ð2:25Þ

our term in Eq. (2.22) can be eliminated from the action,
and we obtain an equivalent operator

Leff ⊃
3

N
θ

�
α2
16π

Wμν eWμν −
αY
8π

BμνB̃μν

�
; ð2:26Þ

with Wμν the SUð2ÞL field strength, Bμν the Uð1ÞY field

strength, and eWμν and eBμν their respective duals. The factors
α2 ¼ g22=ð4πÞ and αY ¼ g2Y=ð4πÞ are the weak and hyper-
charge gauge coupling constants, respectively. Such an
axionlike coupling of θ to the gauge bosons can naturally
arise in the UV theory, independent of baryon number
[45–50], if the normalization of the interaction is given by

N ¼ 3=n for n ¼ 1; 2;…: ð2:27Þ

In what follows, we shall take n ¼ 1 for simplicity.

2. Source for (B−L) violation

In addition to spontaneous CPT-violation, to satisfy the
conditions for baryogenesis some B-violating interactions
must also exist. The early-universe plasma is naturally
equipped with such processes through weak sphaleron
transitions. However, since the weak sphalerons preserve
(B − L), any baryon number generated through the sponta-
neous baryogenesis mechanism will still be annihilated
once the axion settles to its minimum vacuum value. It is
therefore essential that our theory also include interactions
which break (B − L). A well-motivated way to invoke
such terms is through physics in the neutrino sector, where
heavy right-handed neutrinos offer a natural explanation of
neutrino masses and other associated phenomena. In the
low-energy theory these appear in the form of a Weinberg
operator

L=L ¼ ðliHÞðljHÞ
2M�

; ð2:28Þ

where li is an SM lepton doublet, H is the Higgs doublet,
and neutrino observables determine the mass scale
M� ≃ ð1014–1015Þ GeV. Of course, the Weinberg operator
breaks lepton number L in addition to (B − L), so we shall
denote associated processes by =L. The existence of heavy
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right-handed neutrinos in the early universe may also
lead to successful thermal leptogenesis through out-of-
equilibrium decays [51]. However, our study is dissociated
from these models since M� is sufficiently heavy that the
right-handed neutrinos are never produced in the thermal
bath. The operator in Eq. (2.28) thus remains valid
throughout our analysis.

3. Boltzmann evolution of asymmetry

Under the spontaneous breaking of CPT by the term
in Eq. (2.24), one may readily show that for sufficiently
rapid (B − L)-violating processes, we obtain an equilibrium
number-density asymmetry

neqB−L ¼ 1

6
μB−LT2

�
1þO

�
μB−L
T

�
2
�
; ð2:29Þ

where μB−L is the effective chemical potential associated
with (B − L). However, the asymmetry is not necessarily
generated at equilibrium; rather, its evolution is more
generally described by the Boltzmann equation

ṅB−L þ 3HnB−L ¼ −Γ=LðnB−L − neqB−LÞ: ð2:30Þ

A detailed derivation of the Boltzmann equation, in which
we account for the role of sphaleron transitions in the
plasma, is provided in Appendix B. Implementing these,
we can extract the interaction rate

Γ=L ¼ 9ð171þ 65Nf − 6N2
fÞ

45þ 73Nf − 3N2
f

·
γ=L
T3

; ð2:31Þ

in which

γ=L ¼ Oð0.01Þ T
6

M2�
ð2:32Þ

is the thermally averaged scattering rate density for processes
sourced by the Weinberg operator in Eq. (2.28), and Nf

denotes the number of generations with Yukawa interactions
in equilibrium during baryogenesis. The effective chemical
potential is likewise given by

μB−L ¼ −gðNfÞ · ∂0θ; ð2:33Þ

for which the coefficient is derived in Eq. (B22):

gðNfÞ ¼
4

3
·
36þ 65Nf − 6N2

f

171þ 65Nf − 6N2
f

: ð2:34Þ

The weak sphaleron processes eventually decouple, and the
final baryon number is set according to

nB ¼ 28

79
nB−L: ð2:35Þ

The characteristic scale which determines the final
nB−L is the temperature TD at which the processes derived
from L=L decouple. In explicit terms, we define TD as the

temperature at which the Hubble rate becomes dominant
H ≥ Γ=L. It is expressed as

TD ≃OðfewÞ ffiffiffiffiffi
g�

p M2�
MP

; ð2:36Þ

which in our study will be given by TD ≈ 1013 GeV. The
conclusion we draw is that, given the assumptions above, a
relatively high reheating temperature TRH ≳ TD is necessary
for processes sourced by Eq. (2.28) to achieve equilibrium.
Depending on the temperature regime of the early radiation-
dominated epoch, there are several different ways in which
baryogenesis may unfold. To explore these in more detail,
let us work instead with comoving quantities, such as the
abundance YB−L ≡ nB−L=s, in which

s ¼ 2π2

45
g�ST3 ð2:37Þ

is the entropy density. It is then straightforward to determine
the corresponding Boltzmann evolution

dYB−L

dT
¼ YB−L − Yeq

B−L
TD

; ð2:38Þ

where the equilibrium value Yeq
B−L ≡ neqB−L=s is defined

analogously to Eq. (2.29). An integral solution follows as

YB−LðTÞ ¼
Z

TRH

T
dT 0

�
e−ðT 0−TÞ=TD

TD

�
Yeq
B−LðT 0Þ: ð2:39Þ

There are different limiting behaviors, depending on the
relative size of the temperatures TD and TRH, corresponding
to equilibrium and out-of-equilibrium production. Below,
we discuss each of these cases.

4. Equilibrium production

In the TD ≪ TRH regime, the function enclosed within
square brackets of Eq. (2.39) approaches a Dirac delta
function δðT 0 − TÞ, which holds for temperatures T > TD.
The asymmetry closely follows its equilibrium value
YB−LðTÞ ≃ Yeq

B−LðTÞ in that regime and reproduces the
result in Eq. (2.29). However, once the plasma cools
below T < TD, equilibrium productions ceases and the
asymmetry “freezes out.” Therefore, we obtain a late-time
asymmetry
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YB−L ≃ Yeq
B−LðTDÞ: ð2:40Þ

The interplay between the equilibrium production of
YB−L and the axion dynamics is significant in determining
the final baryon asymmetry. In particular, the late-time
yield can be ruined if decoupling does not occur until
after the axion undergoes oscillations—in this event μB−L
oscillates as well, and the asymmetry is washed out. Almost
as severely, if decoupling occurs within the tracking period,
the field velocity and thus YB−L is considerably weakened.
In the context of equilibrium production we shall then
assume that

Λ2

f
≪

ffiffiffi
5

p
HðTDÞ ≈ 3T2

D=MP; ð2:41Þ

which implies the field is slowly rolling at decoupling.
The yield is then determined by the slow-roll trajectory in
Eq. (2.10) and we find an approximate expression

YB−L ∼ 10−3
1

ϵ2n
m2

ϕMP

T3
D

: ð2:42Þ

Note that taking ϵ to smaller values, and thereby deforming
the potential more acutely, corresponds to an enhancement
in the matter-antimatter asymmetry.

5. Out-of-equilibrium production

Let us now consider the opposite temperature regime,
in which reheating occurs below the scale of decoupling
TRH < TD. In such a scenario, processes which violate
(B − L) are always out-of-equilibrium, i.e., YB−L < Yeq

B−L
for all temperatures. Consequently, the asymmetry produc-
tion occurs in a different fashion, weakly but persistently
driven by the Yeq

B−L=TD term in Eq. (2.38). The production
mechanism here is analogous to the “freeze-in” production
in the DM literature [52]. It is straightforward to obtain
the yield

YB−L ≃
32

25π2g�

Λ2

fTD
IðθinÞ; ð2:43Þ

in which the integral IðθÞ is defined by

IðθÞ≡
Z

∞

0

du
1

u
dθ
du

; ð2:44Þ

for a dimensionless temporal parameter u≡ Λ2t=f. It can
be shown using Eq. (2.2) that IðθinÞ gives only an Oð1Þ
contribution. Finally, assuming baryogenesis occurs at
temperatures T ≳ 100 GeV, we conclude that

YB−L ∼ 10−3
Λ2

fTD
¼ 10−3

1

ϵn
mϕ

TD
ð2:45Þ

within order-of-magnitude accuracy.
We observe for both the equilibrium production in

Eq. (2.40) and the out-of-equilibrium production above,
for a fixed axion mass the asymmetry is enhanced by
deformations ϵ ≪ 1 in the potential. Thus, possibilities for
model-building can exist in either of these two regimes.
On another note, by comparing the scaling behavior for

the axion relic abundance Ωϕ ∝ ϵ2ð1−nÞ [see Eq. (2.20)] to
the estimates for the late-time asymmetry YB−L above, we
find that n ¼ 1 has some intriguing properties. In particular,
while the baryon asymmetry is always enhanced by ϵ ≪ 1,
the relic abundance is unaffected for n ¼ 1, providing us
with some modularity between these two cosmological
quantities. We shall investigate these details further in the
context of the explicit model constructed in Sec. III, which
is specific to the n ¼ 1 case.

