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We confront the admixture of dark matter inside a neutron star using gravitational wave constraints
coming from binary neutron star merger. We consider a relativistic mean field model including σ − ω − ρ
meson interaction with NL3 parametrization. We study fermionic dark matter interacting with nucleonic
matter via Higgs portal mechanism. We show that admixture of dark matter inside the neutron star softens
the equation state and lowers the value of tidal deformability. Gravitational wave GW170817 observation
puts an upper bound on tidal deformability of a binary neutron star with low spin prior at 90% confidence
level, which disfavors stiff equation of state such as the Walecka model with NL3 parametrization.
However, we show that the Walecka model with NL3 parametrization with a fermionic dark matter
component satisfies the tidal deformability bound coming from the GW170817 observation.
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I. INTRODUCTION

Compact objects like neutron stars (NS) are nature’s
laboratory which can shed light directly or indirectly on the
different branches of physics such as low energy nuclear
physics, QCD under extreme conditions, the general theory
of relativity etc. A neutron star is one of the remnants of a
dying star undergoing gravitational collapse. Gravitational
collapse of stars with a mass range between 1.4–3.0 M⊙
evolve into a neutron star. Neutron degeneracy pressure
inside the neutron star makes it hydrostatically stable
against the gravitational collapse. If the mass of a dying
star is very large (beyond 10 M⊙) then the stellar remnant
will overcome the neutron degeneracy pressure and gravi-
tational collapse will produce a black hole. Matter density
inside the neutron star can be as large as a few times the
nuclear saturation density (nB ¼ 0.16 fm−3). Interior of a
neutron star provides a situation to study the behavior of
matter at extreme conditions. In this context, the possible
equation of state (EoS) of infinite nuclear matter has been
explored extensively (for a brief review see [1]). The main
challenge in the description of matter at high densities
inside neutron stars is to develop a model which not only

describes matter at high densities, but also the properties of
matter observed at saturation densities [2–4]. Valid nuclear
EoS has to satisfy presently well accepted empirical and
experimental constraints [5–7], e.g., ground state properties
of spherical and deformed nuclei, saturation density, bind-
ing energy, symmetry energy, compression modulus etc.
as well as constraints coming from infinite nuclear matter
e.g., neutron star mass radius relation, tidal deformability
etc. Rotating neutron stars or pulsars give important infor-
mation about superfluid nature of nucleon inside the neutron
star [8,9]. Superfluidity of nucleons is important to explain
timing irregularities (glitch) of pulsars. From the high energy
nuclear physics point of view, neutron star provides an ideal
condition where high density QCD matter (quark matter
phase, color superconducting phase etc.) can exist [10–13].
Historically the neutron star mass radius relationship com-
ing from solving the Tolman-Oppenheimer-Volkoff (TOV)
equation has been studied extensively to put constraints on
the nuclear EoS [1]. However recent observation of gravi-
tational waves from neutron star mergers opens up another
dimension in the study of the nuclear EoS [14,15].
On August 17, 2017, the Advanced LIGO and Virgo

observatories detected the gravitational waves (GW) from a
merging binary NS [14]. GW170817 data open up a new
way to understand the neutron star structure and the
underlying EoS of dense matter. Details of the internal
structure of the neutron stars in the binary mergers become
important as the orbital separation become comparable
with the size of the bodies. For neutron star binary merger
the tidal field of the companion induces a quadrupole
moment to the other neutron star. The relation of the
induced quadrupole moment to the external tidal field is
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proportional to the tidal deformability. Tidal deformability
is sensitive to the mass, radius, and tidal love number,
which in turn depends on the nuclear EoS. Using observed
tidal deformability parameters of the neutron star merger
one can put strong constraints on the neutron star EoS, for
details and related studies see [16–22] and references
therein. The GW170817 observation puts an upper bound
on tidal deformability of the combined binary NSs at
90% confidence [15]. Consequently, this can be used to
rule out certain equation of states of neutron stars.
Observations of the kinematics of self-gravitating objects

