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Circular polarization of the cosmic microwave background (CMB) can be induced by Faraday
conversion of the primordial linearly polarized radiation as it propagates through a birefringent medium.
Recent work has shown that the dominant source of birefringence from primordial density perturbations is
the anisotropic background CMB. Here, we extend prior work to allow for the additional birefringence that
may arise from primordial vector and tensor perturbations. We derive the formulas for the power spectrum
of the induced circular polarization and apply those to the standard cosmology. We find the root-variance of

the induced circular polarization to be

(V2) ~3 x 10~'* for scalar perturbations and

(V) ~Tx

107'8(r/0.06) for tensor perturbations with a tensor-to-scalar ratio r.
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I. INTRODUCTION

The cosmic microwave background (CMB) has helped
us understand the history of the Universe. Through meas-
urement of the temperature and polarization fluctuations
in the CMB, we have determined precisely the classical
cosmological parameters [1]. However, the temperature
measurements are already limited by cosmic variance,
thus motivating the investigation of other observables,
such as polarization [2—4] and frequency distortions [5]
of the CMB.

In this paper, we focus on the circular polarization.
In astrophysics, circular polarization may arise in masers
[6,7], gamma-ray-burst afterglows [8—11], jets of active
galactic nuclei [12-15], and pulsars [16-19]. In addition,
circular polarization has recently been discussed also in
the context of the CMB [20-25]. Circular polarization can
be produced through Faraday conversion when a linearly
polarized light ray propagates through a medium where the
indexes of refraction differ along the two different trans-
verse axes. In this way, the linear polarization induced at
the CMB last-scattering surface can be converted to circular
polarization. References [20,21] discuss CMB circular
polarization produced by birefringence from magnetic
fields and from new physics beyond the standard model
(BSM). The circular polarization produced via Faraday
conversion due to supernova remnants of Population III
stars is discussed in Refs. [22,23]. The current constraint to
the CMB circular-polarization angular power spectrum is
I(I+1)CYV/(2x) < 107 at multipole moments / > 3000
[26], <3 x 107" at 33 < [ < 307 [27], and <1077 at larger
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scale [28]. Forthcoming experiments, such as CLASS [29]
and PIPER [30], are expected to improve considerably on
the sensitivity to CMB polarization.

Recently, a detailed investigation of the circular polari-
zation that arises from primordial perturbations was pre-
sented in Ref. [24]. No circular polarization arises at linear
order, but there are several physical mechanisms that, at
second order in the primordial-perturbation amplitude, can
induce circular polarization from the primordial linear
polarization. Although this primordially induced circular
polarization may be smaller than that induced by other late-
time astrophysical effects, and/or BSM physics, these
predictions are more robust and may be thought of as a
lower bound to the expected circular polarization. There are
a number of possible standard-model sources of the cosmic
birefringence needed for Faraday conversion, including,
e.g., spin-polarization of hydrogen atoms induced by an
anisotropic CMB background [24]. Still, the most signifi-
cant source is photon-photon interactions [24,31-35],
which is the mechanism we consider here. In this case,
the required birefringence is provided by the CMB anisot-
ropies seen by the CMB photon as it propagates from the
surface of last scatter.

In this paper, we extend prior work by considering the
additional cosmic birefringence that may be induced by
primordial vector and tensor perturbations. In particular,
tensor perturbations, or primordial gravitational waves, are
a highly sought relic in the canonical single-field slow-roll
inflationary paradigm [3,4]. Since the tensor contribution to
the CMB quadrupole may be almost 10% of the total, it is
conceivable—given order-unity factors—that the tensor
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contribution to the circular polarization may rival the scalar
contribution. Note that although the photon-graviton scat-
tering can also induce the circular polarization from tensor
perturbations [36], the induced circular polarization in
CMB is much smaller than that induced through photon-
photon scattering as we will see later. The calculation is
also valuable as an illustrative application of the total-
angular-momentum (TAM) formalism [37,38] employed
earlier [25] for the simpler scalar-perturbation case. In the
TAM formalism, primordial perturbations are expanded in
terms of TAM waves, which are eigenstates of the gen-
erators of rotations, rather than the usual plane waves
(eigenstates of the generators of spatial translations). The
TAM formalism allows for predictions for observables on a
spherical sky to be obtained far more simply than through
traditional approaches, particularly for vector and tensor
perturbations.

This paper is organized as follows. In Sec. II, we
introduce the basic formulas describing circular polar-
izations induced through the Faraday conversion. Then,
we briefly review the TAM formalism in Sec. III. In Sec. IV,
we take the photon-photon scattering source term as a
concrete example and show how to express the source term
with the TAM formalism. In Sec. V, we relate the source
term to the angular power spectrum and perform numerical
calculations assuming the standard cosmology. We make
some concluding remarks in Sec. VI. Note that, throughout
this paper, we take the Cartesian coordinate and the metric
gij equals to &;;.

II. BASIC FORMULAS FOR CIRCULAR
POLARIZATION

In this section, we introduce the formulas for the circular
polarizations induced by Faraday conversion. Faraday
conversion occurs when a light ray passes through a
medium in which each axis perpendicular to the light-
ray trajectory has a different index of refraction. The three-
dimensional index-of-refraction tensor is given by [24]

1
nij = 8+ 5 Uej + Xmij): m

where y, ;; and y,, ;; are the electric and magnetic suscep-
tibilities, respectively. We focus on the x and y components
of the tensor (z axis: photon trajectory) because photon
does not have the longitudinal polarization. Then, the
index-of-refraction tensor in the two-dimensional plane
perpendicular to the trajectory can be expressed with four
parameters as

ny + f’lQ
Ngp = .
ny — iy

ny + iny > )

n,—nQ

Here, n, is the polarization-averaged index of refraction, n,,
the difference between the indexes of refraction in x and y

axes in the transverse plane, and n; is the difference
between the indexes of refraction on two axes that are
rotated by 45° from the x and y axes. Also, ny is the
difference between the indexes of refraction for the two
different circular polarizations, which we ignore in the
following because it does not convert linear polarization to
circular polarization [24]. The relation between Egs. (1)
and (2) are given as n; = 3 (n,, + ny,), ng = 3 (N — nyy),
and ny :%(nxy—l—nyx). In the following, we use the
subscripts i, j and k to describe the three-dimensional
space and use the subscripts a, b and ¢ to describe the two-
dimensional plane perpendicular to the trajectory.