C. Isocurvature perturbations

As alluded to above, for successful baryogenesis the
axion must be relatively light Λ2=f ≪ HI during inflation,
for an inflationary Hubble scale HI . Therefore, it is subject
to quantum fluctuations with amplitude

δϕin ¼
HI

2π
; ð2:46Þ

in the pure-de Sitter limit. As a result, we find correspond-
ing fluctuations in the angular field

δθin ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi
ZðθinÞ

p HI

2πf
: ð2:47Þ

The sources of primordial scalar perturbations are
decomposed into linearly independent adiabatic and iso-
curvature modes, i.e., perturbations to the total energy
density and the local equation of state, respectively. The
fluctuations δθin source only the isocurvature mode, which
is subdominant and tightly constrained by observations of
the CMB [53]. Furthermore, since the baryon asymmetry is
generated via the effective chemical potential μB−L ∼ ∂0θ,
baryonic isocurvature perturbations δYB also exist and play
an important role.
As illustrated in Sec. II A, the presence of a tracking

region in the canonical potential VeffðϕÞ renders the late-
time axion dynamics insensitive to the initial field displace-
ment. Consequently, the axionic isocurvature perturbations
are generically suppressed with a magnitude corresponding
to the duration of the tracking period.4 In the remainder of

4In the explicit model realization covered in Sec. II C, we give
a more rigorous illustration of this phenomenon, supplemented
by a full numerical simulation of the system of perturbations.
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this section, we shall assume tracking lasts for a sufficiently
long period that we may focus exclusively on the baryonic
component.
As discussed above, YB may be populated while driving

the system either at equilibrium (freeze-out) or out-of-
equilibrium (freeze-in). In the former case, the baryon
asymmetry produced is simply YB ≈ Yeq

B ∝ μB−L evaluated
at the decoupling temperature TD. Therefore, the baryonic
perturbation is

δYB

YB
≃
δμB−L
μB−L

¼ d log μeqB−L
dθ

1ffiffiffiffiffiffiffiffiffiffi
ZðθÞp HI

2πf

����
θin

¼ d log θ̇
dθ

1ffiffiffiffiffiffiffiffiffiffi
ZðθÞp HI

2πf

����
θin

; ð2:48Þ

also evaluated at TD. As before, we assume decoupling
occurs during the slow-roll period, so the trajectory is given
by Eq. (2.10):

θ̇ ≃ −
1

5H
Λ4

f2
1

ZðθÞ
dU
dθ

; ð2:49Þ

which we have written in the non-canonical basis.
Assuming the field moves negligibly from its initial
misalignment θ ≃ θin, the approximate isocurvature is

PSS ≃
1

ZðθÞ
�

ΩB

ΩCDM

HI

2πf

�
2
�
U00ðθÞ
UðθÞ −

Z0ðθÞ
ZðθÞ

�
2
����
θin

ð2:50Þ

where a prime denotes a derivative with respect to the
field θ. Interestingly, the two terms in Eq. (2.50) may have
opposite signs, allowing for cancellations and a vanishing
perturbation. Additionally, the first term can clearly vanish
if θin sits at any of its inflection points.
On the other hand, in the case of out-of-equilibrium

production, we can derive the baryonic perturbation
directly from Eq. (2.43):

δYB

YB
≃
d log IðθÞ

dθ
1ffiffiffiffiffiffiffiffiffiffi
ZðθÞp HI

2πf

����
θin

; ð2:51Þ

which results in the expression for the power

PSS ≃
1

ZðθÞ
�

ΩB

ΩCDM

HI

2πf

�
2
�
d log IðθÞ

dθ

�
2
����
θin

: ð2:52Þ

The integral IðθinÞ is over time [see Eq. (2.44)] and
therefore it is not a simple function of the potential or
its derivatives. Instead, these results must be obtained
numerically from the equation of motion.
The power spectra in Eq. (2.50) and Eq. (2.52) act as

constraints on the parameter space given an explicit model
realization. In the remainder of this paper, we shall consider
such a concrete model, and show a more detailed study of

its phenomenology and cosmological constraints, using
numerical simulations where necessary.

III. AN EXPLICIT MODEL:
THE CONTINUUM-CLOCKWORK AXION

In Sec. II, we described a general construction by which
an axionlike field θ may dynamically generate matter-
antimatter asymmetry in the early universe, while also
serving as a plausible DM candidate. The crux of this
approach is the appearance of a field-dependent wave
function renormalization ZðθÞ that meets some basic
requirements. In particular, if the wave function is enhanced
Z ≫ 1 near the minimum of the axion potential, but remains
Z ¼ Oð1Þ elsewhere, then the potential VeffðϕÞ for the
canonically normalized field ϕ is “deformed” in a way that
suppresses its mass, generically suppresses its couplings, and
can dramatically alter its dynamics.
In this section, we demonstrate that models exist with

the ingredients necessary to furnish such a wave function
renormalization. As an explicit example, we focus on
“continuum-clockwork” (CCW) [54–57] axion models,5

incorporating the interactions necessary for spontaneous
baryogenesis along the lines of Sec. II B. We show that
regions of parameter space exist in which both the observed
baryon asymmetry and dark matter abundance are pro-
duced. Furthermore, we show that other phenomenological
constraints, such as those from decays and isocurvature
perturbations, are adequately contained.

A. Overall features and construction

The hallmark of the “clockwork mechanism” [58–61] is
the generation of an exponential hierarchy of couplings
in theories with exclusively Oð1Þ input parameters. There
have been many studies and implementations, including on
the QCD axion [62–67], dark matter [68–71], cosmological
topics [72–76], flavor physics [77–80], and generalizations
or more formal aspects [54–57,81–85].
To introduce this idea more explicitly, let us consider a

model with N þ 1 scalars χi. The clockwork mechanism
typically arises through “nearest-neighbor” interactions
between adjacent scalars, such as through terms propor-
tional to ðχiþ1 − qχiÞ2, where q > 1 is a dimensionless
parameter. Then, the lightest mass eigenstate ϕ in the
system exhibits most of the interesting phenomenology.
In particular, if the χi have couplings Qi to some other
sector, then these contribute to the coupling for ϕ as

Qϕ ∝
XN
i¼0

Qi

qN−i : ð3:1Þ

That is, the coupling for the lightest state is determined
through a nonuniform distribution over the Qi. As
their contributions are weighted by powers 1=qN−i, the

5In the formalism below we rely heavily on Ref. [57].
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distribution is effectively “localized” toward QN , where
the parameter q sets the strength of the localization.
A natural extension of this idea is to construct the

clockwork mechanism in the continuum limit N → ∞,
where the theory is reinterpreted as that of a discretized
compact extra dimension. In the continuum, the nearest-
neighbor interactions composed of χiþ1 − qχi are mapped
onto ∂yχðx; yÞ −mχðx; yÞ, where m > 0, the extra spatial
coordinate is y, and χðx; yÞ is now a five-dimensional scalar
field. This type of combination can be realized by bulk and
boundary mass terms. Moreover, several of the phenomena
found in the discrete clockwork theory are mapped onto
the extra-dimensional theory in some way. In particular,
the profile for the zero-mode is exponentially localized
toward a boundary in the extra dimension, analogous to the
localization of the coupling in Eq. (3.1). Similar phenom-
enological implications arise from this as well, such as the
suppression of couplings to other boundary operators.
Furthermore, interesting observations can be made if the