such as galaxies and clusters of galaxies give strong hint of
the existence of dark matter (DM). Cosmological obser-
vations tell us that this invisible matter cannot consist of
baryons, it must be a new kind of matter which interacts
with the rest of the standard model particles very weakly.
The exact nature of the dark matter, its coupling between
standard model particles and the mass is still not known.
However extensive studies on the particle physics dark
matter models have put strong constraints on the coupling
constant and mass of the dark matter particles (for a recent
review on dark matter physics see [23]). Among different
proposals of dark matter, weakly interacting massive
particle (WIMP) scenario has gained favor because it gives
the correct prediction of the measured relic abundance of
the dark matter today very naturally.
The presence of dark matter inside neutron star and its

consequences have been discussed in the literature [24–35].
These discussions include dark matter capture by neutron
star and heating of old neutron star in the galactic halo to a
temperature detectable by upcoming infrared telescopes
[24], trapped WIMPs inside the neutron star [25], charged
massive dark matter particle and its effect on neutron star
[26], heating of a neutron star due to dark matter annihi-
lation [27–29], or the collapse of a neutron star due to
accretion of nonannihilating dark matter [30] etc. In
Ref. [32] authors have considered possible effects of a
self-interacting dark matter core on the maximum mass of a
neutron star, mass-radius relation and on the NS tidal
deformability parameter. They have computed radial den-
sity and pressure profiles of the baryonic and dark matter
components for different nuclear EoS and different dark
matter fractions. In Ref. [35], the authors have considered
the Walecka relativistic mean field model including σ − ω
interaction for the nucleonic part [2,3,5,6] and fermionic
dark matter inside the neutron star. Using mean field
approximation they have calculated effective nucleon mass,
variation of σ field, EoS and the corresponding mass radius
relation in this model. However, it is important to mention
that the simple relativistic mean field model (RMF) model
taken in this work is unsuccessful in producing nuclear
saturation properties. This simple model is ruled out due to
the fact that it gives high nuclear incompressibility
(≈500 MeV) and very low nucleon mass [36]. Keeping
this limitation of the simple σ − ω in this work we have

considered the a generalized Lagrangian for the nucleonic
sector including σ − ω − ρ meson interaction with NL3
parametrization [37,38]. The EoS of this model is disfa-
vored by GW170817 tidal deformability upper bound limit.
However, we show that if we consider fermionic dark
matter interaction via Higgs portal mechanism, then it can
evade the GWs tidal deformability upper bound constraint.
We have also considered nongravitational interaction
of the dark matter and the nucleon field in a relativistic
mean field approach.
This paper is organized as follows: in Sec. II we discuss

generalized Walecka model with NL3 parameterization. In
Sec. III, we discuss fermionic dark matter model and its
interaction with nuclear matter. The EoS of total
Lagrangian density of dark matter and nuclear matter is
presented in Sec. IV. Constraint from GWs tidal deform-
ability on EoS is discussed in Sec. V. Finally, we conclude
in Sec. VI.

II. WALECKA MODEL WITH NL3
PARAMETRIZATION

In this section, we briefly summarize the taken RMF
model [2,3,5,6], which is also known as quantum hadron
dynamics (QHD) [39]. In this framework, nucleons are
quasiparticles with an effective medium dependent mass
and baryon chemical potential. They move in the mean
field of mesons. The simplest QHD model is known as the
σ − ω model. In this model nucleon-nucleon interaction is
mediated by the exchange of σ and ωmesons. Properties of
symmetric nuclear matter has been studied in this model. In
general σ mesons give rise to a strong attractive central
force and a spin-orbit nuclear force, on the other hand, ω-
mesons are responsible for the repulsive central force.
However, this simple model does not reproduce nuclear
saturation properties, e.g., compressibility [36]. More
advanced versions of QHD includes ρ meson exchange
interaction between nucleons [37]. Since protons and
neutrons only differ in terms of their isospin projections,
ρmesons are included to distinguish between these baryons
and to give a better account of the symmetry energy. These
vector mesons are charged, hence the reaction between ρ
meson and proton will differ from the reaction between ρ
meson and neutron. In general one can also include photon
field, however, neutron star is assumed to be charge neutral,
hence the contribution from the photon field can be
neglected.
Lagrangian including nucleon field, σ, ω and ρ mesons

