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The cosmic ray energy spectra encode very important information about the mechanisms that generate
relativistic particles in the MilkyWay, and about the properties of the Galaxy that control their propagation.
Relativistic electrons and positrons traveling in interstellar space lose energy much more rapidly than more
massive particles such as protons and nuclei, with a rate that grows quadratically with the particle energy E.
One therefore expects that the effects of energy loss should leave observable signatures in the e∓ spectra, in
the form of softenings centered at the critical energyE�. This quantity is determined by the condition that the
total energy loss suffered by particles during their residence time in the Galaxy is of the same order as the
initial energy. If the electrons and positrons are accelerated in discrete (quasi) pointlike astrophysical objects,
such as supernova explosions or pulsars, the stochastic nature of the sources should also leave observable
signatures in the e∓ energy spectra and angular distributions above a second (higher) critical energy E†,
determined by the condition that particles with E ≳ E† can propagate only for a maximum distance shorter
than the average separation between sources. In this work we discuss the theoretically expectations for the
signatures of the energy-loss effects on the electron and positron spectra, and compare these predictions with
the existing observations. Recent measurements of the (e− þ eþ) flux have discovered the existence of a
prominent spectral break atE ≃ 1 TeV. This spectral feature can perhaps be identifiedwith the critical energy
E�. An alternative hypothesis is to assume that E� has a much lower value of order of a few GeV. Resolving
this ambiguity is of great importance for our understanding of Galactic cosmic rays.
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I. INTRODUCTION

The fluxes of cosmic rays (CR) that are observable near
the Earth, in a very broad energy interval that extends from
GeV’s to PeV’s (and possibly to much higher energy), are
formed by particles of Galactic origin. These CR particles
are injected in interstellar space by sources distributed in
the entire MilkyWay and remain confined in the Galaxy for
an extended period of time because of the existence of the
Galactic magnetic fields. The CR fluxes are, to a very good
approximation, isotropic, but their energy distributions
contain very important information about their sources
and about the properties of the Galaxy that control CR
propagation. At low energy (E≲ 30 GeV) the CR spectra
are also distorted by the electromagnetic fields that fill the
heliosphere, generating time-dependent solar modulations.
A fundamental problem for CR astrophysics is to

disentangle the roles of the sources and of propagation
in the formation of the CR fluxes, reconstructing the
“source spectra” (that is, the spectra with which the
particles are injected in interstellar space by the sources)
from the observations, and the distortion effects generated
by propagation.

Relativistic, electrically charged particles propagating in
interstellar space continuously lose energy because of
different types of interactions. The rate of energy loss
(for particles of the same E) is however many orders of
magnitude larger for particles of small mass (with the
dominant mechanisms scaling ∝ m−4). It is therefore
expected that the energy-loss effects play a significant role
only in the propagation of electrons and positrons, and that
they are entirely negligible in the propagation of p, p̄ and
nuclei.
The rate of energy loss for e∓ also grows rapidly with

the particle energy (in good approximation ∝ E2), so
the effects of energy losses are significant only for particles
of sufficiently high E. The conclusion is that the spectra of
both the e− and eþ fluxes should exhibit the “imprint” of
the energy losses in the form of a softening feature that
marks the transition from a regime where energy losses are
negligible (E≲ E�) to a regime where energy losses are the
most important “sink” that balances the injection of new
particles by the sources (E≳ E�). The identification of the
softening features in the e∓ spectra allows a measurement
of the critical energy E�.
The physical condition that determines E� is that the total

energy lost by a particle injected in interstellar space with
initial energy E�, calculated by integrating the loss rate*paolo.lipari@roma1.infn.it
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during the time interval when the particle remains confined
in the Galaxy, is (on average) of the same order of
magnitude. This condition can be expressed in the form

hΔEðE�Þi ¼ hdE=dtðE�ÞiTescðE�Þ ≈ E�: ð1Þ

In this equation hdE=dtðEÞi is the rate of energy loss
averaged over the CR confinement volume, and TescðEÞ is
the average residence time of a particle of initial energy E.
The crucially important point is that the identification of the
critical energy E� allows a measurement of the residence
time of CR in the Galaxy, a quantity of fundamental
importance for our understanding of cosmic rays.
In the discussion above we have implicitly assumed that