An observed CMB photon has a radial trajectory that
arrives from some observed direction 7. According to
Refs. [24,25], the circular polarization V(i) observed in
direction with Stokes parameters Q(it) and U(it) at the
surface of last scatter is given as

V(i) = ¢o(R)U(R) — ¢y (R)Q(R), 3)

where the phases ¢, (/1) are obtained as integrals,

2 LSS d){
fl - P fl ’ - k) 4
¢Q,U(”) CA 1+Zw )”Q,U("Z no—x). (4)

over comoving distance y. Here, z is redshift, y; g5 is the
comoving distance to the last-scattering surface and 7 is
the current conformal time. Note that a general refractive
tensor is spacetime dependent as n,;,(x, 7). Although the
linear-polarization pattern on large angular scales is altered
by reionization, the dominant contributions to the phase
shift occur soon after the last scattering (see Sec. IV). Thus,
the circular polarization induced after the reionization is
negligible and neglected in the following.

The Stokes parameters Q(it) and U(ii), as well as the
phases ¢, (#t) and ¢ (72), are not rotational invariants; they
are components (in the x-y coordinate system), respec-
tively, of polarization and phase-shift tensors, which are,
respectively, [25]

1 (9ol
20 ® =75 (o

Then, we can rewrite Eq. (3) as
V(i) = €,.P" ()@ (1), (6)
where €,, is the antisymmetric tensor on the 2-sphere.

III. TAM FORMALISM

In this section, we briefly review aspects of the total-
angular-momentum (TAM) formalism [37,38] relevant for
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this work. In particular, we focus on the TAM formalism for
tensor fields because the relevant anisotropies in the index
of refraction are described by an index-of-refraction tensor
field. Throughout this paper, we follow the notation and
conventions for the TAM formalism used in Ref. [37]. In
the following, we consider a symmetric trace-free tensor
because, as we will see in the next section, the Faraday
conversion is only related to the trace-free part of the index-
of-refraction tensor.

In the usual approach, a symmetric trace-free tensor
field can be expanded in terms of plane waves of helicities
A==2,...,2 as

> [k rwEdres o
=2
where the power spectra are given by
5% (2n)%s(k —K')P(k) (4] =0),
(W ()[R (K)]7) = § 6 (22)%6(k —K')Py(k) (|4 = 1),
5 (2n)’8(k —K')Pr(k) (1] = 2)
(8)

components of the tensor field, and &, are polarization

tensors defined as [37]

J

A 1

el (k) = O; F i), &' (k) = [gzi i‘ ]A‘}
k

_|_
where 6 and (iﬁ are the transverse directions of k.
However, we can alternatively expand a symmetric trace-

free tensor field in terms of total-angular-momentum
(TAM) waves as [37]

kdk kA k,A
ha) = Y03 [ i)
A=0,+£1,£2 Im

k2dk
= > / 5 3 iy A
a=L,VEVBTETB Im ( )

l k,a

W iy ()-
(10)

Here, we have written the tensor field in terms of longi-

tudinal (L), vector-E (VE) and vector-B (VB), and tensor-E
(TE) and tensor-B (TB) modes, and then also in terms of an

Here, P; (k), Py(k), and Py(k) are the power spectra for  alternative helicity basis, with A = —2,...,2. The TAM
the longitudinal, transverse-vector, and transverse-traceless waves are defined as
|

WhE 0 = OTR (), W () = = [ ), W = - [ ()

(Im)ij 2 ij = (Im) ’ (Im)ij - l(l T 1) ij = (Im) ’ (Im)ij - l(l + 1) ij = (Im) ’

k,TE _ (l 2) TEwWwk k,TB _ (l ) TB
lP([m)ij(x) = WTU ¥, )( x), T(lm)u(x) = 2(l+2>‘le T( m)(x), (11)
where TZ- is defined as

i . ) 1

D; = %Vi, L; = —ire iV, K, =—iL,, M, ;= e DK, Th=-D:D; + 35,,, TYE =DM,

Tif =DKj.  T{f =MM) - KK +2D;M).  T{f=KM;+MK; +2DK)). (12)

and ‘I”‘ ( ) = Ji(kx)Y 1y () (x = yit) are scalar TAM waves, written in terms of the spherical Bessel function j;(x) and

spherlcal harmonic Y ;,,)(#).
The helicity-basis TAM waves are then

LIIkO

(imyif 8) = Wi (0), Wi () = —= [T, () £

(Im)ij

f

The relations between hl(‘l’fn ) and h](“l’zl) are given by

hk.:tl 1 [hk VE

kO _ pkL
h =h (lm)

(Im) (Im)> (Im) \/j

F iy ] (m) = /5

I
k,VB k42 k,TE k,TB
By @) i %) = T3 ¥y () £ ¥ 0]
(13)
1
.1 k,VB kt2 k.TE .1 k,TB
h h [h(lm) lh(lm) ] (14)
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The plane waves with an arbitrary trace-free polarization tensor &;;, which is a combination of e or &, in general and can be

8;1] or efl themselves in some cases, are related to the TAM basis functions as [37]
e =N "N "4ni'B, ()W (x) = > > 4xi'Bl, (k)W .(x), (15)
a Im A=0,£1,+2 Im

where a runs over L, VE, VB, TE,TB, and

Be, (k) = iy, (k). B, (k) =RV, (). (16)
The tensor spherical harmonics Y< 1m)ij (1) are defined as'
lm 1/ \/7W Y lm
2 /
VE ’\ VB A /\
Ylm )ij n l(l+ 1) lm Ylm )ij lm I’l
YTE () = (l 2) ' (ﬁ) YTB  (#) WTBY (17)
(Im)ij 2(l+ )y ’ (Im) lJ l—|-2 lm
where WY, is defined as
NiE_ﬁi? KiE—iLi, MJJ'EGijkNij W NN +35U’ WI‘;EEN(IMLJ), W:;BEN(IKD,
Wi =M Moy — KoKy +2NGM 1y, WP = KoMy + M yK)) +2NK)). (18)

In particular, Y7 ( and Y (TZB Jij live in the plane perpendicular to 7 and can be expressed as Y7E (im)ab and Y( Im)ab respectively.

The helicity-basis spherical harmonics Y’(1 m)l.j(n) are defined as

Im)ij

Y(()lm)ij(ﬁ) = Y%lm)ij(ﬁ)’ Y(ilrln)u(ﬁ> = 7 [YVE )ij (ll) Y lm)z](n)] Y(ilgn)q(ﬁ) \/_— [Yﬁfn z]( ) + lYg;fn)tj(Aﬂ
(19)
The Y’ ’llm i (IAc) are related to the spin-weighted spherical harmonics by [39,40]
&)Y (0) = LY g (R)3] (20)

From Egs. (7), (10), and (20), we can derive the following relations between hﬂ(k) and h]((l'i ):

by = [ b R ) e1)

As a result, the TAM amplitudes satisfy2

BB CEL5(k = K)PL(K) (4] = 0),
i ’ ﬂ3
(i i 17 = S 8188 CEE (k= k) Py (k) (2] = 1), (22)
BB P2 5(k = K)Pr(K) (2] = 2),

"The two components that live in the plane of the sky, which we here refer to as TE and TB modes, are in much of the literature (which
cons1ders only these two components) as E and B.
The spin-weighted spherical harmonics satisfy f dn, Y )( n),Y: ('n (n) = 610 O~
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ka (k.o 7%
<h(lm) [h(l’m’)] >

S S 8 EL 5k — K)PL(K) (a=L),
= 511/5mm'5“‘f (2;)3 Sk — k’)Pv(k) (a =VE, VB),
8110, 0% O 6(k = K)Pr(k)  (a = TE.TB).