and their interactions can be written as [37],

L ¼ ψ̄ ½γμði∂μ − gvVμ − gρτ:bμÞ − ðMn þ gsϕÞ�ψ

þ 1

2
∂μϕ∂μϕ −

1

2
m2

sϕ
2 −

1

3
g2ϕ3 −

1

4
g3ϕ4

−
1

4
VμνVμν þ

1

2
m2

VV
μVμ −

1

4
bμν:bμν þ

1

2
m2

ρbμbμ ð1Þ

ARPAN DAS, TUHIN MALIK, and ALEKHA C. NAYAK PHYS. REV. D 99, 043016 (2019)

043016-2



In general one can also include terms quartic in ω meson
and ω − ρ interactions. However in the present work we
have used NL3 parametrization of the above Lagrangian. In
this parametrization coupling of terms quartic in ω meson
and ω − ρ interactions are taken to be zero. In the above
equation ψ is nucleon doublet, ϕ, Vμ, and bμ denotes σ, ω, ρ
meson field, respectively.ms,mV , andmρ are the masses of
the mesons andMn denotes the nucleon mass. gs, gv, and gρ
are the scalar, vector, and isovector coupling constants,
respectively. Field strength tensor of the vector and iso-
vector mesons are given by,

Vμν ¼ ∂μVν − ∂νVμ; ð2Þ

and,

bμν ¼ ∂μbν − ∂νbμ ð3Þ

ρ meson field can be written explicitly as, bμ ¼
ðbμ1; bμ2; bμ3Þ. bμ3 represents neutral ρ0 meson and ρ� are
the orthogonal linear superposition of bμ1 and bμ2.

bμ� ¼ 1ffiffiffi
2

p ðbμ1 � bμ2Þ: ð4Þ

τ ¼ ðτ1; τ2; τ3Þ are the Pauli matrices, these are also the
isospin operators. Proton and neutron are the different
projections of nucleon in isospin space. Operation of τ3 on
neutron and proton is as follows,

τ3jpi ¼ þ1jpi and τ3jni ¼ −1jni ð5Þ

Numerical values of the all the parameter of the Lagrangian
are given in the Table I [37].

III. INTERACTION LAGRANGIAN BETWEEN
NUCLEAR MATTER AND DARK MATTER

Due to the galaxy rotation, the compact object like
neutron star pass through the dark matter halo and capture
dark matter particle from it. Because of the high baryon
density inside neutron star, the DM particle loses energy
due to its interaction with neutrons. The strong gravita-
tional force of the NS trap the DM after it loses some
energy [27,34,40]. There are also other mechanism such as
conversion neutrons to scalar dark matter, scalar DM
production via bremsstrahlung increases the dark matter
density inside the neutron star [32,33]. Since dark matter
composed of 95% total matter density, one could possible
imagine that many compact objects composed of DM. The
amount of dark matter inside NS also depend on the
evolution history of NS, the environment where it lives.
In Ref. [41], the authors have shown that the binary neutron
star systems might enhance DM accumulation probability
inside NS.

We consider fermionic dark matter (χ) inside the
neutron star. Here we consider the lightest neutralino
which acts as a fermionic dark matter candidate [35,42].
Dark matter is not directly coupled with the nucleons
rather they are coupled to the Higgs field h. Coupling
between the dark matter and the Higgs field is y. For
neutralino mass (M χ ¼ 200 GeV), the value of y varies
from 0.001–0.1. We fix y ¼ 0.07 for the rest of our
analysis [35,42]. The Higgs field is also coupled to the
nucleons through effective Yukawa coupling fMn

v , where f
the proton-Higgs form factor and its value has been
estimated to be approximately 0.35 [43]. We have not
considered h3 and h4 term in the Higgs potential, because
in the mean field approximation the value of the h is
small and the only dominant term is the h2. So, the dark
sector Lagrangian and its interaction with the nucleons
and Higgs field is given by [35]