CCW theory is constructed from a five-dimensional angu-
lar field θðx; yÞ. Due to the periodicity θ → θ þ 2π, the
clockwork interactions should have the general form
∂yθðx; yÞ −mVðθÞ, for periodic VðθÞ ¼ Vðθ þ 2πÞ. As
discussed in Ref. [57], this results in a more nontrivial
localization of the lightest mode along the extra dimension,
which has subtle implications for the axion couplings and
its dynamics. While the specific details are beyond the
scope of this paper, it provides us the essential features
by which we shall realize a field-dependent wave function
renormalization of the form proposed in Sec. II.
Let us therefore begin by considering the action for this

particular five-dimensional realization:

Sθ ¼
f35
2

Z
d4xdy½ð∂μθÞ2 − ð∂yθ −m sin θÞ2�; ð3:2Þ

where we compactify over an S1=Z2 orbifold of radius R,
and m sets the scale for bulk and boundary terms. The SM
fields are assumed to be confined to the y ¼ 0 brane and flat
space is assumed for tractability. It follows that a massless
four-dimensional mode ϕðxÞ is found in the spectrum:

tan

�
θðx; yÞ

2

�
¼ emyu½ϕðxÞ�; ð3:3Þ

where the function u½ϕ� enforces canonical normalization
for ϕ over its domain. Namely, we define

u½ϕ�≡ e−πmRsc

�
ϕ

2f

����1 − e−2πmR

�
ð3:4Þ

in which f2 ≡ f35ð1 − e−2πmRÞ=ð2mÞ and sc½·j·� is a Jacobi
elliptic function. Integrating out the higher KK modes
and the compact dimension, we construct the low-energy
effective action

Sθ ≈
1

2

Z
d4x

f35
m

ð∂μθÞ2
coth ðπmRÞ − cos θ

; ð3:5Þ

where it is understood that θ≡ θðx; 0Þ is evaluated at the
y ¼ 0 brane. The wave function renormalization as defined
in Eq. (2.1) is easily extracted:

ZðθÞ ≃ 1

coth ðπmRÞ − cos θ
: ð3:6Þ

In the regimemR≳OðfewÞ that clockwork has a substantial
effect, this reduces to

ZðθÞ ≃ 2

1þ 2ϵ2 − cos θ
; ð3:7Þ

where ϵ≡ e−πmR is a small parameter. It is manifest
that ZðθÞ≃Oð1Þ near the boundaries of field space and
ZðθÞ≫1 near the origin. Furthermore, expanding about the
origin we find ZðθÞ ≈ 4=θ2, which is the necessary scaling
to ensure the desired “tracking” dynamics. It is then evident
that the CCW axion reproduces the n ¼ 1 form of Eq. (2.7)
and we can conclude: CCW axions satisfy our minimal set of
requirements on the wave function renormalization ZðθÞ.
Having satisfied the minimal set of conditions from

Sec. II, let us further investigate the details of this model.
While the symmetry of the action in Eq. (3.2) yields a
massless zero-mode ϕ, any small deviation in boundary
masses will generate an effective four-dimensional poten-
tial Λ4ð1 − cos θÞ, which in the canonical basis reads

VeffðϕÞ ¼
2Λ4

1þ 1
u2½ϕ�

: ð3:8Þ

While VeffðϕÞ is periodic in ϕ, it is important to note the
period is not given by 2πf, but rather by the expression

2πfeff ≡ 4fKð1 − ϵ2Þ⟶
ϵ2≪1

2f log

�
16

ϵ2

�
; ð3:9Þ

where Kð·Þ is the complete elliptic integral of the first
kind. As a result, the field range of the canonical four-
dimensional axion is effectively extended for finite mR.
In Fig. 2 the potential is shown for several values of

mR, normalized so that the curves all span the same
domain. As soon as we exceed mR≳OðfewÞ the potential
quickly shows substantial deformations, with the minimum
flattened along most of the field range. The resulting axion
mass

m2
ϕ ≡ ∂2Veff

∂ϕ2

����
ϕ¼0

¼ e−2πmR Λ
4

f2
; ð3:10Þ

is exponentially suppressed relative to the standardmR ¼ 0
sinusoidal potential. Indeed, the suppression of this mass
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scale confirms the CCW axion model is equipped with one
of the imperative features.
The other feature necessary to avoid phenomenological

complications is the suppression of axion decays to SM
states. In the discrete clockwork theory described above
Eq. (3.1), this suppression would arise for the light state ϕ if
the SM were coupled to the endpoint χ0 opposite to where
ϕ is localized. Analogously, in the continuum limit this
corresponds to SM fields confined to the y ¼ 0 brane. In
other words, if we have an interaction between the axion
and some generic SM operator OðxÞ

Sθ ⊃
Z

d4xθðx; 0ÞOðxÞ; ð3:11Þ

we can write it in the canonical basis using

ϕ ¼ f
Z ffiffiffiffiffiffiffiffiffiffi

ZðθÞ
p

dθ ≈
πfeff
ϵ

Fðθ
2
j − 1

ϵ2
Þ

Kð1 − ϵ2Þ ; ð3:12Þ

where Fð·j·Þ is the incomplete elliptic integral of the first
kind. Let us examine how the coupling is affected for larger
mR. Away from the minimum of the potential ϕ ≈ πfeff is
quickly approached and thus the coupling is not signifi-
cantly affected beyond the minor enhancement of feff .
However, around the minimum Eq. (3.12) reduces to
θ ≈ ϵϕ=f, so that couplings to ϕ are exponentially sup-
pressed. For example, ifwe take the operatorOðxÞ ∼ Fμν

eFμν,

for some SM field strength Fμν and its dual eFμν, then the
axion decay rate suffers a suppression

Γϕ ∝
1

Zð0Þ
m3

ϕ

f2
¼ ϵ2 ·

m3
ϕ

f2
: ð3:13Þ

Note that this suppression acts in addition to that implicitly
included in the mass [see Eq. (3.10)].

B. Early dynamics and baryogenesis

Above we have constructed the axion sector of the theory,
however, we must also incorporate the necessary ingredients
for baryogenesis. We shall proceed in a manner parallel
with Sec. II B, specializing our analysis to the continuum-
clockwork model. As we argued previously, the motion of
the axion ∂0ϕ ≠ 0 spontaneously breaksCPT symmetry if it
couples derivatively to a baryon current, as in Eq. (2.22). In
addition, the Weinberg operator in Eq. (2.28) provides a
source for processes that violate (B − L). Assuming a similar
interaction in this model, the effective chemical potential
from Eq. (2.33) in the canonical basis takes the form

μB−Lðϕ; ϕ̇Þ ¼ −gðNfÞ ·
1

2Λ4 j ∂Veff∂ϕ jϕ̇ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − Veff

2Λ4Þ Veff
2Λ4

q ; ð3:14Þ

where VeffðϕÞ was used for a more succinct expression.
In order to numerically simulate the early dynamics

we make several assumptions. Let us suppose a period of
inflation with Hubble parameterHI during which the axion
is misaligned from the minimum of its potential by an angle
θin ∈ ½−π; π�. Then, the reheating epoch is modeled by
assuming the energy density in the inflaton ρI ≈ 3M2

PH
2
I

decays into radiation ρR at some rate ΓI. It follows that
these quantities evolve as

ρ̇I þ 3HρI ¼ −ΓIρI

ρ̇R þ 4HρR ¼ þΓIρI þ Γϕρϕ; ð3:15Þ
where the Hubble parameter is given by

H2 ¼ ρI þ ρR þ ρϕ
3M2

P
; ð3:16Þ

and

ρϕ ¼ 1

2
ϕ̇2 þ VeffðϕÞ ð3:17Þ

is the energy density in the axion field. Meanwhile, the
axion equation of motion reads

ϕ̈þ ð3H þ ΓϕÞϕ̇þ ∂Veff

∂ϕ ¼ ∂μB−L
∂ϕ̇ Γ=LðnB−L − neqB−LÞ:

ð3:18Þ
The term on the right-hand side is due to backreaction from
(B − L) generation and is usually negligible. As the axion
is set into motion it drives the production of YB−L, which
follows the Boltzmann evolution in Eq. (2.38).