(23)

IV. CALCULATION OF @, (72)

Although there are several physical effects that may
generate Faraday conversion, the dominant mechanism,
as noted in Ref. [24], is photon-photon scattering. The
components of the index-of-refraction tensor due to
photon-photon scattering is (see Appendix B and Ref. [24]
for the derivation),

1
nQ(x» ’7) = 5 (nxx(x7 ’7) - nyy(x’ ’7))
T
=48 [T ot ThReat o). (24
1
nU(x7 'I) = 5( xy(x ’7) =+ nyx(x ’7))

1R

48\/;Aeﬂ0aradTCMBIma2 (x.m). (25)

Here, yu is the magnetic permeability of the vacuum, a4 is
the radiation energy density constant, Tcyp is the CMB
temperature, a% (x,7) is the coefficient of the local E-mode
moment induced by primordial perturbations, and A, is
|

a5 _,(k.n) + a5, (k,n) ZD 2 (T = i, Ok, 0)as,, (k, 1)

the Euler-Heisenberg interaction constant, which can be
expressed with electron mass m,, Compton wavelength
l., and the fine structure constant a as A, = 2’13/
(45ugm,c?). Next, we write the spatial dependence of
the indexes of refraction in terms of Fourier components
through
3

nQ(x, 11) ~ 48 \/gAe,uoaradTéMB %/ dk

W (af_z(k, ")

+ af,(k.n))e’*, (26)
ek,
ny(x.n) =48, /= e#oaradTCMBZ W(az L (k.n)
— ag, (k,m)e, (27)
where we have used the relation a5; = af_,. We then

transform the local quadrupole moments in Egs. (26) and
(27) using

Z Dilm (”

m=0,+1,+2

a5 (k) = — ¢ Ok, 0)as,, (k, n),

(28)

where unbarred quantities are in the line-of-sight frame
(with the z axis toward the observer), and barred quantities
are in the wave vector frame (k is the z axis and the
direction toward the observer in the x 7 plane, with x < 0).
Here, 0; and ¢, are the polar and azimuthal angle of kin the
line-of-sight frame, and D' , is the Wigner rotation matrix,

m'm

which is defined in Eq. (A1). Then, we derive

ZDZm(” ¢k’6k’ )02m<k 17)

3
= \/;(cos ¢7 — sin¢7) sin 6’,2(a2 o(k, 1) — sin G (— cos O cos 2¢b + i sin 2¢) a5 | (k. n)

— sin O (cos O cos 2¢py + i sin 2¢p)a5 _, (k.n)

+

3 + cos 29k

<3 + cos 26,
+
—((&

€08 2¢p, — i cos O, sin 2¢k) ak,(k.n)

€08 2¢py + i cos Gy sin 2¢k> ay _,(k,n)

(&0 ( l? * = (@ (k) )as (k. m) = (88 (k)" — (8 (k))*)ak, (k. m)
— (&5 (k)" = (&5} (k))")al _y (heom) = (222 ()" = (8552 (k))") a5 (k. )
=~ (&2 k) = (857 ())")a5 _y (k. n). (29)
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1 _
7(&5_2(’(,}7) Cl22 k 77 (ZD—Zm _¢k’9k’ a2m k 77 ZD2m _¢k’9k’0)a§,m(k’ ’I))

6 cos ¢y sin ¢y sin 03a% (k. n) + sin Oy (i cos 2¢y + cos @sin 2¢y)a% | (k, )
+ sin O (i cos 2¢py, — cos Oy sin 2y )ak _, (k. 1)

3 + co 20 c 245 a k n
<$ sin 2¢k +icos Hk cos k) 2’2( ' )
3 + 260 a k 1

+ < cos k Z¢)‘ - l COS Hk COS 2¢k> 2, 2( )

~2(&, (k )) aj(k.n) — 2(&5) (k)*ak, (k. n) = 2(&5) ())*ab_, (k.n)
= 2(&7 (k) a5, (k) — 2(e37 (k) ak_y (k. ). (30)

where & e is defined by Eq. (9), and the basis vectors are

~

0(k) = (cos Oy cos ¢y, cos O sin ¢y, —sin By ), ¢ (k) = (—sin @y, cos ¢y, 0). (31)

Here, we separate the primordial perturbations and their transfer functions through a%, (k.n) = a5 ,(k,n)h*(k), where the
power spectra of h*(k) are given by Eq. (8).

From Egs. (24), (25), (29), and (30), we see that the part of n;; proportional to (2 ]) can describe ny and ny, which
means that the part related to ny and ny; in n;; can be expressed w1th a trace-free tensor, glven as Eq. (7). On the other hand,

a nonzero-trace part of n;; is irrelevant to ny or ny. Using the relation between (& ) and P~ given in Eq. (15), we can

(Im)ij
express n;; as
1 (%, 1) = 484 | A o gag T ek S Axil ()R (=ak (ko)) + iy (x.n) (32)
ij\Xs 5 eH0qrad L cmB (2”)3 (Im)ij (Im) ALY i\ XN
Im A=0,£1,£2
k2dk
_48\/; JTRCIY i / 124711 (Y iy (Vo (=85 o (K, 1))
+ W ()G (—ak, (ko)) + P ()P (=ak | (k.n))
A+ W VR (a5 (kom)) + Wi (e G (=5 5 (kom))) + 7igj (e, m), (33)

where 7;; is the part of n;; that is independent of n, or ny, and we have used the relation a5, (k,n) = a5 _,(k.n) [41].
To calculate the induced circular polarization, we need to derive ®,;,(72) from n; ]( x). Since P,;, and @, are 2 x 2

symmetric trace-free tensors in the celestial sphere, we can expand them in terms of Y( Im)a () and Y2 (im)a o (1) as [42,43],
Pu(R) =Y [PEYTE () + PEYTE (7)), (34)

Im
@un() = SO V() + OV, ) (35)

To relate n;;(x) to the shift tensor @, (i), we define the projection operator Akl (72) to project n;;(x) to a spin-2 tensor on the
celestial sphere as
1
Al'jkl(ﬁ) = Pikle 2PmkP 15 (36)

lj’

where P;; is given as P;; = §;;

; — i, Then, we can express the shift tensor in terms of n;;(x) as [25]
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C()O 2 [xiss

V2e o

where @y is the frequency today. Note that since @;; lives on the plane perpendicular to 72, we can regard ®;; as <I>ab3 and, by
definition, A; ]" "fipy = 0 is satisfied. As we found in Eq. (33), the spatial dependence of n;;(x) can be expressed with
‘Pl{[i )”( x) and the projection of ‘Pm Jij (x) onto the celestial sphere is discussed in Refs. [25,37]. According to Eq. (94) in