LDM ¼ χ̄½iγμ∂μ −M χ þ yh�χ þ 1

2
∂μh∂μh −

1

2
M2

hh
2

þ f
Mn

v
ψ̄hψ : ð6Þ

Direct detection experiment such as LUX [44] and
XENON [45] excluded dark matter-nucleon cross section
above ∼8 × 10−47 cm2 for dark matter mass range 30–
50 GeV at 90% C.L.. The invisible Higgs decay width
tightly constraint the dark matter below Mh=2, hence the
dark matter massm χ ¼ 200 GeV evades these constraints.
It is important to mention that dark matter may not be a
single component, it may well be a multicomponent
system. Dark matter can consist of low mass as well as
high mass particles. As an example in Ref. [35] authors
have considered heavy dark matter particles inside the
neutron star.
Here we have considered the average number density of

nuclear matter is 103 times larger than the average dark
matter density (nDM), which gives the ratio between mass
of the dark matter inside neutron star and mass of the
neutron star to be ∼ 1

6
[35]. We know that nuclear saturation

density nB ∼ 0.16 fm−3, so dark matter number density is
nDM ∼ 10−3nB ∼ 0.16 × 10−3 fm−3. Number density of

dark matter nDM ¼ ðkDMF Þ3
3π2

, which gives kDMF ∼ 0.033 GeV.
In our calculations we have varied kDMF from 0.02 GeV to
0.06 GeV. For these values of kDMF corresponding dark
matter density will be different.

IV. NEUTRON STAR EQUATION OF STATE AND
BETA EQUILIBRIUM

The Euler Lagrange equation of motion for nucleon
doublet (ψ), scalarðϕÞ, vector ðVμÞ, isovector (bμ), DM
particle (χ) and Higgs boson (h) can be derived from
Lagrangian densities Eqs. (1) and (6) as,
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�
γμði∂μ−gvVμ−gρτ:bμÞ−

�
Mnþgsϕ−

fMn

v
h

��
ψ ¼ 0;

∂μ∂μϕþm2
sϕþg2ϕ2þg3ϕ3þgsψ̄ψ ¼ 0;

∂μVμνþm2
VV

ν¼ gvψ̄γνψ ;

∂μbμνþm2
ρbν¼ gρψ̄γντψ ;

ðiγμ∂μ−M χ þyhÞχ¼ 0;

∂μ∂μhþM2
hh¼ y χ̄ χþfMn

v
ψ̄ψ ; ð7Þ

respectively. The DM particle mass and Higgs particle mass
are denoted asM χ andMh, respectively. Applying standard
relativistic mean field approximation we get,

ϕ0 ¼
1

m2
s
ð−gshψ̄ψi − g2ϕ2

0 − g3ϕ3
0Þ;

V0 ¼
gv
m2

V
hψ†ψi ¼ gv

m2
V
ðρp þ ρnÞ;

h0 ¼
yh χ̄ χi þ f Mn

v hψ̄ψi
M2

h

;

b0 ¼
gρ
M2

ρ
hψ†τ3ψi ¼

gρ
M2

ρ
ðρp − ρnÞ;

ðiγμ∂μ − gvγ0V0 − gρτ3γ0b0 −M⋆
nÞψ ¼ 0;

ðiγμ∂μ −M⋆
χÞχ ¼ 0; ð8Þ

where M⋆
n and M⋆

χ are nucleon and dark matter effective
mass, respectively. ρp and ρn are the densities of proton and
neutron, respectively. The effective mass of nucleon and
dark matter can be given as,

M⋆
n ¼ Mn þ gsϕ0 −

fMn

v
h0;

M⋆
χ ¼ M χ − yh0: ð9Þ

The baryon density (ρ), scalar density (ρs), and dark matter
scalar density (ρDMs ) are

ρ ¼ hψ†ψi ¼ γ

ð2πÞ3
Z

kF

0

d3k;

ρs ¼ hψ̄ψi ¼ γ

ð2πÞ3
Z

kF

0

M⋆
nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M⋆2
n þ k2

p d3k;