FIG. 2. The effective 4D canonical potential VeffðϕÞ that arises
for a continuum-clockwork axion, where the different curves
show various choices for the clockwork parameter mR, and the
horizontal axis is normalized such that curves are plotted over the
full field range ϕ ∈ ½−πfeff ;þπfeff �.
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In Fig. 3 the evolution of two types of quantities—the
cosmological abundances Ωi ≡ ρi=ð3M2

PH
2Þ and abun-

dance YB−L—are shown in the two rows of panels, as
functions of the number of e-folds since reheating
logða=aRHÞ. Almost all parameters are held fixed: the
mass mϕ ¼ 1 eV, effective scale feff ¼ 1013 GeV, and
misalignment angle θin ¼ 3π=4. However, we have varied
the strength of the clockwork mechanism mR ¼ f0; 2; 10g
in each column. Therefore, the left-hand column shows
dynamics for the traditional sinusoidal axion potential,
the right-hand column shows a substantially deformed
potential, and the center column shows an intermediate
case between these two regimes.
Note that results are sensitive to inflationary scales ΓI

or HI only if they are exceeded by the initial scale of
curvature

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijV 00
effðϕinÞj

p
≈mϕeπmR. The curvature exceed-

ing HI implies the axion is a heavy field during inflation
and we shall exclude this region. On the other hand, if
the curvature exceeds ΓI it implies the axion is set in
motion prior to reheating. Then, washout effects that
suppress the asymmetry can become sizeable. In this
section, we look to identify phenomenologically viable
regions of parameter space, and thus as a simplifying
assumption we take these scales to be comparable
ΓI ∼HI .

The influence from the variation of mR in Fig. 3 is seen
most immediately in the plots of YB−L. The deformation of
the potential sets the axion in motion at higher temper-
atures. Nevertheless, we always find Γ=L=H ≲ 1 such that

YB−L never exactly tracks the equilibrium value Yeq
B−L, i.e.,

this model exhibits the “freeze-in” spontaneous baryo-
genesis discussed in Sec. II, in contrast to more common
examples in the literature. As a result, the asymmetry is
mostly set during the fast-roll period and remains frozen at
that value. Using the estimate in Eq. (2.45) and evaluating
at the fast-roll temperature TFR from Eq. (2.12) we find

YB−L

Yeq
B−L

≈
1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

5

mϕMP

T2
D

s
eπmR=2; ð3:19Þ

when production ceases. The above expression demon-
strates how the deformation of the potential through the
clockwork mechanism (i.e., the exponential factor eπmR=2)
enables sufficient baryogenesis while maintaining a rela-
tively light axion.
Another interesting dynamical feature is found in the

mR ¼ 12 column of Fig. 3. Although the deformation of
VeffðϕÞ sets the axion in motion earlier, it does not undergo
coherent oscillations until much later when 3H ≲mϕ.

FIG. 3. A numerical simulation of the dynamics in the explicit realization of our scheme, using a continuum-clockwork axion. In each
column, a different clockwork strength mR ∈ ½0; 2; 10� is used. The rows show the evolution of cosmological abundances Ωi ¼
fΩI;ΩR;Ωϕg and YB−L ≡ nB−L=s, as a function of the number of e-folds since reheating logða=aRHÞ, respectively. The axion mass
mϕ ¼ 1 eV, initial misalignment θin ¼ 3π=4, and scales for inflation HI ¼ ΓI ¼ 108 GeV are fixed. The equilibrium Yeq

B−L curves
indicate that spontaneous baryogenesis proceeds out-of-equilibrium in this model, as also indicated by the Γ=L=H values marked by

vertical gray-dashed lines. AsmR is increased, despite the mass being fixed, production of asymmetry is exponentially more efficient. In
the right-hand panel the “tracking” behavior of Sec. II A 2 appears for the axion, during which the field does not oscillate, but follows a
radiationlike equation of state wϕ ≈ 1=3, matching that of the background.
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Instead, during this period the trajectory is such that Ωϕ is
temporarily fixed, with a radiationlike equation of state
wϕ ≈ 1=3. Indeed, we have identified the “tracking” phe-
nomenon, which we have discussed in more generality in
Sec. II A 2. We expect this dynamics to occur over the field
range where ZðθÞ∼1=θ2∼ejϕj=f, and taking mR≳OðfewÞ
is sufficient to generate such a region. We find that

VeffðϕÞ ≈
1

2
m2

ϕf
2ejϕj=f ð3:20Þ

is a good approximation over f ≲ jϕj≲ ðlog 2þ 2πmRÞf.
The enhancement of the axion field range by feff=f ≈
1þ 2mR makes such a displacement easy to achieve.
The trajectory of the tracker is found using that

1þ wϕ

1 − wϕ
¼

1
2
ϕ̇2

VeffðϕÞ
ð3:21Þ

is approximately constant. The resulting solution

jϕðtÞj ≈ −2f log
�
e−

jϕtr j
2f þmϕðt − ttrÞffiffiffi

2
p

�
; ð3:22Þ

naturally depends weakly on the initial field amplitude
ϕtr ≡ ϕðttrÞ as it enters the tracking epoch. Considering that
tracking ends once mϕt ∼Oð1Þ, the dependence on ϕtr is
ultimately washed away if ϕtr ≳ feff . Therefore, for suffi-
ciently deformed potentials the late-time axion field is
insensitive to the initial misalignment angle θin, in contrast
to the standard mR ¼ 0 case.

C. Survey of viable regions

We are now in a position to discuss the phenomeno-
logical viability of this explicit model. As a first require-
ment we must verify the existence of regions in parameter
space which have both the observed dark matter abundance
Ωobs

DM ≈ 0.26 and baryon abundance Yobs
B ≈ 8.6 × 10−11.

Furthermore, regions in which the axion is not sufficiently
stable, i.e., lifetimes longer than τϕ ≳ 1026 sec [86,87],
must be excluded. Indeed, regions with substantial defor-
mations are where we expect to find viability in these
respects.
As we have found above, such a regime is also associated

with a tracking period for the axion. While tracking has
little direct effect on the development of baryon asymmetry,
it does have an marked influence on the relic abundance
Ωϕ. Namely, employing the tracking-field solution in
Eq. (3.22) we find at the onset of coherent oscillations
ρϕ ≈m2

ϕf
2, so that at present day

Ωϕh2 ≈ 0.12

�
feff

1013 GeV
·
12

mR

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mϕ

0.53 eV

r
; ð3:23Þ

In the region of interest mR≳OðfewÞ we find agreement
with numerical computations to ≲10%. Note that the
insensitivity of Ωϕ to the initial misalignment angle θin
is a result of the attractorlike dynamics and distinguishes
our result from the standard axion cosmology.
An analytical approximation for the baryon asymmetry

can also be constructed using the general result in
Eq. (2.45), taking the integrated Oð1Þ factor to be unity.
We find an approximate expression

YB ∼ 10−10
�

mϕ

0.53 eV

�
eπðmR−12Þ; ð3:24Þ

which holds to at least order-of-magnitude accuracy
throughout the parameter space.
The results of our numerical simulations span the

fmϕ; mR; feffg space and are shown in Fig. 4. In each
panel, contours show both the normalized baryon abundance
YB=Yobs

B (black) and axion abundance Ωϕ=Ωobs
DM (yellow).

The sole distinction between each panel is the choice for the
scale feff . The green regions show exclusions due to axion
decays. As expected from Eq. (3.13), for even moderately
large mR these regions are substantially reduced in size.
The points of intersection between the two thickest curves
correspond to viable configurations that match observations,
and these plots show that viable regions exist over all the
panels shown in Fig. 4. The only constraints not yet applied
are bounds on isocurvature perturbations, which is the focus
for the remainder of the section.

D. Isocurvature perturbations

In the more general analysis provided in Sec. II C,
several significant observations were made regarding the
axionic and baryonic isocurvature perturbations. Moreover,
power spectra for these perturbations were found for both
in-equilibrium and out-of-equilibrium production of the
baryon asymmetry. We conclude this section with a more
thorough treatment, in which the perturbation equations are
solved numerically, within the context of the continuum-
clockwork axion model.