Ref. [37], A;;¥"W},, (fiy) are given by

q)ij(ﬁ) dy[A; JW( Y (R, o = 1)), (37)

V3 [1+2)1ilk)

A () oy () = == =201 (kg2 s =~ —v2e” (ky)YTE (i), (38)
A; k’l’(ﬁ)WE (y) ==/ (I-1)(1+2)( fi(k )+2jl(k)‘) YTE (R) = —2¢\" (k )Yk () (39)
(Im)K'l z4 kY (k) (Im)ij - X (Im)ij ’
- 1 i (k
At )W G () = =5 <—jz(k;() + gi(ky) + 41 (k) + 61(1,;’; )> YIE () = =2e? () YTE (R).  (40)
K1/ ~a\ak.VB ~ . — J(k ) TB A\ — _Ng (1) TB o
AT @) (i) = =i/ (T=T)(1+2) o YIB () = =2if" (k) YT (R), (41)
- i (ky
NS W) = =i (00) + 255 Y v i) = 2 ) ), (42)

where f;(x) = %@, 9i(x) = —ji(x) = 2f1(x) + (1 = 1)(1 +2) %5~ 19 and e, '(x) and ﬂgm)(x) are defined as in Ref. [41].

Note again that since Y(Tzﬁl ijand ¥ (TB> can be described in the plane perpendicular to 72, we can regard them as Y (Tlﬁl Jap a0d
Y{ L Jap Tespectively.

From Egs. (37)-(42) for CIJE/ B and Ref. [44] for P%B, we can rewrite the coefficients in Egs. (34) and (35) as?
PEIE ZP{:;'{B,A’ of/8 = Zq)E/B/l (43)
k*dk [no

Pl = 4”/ m/ dng(n) (=V/6P ) (k,m) iy e (kg = m). (44)

k*dk [

P —an [ S5 [ angVA(-VEPO (e s g k= ). (45)

P [ S [ angl) VR VEPR kg i = ). (46)
k*dk (o

Ot —ana [ S5 [" a1+ 204 (k)i ko 1), (#7)
(27[) Lss

kzdk Mo _ k. 1

WPV < ama [ S5 [ a0+ VAl i) (o) (48)

nLss

*In the line-of-sight frame, i is parallel to z axis and a and b run over x-y plane in the three-dimensional Cartesian coordinate. In other
words, @;; is nonzero only for i, j # z in that frame.
*Note that Eq. (46) corrects Eq. (30) in Ref. [25].
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K*dk [
@7 = ama [ 5 [ an(r <A@ 0 o ) (49)
MLss

where the integration variable is changed as y — n (1 = g — y), ¢"(x) is €™ (x) for VE and TE or if"(x) for VB and TB,
g(n) is the visibility function, P")(k,7) is the function defined in Ref. [44], and A = 96(7/5)"?A poaraThc™ wy =
1.11 x 10733 (1y/100 GHz) m~" [24]. The power spectra of /) are given by Eq. (23). The factor of (1 + z)* implies that
the dominant contribution to the phase shift is near the epoch of recombination, as we mentioned in Sec. IL.

Finally, we summarize the results for the angular power spectra. We can express C*“?* and CI*?” as

e :aL,VE,TE<Pf;l(a)*P5n( V) =4n / dkk (2ﬂ )' / dng(n) (—vV6PO (k.n))e\” (k(o = 1)) 2
wan [Sa( 10w | [ ango(—vEP konel ko)
+4n/7k2<2k; >'/ dng(n) (—V6P? (k.n))el? (ko = 1)) 2, (50)
I = (PR —ax [ d—,fz(gp 0)| [ angtn 6P st k6o = )|
+4n/d—:2(2k—; PUTB)( >‘/ dng(n) (=P (k)8 (k(no — 1)) } (51)

where the tensor-to-scalar ratio is defined as r = 2PTE) (k) /P11 (k) = 2P"B)(k)/P(1) (k). Similarly, C®*®" and C*"®" are
given by

a a dk
C;DE(I)E = <CDlm( " chm( )> =4 A2 (/ k (2

i/ T2 (aerrw)
J(goro

P

Mo 1 2
/ an(1+ 20 (@€, (k. n)el (koo — )
) (52)

o 0 2
/ an(1 + 2)* (@ (k. n)el (ko — )

Lss

+

/ " dn(1 + 2@ (k. )e (ko - 1))

OEQE B,(a)* 1 B.(a) 2 dk 5 VB
G - Z (D q)lm ) = 4zA (/k2<2n Pl )(k)

a=VB,TB

dk IS
K_prs)
+/ k2<2ﬂ2P (k)>

. EpE BB .
The cross correlations C/"®" and CP"®" are also given by

/ " dn(1 + 204 (@, (k.n)BY k(oo — )

) -

/ " dn(1 + 2@k, (k. ) (koo — )

MLss
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v = S el —ama( [ S (0w ([ a2 @k ko)

a=L,VETE "Lss

x ( " gt (V6P )kt n)))

=[S (s [ a1+ 2@ et =) )

([ angto) (V8P el 0 =)

+ / d—kk <2k—3P (rE) (k)) ( /n " dn(1 + 2)4(@L, (k.n)e (k(no —n)))

([ o (&P e =) ) ). (54)

e = 5 el —ama( [ F2(smrerw) ([ e =)

a=VB,TB

o ([ gty —vp (k,n»ﬁE”(k(no—n)))

N / d_,fz(z’ip (75) (k)> ( / an(1 + 2 (@, (k)R (ko —n)))

Mo
. ( " anton(~8P (o o - n))))- (55)
V. CALCULATION OF C'¥ AND NUMERICAL RESULTS

In this section, we explain how to calculate the power spectrum C}'" for the induced circular polarization with the results
derived in the previous section, and we present numerical results for a scale-invariant spectrum of primordial tensor
perturbations. We follow the discussion in Ref. [25], but take into account the B mode, which is not considered in Ref. [25].
This is because, unlike scalar perturbations, vector and tensor perturbations induce B modes as we saw in the previous
section.