ρDMs ¼ h χ̄ χi ¼ γ

ð2πÞ3
Z

kDMF

0

M⋆
χffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M⋆2
χ þ k2

q d3k; ð10Þ

where kF and kDMF are the Fermi momentum for the
nucleonic matter and dark matter respectively. γ is the
spin degeneracy factor of nucleon and γ ¼ 2 for neutron
and proton individually.
The masses for both nucleon and dark matter depends on

baryon density for fixed values of dark matter Fermi
momentum kDMF and coupling constants. These masses
and coupling values are discussed in Table I and Sec. III. To
get the density dependent profile forM⋆

n andM⋆
χ , one needs

to solve numerically Eq. (10) together with the field
equations Eq. (8) in self-consistent manner. In this work,
we have taken the average dark matter number density
approximately 1000 times smaller than the average neutron
number density. This implies the dark matter mass fraction
with respect to the neutron star mass is ≃1=6. The expect-
ation values of the energy-momentum tensor or the stress
tensor provide the energy density and pressure of the system
in the static case, i.e., the EoS, which is given by,

ϵ ¼ hT00i and P ¼ 1

3
hTiii: ð11Þ

The expression for the total energy density (ϵ) and the
pressure (P) can be obtained by combining the Lagrangian
density Eqs. (1) and (6):

ϵ¼ gvV0ðρpþρnÞþgρb0ðρp−ρnÞþ
1

π2

Z
kp

0

dkk2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þðM⋆

nÞ2
q

þ 1

π2

Z
kn

0

dkk2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þðM⋆

nÞ2
q

þ 1

π2

Z
kDMF

0

dkk2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þðM⋆

χÞ2
q

þ1

2
m2

sϕ
2
0þ

1

3
g2ϕ3

0þ
1

4
g3ϕ4

0−
1

2
m2

VV
2
0−

1

2
m2

ρb20þ
1

2
Mhh20: ð12Þ

P ¼ 1

3π2

Z
kp

0

k4dkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ðM⋆

nÞ2
p þ 1

3π2

Z
kn

0

k4dkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ðM⋆

nÞ2
p þ 1

3π2

Z
kDMF

0

k4dkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ðM⋆

χÞ2
q

−
1

2
m2

sϕ
2
0 −

1

3
g2ϕ3

0 −
1

4
g3ϕ4

0 þ
1

2
m2

VV
2
0 þ

1

2
m2

ρb20 −
1

2
Mhh20; ð13Þ

TABLE I. Nucleon masses (Mn), σ meson mass (ms), ω meson mass (mv), ρ mass mρ and couplings gs, gv, gρ, g2, g3 of NL3
parametrization [37].

Mn (MeV) ms (MeV) mv (MeV) mρ (MeV) gs gv gρ g2 ðfm−1Þ g3

939 508.194 782.501 763.000 10.217 12.868 4.474 −10.431 −28.885
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ρn and ρp are the neutron and proton number density
with knF and kpF are the corresponding Fermi momentum
of neutron and proton, respectively. The number densities
and corresponding Fermi momenta are equal for the
symmetric nuclear matter. The matter inside the neutron
star is mainly composed of neutrons. However, the
neutron will eventually β− decays as,

n → pþ e− þ ν̄; ð14Þ

nþ ν → pþ e−: ð15Þ

To maintain the neutron star matter charge neutral,
muons (μ) will appear when the chemical potential of the
electrons reaches the muon rest mass (mμ ¼ 106 MeV). For
a given baryon density (ρ ¼ ρn þ ρp), the charge neutrality
is given as,

ρp ¼ ρe þ ρμ ð16Þ

and the β− equilibrium condition is given as,

μn ¼ μp þ μe and μe ¼ μμ ð17Þ

Where, the chemical potentials μp, μn, μe, and μμ are
given as,

μp ¼ ∂ϵ
∂ρp ¼ gvV0 þ gρb0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2p þ ðM⋆

nÞ2
q

ð18Þ

μn ¼
∂ϵ
∂ρn ¼ gvV0 − gρb0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n þ ðM⋆

nÞ2
q

ð19Þ

μe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2e þm2

e

q
ð20Þ

μμ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2μ þm2

μ

q
ð21Þ

Theparticle fractions of neutrons and protonswill dependon
both charge neutrality and the β− equilibrium condition as
given above. The self-consistent numerical solution of
Eqs. (16) and (17) will set the fraction of neutron, proton,
electron, and muon number density for a given baryon
density. The total energy density and pressure of leptons are
given as,