the critical energies for electrons and positrons E�
e− and E�

eþ
are approximately equal. This is a simple and robust
prediction that can be used to test the hypothesis that a
spectral feature observed in the spectrum of one particle
type is indeed generated by energy-loss effects. If this is the
case, a softening feature of approximately the same
structure, and centered at approximately the same energy,
must also be present in the spectrum of the other particle
type. It should, however, be noted that the two critical
energies for electrons and positrons are not exactly iden-
tical. The rates of energy loss for eþ and e− in interstellar
space are to a very good approximation equal, and the
annihilation probability for CR positrons interacting with
the electrons of the medium is negligibly small; however,
the critical energy also depends on the space distributions
of the CR sources, which can be different for the two
particle types. In addition, one should take into account the
fact that the spectral distortion generated by the energy
losses depends on the shape of the source spectrum, which
again is different for the two particle types.
When energy losses become important for the propaga-

tion of electrons and positrons, the space-time volume that
contains sources that can contribute to the observed spectra
starts to shrink rapidly for increasing E. If the CR sources
are discrete and transient astrophysical objects, the reduc-
tion in the space-time volume for the CR sources corre-
sponds to a smaller number of astrophysical objects that
can contribute to the flux. When this number becomes
sufficiently small, the “granularity” (or “stochasticity”) of
the sources should become observable as an anisotropy in
the angular distribution of the flux and/or in additional
features in the energy spectra. The search for these
predicted source granularity effects is an important task
in the study of the e∓ spectra.
This work is organized as follows: In the next section we

discuss the observations of the e−, eþ and (e− þ eþ)
spectra, fitting the data with simple functional forms.
Section III discusses theoretical models for the formation
of the Galactic CR spectra. In this discussion we introduce
two very simple models for Galactic propagation, where the
CR propagation can be expressed with exact analytic

expressions. The first one is the “leaky box” model; the
second one is a diffusion model that gives results that are
very close to those that can be obtained numerically with
computer codes such as GALPROP or DRAGON. These
models should only be considered as first-order approx-
imations to a realistic description of CR propagation, but
they can be used as a qualitative (or semiquantitative) guide
to the expected spectral shapes for different particle types.
The diffusion model also allows us to study the size and
shape of the space region where the CR particles have been
produced. In Sec. IV we assume that CR are generated in
“source events” (such as supernovae explosions) that are
pointlike and instantaneous and, using the framework of the
diffusion model, compute how the observed flux is formed
by the contributions of different source events and how the
granularity of the source could become observable.
Section V discusses how the theoretical models compare
to the observations. We argue that there are two possible
solutions for the critical energy E� (E� ∼ 3 GeV) or
E� ≃ 1 TeV. These two solutions have profoundly different
implications for cosmic ray astrophysics, as discussed in
Sec. VI. A final section gives a summary and an outlook for
future studies.

II. OBSERVATIONS

The spectra of CR electrons and positrons have been
measured with good accuracy by the magnetic spectrom-
eters PAMELA [1–5] and AMS02 [6,7] for E≲ 500 GeV
(see Figs. 1 and 2). The two detectors have taken data
during nonoverlapping time intervals, and the large
differences in flux observed for E≲ 20 GeV can be
attributed to time variations associated with the effects
of (time-dependent) solar modulations that distort a (con-
stant) interstellar spectrum.
In the discussion of the CR energy distributions, it is

useful to consider the (energy-dependent) spectral index
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FIG. 1. Spectra of e∓ measured by PAMELA [1,2] (squares)
and AMS02 [6] (circles) shown in the form E3ϕe∓ðEÞ versus E.
The energy scale of the PAMELA has been rescaled by a factor
f ¼ 0.93. The lines are fit to the data discussed in the text.
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γðEÞ, which is the slope of the spectrum when shown in the
form logϕ versus logE:

γðEÞ ¼ −
d logϕ
d logE

¼ −
E
ϕ

dϕ
dE

: ð2Þ

The energy spectra of both electrons and positrons have
the following qualitative properties.

(i) For E≲ 20 GeV (which is also the region where
time-dependent solar modulations are important) the
spectra exhibit a strong curvature and soften gradu-
ally, as the spectral indices γe∓ðEÞ grow continu-
ously with energy.

(ii) At high energy (E≳ 50 GeV) the spectra can be
well fitted with simple power laws, and the spectral
indices are approximately constant (with values
γe− ≃ 3.17 and γeþ ≃ 2.74).