The angular power spectrum is defined by CVV (V;,Vim) in terms of expansion coefficients,

Vi = / ARV (R) Y}, (i), (56)

Substituting Egs. (6), (34), and (35) into Eq. (56), we obtain

E ~ abyE A\VE A\ Y b P B S\NVE (7
ZZ( Lymy lzmz/dnea Y(llml)ﬂc(n)Y(lzmz)bC(n)Yl (7) 11'”1 lzmz/dnea (lymy)ac (7)Y (lzmz)bc(n>ylm(n>

Lymy lymy

+Plfm| lzmz/dneabYBlml)“C(ﬁ)Y(lzmz) (ﬁ)Y* ( )+PBlm1q)gm2/dneabyfllml)uf(ﬁ)Yflzmz)hc(ﬁ)YTm(ﬁ)>

= Z Z (mel lymy /dnY (Lymy) bc ﬁ l hmy) <ﬁ)Y? < ) + Pllmlq)g"h /dnYBl m1)bc(ﬁ)Ygzmz)bC(ﬁ)Y}Km(ﬁ)

lymy lymy

i O, [ GV BV Y30+ P @0, [ GV OVE,, @Y 0)). (57
where we have used [45] e* Y (e () = Y](gzm)bc( 1) and e Y lyae () = —Y‘(Elm)”c(ﬁ). According to Refs. [45,46], we can

express the integrals as
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[ G @Y DY) = [ RV PGV DY) = £ e (59)
/dnY(Ellml ab( ) (lamy) ab i ﬁ /dIlYE* ﬁ) (lymy) ab( )Yl m( ) 15 —mylymy lllzv (59)

where the result is zero unless /; +- I, + [ = (even) in Eq. (58) or /; 4 I, + [ = (odd) in Eq. (58), and &%, ,  and H} , are
defined in terms of Wigner 3-j symbols as

CL+ DRI+ D)L+ L | b l Lol b
=(-1)" H,, = . 60
gllmllamz ( ) \/ Ax _ ’ Ll 2 0 -2 ( )

m; m Ny

Here, we define G/" .fff”_ml lzmszl , (in agreement with the conventions of Ref. [25]). Then, using

Lymylymy =
Jdny? 0 ml)“”YUZmz)ab(ﬁ)Y}‘m () fdnY m,) “ngzmz @)Y, (), we rewrite Eq. (57) as
Vlm = Z (mel lzmz(lGllmllzmz) + Pllml lzmz(lG;ﬂZﬁlsz»
lymylyms,(odd)
I—m
+ Z (PlEiml lzmz( Gl]mllzmQ)_Pﬁml lzmz( GllmllzmQ))’ (61)

lymylym;(even)

where the subscript (odd) and (even) means that the summation is over /; + [, + [ = (odd) and I; + I, + [ = (even),
respectively. Then we derive

E pE EpE E®E EpE B pB B mnB B pB BpHB _
va _ Z [(CP P Cq: [} CP P CP D )+ (CP P Cctz: ® CP [ CP [0 )”Gg,n'fllsz
lymylym;(0dd)
+ ) (TR et — 2 Y Gl P (62)

[ymylym;(even)

_ Z (21, + 1)(212 +1) ((CPEPEC(DEq)E _ Cqu)ECPE(DE)
1,1 (0dd) an § I ’

BpB ~pBdHB BaB ~pBdB
H(Cr ey = e Cr )| H P

Z (211 + 1)(212 + ) (CPEPECq)BcDB T CPBPBC(DE(DE 2CPE(I>E PB(DB)|H

2 63
A7 Iy | ( )

hi
I11,(even)

dzl E pE EfHE EgHE EfHE B pB BB B gB B §HB
g/ L sin2gy g, (CFFPCRIRF = CRMF CIEF) 4 (Cf"P" Oy — "o i)

(2”)2 |11,
dzl Pl: PI: @B@B PBPB q)l: q)l: quﬂ: PB(I)B
+ (2 ) COS (pll I— ll(C C\l 1| + Cll C|l L~ 2C C|l 1| ) (64)

where we haveused 3, , (&%, ., )* = (21 + 1)(20' + 1)/ (4x) [45,46] between the first equality and second equality and
we have used [45]

QI+ 1)QI+1), /d211 / &1, ,

-’ |H ~ | — 2 2 - (,+1,)), 65
lllz%);ﬂ) T | lllz| (271_)2 (271_) ( ﬂ) sin (pl] A ( (1+ 2)) ( )

20+ D)2 +1 d?l d?l
> By pa [ S0 [ S enpeos2e - 1+ 1), (66)
111, (even) 4u ’ (2”) (27[)

valid when [, 1;, 1, > 1, between the second and third equality.
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vo=100GHz, scalar perturbations
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FIG. 1. The power spectra C, for scalar perturbations. The blue

solid curve shows C*F"; the blue dotted curve shows [CT*®"|;
the blue dashed curve shows CfI’E‘I’E; and the green thick solid
curve shows C}V. We take vy = 100 GHz.

The variance of V is given by (V?) =",(2[ + 1)C}V/
(4r), which can be approximated,

(V2) = / LUy L prpey@For) - (prony

2z T2
+ <PBPB><(I)Bq)B> _ <PBq)B>2 + <PEPE> <(I)B(I)B>
+ (PBPB)(@FQF) — 2(PEQEY(PBOBY).  (67)

Finally, we provide results of numerical calculations for
a scale-invariant spectrum of primordial gravitational
waves, using CLASS [47] to obtain the CMB polarization
transfer functions. Figures 1, and 2 show CY*, CP®, CP?,
and C}'V with scalar and tensor perturbations. We take vy =
100 GHz for both sets of perturbations. From Eq. (67), we
find the root-variance of V to be

3 % 10714
WN {7 x 10718(_1)

(for scalar perturbations),

(for tensor perturbations),

0.06
(68)
vo=100GHz, r=0.06, tensor perturbations

10713
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10740
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1
FIG. 2. The power spectra C, for tensor perturbations. The blue

and green curves are as in Fig. 1, but we now also have orange
curves to indicate the analogous quantities for B modes.

or in temperature units,

8§ x 107 K
v?) ~{

2% 1077 (55) K

(for scalar perturbations),
(for tensor perturbations).
(69)

From Egs. (68) and (69), we can see that the circular
polarization induced by tensor perturbations through the
photon-photon scattering is much larger than that induced
through the photon-graviton scattering [36].

VI. CONCLUSIONS

We have used the TAM formalism to discuss the CMB
circular polarization induced at second order in the pri-
mordial-perturbation amplitude, by general primordial
perturbations, including vector and tensor perturbations
in addition to scalar perturbations. To make the discussion
concrete, we have assumed the standard cosmology and
considered only the dominant contribution—from photon-
photon scattering—to Faraday conversion. We performed
numerical calculations of the power spectra for circular

polarization and find root-variances of \/(V?) ~3 x 10714

for scalar perturbations, and \/(V?) ~7 x 107'8(r/0.06)
for tensor perturbations. The derived formulas can be
applied to the other source terms discussed in Ref. [24]
such as spin polarization of neutral hydrogen atoms and the
nonlinear interactions induced by bounded or free elec-
trons, although these are expected to be subdominant to the
photon-photon process considered here.