1. System of perturbations

In our analysis, for perturbations of the FRW back-
ground, we use the conformal Newtonian gauge, defined
by the line element [88,89]:

ds2 ¼ ð1þ 2ΦÞdt2 − aðtÞ2ð1 − 2ΨÞdx⃗2; ð3:25Þ

where the scalar potentials Φ, Ψ are functions of space and
time. The anisotropic stress is vanishing in our model,
which implies an equivalence Ψ ¼ Φ.
The gravitational potential develops according to the

Einstein equations as [90]
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k2

a2
Φþ 3HðHΦþ Φ̇Þ ¼ −

δρtot
2M2

P
ð3:26Þ

for a comoving Fourier mode k, where δρtot is the sum of
energy density perturbations. Meanwhile, covariant stress-
energy conservation gives the evolution for matter d.o.f.
Namely, it gives axion perturbations

δϕ̈þ 3Hδϕ̇þ
�
k2

a2
þ V 00

effðϕÞ
�
δϕ ¼ 4ϕ̇ Φ̇−2V 0

effðϕÞΦ;

ð3:27Þ
and radiation perturbations

δ̇γ −
4

3
k2vBγ ¼ 4Φ̇; ð3:28Þ

as well as the velocity potential vBγ of the baryon-photon
fluid. However, for large-scale perturbations in our scenario
vBγ has a negligible influence. Finally, the perturbations in
lepton or baryon density are coupled to the axionic d.o.f.
through δμB−L ¼ δθ̇ðδϕ; δϕ̇Þ:

δ̇B −
k2

a2
vBγ ¼ −Γ=L

�
δB −

δμB−L
μB−L

�
Yeq
B

YB
þ 3Φ̇; ð3:29Þ

where the distinction between YB and YB−L as they appear
in these equations is inconsequential.

2. Initial conditions

Before discussing the features of this system in some
detail, let us first make our initial conditions and other

ancillary assumptions clear. The isocurvature mode is
formally defined by a vanishing initial condition for the
gauge-invariant curvature perturbation [89]

R≡ 2

3

HΦþ Φ̇
ð1þ wÞH þΦ; ð3:30Þ

and it follows that Φ, Φ̇, and δρtot (after enforcing the
Einstein equations) all have vanishing initial conditions
as well [91].
The stress-energy fluctuations are functions both of

perturbations in the field and the gravitational potential:

δρϕ ¼ ϕ̇δϕ̇ − ϕ̇2Φþ V 0
effðϕÞδϕ

δPϕ ¼ ϕ̇δϕ̇ − ϕ̇2Φ − V 0
effðϕÞδϕ; ð3:31Þ

so there is a nonzero initial axion perturbation

δϕ ≃
V 0
effðϕinÞ

VeffðϕinÞ
HI

2π
: ð3:32Þ

Note that in a more traditional scenario—e.g., the QCD
axion—the potential is flat until the confining phase
transition is approached, when it is finally generated by
instanton effects. Although the same nonzero field fluc-
tuation δϕ exists, the perturbation δϕ is vanishing until the
potential for the axion is generated. By contrast, in our case
VeffðϕÞ is established already during (or prior to) inflation.
As a result of this contrast and the deformation of the
potential in our model, we shall find several interesting

FIG. 4. The result of numerical simulations, showing the normalized baryon abundance YB=Yobs
B (black contours, blue shading) and

axion relic abundance Ωϕ=Ωobs
DM (yellow contours), plotted with respect to the axion mass mϕ and clockwork parameter mR. The two

thick curves mark where the observed values are attained. The scale feff is fixed to a different value in each panel, while the other
parameters are held fixed to values used in previous figures:HI ¼ 108 GeV and θin ¼ 3π=4. The hatched region rules axion oscillations
during inflation, while the green region shows where the axion is too unstable to decays (τϕ ≲ 1026 seconds) to serve as a DM candidate.
Other relevant constraints come from isocurvature perturbations, which we cover in Sec. III D.
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features in the evolution of axionic perturbations, even for
large-scale modes.

3. Axionic contribution

There are several significant observations to make that
are unique to the axionic contribution. To simplify the
discussion, we momentarily ignore the baryonic compo-
nent and define two gauge-invariant entropy perturbations.
One is intrinsic [92]:

Γ≡ δPϕ=ρϕ − c2ϕδϕ
1 − c2ϕ

; ð3:33Þ

where c2ϕ ≡ Ṗϕ=ρ̇ϕ is the adiabatic sound speed of the
axion fluid. The other is expressed relative to photons:

Sϕγ ≡ δϕ
1þ wϕ

−
3

4
δγ: ð3:34Þ

The relevant modes for our discussion are outside the
Hubble sphere k ≪ aH during the early evolution. At these
scales, the basis of gauge-invariant perturbations fΦ;Rg
and fΓ;Sϕγg is convenient, since these two sets decouple.
In particular, writing the perturbation equations in this basis
and simplifying the system for the tracking regime (i.e.,
taking wϕ → w ¼ 1

3
), we find [93]

1

2

d½ð1þ wϕÞSϕγ�
d log a

¼ −Γ

2½ð1þ wϕÞSϕγ� − Γ ¼ dΓ
d log a

: ð3:35Þ

The solutions for Sϕγ undergo damped harmonic oscilla-
tions every few e-folds, rapidly suppressing the axionic
isocurvature amplitude as6

Sϕγ ∝
1ffiffiffi
a

p : ð3:36Þ

It is instructive to view a numerical solution of the full
system of perturbations in this regime, focusing on the
tracking period. In Fig. 5 this is shown by the blue curve,
where we have highlighted the tracking phase. Indeed, a
few e-folds after reheating the axion begins to converge to
the tracker solution, and the amplitude of the isocurvature
perturbation falls as 1=

ffiffiffi
a

p
. The field eventually enters a

region of the potential which is approximately harmonic,
ending the tracking dynamics and thus concluding the
suppression. The isocurvature Sϕγ then undergoes some
short-lived transient oscillations before finally settling on
its asymptotic late-time value.

4. Baryonic contribution

The dynamical suppression of Sϕγ is significant, since it
could ensure that the baryonic contribution is dominant if
tracking lasts for a sufficient number of e-folds. Indeed, this
dominance was an assumption we made when deriving the
general power spectra in Sec. II C. The baryonic compo-
nent is defined in an analogous way:

SBγ ≡ δYB

YB
¼ δB −

3

4
δγ: ð3:37Þ

An example of numerical solutions for the evolution of
SBγ is shown in the solid-green curve of Fig. 5. Apart from
some early dynamical behavior as the baryon asymmetry
is being established, the SBγ perturbations are essentially
fixed after the fast-roll period. However, there are other
subtleties that we should outline.
Although the baryon asymmetry is typically produced

out-of-equilibrium in this model, a useful benchmark
comparison with regard to the perturbation spectrum is
the case of in-equilibrium production, which we have
shown as a dashed-green line in Fig. 5. We find that the
baryonic perturbations for different types of production
typically do not differ by more than an order of magnitude
throughout most of parameter space. However, there are

FIG. 5. The evolution of both the axionic Sϕγ (blue curve) and
baryonic SBγ (green curve) contributions to the isocurvature
mode, with a choice of parameters—mϕ ¼ 1 eV, mR ¼ 10,
feff ¼ 1013 GeV, θin ¼ 3=4, HI ¼ 108 GeV—similar to pre-
vious figures. The dashed-green curve shows the result in
Eq. (3.38), if spontaneous baryogenesis had occurred at equi-
librium, and the shaded-blue area indicates the tracking phase,
suppressing as Sϕγ ∝ 1=

ffiffiffi
a

p
over its duration.

6Similar effects have appeared in the literature on investiga-
tions of quintessence field perturbations [94–96].
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some particularly important exceptions. To this end, it is
instructive to derive an analytical approximation for the
equilibrium case in terms of the canonical field ϕ. Using the
proportionality YB−L ≈ Yeq

B−L ∝ μB−LT2 we find the pertur-
bation by evaluating

δB ≈
δμB−L
μB−L

¼ 1

μB−L

�∂μB−L
∂ϕ δϕþ ∂μB−L

∂ϕ̇ δϕ̇

�
ð3:38Þ

at the decoupling temperature TD. In previous investiga-
tions (e.g., Ref. [19]), a slow-roll approximation is used and
neither δϕ or ϕ are assumed to significantly evolve. Under
these conditions, we find an analytical expression:

SBγ ≈
�
2V 00

effðϕÞ
V 0
effðϕÞ

−
V 0
effðϕÞ

VeffðϕÞ
�
1 − Veff

Λ4

1 − Veff
2Λ4

�	����
ϕin

HI

2π
; ð3:39Þ

where the form of the expression is influenced by the
chemical potential being a function of both the velocity of
the canonical field and the field itself μB−L ∝ θ̇ðϕ; ϕ̇Þ.
Additionally, note the appearance in Eq. (3.39) of several
critical points for the initial field displacement ϕin: the two
terms may have opposite signs, allowing for cancellations
and a vanishing SBγ , and any inflection points in the
canonical potential cause the first term to vanish.
The behavior of the perturbations near these points can

dramatically change the isocurvature power spectrum,
making the baryonic contribution subdominant. While
the perturbations for out-of-equilibrium asymmetry pro-
duction cannot be found analytically in this way, it is
important to investigate how these effects are manifested
in that case, which is a question we shall continue to
address below.