(iii) The spectral indices of both electrons and positrons
have a maximum at an energy of order 20 GeV
(more accurately, E ≃ 24 GeV for electrons and E ≃
14 GeV for positrons). This implies that both spectra
undergo a modest, but clearly visible hardening for
energy around 10–30 GeV.

To describe the data we use a simple model where the
interstellar spectra have a broken power-law form (with one
hardening), and the solar modulations are described by the
force field approximation (FFA) [8]. A convenient expres-
sion to describe a spectrum with one gradual break (see [9]
for a more detailed discussion) is

ϕ0ðEÞ ¼ K0

�
E
E0

�
−γ1

�
1þ

�
E
Eb

�1
w
�−ðγ2−γ1Þw

: ð3Þ

This five-parameter expression (with E0 an arbitrary refe-
rence energy that, in this work, will be fixed at 10 GeV)
describes a spectrum that is asymptotically (at low and high
energy) a simple power law with slopes γ1 and γ2. At the

break energy Eb the spectral index takes the average value
γðEbÞ ¼ ðγ1 þ γ2Þ=2, and w gives the width of the interval
in logE where the spectral index varies.
In the FFA [8] the effects of solar modulations are

modeled as the loss of a constant energy ΔE ¼ ε for all
particles that traverse the heliosphere and reach the Earth.
Making use of the Liouville theorem, and assuming that the
CR flux is isotropic at the boundary of the heliosphere, one
can derive the relation between the spectrum ϕðEÞ
observed at the Earth and the interstellar spectrum ϕ0ðEÞ
(present at the boundary of the heliosphere):

ϕðEÞ ¼ p2

p2
0

ϕ0ðEþ εÞ ð4Þ

where p and p0 are the momenta that correspond to the
energies E and E0 ¼ Eþ ε.
Observations of the time dependence of CR fluxes [5,7]

clearly show that the solar modulation effects are different
for positively and negatively charged particles. This can be
understood (see e.g., [10] and references therein) as the
effect of the large-scale heliospheric magnetic fields.
Particles with electric charge of different sign travel along
different trajectories and therefore, on average, can lose
different amounts of energy. Accordingly, one expects that
the parameter ε will be different for electrons and positrons.
Applying the FFA algorithm to a spectrum of the form of

Eq. (3), and considering ultrarelativistic electrons (so that
p ≃ E and p0 ≃ E0), one arrives at the (six-parameter)
expression:

ϕðEÞ¼K0

E2

ðEþ εÞ2
�
Eþ ε

E0

�
−γ1

�
1þ

�
Eþ ε

Eb

�
1=w

�
−ðγ2−γ1Þw

:

ð5Þ

The expression of Eq. (5) can describe well the AMS02
data (taken between May 2011 and November 2013) for
both electrons and positrons in the energy range E >
1 GeV. The minimum χ2 (calculated by quadratically co-
mbining statistical and systematic errors) are χ2min ¼ 11.7
(64 d.o.f.) for the electrons and χ2min ¼ 21.0 (63 d.o.f.) for
the positrons [11]. The results are shown in Fig. 1, and the
best-fit parameters, with 1σ uncertainties, are listed in
Table I.
The PAMELA Collaboration has published spectra of

electrons [1] and positrons [2], taken in the time interval
from January 2006 to December 2009. In the framework
we have adopted here, the data taken in different time
intervals should be fitted with the same expression used for
AMS02, only changing the (time-dependent) parameter ε in
Eq. (5). However, we also allow for the possibility that the
energy scales of the two experiments are different.
Following these ideas we have studied the hypothesis that
the PAMELA measurements of the e∓ spectra can be
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FIG. 2. Electron spectra measured by AMS02 [6] and by
PAMELA [4] in different time intervals. The energy scale of
PAMELA has been rescaled by a factor f ¼ 0.93. The lines are fit
to the data discussed in the main text.
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described by the same best-fit functions ϕAMS
e∓ ðEÞ, with a

rescaling of the energy and the distortion due to a difference
in the parameter ε.
This corresponds to fitting the PAMELA data from [1,2]

with an expression that depends on two parameters. One
parameter is the ratio between the scales of energy for the
two detectors f ¼ EAMS=EPAM. The second one is the
quantity Δε ¼ εPAM − εAMS, which is the difference
between the solar modulation parameters for the two
data-taking time intervals.
This procedure yields best fits of reasonably good quality