Before closing, we note that it follows from Eq. (61) that
the monopole V,_y,,—o =0 if there are no primordial
vector or tensor modes (and thus no B modes). In other
words, there will be circular-polarization fluctuations, but
the mean value of the circular polarization, averaged over
the entire sky, will be zero. We also note that here we have
assumed that parity is conserved and thus that there are no
correlations between the TE and TB TAM modes. An
accompanying [48] paper shows that the TE/TB cross-
correlations that arise if parity is broken may allow for a
parity-breaking uniform (averaged over all directions)
circular polarization V,_ ,,_o. The paper also shows that
a uniform circular polarization may arise even in the
absence of parity-breaking physics through a realization
of a gravitational-wave field that spontaneously breaks

parity.
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APPENDIX A: WIGNER ROTATION MATRICES

Here, we review some useful properties of the Wigner rotation matrices, using the notation [49]

il U m) = m) (I + ) = )]
Dy e By) = Z (=1) (Il=m =)l +m—s)s!(s+m —m)!

s=max|0,m—m']

. ﬂ 2l4+-m—m'-2s ﬂ 2s+m'—m
x e <cos 5) (sin 5) e, (A1)

The relations between the spherical harmonics in the line-of-sight frame (€', ¢’) and the wave-vector frame (6, ¢b) are given
by [49]

W (0.4) = ZDmk — - O, 0) Y3 (0, ). (A2)

Since the coefficients are given by a}}, = [ diiA()Y],, (it), the relation between the coefficients of spherical harmonics in
the two frames is

ap,, (k.n) ZDmk 7 = ¢, Or, 0)aj; (k7). (A3)

APPENDIX B: PHOTON-PHOTON SCATTERING

Here, we derive Eqgs. (24) and (25). For photons with energies far smaller than the electron rest-mass energy, the effective
Lagrangian for the electromagnetic field can be approximated as the Euler-Heisenberg Lagrangian [50]°

o (i on ) () o(22))

By using the constitutive relations D = 9L/0E and H = —0L /0B, we obtain

E-E
D:€0E+€0Ae|:4(—2_BB>E+l4<EB)B:|7 (BZ)
¢
B A E-E E-B
H——+—e[4< . : )B—14( z)E} (B3)
Ho  Ho ¢ ¢

where D is the electric-displacement vector and H is the magnetic-intensity vector. To consider the interaction between the
propagating photon and background radiation, we write the electric and magnetic fields as

E = EAei(kx—(ut) +E:e—i(k'x—wt) + EB (x’ t), B = BAei(k‘x—wt) 4 Bze—i(kx—wt) + Bg<x, t), (B4)

where E, and B, are the electromagnetic fields associated with the propagating photon and E and B are those associated

with the background radiation. We assume B = ¢; jklAckEf;, where ¢€; ;. is the Levi-Civita symbol. From Egs. (B2)—~(B4), we
find that

’In this paper, we assume the standard model. If we assume new particles, such as axionlike particles, the coefficients in the
Lagrangian could be changed [51].
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. Ey -E EPE? ;
Dize’(k'x—@’)eo(éij—{—Ae {4<7< Bcz B>—(BB.BB>>5 +8< 1>+14<B?BE>DE£‘+W’ (B5)
. 1 Ey-E EPE?
Hl-:e‘<k'x‘“”)ﬂ—0<5ij—(—1)Ae[4<<36728>—(BB-BB>>5U—8(BBBB>—14< = >D M EF 4, (B6)

where we explicitly write only the terms proportional to e/®**=®")_and (- --) means the expectation value of the stochastic
background radiation. Then, we derive

2

Yeij A, {4 <M — (Bg - BB>)6 +8 <EiEf> + 14(3?3?)] , (B7)

2

(ELEp)
Cc C

E; -E R A
Zm.ij = _Ae |:4 <M - <BB : BB>>6kl - 8<B]lc}Bl > - 14 :|€kmikm€lnjkn' (Bg)
From Egs. (B7) and (BS8), we obtain

1 emesy - <E§?E§>>) (B9)

1
nxx(xv t) - nyy(xv t) = Eue,xx +)(m,xx —Xeyy _)(m,yy) = 3Ae <<B§B§> - <B§B5> - c

1 1
nxy(x’ t) = E ()(e.xy +)(m.xy) = 3Ae (<B§B§> - ? <E§E§>) . (BIO)

Here, we expand the background electric and magnetic field with creation and annihilation operators as

EB(x t _l 3 Z l a a t(px—wt) a(p)e—i(p-x—wr))’ (B]])

Bf (x.1) / 5D z(ﬁ X &) (aq(p)e™P*=") — ag(p)e=Px=1), (B12)
a=x,y ¢

where we define the basis vectors as &* = @ and & = ¢. The expectation value of photon number density is described with a
phase-space density matrix as

(ab(p)ay®')),, = 22)°8(p —p')f ap(p.x. 1), (B13)

where the subscript x and ¢ indicate the spacetime point in which we consider the expectation value, and from Ref. [52],

fip.x.1) + folp.x.1) fu(P»x,f)—ifv(P,x»t)>
fuolp.x.0)+ify(p.x.t)  fi(p.x.1)=folp.x.1) )

Substituting Egs. (B11) and (B12) into Egs. (B9) and (B10), we obtain

Foppoat) = ( (B14)

nolx.1) = %(nxxof, 1) =y (x.1))

= \/7/— de/d2 [4fo(p.x,1)(1 + cos?,) cos 2¢p — 8f(p.x, t) cos b, sin 2]

2€Oc
24A
T T el \/7/_[) zdp/dz o, x, )Re{s Y2 (p) +,Y, ()} + fulp.x. )Im{, Y, () +,Y, ,(P)}]
= 48\/§AeﬂoadeéMBRea£_2(x, 1), (B15)
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e, 1) = §<nxy<x, )+ el 1)

_ \/7/_1’ 2dp/d2 [4fo.x.1)(1 + cos?d )p) sin 2¢, + 8f 1 (p.x. t) cos 6, cos 2¢p,]

2€0c
24A

zdp/dz [fop.x,t)Im{,Y,(p) —

Yo 2B)} = fup,x, )Re{, Y5 (p) = Yo »(P)}]

—48\/; Mg TeypImat _, (x, 1), (B16)
where 6, and ¢, are the polar and azimuthal angles of p in the line-of-sight frame, and we have used [53],
fop.x.1) = Q(p.x.1)(=pdf"/op).  fulp.x.1) = U(p.x.1)(~pdf®/0p). (B17)
. 1 . .
0(p.x,1) = EZ(aZ,lm(x’ 12Y1,(P) + a_pim(x, 1) Y, (P)). (B13)
I.m
1 N
Up.x.t) = 212(021m(x 1:Y1,(P) — a_oim(x,1) Y (D)), (B19)
I.m
. . n 1
Yim®) = Y _,, (D), ap,,(x.1) = _E(a2,lm(x’ 1)+ a_y (%, 1)). (B20)

If we take the conformal spacetime, Eqs. (B15) and (B16) correspond to Egs. (24) and (25).