5. Isocurvature bounds

The constraint on isocurvature from the CMB comes in
the form of an upper-bound on the uncorrelated “isocur-
vature fraction,” from Planck collaboration data [53]:

βisoðk�Þ≡ PSSðk�Þ
PRRðk�Þ þ PSSðk�Þ

< 0.038; ð3:40Þ

in which PRRðk�Þ ≈ 2.10 × 10−9 is the adiabatic power,
PSSðk�Þ is the isocurvature power, and each is evaluated at
the pivot scale k� ≡ 0.05 Mpc. The baryonic and axionic
contributions are exactly correlated due to their common
source, and appear as a weighted sum

PSSðkÞ≡
�

Ωϕ

ΩCDM
SϕγðkÞ þ

ΩB

ΩCDM
SBγðkÞ

�
2

; ð3:41Þ

where ΩB ≈ 0.0486 and ΩCDM ≈ 0.2589 are the cosmologi-
cal abundances for baryons and cold dark matter (CDM),
respectively.

Note that the total power spectrum PSS has the possibility
for cancellations between axionic and baryonic components.
This type of behavior is made more clear in the context
of our model by examining the perturbations as a function
of the misalignment angle θin. In the bottom panel of Fig. 6,
we plot the dependence of βisoðk�Þ on θin by numerically
solving the perturbation equations. The upper panels show
explicitly how theweighted isocurvature sources in Eq. (3.41)
contribute to the bottom panel. The different curves show
various choices formR, whilemϕ is taken to ensure the axions
have the observed DM abundance Ωϕ ≈ Ωobs

DM at θin ¼ 3π=4
(the value used in all previous figures). We have also included

FIG. 6. In the top two panels, numerical results for the baryonic
and axionic contributions to the isocurvature power PSSðk�Þ are
shown, respectively, as a function of the misalignment angle θin,
with the various curves showing different values of mR. The
values feff ¼ 1013 GeV andHI ¼ 108 GeVwere chosen, andmϕ

is set to satisfy Ωϕ ≈ Ωobs
DM. In the top panel, dashed curves show

the approximate equilibrium result of Eq. (3.39). In the bottom
panel, the isocurvature fraction βiso is computed for each curve,
comprising the total effect.
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the equilibrium result from Eq. (3.39) with dashed curves
in the top panel. Our interest is mostly in the behavior for at
least moderate values of θin, to ensure the field is misaligned
sufficiently from the minimum to enable adequate production
of baryon asymmetry.
In the mR ¼ 0 case of Fig. 6, the axionic isocurvature

is monotonic with θin and does not experience any sign
changes. However, as mR is increased both isocurvature
contributions show vanishing points that generally do not
coincide. We also confirm that as mR is increased tracking
effects suppress the axionic component, as seen through
the overall reduction in the Sϕγ amplitude. The effect is
more subtle toward the edge of field space, however, as
both contributions are enhanced with θin. The accumulation
of all the effects is that as we deform the potential, the
baryon asymmetry is amplified exponentially as eπmR,
while the isocurvature is increasingly suppressed at mod-
erately large misalignment angles, focused roughly around
the θin ∼ 3π=4 region.
While these discussions are instructive in forming a

qualitative picture of the perturbations, our interest ulti-
mately is in producing exclusion regions over the plots in
Fig. 4. Therefore, we solve the perturbation equations over
the full parameter space and mark regions that violate
Eq. (3.40). These are indicated by dark-red in Fig. 7, while
all other features and parameter choices are identical to
Fig. 4, as discussed previously. We immediately observe
that the viable regions in which the baryon abundance YB
(black contours) and axion abundance Ωϕ (yellow con-
tours) are produced in the observed amounts remain safely
outside the exclusion region.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we have investigated the possibility that
both the baryon asymmetry of the universe and dark matter
may be accounted for by a single axionlike field. In this

scenario, the early-universe dynamics of the axion drives
a period of spontaneous baryogenesis, during which the
observed baryon asymmetry is produced. As the axion field
settles to the minimum of its potential, it undergoes
coherent oscillations, which behave cosmologically as dark
matter at late times. Typically, to generate the observed
baryon asymmetry, a relatively “steep” axion potential is
required in the region where the axion initially rolls. The
corresponding axion mass is large and highly unstable
against decays, making it inadequate as a dark matter
candidate. However, we have shown that a field-dependent
wave function renormalization can arise which effectively
“deforms” the axion potential, inducing a mismatch in
curvature between different regions. In this way, novel
possibilities have emerged, as we can not only generate the
observed baryon and dark matter abundance jointly, but the
axion dynamics can also exhibit dramatic modifications.
In Sec. II, we have given a general description of the

type of wave function renormalization necessary to
realize such a scenario. Namely, with an enhancement
Zðθ ≲ ϵÞ ≃ 1=ϵ2n near the minimum of the axion potential,
and Zðθ ≃ θinÞ ¼ Oð1Þ near the edges, the necessary
deformations in the canonical potential are generated.
Specifically, for ϵ ≪ 1 this has the effect of flattening
the potential near its minimum while leaving its shape
toward the edges of field space unaltered. The late-time
mass is then suppressed by a factor of ϵn, while the effective
chemical potential which efficiently drives spontaneous
baryogenesis is retained. Moreover, the wave function
enhancement also has the effect of suppressing the axion
decay width by a factor of ϵ2n. As we have discussed, the
culmination of these features is that the general arrangement
in Sec. II can yield the observed baryon asymmetry, while
maintaining a sufficiently light and stable axion dark matter
candidate. We have investigated the production of baryon
asymmetry—both in-equilibrium and out-of-equilibrium—
and found that both cases present compelling possibilities.

FIG. 7. The result from Fig. 4, now including exclusion regions from isocurvature constraints (in red).
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Meanwhile, to interpolate between the two regions of the
wave function, we implemented a simple power-law form
ZðθÞ ≃ 1=θ2n. As a result, we have shown that the axion
exhibits a “tracking” behavior as it transits through this
region. The field follows an attractorlike trajectory in which
its late-time evolution is made increasingly insensitive to
initial conditions. This phenomenon implies not only an
axion relic abundance which is insensitive to the initial
misalignment angle, but also a suppression of its isocurva-
ture perturbations. We also have described how the axion
equation-of-state parameter during this period converges
to a nontrivial value wϕ → ð1þ w − nÞ=n, which reflects
the shape of the potential through its dependence on the
parameter n.
In Sec. III, we have supplied a “proof of concept” by

constructing an explicit model using the five-dimensional
continuum-clockwork axion, which serves as a realization of
the more general scenario described in Sec. II. In particular,
by integrating out the heavy KK modes and examining the
theory for the lightest four-dimensional axion, we have
shown that such a model furnishes a wave function renorm-
alization ZðθÞ with similar properties to the n ¼ 1 case of
Sec. II. The small parameter ϵ that determines the deforma-
tion of the axion potential is mapped onto a factor eπmR in the
clockwork theory, such that the scale of bulk and boundary
masses m and the size of the extra dimension R together
set the strength of the deformation. We have shown (see, for
example, Fig. 3) that spontaneous baryogenesis in this model
is typically accomplished via out-of-equilibrium production,
in contrast to many of the conventional spontaneous baryo-
genesis models in the literature. Moreover, we have also
recovered the anticipated tracking dynamics in this model,
as the clockwork parameters exceedmR≳OðfewÞ. We have
determined regions of phenomenological viability by pro-
ducing a set of numerical simulations over the parameter
space. Namely, in Fig. 4 we have shown the produced
baryon asymmetry and axion relic abundance over a range
of parameters and found several viable regions.
We have also, at the close of Sec. III, given a more