(in the energy range E > 1 GeV). For the electron spec-
trum one has χ2min ¼ 26.2 (for 37 d.o.f.), while for the
positron flux one has χ2min ¼ 4.8 for 15 d.o.f.
The parameters of the best fit are given in Table II. The

best-fit value for the parameter Δε is −210� 10 MeV for
electrons and −280� 20 MeV for positrons. The best-fit
values for the parameters fe∓ show significant deviations
from unity (fe− ≃ 0.93� 0.01 and feþ ≃ 0.94� 0.02). It is
encouraging that these two values are consistent with being
equal to each other and the deviations from unity (of 6%
and 7%) are within the estimated systematic uncertainties
on the energy scale for the two detectors [12]. It should also
be noted that a review of the PAMELA data [3] discusses a

revision of the normalization of the published data, in the
same direction we find in the fit procedure.
These fits to the PAMELA data are shown in Fig. 1.

[Note that in the figure the PAMELA data points (plotted
together with the AMS02 data) show the energy rescaled by
a factor 0.93.]
The PAMELA Collaboration has also published the

results of seven measurements of the electron flux taken
during separate six-month time intervals between July 2006
and December 2009 [4]. These results are limited to the
lower energy region (E≲ 50 GeV) but are sufficient to
obtain important information on the time dependence of the
e− flux. These spectra have also been successfully fitted
(χ2min is in the range 1.0–8.3 for 14 d.o.f.) with the two-
parameter model discussed above. The fits are shown in
Fig. 2, and the best fits for the parameters ff;Δεg are listed
in Table III. The energy rescale parameter in the different
fits is consistent with being equal for all data sets f ≃ 0.97.
The solar modulation-dependent parameter Δε takes values
between −200 and −310 MeV.
More recently, the AMS02 Collaboration published [7]

spectra of electrons and positrons in the energy range
1–50 GeV averaged during 79 time separate time intervals
of 27 days. The FFA model for the solar modulations
cannot reproduce these precisely measured spectra exactly;
however, in a reasonably good first approximation, it still
gives a good description of the data, as shown in Fig. 3. A
more detailed study of this problem is postponed to a
future work.

A. The (e − + e+ ) spectrum

Calorimetric measurements of the sum of electrons and
positrons, performed without separating the two particle
types, are shown in Figs. 4 and 5. Direct observations of
this spectrum have been performed by AMS02 [13],
FERMI [14], ATIC [15], CALET [16,17], and DAMPE
[18]. These measurements reach (in the case of DAMPE) a
maximum energy E ≃ 4.5 TeV.
Ground-based Cherenkov telescopes such as HESS

[19,20], MAGIC [22], and VERITAS [23] have also been

TABLE I. Parameters of best fits to the AMS02 data on the
electron and positron spectra [6] (in the range E > 1 GeV), using
the functional form of Eq. (5). The χ2 of the fit is calculated by
quadratically combining the stated statistical and systematic
errors. The best-fit spectra are shown in Fig. 1.

Particle Electrons Positrons

K ½GeVm2 s sr�−1 0.47þ0.02
−0.03 0.018þ0.0012

−0.003

γ1 3.89þ0.27
−0.12 3.62þ0.36

−0.22

γ2 3.17þ0.05
−0.09 2.74þ0.05

−0.15

Eb [GeV] 32.9þ5.3
−7.2 20.8þ5.3

−12.4

w 0.50þ0.25
−0.15 0.55þ0.29

−0.21

ε [GeV] 1.44þ0.31
−0.10 0.94þ0.36

−0.14

χ2min 11.7 21.0

Nd:o:f: 64 63

TABLE II. Parameters of fits to the PAMELA data on the
electron [1] and positron [2] fluxes. The data are fitted using the
best-fit function obtained for the AMS data, assuming a constant
energy rescaling factor f ¼ EPAM=EAMS and a difference in the
FFA modulation parameter Δε ¼ εPAM − εAMS.