[1] N. Aghanim er al. (Planck Collaboration), Planck 2018
results. VI. Cosmological parameters, arXiv:1807.06209.

[2] W. Hu and M.J. White, A CMB polarization primer,
New Astron. 2, 323 (1997).

[3] M. Kamionkowski and E.D. Kovetz, The Quest for B
modes from inflationary gravitational waves, Annu. Rev.
Astron. Astrophys. 54, 227 (2016).

[4] K. N. Abazajian et al. (CMB-S4 Collaboration), CMB-S4
Science Book, 1Ist ed., arXiv:1610.02743.

[5] J. Chluba, J. Hamann, and S.P. Patil, Features and new
physical scales in primordial observables: Theory and
observation, Int. J. Mod. Phys. D 24, 1530023 (2015).

[6] S. Deguchi and W. Watson, Circular polarization of astro-
physical masers due to overlap of Zeeman components,
Astrophys. J. 300, L15 (1986).

[71 W.D. Watson and H. W. Wyld, The relationship between the
circular polarization and the magnetic field for astrophysical
masers with weak zeeman splitting, Astrophys. J. 558, .55
(2001).

[8] M. Matsumiya and K. Ioka, Circular polarization from
gamma-ray burst afterglows, Astrophys. J. 595, L25 (2003).

[9] K. Wiersema et al., Circular polarization in the optical
afterglow of GRB 121024A, Nature (London) 509, 201
(2014).

[10] S. Batebi, R. Mohammadi, R. Ruffini, S. Tizchang, and S. S.
Xue, Generation of circular polarization of gamma ray
bursts, Phys. Rev. D 94, 065033 (2016).

[11] S. Shakeri and A. Allahyari, Circularly polarized EM
radiation from GW binary sources, J. Cosmol. Astropart.
Phys. 11 (2018) 042.

[12] A. Brunthaler, G. C. Bower, H. Falcke, and R. R. Mellon,
Detection of circular polarization in M81%*, Astrophys. J.
560, L123 (2001).

[13] D.C. Homan, M. L. Lister, H. D. Aller, M. E. Aller, and
J.E.C. Wardle, Full polarization spectra of 3C 279,
Astrophys. J. 696, 328 (2009).

[14] D.C. Homan, J.M. Attridge, and J.F.C. Wardle,
Parsec-scale circular polarization observations of 40 blazars,
Astrophys. J. 556, 113 (2001).

[15] T. Beckert and H. Falcke, Circular polarization of radio
emission from relativistic jets, Astron. Astrophys. 388, 1106
(2002).

[16] A. Karastergiou, S. Johnston, D. Mitra, A. G.J. van Leeu-
wen, and R. T. Edwards, V: New insight into the circular
polarization of radio pulsars, Mon. Not. R. Astron. Soc. 344,
L69 (2003).

[17] D. Melrose, in Radio Pulsars (Astronomical Society of the
Pacific, San Francisco, 2003), Vol. 302, p. 179.

043501-14


http://arXiv.org/abs/1807.06209
https://doi.org/10.1016/S1384-1076(97)00022-5
https://doi.org/10.1146/annurev-astro-081915-023433
https://doi.org/10.1146/annurev-astro-081915-023433
http://arXiv.org/abs/1610.02743
https://doi.org/10.1142/S0218271815300232
https://doi.org/10.1086/184594
https://doi.org/10.1086/323513
https://doi.org/10.1086/323513
https://doi.org/10.1086/378879
https://doi.org/10.1038/nature13237
https://doi.org/10.1038/nature13237
https://doi.org/10.1103/PhysRevD.94.065033
https://doi.org/10.1088/1475-7516/2018/11/042
https://doi.org/10.1088/1475-7516/2018/11/042
https://doi.org/10.1086/324308
https://doi.org/10.1086/324308
https://doi.org/10.1088/0004-637X/696/1/328
https://doi.org/10.1086/321568
https://doi.org/10.1051/0004-6361:20020484
https://doi.org/10.1051/0004-6361:20020484
https://doi.org/10.1046/j.1365-8711.2003.07096.x
https://doi.org/10.1046/j.1365-8711.2003.07096.x

CIRCULAR POLARIZATION OF THE COSMIC MICROWAVE ...

PHYS. REV. D 99, 043501 (2019)

[18] D. Mitra, J. Gil, and G. I. Melikidze, Unraveling the nature
of coherent pulsar radio emission, Astrophys. J. 696, L141
(2009).

[19] S. Shakeri, M. Haghighat, and S. S. Xue, Nonlinear QED
effects in X-ray emission of pulsars, J. Cosmol. Astropart.
Phys. 10 (2017) 014.

[20] E. Bavarsad, M. Haghighat, Z. Rezaei, R. Mohammadi, I.
Motie, and M. Zarei, Generation of circular polarization of
the CMB, Phys. Rev. D 81, 084035 (2010).

[21] S. Tizchang, S. Batebi, M. Haghighat, and R. Mohammadi,
Cosmic microwave background polarization in non-
commutative space-time, Eur. Phys. J. C 76, 478 (2016).

[22] S. De and H. Tashiro, Circular polarization of the CMB: A
probe of the first stars, Phys. Rev. D 92, 123506 (2015).

[23] S. King and P. Lubin, Circular polarization of the CMB:
Foregrounds and detection prospects, Phys. Rev. D 94,
023501 (2016).

[24] P. Montero-Camacho and C. M. Hirata, Exploring circular
polarization in the CMB due to conventional sources of
cosmic birefringence, J. Cosmol. Astropart. Phys. 08 (2018)
040.

[25] M. Kamionkowski, Circular polarization in a spherical
basis, Phys. Rev. D 97, 123529 (2018).

[26] R. B. Partridge, J. Nowakowski, and H. M. Martin, Linear
polarized fluctuations in the cosmic microwave background,
Nature (London) 331, 146 (1988).

[27] J.M. Nagy et al. (SPIDER Collaboration), A New limit on
CMB circular polarization from SPIDER, Astrophys. J. 844,
151 (2017).

[28] R. Mainini, D. Minelli, M. Gervasi, G. Boella, G. Sironi, A.
Bad, S. Banfi, A. Passerini, A. De Lucia, and F. Cavaliere,
An improved upper limit to the CMB circular polarization at
large angular scales, J. Cosmol. Astropart. Phys. 08 (2013)
033.

[29] T. Essinger-Hileman et al., CLASS: The cosmology large
angular scale surveyor, Proc. SPIE Int. Soc. Opt. Eng. 9153,
915311 (2014).

[30] J. Lazear et al., The Primordial Inflation Polarization
Explorer (PIPER), Proc. SPIE Int. Soc. Opt. Eng. 9153,
91531L (2014).

[31] I. Motie and S.S. Xue, Euler-Heisenberg lagrangian and
photon circular polarization, Europhys. Lett. 100, 17006
(2012).