ϵl ¼
X
l¼e;μ

1

π2

Z
kl

0

k2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

l

q
dk ð22Þ

Pl ¼
X
l¼e;μ

1

3π2

Z
kl

0

k4dkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

l

q ð23Þ

The total energy density and pressure for β− equilibrated
neutron star matter are

ϵNM ¼ ϵl þ ϵ; ð24Þ

PNM ¼ Pl þ P: ð25Þ

In Fig. 1, we plot pressure (PNM) as function of the total
energy density (ϵNM) for different dark matter Fermi
momentum kDMF ¼ 0.0–0.06 GeV. Fermi momentum
kDMF ¼ 0.0 GeV corresponds equation of state without dark
matter. Increasing the value of kDMF from 0.02 GeV to
0.06 GeV, the EoS becomes softer, i.e., with increasing
density of dark matter pressure reduces, which is consistent
with earlier work [35]. This behavior is evident from the
expression of energy density and pressure from Eqs. (12)
and (13), i.e., with increasing kDMF the dark matter con-
tribution in energy density increases much faster than the
pressure.
Neutron star mass radius relationship can be obtained by

solving the TOV equation for a given nuclear matter EoS
[46]. The EoS for the core is obtained from the Walecka
Model with NL3 parameterization in the presence and
absence of dark matter components. Crust EoS is modeled
using the BPS EoS [47] for the range of density ρ ∼ 4.8 ×
10−9 to 2.6 × 10−4 fm−3. We use the polytropic form

PNMðϵNMÞ ¼ a1 þ a2ϵ
γ0
NM [48] to join the core and crust

of the NS, where a1 and a2 are obtained by matching the
edge of the core at one end with the inner edge of the outer
crust at other end, and γ0 is taken 4=3 [49]. In Fig. 2 we plot
the mass radius of NS using the EoS as shown in Fig. 1. It is
clear from Fig. 1 that the equation state is softer in the
presence of larger dark matter density. A softer equation of
state gives a lower value of the maximum mass of neutron
star. From Fig. 2, the maximum mass without dark matter

FIG. 1. The equation of states of NS with different dark matter
Fermi momenta kDMF , 0.0–0.06 GeV with a step of 0.02 GeV. The
black line corresponds to EoS of NS without dark matter. The
EoS becomes softer with increasing number density of dark
matter inside the NS.
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(kDMF ¼ 0) ∼2.8 M⊙ and the value of the maximummass of
NS decreases with increasing dark matter density.
In the context of dark matter inside the neutron star it is

very natural to consider the formation of dark matter core-
like structure inside the neutron star with nonuniform
distribution of the dark matter. This picture has been
explored in various literatures [32,34]. We would like to
point out that we are focusing on the mainly qualitative
aspect of the presence of dark matter inside the neutron star.
The effect of nonuniformly distributed dark matter inside
the neutron star on its properties has been discussed in
Ref. [34]. In Ref. [34] authors have invoked two-fluid
picture of the neutron star containing nuclear matter fluid as
well as dark matter fluid inside the neutron star. In that
work, authors also have considered the RMF picture for
both nuclear fluid as well as dark matter fluid, the mass
radius relation in the presence of dark matter for some
specific EOS is qualitatively similar to our result, e.g., in
the presence of dark matter, mass of neutron star can
decrease. They have also shown that for mass of the dark
matter (MDM) can be large e.g., 0.33 M⊙. However, if one
assumes a RMF kind of situation for the dark matter sector
then the coupling of the dark matter particle with a scalar,
vector particles etc. will be free parameters of the theory. In
the nuclear matter sector, the coupling constants have been
fixed keeping in mind the finite nuclei properties, but for
the dark matter, these constraints are not available. Hence
these free coupling constants in the dark matter sector will
make the model less predictive.
Tidal deformability also depends upon the compactness

and equation of state. In the next section, we study the
effect of dark matter on nuclear matter EoS using the tidal
deformability constraint from GW170817 observation.