thorough treatment of the large-scale isocurvature pertur-
bations produced in this model, which include both
axionic and baryonic components. The evolution of these
components in the early universe is made nontrivial by
the deformations to the potential. As anticipated in Sec. II,
the axionic component is suppressed by tracking dynamics,
and we have determined that in most regions the baryonic
isocurvature component is dominant. Furthermore, we have
demonstrated an interesting dependence of the perturbations
on the initial misalignment angle θin. There are certain
critical points for θin where sign-changes can occur in the
amplitude of either of the perturbation components, which
can result in a suppression in that region. These points
generally shift throughout the model parameter space.
The culmination of these effects is a nontrivial bound
imposed by the CMB isocurvature constraints. Although

these bounds can be quite severe, we have found that the
viable regions for the CCW model all remain below the
isocurvature constraints (see Fig. 7).
To conclude, we have shown in this paper that an axion

with a field-dependent wave function renormalization,
which is enhanced near the minimum of the axion potential,
can generate both the observed baryon asymmetry and dark
matter relic abundance. Using the continuum-clockwork
axion, we have constructed an explicit model realization of
this idea. Our results also suggest directions for further
research, including approaches with multiple scalar fields,
where nontrivial dynamics can arise that significantly alters
the effective chemical potential, e.g., effects from temper-
ature-dependent masses [97,98]. Moreover, the CCWaxion
model constitutes only a single realization of the more
general idea in this paper. A natural extension is to explore
other models which yield similar noncanonical kinetic
terms, but an altogether different set of phenomenological
possibilities.
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APPENDIX A: TRACKING DYNAMICS

In this Appendix, we provide a short review on cosmo-
logical tracking solutions and their general classification in
terms of the scalar field potential. Throughout much of this
review we closely follow the methodology and results of
Ref. [44]. We first give the necessary background for Sec. II
and the formalism used to deduce the class of potentials
and regions in field space which exhibit tracking solutions
[see Eq. (2.13)]. Then, we tailor our analysis specifically to
the continuum-clockwork axion example of Sec III, show-
ing that tracking solutions are a generic property of these
potentials which drive the axion equation of state to that of
the background wϕ → w.

1. Classification of tracking potentials

A tracking field, by definition, is a field that converges to
a given evolution in phase space, even under a variation
in initial conditions. Typically, such attractorlike solutions
are also associated with convergence of the equation-of-
state parameter wϕ to some fixed value, but this ultimately
depends on the background cosmology.
Let us consider a canonically normalized scalar field ϕ

with potential VðϕÞ that evolves in an FRW spacetime:

ϕ̈þ 3Hϕ̇þ V 0ðϕÞ ¼ 0: ðA1Þ

A useful parameter to define is the ratio of kinetic energy to
potential energy of the scalar field:
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x≡
1
2
ϕ̇2

VðϕÞ ¼
1þ wϕ

1 − wϕ
: ðA2Þ

After some rearrangement, Eq. (A1) can be recast as

1

6

d log x
d log a

¼ MP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωϕ

3ð1þ wϕÞ

s ����V 0ðϕÞ
VðϕÞ

���� − 1: ðA3Þ

A tracking solution with a convergent equation of state
requires that x is approximately constant. The expression����V0ðϕÞ

VðϕÞ
���� ≈ 1

MP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þ wϕÞ

Ωϕ

s
≈

H

jϕ̇j ðA4Þ

then dictates the tracking trajectory, where in the last
approximation we implicitly assumed 1þ wϕ ¼ Oð1Þ.
Naturally, for the tracking condition in Eq. (A4) to

remain satisfied as the system evolves, both sides of the
relation must change in the same way. Therefore, differ-
entiating the equation of motion with respect to ϕ, and
demanding still that x varies negligibly with time, we arrive
at the relation

Γ≡ V 00ðϕÞVðϕÞ
½V 0ðϕÞ�2 ≈ 1þ w − wϕ

2ð1þ wϕÞ
: ðA5Þ

The necessary (but not sufficient) condition is that a region
of the potential may yield tracking solutions if the dimen-
sionless quantity Γ does not vary appreciably over that
field range. It determines the features of different tracking
regions and it does this only through properties of the
potential, without reference to any dynamical information.
In particular, the equation-of-state parameter to which the
tracker converges is found by rearranging the above
expression:

wϕ ≈
w − 2ðΓ − 1Þ
1þ 2ðΓ − 1Þ ; ðA6Þ

which determines the evolution of Ωϕ during tracking.
The condition in Eq. (A5) is not always sufficient

because it does not guarantee that the tracking solutions
are stable under small perturbations to the equation of state.
An analysis shows that

Γ > 1 −
1 − w
6þ 2w

≥
1

2
ðA7Þ

is required for stable tracking solutions.7 Moreover, within
the above range there are two distinctive behaviors. In the
case that Γ > 1, the equation of state for the scalar field is
less kinetic than the background wϕ < w, so the abundance

Ωϕ grows during tracking. On the other hand, in the Γ < 1

case we find wϕ > w instead, and the abundance falls during
that epoch. The “borderline” scenario of Γ ¼ 1 is also an
interesting critical case for which wϕ is driven to match the
background, and Ωϕ does not evolve at all. This borderline
case is found with potentials that have an exponential region.
Incidentally, this is approximately the scenario we find in the
continuum-clockwork axion example of Sec. III, for which
we now briefly specialize our discussion.

2. Tracking with continuum-clockwork axion

Let us now examine the continuum-clockwork example
of Sec. III and use the analysis above the identify any
tracking regions for that potential. It is instructive to first
consider mR ¼ 0, i.e., the standard sinusoidal axion poten-
tial VeffðϕÞ ¼ Λ4½1 − cosðϕ=fÞ�. Using the definition in
Eq. (A5) we find that

Γ ¼ 1 −
1

1þ cosðϕfÞ
: ðA8Þ

Regardless of how slowly this function varies throughout
field space, it is bounded from above by Γ ≤ 1

2
and thus

never can admit stable tracking solutions.
On the other hand, allowing for mR > 0 sufficiently

large such that e−2πmR ≪ 1, we can approximate

Γ ≈ 1 −
1

2
sech2

�
ϕ

2f

�
< 1: ðA9Þ

Although Γ is always less than unity, for field values
larger than ϕ=f ≳ 3 we can achieve Γ > 9

10
and thus find

stable tracking solutions. This is easy to accomplish for
ϕ ∼ feff if mR is moderately large. Additionally, we must
check that Γ is slowly varying over a Hubble time:���� 1Γ dΓ

dNe

���� ≈ ����sech�ϕf
�����tanh2� ϕ

2f

�
≪ 1; ðA10Þ

where Ne is the number of efolds and we used Eq. (A4).
In the field range where Eq. (A9) is viable, the above
condition is easily satisfied as well, and we can therefore
always identify a tracking region of the CCW axion
potential for e−2πmR ≪ 1.
Indeed, the above analysis confirms the findings of our

numerical simulations in Sec. III, including the fact that the
axion equation of state always appears radiationlike during
the tracking period. Using Eq. (A6), we find

wϕ ≈ wþ ð1þ wÞcsch2
�
ϕ

2f

�
; ðA11Þ

which in the proper field range matches the background
wϕ ≈ w to an excellent approximation.