[32] R. F. Sawyer, Photon-photon interactions can be a source of
CMB circular polarization, arXiv:1408.5434.

[33] D. Ejlli, Magneto-optic effects of the cosmic microwave
background, Nucl. Phys. B935, 83 (2018).

[34] S. Shakeri, S.Z. Kalantari, and S. S. Xue, Polarization of
a probe laser beam due to nonlinear QED effects, Phys.
Rev. A 95, 012108 (2017).

[35] M. Sadegh, R. Mohammadi, and I. Motie, Generation of
circular polarization in CMB radiation via nonlinear photon-
photon interaction, Phys. Rev. D 97, 023023 (2018).

[36] N. Bartolo, A. Hoseinpour, G. Orlando, S. Matarrese, and
M. Zarei, Photon-graviton scattering: A new way to detect
anisotropic gravitational waves?, Phys. Rev. D 98, 023518
(2018).

[37] L. Dai, M. Kamionkowski, and D. Jeong, Total angular
momentum waves for scalar, vector, and tensor fields,
Phys. Rev. D 86, 125013 (2012).

[38] L. Dai, D. Jeong, and M. Kamionkowski, Wigner-Eckart
theorem in cosmology: Bispectra for total-angular-momen-
tum waves, Phys. Rev. D 87, 043504 (2013).

[39] E. Newman and R. Penrose, An approach to gravitational
radiation by a method of spin coefficients, J. Math. Phys. 3,
566 (1962).

[40] J.N. Goldberg, A.J. MacFarlane, E. T. Newman, F. Rohr-
lich, and E. C. G. Sudarshan, Spin s spherical harmonics and
edth, J. Math. Phys. 8, 2155 (1967).

[41] W. Hu and M. J. White, CMB anisotropies: Total angular
momentum method, Phys. Rev. D 56, 596 (1997).

[42] M. Kamionkowski, A. Kosowsky, and A. Stebbins,
Statistics of cosmic microwave background polarization,
Phys. Rev. D 55, 7368 (1997).

[43] M. Zaldarriaga and U. Seljak, An all sky analysis of
polarization in the microwave background, Phys. Rev. D
55, 1830 (1997).

[44] T. Tram and J. Lesgourgues, Optimal polarisation equations
in FLRW universes, J. Cosmol. Astropart. Phys. 10 (2013)
002.

[45] V. Gluscevic, M. Kamionkowski, and A. Cooray, De-
rotation of the cosmic microwave background polarization:
Full-sky formalism, Phys. Rev. D 80, 023510 (2009).

[46] W. Hu, Weak lensing of the CMB: A harmonic approach,
Phys. Rev. D 62, 043007 (2000).

[47] D. Blas, J. Lesgourgues, and T. Tram, The cosmic linear
anisotropy solving system (CLASS) II: Approximation
schemes, J. Cosmol. Astropart. Phys. 07 (2011) 034.

[48] K. Inomata and M. Kamionkowski, Chiral photons from
chiral gravitational waves, arXiv:1811.04959.

[49] E. Wigner, Group theory: And its application to the
quantum mechanics of atomic spectra (Elsevier, Amster-
dam, 2012), Vol. 5.

[50] W. Heisenberg and H. Euler, Folgerungen aus der
Diracschen Theorie des Positrons, Z. Phys. 98, 714
(1936).

[51] G. Zavattini, U. Gastaldi, R. Pengo, G. Ruoso, F. Della
Valle, and E. Milotti, Measuring the magnetic birefringence
of vacuum: the PVLAS experiment, Int. J. Mod. Phys. A 27,
1260017 (2012).

[52] A. Kosowsky, Cosmic microwave background polarization,
Ann. Phys. (N.Y.) 246, 49 (1996).

[53] Y.T. Lin and B.D. Wandelt, A Beginner’s guide to the
theory of CMB temperature and polarization power spectra
in the line-of-sight formalism, Astropart. Phys. 25, 151
(2006).

043501-15


https://doi.org/10.1088/0004-637X/696/2/L141
https://doi.org/10.1088/0004-637X/696/2/L141
https://doi.org/10.1088/1475-7516/2017/10/014
https://doi.org/10.1088/1475-7516/2017/10/014
https://doi.org/10.1103/PhysRevD.81.084035
https://doi.org/10.1140/epjc/s10052-016-4312-5
https://doi.org/10.1103/PhysRevD.92.123506
https://doi.org/10.1103/PhysRevD.94.023501
https://doi.org/10.1103/PhysRevD.94.023501
https://doi.org/10.1088/1475-7516/2018/08/040
https://doi.org/10.1088/1475-7516/2018/08/040
https://doi.org/10.1103/PhysRevD.97.123529
https://doi.org/10.1038/331146a0
https://doi.org/10.3847/1538-4357/aa7cfd
https://doi.org/10.3847/1538-4357/aa7cfd
https://doi.org/10.1088/1475-7516/2013/08/033
https://doi.org/10.1088/1475-7516/2013/08/033
https://doi.org/10.1117/12.2056701
https://doi.org/10.1117/12.2056701
https://doi.org/10.1117/12.2056806
https://doi.org/10.1117/12.2056806
https://doi.org/10.1209/0295-5075/100/17006
https://doi.org/10.1209/0295-5075/100/17006
http://arXiv.org/abs/1408.5434
https://doi.org/10.1016/j.nuclphysb.2018.08.003
https://doi.org/10.1103/PhysRevA.95.012108
https://doi.org/10.1103/PhysRevA.95.012108
https://doi.org/10.1103/PhysRevD.97.023023
https://doi.org/10.1103/PhysRevD.98.023518
https://doi.org/10.1103/PhysRevD.98.023518
https://doi.org/10.1103/PhysRevD.86.125013
https://doi.org/10.1103/PhysRevD.87.043504
https://doi.org/10.1063/1.1724257
https://doi.org/10.1063/1.1724257
https://doi.org/10.1063/1.1705135
https://doi.org/10.1103/PhysRevD.56.596
https://doi.org/10.1103/PhysRevD.55.7368
https://doi.org/10.1103/PhysRevD.55.1830
https://doi.org/10.1103/PhysRevD.55.1830
https://doi.org/10.1088/1475-7516/2013/10/002
https://doi.org/10.1088/1475-7516/2013/10/002
https://doi.org/10.1103/PhysRevD.80.023510
https://doi.org/10.1103/PhysRevD.62.043007
https://doi.org/10.1088/1475-7516/2011/07/034
http://arXiv.org/abs/1811.04959
https://doi.org/10.1007/BF01343663
https://doi.org/10.1007/BF01343663
https://doi.org/10.1142/S0217751X12600172
https://doi.org/10.1142/S0217751X12600172
https://doi.org/10.1006/aphy.1996.0020
https://doi.org/10.1016/j.astropartphys.2005.12.002
https://doi.org/10.1016/j.astropartphys.2005.12.002