V. TIDAL DEFORMABILITY CONSTRAINT

One of the important measurable structural properties of
a binary merger is the tidal deformability. In a coalescing
binary NS system, during the last stage of inspiral, each NS
develops a mass quadrupole due to the tidal gravitational
field induced by the other NS forming the binary. The tidal
deformability describes the degree of deformation of a NS
due to the tidal field of the companion NS and is sensitive to
the nature of the EoS. The tidal deformability is defined as,

λ ¼ 2

3
k2R5; ð26Þ

where R is the radius of the NS. The value of k2 is typically
in the range ≃0.05–0.15 [16–18] for NSs and depends on
the stellar structure. This quantity can be calculated using
the following expression [16]

k2 ¼
8C5

5
ð1 − 2CÞ2½2þ 2CðyR − 1Þ − yR�

× f2Cð6 − 3yR þ 3Cð5yR − 8ÞÞ
þ 4C3½13 − 11yR þ Cð3yR − 2Þ þ 2C2ð1þ yRÞ�
þ 3ð1 − 2CÞ2½2 − yR þ 2CðyR − 1Þ� log ð1 − 2CÞg−1;

ð27Þ

where C ð≡M=RÞ is the compactness parameter of the star
of mass M. The quantity yR ð≡yðRÞÞ can be obtained by
solving the following differential equation

r
dyðrÞ
dr

þ yðrÞ2 þ yðrÞFðrÞ þ r2QðrÞ ¼ 0 ð28Þ

with

FðrÞ ¼ r − 4πr3ðϵðrÞ − pðrÞÞ
r − 2MðrÞ ;

QðrÞ ¼
4πrð5ϵðrÞ þ 9pðrÞ þ ϵðrÞþpðrÞ

∂pðrÞ=∂ϵðrÞ −
6

4πr2Þ
r − 2MðrÞ

− 4

�
MðrÞ þ 4πr3pðrÞ
r2ð1 − 2MðrÞ=rÞ

�
2

;

along with the TOV equation with proper boundary con-
ditions [46,50]. One can then define the dimensionless tidal
deformability: Λ ¼ 2

3
k2C−5.

Individual dimensionless tidal deformability of two stars,
Λ1 and Λ2 cannot be extracted independently from the
observed gravitational waveform. Instead, an effective
dimensionless tidal deformability of the binary Λ̃ can be
extracted, which is a mass-weighted average of the indi-
vidual dimensionless tidal deformability Λ1 and Λ2. The
effective tidal deformability (Λ̃) of binary system in terms
of Λ1 and Λ2 is defined as [51]

FIG. 2. Mass radius relation of NS for different EoS with dark
matter Fermi momentum kDMF ¼ 0.0–0.06 GeV. The maximum
mass of NS without dark matter is 2.8 M⊙ and 2.1 M⊙ with dark
matter Fermi momentum kDMF ¼ 0.06 GeV.
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Λ̃ ¼ 16

13

ðm1 þ 12m2Þm4
1Λ1 þ ðm2 þ 12m1Þm4

2Λ2

ðm1 þm2Þ5
ð29Þ

where m1 and m2 are the masses of the neutron stars in the
binary. Similarly, masses of the two companion neutron
stars cannot be measured directly, rather the chirp mass,
Mc ¼ ðm1m2Þ3=5ðm1 þm2Þ−1=5, which is measured
directly. By assuming low-spin prior which is consistent
with the binary neutron star systems that have been
observed in, GW170817 put an upper bound on the NSs
combined dimensionless tidal deformability and chirp mass
with 90% confidence [15]. This analysis predicts that the
combined dimensionless tidal deformability of the NS
merger is Λ̃ ≤ 800. It is important to note that a reanalysis
of GW170817 observation has been done assuming
the same EoS for both stars and this puts an upper limit
on the dimensionless tidal deformability, Λ̃ ≤ 1000 [52].
However lower bound on dimensionless tidal deformability
can be put using the investigation of the UV/optical/
infrared counterpart of GW170817 with kilonova models
[53]. The lower bound of dimensionless tidal deformability
is Λ̃ ≥ 400.
One of the important goals of this work is to study the