7More specifically, for a matter-dominated epoch this implies
Γ > 5

6
and for a radiation-dominated epoch Γ > 9

10
.
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APPENDIX B: BOLTZMANN EQUATIONS
FOR B −L AT HIGH TEMPERATURE

In this Appendix, we derive the effective chemical
potential μB−L used in Eq. (2.33), taking into account
the details of sphaleron transitions in the Boltzmann
evolution. To begin, let us consider a species X which is
in kinetic equilibrium at temperature T. Assuming some
chemical potential μX, the asymmetry in number density
between particles and antiparticles is described by either
Fermi-Dirac (þ) or Bose-Einstein (−) statistics as

nX ¼ gX

Z
d3p⃗
ð2πÞ3

�
1

exp ½ðEX − μXÞ=T� � 1

−
1

exp ½ðEX þ μXÞ=T� � 1

�
; ðB1Þ

where gX is the number of d.o.f. for the species and
EX ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

X

p
is the energy. At high temperature

T ≫ ðμX;mXÞ, this is well-approximated by

nX ≈
�
gXμXT2=6 for fermions

gXμXT2=3 for bosons
; ðB2Þ

such that a proportionality exists between the chemical
potential and the number density for the species.
Let us now consider that this species is involved in some

chemical process A, according to

A∶ X þ iþ � � � ↔ jþ � � � : ðB3Þ
Naturally, if the reaction is sufficiently rapid and it reaches
chemical equilibrium, then the associated chemical poten-
tials satisfy algebraic relations

dA;XμX þ dA;iμi þ dA;jμj þ � � � ¼ 0; ðB4Þ
where dA;X (dA;i) denotes the multiplicity of X (i) and the
signs determine the direction of the reaction. In the case
of a spatially homogeneous and spontaneous violation of
CPT symmetry, as studied in this paper, these relations are
sourced by an effective chemical potential μA. That is, we
instead have the relations

dA;XμX þ dA;iμi þ dA;jμj þ � � � þ μA ¼ 0: ðB5Þ

The corresponding out-of-equilibrium evolution for the
number density nX is given by the Boltzmann equation

ṅX þ 3HnX

¼ −
X
A

dA;XγA

�
dA;X

μX
T

þ dA;i
μi
T
þ � � � þ μA

T

�
: ðB6Þ

where γA is the thermally averaged interaction rate density
for the process A normalized by T3, and the sum is over all
the chemical processes involving X. We can solve the

coupled Boltzmann equations with some set of sources
fμAg and obtain any of the number densities or chemical
potentials in the process, e.g., the lepton- and baryon-
number densities nL and nB.
Considering that all processes preserve the gauge sym-

metry SUð3Þc × SUð2ÞW × Uð1ÞY during baryogenesis, the
chemical potentials for the gauge bosons all vanish, and we
can impose other additional constraints. In particular, the
expectation value for the hypercharge hYi over the chemi-
cal potentials should vanish:X

i

ðμqi þ 2μui − μdi − μli
− μeiÞ þ 2μH ¼ 0; ðB7Þ

where, respectively, i is a flavor index, q and l are left-
handed quark and lepton doublets, u and d are right-handed
up and down quarks, e is a right-handed electron, and H is
the Higgs boson.
Under the above constraint, we can show that the quark

number densities evolve according to

ṅqi þ 3Hnqi ¼ −
γλui
T

ðμqi − μui þ μHÞ

−
γλdi
T

ðμqi − μdi − μHÞ

− 2
γss
T

X
j

ð2μqj − μuj − μdjÞ

− 3
γws
T

�X
j

ð3μqj þ μljÞ þ μws

�
ðB8Þ

and

ṅui þ 3Hnui ¼
γλui
T

ðμqi − μui þ μHÞ

þ γss
T

X
j

ð2μqj − μuj − μdjÞ

ṅdi þ 3Hndi ¼
γλdi
T

ðμqi − μdi − μHÞ

þ γss
T

X
j

ð2μqj − μuj − μdjÞ; ðB9Þ

while the lepton number densities evolve as

ṅli þ 3Hnli ¼ −
γλei
T

ðμli − μei − μHÞ

−
γws
T

�X
j

ð3μqj þ μljÞ þ μws

�

−
X
j

γ=Lij
T

ðμli þ μlj þ 2μHÞ

ṅei þ 3Hnei ¼
γλei
T

ðμli − μei − μHÞ: ðB10Þ
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In the above, the rate densities γλui , γλdi , and γλei correspond
to Yukawa interactions in the SM, while the other rate
densities γss and γws correspond to strong and weak
sphalerons. The source of (B − L) violation in this paper
is the Weinberg operator in Eq. (2.28), for which we denote
the rate density as γ=Lij

. The one remaining unspecified

quantity μws is related to the spontaneous breaking of the
CPT symmetry through Eq. (2.26). As the axion field
rolls down its potential, it induces this effective chemical
potential for the weak sphalerons:

μws ¼ ∂0θ: ðB11Þ

Adding the various contributions from the Boltzmann
equations above, we can determine the number-density
evolution for baryons nB and leptons nL as

ṅB þ 3HnB ¼ −3
γws
T

�X
i

ð3μqi þ μliÞ þ μws

�
ṅL þ 3HnL ¼ −3

γws
T

�X
i

ð3μqi þ μliÞ þ μws

�
−
X
ij

γ=Lij
T

ðμli þ μlj þ 2μHÞ: ðB12Þ

It is instructive to comment on the limit where the weak
sphaleron rate is negligibly small. Taking γws → 0 in these
equations, we find that the evolution of nB becomes trivial
and that nB ¼ 0 if the initial baryon number is zero. In this
limit, the equation for lepton number also loses source
terms, implying nL is also vanishing [99].
With the hypercharge constraint from Eq. (B7), and

vanishing initial conditions fμi ¼ 0g, we can in principle
solve the coupled Boltzmann equations numerically.
However, we can also simplify them through some physical
considerations. Let us assume that the Yukawa interactions
for Nf generations of fermions are in equilibrium, in
addition to all gauge interactions and the strong and weak
sphalerons. However, we shall ignore the Yukawa inter-
actions of the remaining 3 − Nf generations during baryo-
genesis. In such a case, baryon and lepton number are
mostly generated by sphaleron processes in conjunction
with axion dynamics, which leads approximately to the
flavor-universal contributions

nBi
≃
1

3
nB nLi

≃
1

3
nL: ðB13Þ

Furthermore, the interactions that violate (B − L) are not
flavor-diagonal. Instead, they are flavor-democratic, such
that the off-diagonal components are determined by the
neutrino mixing matrix. We can therefore simplify the
(B − L) rate density to

γ=Lij
≃ γ=L; ðB14Þ

for all lepton flavors, where we defined γ=L in Eq. (2.32).

Taking these simplifications into account, we can com-
pute the necessary chemical potentials. In particular, for the
Higgs we find

μH ¼ ð9þ NfÞnL − 9nB
2ð3þ 5NfÞT2

; ðB15Þ

while for the Nf generations of quarks and leptons with
Yukawa interactions in equilibrium we have

μui ¼
ð9þ NfÞnL − ð6 − 5NfÞnB

2ð3þ 5NfÞT2

μdi ¼
ð12þ 5NfÞnB − ð9þ NfÞnL

2ð3þ 5NfÞT2

μli ¼
7ð1þ NfÞnL − 3nB

2ð3þ 5NfÞT2

μei ¼
3nB − ð1 − 3NfÞnL

ð3þ 5NfÞT2
: ðB16Þ

and for the remaining 3 − Nf generations:

μui ¼ μdi ¼
nB
2T2

μli
¼ nL

T2

μei ¼ 0: ðB17Þ
Meanwhile, the chemical potential for the left-handed
quark doublets is independent of Nf:

μqi ¼
nB
2T2

: ðB18Þ

The nB and nL number densities are related to each other
by weak sphaleron processes:

nB ¼ ð18þ 31Nf − 3N2
fÞnB−L − 2ð3þ 5NfÞμwsT2

45þ 73Nf − 3N2
f

nL ¼ −3ð9þ 14NfÞnB−L − 2ð3þ 5NfÞμwsT2

45þ 73Nf − 3N2
f

: ðB19Þ

The evolution of nB−L is determined by the difference
between the equations in Eq. (B12) and the chemical
potentials above:

ṅB−L þ 3HnB−L ¼ −Γ=LðnB−L − neqB−LÞ; ðB20Þ

where the rate is given by

Γ=L ¼ 9ð171þ 65Nf − 6N2
fÞ

45þ 73Nf − 3N2
f

γ=L
T3

ðB21Þ
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and the equilibrium number density is given by

neqB−L ¼ −
2ð36þ 65Nf − 6N2

fÞ
9ð171þ 65Nf − 6N2

fÞ
μwsT2: ðB22Þ

The above expression provides us with the coefficient that
appears in Eq. (2.33). We are now equipped to compute the

final number density nB−L and therefore the final baryon
asymmetry. In particular, after the weak sphalerons decou-
ple at T ≲ 100 GeV:

nB ¼ 28

79
nB−L: ðB23Þ
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