structural properties of neutron stars in the presence of
the dark matter component. For the sake of arguments it is
important to understand the behavior of dimensionless
tidal deformability and the tidal Love number of the
companion neutron stars. Solving Eq. (28) and the TOV
equation with appropriate boundary conditions, we get yR.
Using the value of yR and compactness one can get k2 using
the expression Eq. (27). Left plot in Fig. 3 shows the
dimensionless tidal deformability Λ and the right plot
shows tidal Love number k2 as a function of the NS mass
for our EoS with different dark matter density. The value
of k2 is of the range 0.09-0.13 for a typical neutron star
of mass 1.5 M⊙, which is expected [16,17]. For a given

neutron star mass (say around 1.5 M⊙) EoS without the
dark matter predicts larger radius and with increasing
dark matter density radius decreases. Since the dimension-
less tidal deformability is inversely proportional to the
compactness ðC ¼ M=RÞ, its value is larger in the absence
of dark matter.
To study the tidal deformability constraint from the

GW170817 observation on EoS of NS, we plot the
combined tidal deformability of the binary system in Λ1,
Λ2 plane in Fig. 4. Λ1 and Λ2 are the individual dimension-
less tidal deformability of the high mass m1 and low mass
m2 neutron stars in a binary, respectively. The curves are
corresponding to the EoS with different dark matter density
and obtained by varying m1 and m2 independently. m1 has
been taken in the range 1.365 < m1=M⊙ < 1.60 and the
range of the m2 is determined by keeping the chirp mass
Mc fixed at 1.188 M⊙. The dashed and the dot lines
represent, respectively, the 90% and 50% confidence limits
of the combined dimensionless tidal deformability obtained
from the GW170817 for the low spin prior. One can see
from this plot that EoS given by the NL3 parametrization
without dark matter component can be excluded at
90% confidence level using the upper bound on tidal
deformability of a binary system. However if we consider
dark matter component in neutron stars, then NL3 para-
metrized EoS comes within the 90% confidence level.
Hence a small component of dark matter inside a neutron

FIG. 3. Dimensionless tidal deformability (Λ) of NS and Love
number (k2) as a function of neutron star mass for different dark
matter Fermi momentum is shown.

FIG. 4. Tidal deformability parameters of the low and high
mass components of binary neutron star merger (GW170817
observation). Dashed line and dotted line indicates 90% and
50% confidence limit for low spin priors [15]. The diagonal solid
line corresponds to Λ1 ¼ Λ2 boundary. The Walecka model with
NL3 parametrization is disfavored by GW observation at
90% C.L. in the absence of dark matter, i.e., kDMF ¼ 0.0 GeV.
Note that low dark matter density, e.g., kDMF ¼ 0.03 GeV is also
disfavored. However, the Walecka model in NL3 parametrization
with relatively higher DM density, e.g., kDMF ¼ 0.04–0.06 GeV is
allowed by 90% C.L. of the GW170817 observation.
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star can revive well-known EoS, which otherwise might be
excluded by the GW170817 observation.

VI. CONCLUSIONS

We have confronted the neutron star equation of state
in the presence of dark matter component using the
gravitational wave constraint from the binary star merger.
We have shown that for a uniformly distributed dark matter
inside neutron star, the EoS becomes softer which even-
tually produces lower NS mass with increasing dark
matter density. We have taken the Walecka model with
NL3 parametrization in the nuclear matter sector. The
Walecka model with NL3 parametrization without dark
matter admixture gives rise to a maximum mass of
NS ∼ 2.8 M⊙. By increasing dark matter density (Fermi
momentum) inside neutron star reduces the value of
maximum mass. The value of the maximum mass of
neutron star changes from 2.8 M⊙ to 2.1 M⊙ by increasing

dark matter Fermi momentum from 0.0 GeV to 0.06 GeV.
One of the striking results of our analysis is that the stiffer
equation of states such as relativistic mean field model
(Walecka model) with NL3 parametrization is ruled out at
90% C.L. using the GW170817 observation. However, in
the presence of dark matter this constraint can be evaded
and NL3 parametrization can be brought within 90% C.L.
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