Particle Electrons Positrons

f 0.93� 0.01 0.94� 0.02
Δε [GeV] −0.21� 0.01 −0.28� 0.02
χ2min 26.2 4.8
Nd:o:f: 37 15

TABLE III. Parameters of fits to the electron PAMELA taken
during different time intervals [4]. The data are fitted using the
best-fit function obtained for the AMS data, assuming a constant
energy rescaling factor f ¼ EPAM=EAMS and a difference in the
FFA modulation parameter Δε ¼ εPAM − εAMS.

Data set Time f Δε χ2min

1 Jul–Nov 2006 0.975� 0.013 −0.208� 0.013 7.7
2 Jan–Jun 2007 0.974� 0.012 −0.243� 0.012 3.9
3 Jul–Dec 2007 0.967� 0.012 −0.256� 0.012 8.3
4 Jan–Jun 2008 0.960� 0.013 −0.259� 0.012 1.0
5 Jul–Dec 2008 0.962� 0.014 −0.284� 0.012 2.7
6 Jan–Jun 2009 0.956� 0.014 −0.310� 0.013 3.2
7 Jul–Dec 2009 0.976� 0.018 −0.307� 0.014 5.6
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able to obtain measurements of the (e− þ eþ) spectrum in
the TeVenergy range. The measurements are performed by
selecting events that are consistent with an electromagnetic
shower and subtracting the background generated by
cosmic ray protons and nuclei using Monte Carlo codes
to model the developments of air showers. Recently, the
HESS telescope [21] presented measurements of the
spectrum that extend to E ≃ 20 TeV.
The observations of ATIC [15] show a surprising

structure in the spectrum at an energy of 700 GeV, which
has been the object of many efforts at interpretation,
generating a large body of literature. However, the exist-
ence of this structure has not been confirmed by the
measurements of FERMI, DAMPE, HESS, and the other
Cherenkov detectors, and in the present work it is consid-
ered as the consequence of some unaccounted for system-
atic effects.

The data of the other experiments are not in perfect
agreement with each other; e.g., (see Fig. 5), the measure-
ments of DAMPE and HESS differ by approximately 25%–
30% in the energy range 500–1000 GeV. The observations,
however, clearly show the existence of a remarkable
spectral break at E ≈ 1 TeV.
The existence of this spectral feature was first discovered

by the HESS Collaboration [20], confirmed by MAGIC
[22] and VERITAS [23], and then also clearly seen by the
DAMPE detector [18]. The results of FERMI [14] are
actually consistent with an unbroken power-law spectrum,
but the errors of the highest energy points, which reach
2 TeV, are large, and this does not appear to be a significant
discrepancy.
The HESS Collaboration [21] has presented a fit

to their more recent data with the same expression
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FIG. 3. Measurements of the electron (left panel) and positron (right panel) spectra taken during 79 different time intervals (of 27 days)
by the AMS02 Collaboration [7]. The thick solid lines are the fits of the time-averaged e∓ spectra discussed in this work. The dashed
lines are calculated by distorting the average spectra using the FFA model for solar modulations with different parameters.
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FIG. 4. Measurements of the (e− þ eþ) spectrum obtained by
AMS02 [13], FERMI [14], ATIC [15], CALET [16,17], DAMPE
[18], HESS [19–21], MAGIC [22], and VERITAS [23]. The line
is a fit to the data from [24].
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FIG. 5. Measurements of the (e− þ eþ) spectrum obtained by
AMS02 [13], DAMPE [18], and HESS, and of the eþ flux by
AMS02. The lines are fits of theDAMPE [18] andHESS [21] data.

SPECTRAL SHAPES OF THE FLUXES OF ELECTRONS … PHYS. REV. D 99, 043005 (2019)

043005-5



of Eq. (3), obtaining, for the best-fit parameters, a
break energy Eb ≃ 0.94� 0.02þ0.29

−0.21 TeV, spectral indices
Γ1 ¼ 3.04� 0.01þ0.010

−0.18 (below the break) and Γ2 ¼
3.78� 0.02þ0.017

−0.06 (above the break), and a narrow width
w ¼ 0.12� 0.01þ0.19

−0.05 .
The DAMPE Collaboration fits the data using a form that

is a little different from the form of Eq. (3) adopted here,
and used by HESS:

ϕðEÞ ¼ K

�
E
E0

�
−γ1

�
1þ

�
E
Eb

�
−ðγ2−γ1Þ=s�s

: ð6Þ

Equations (3) and (6) are different parametrizations of the
same ensemble of curves, but the parameter s, used in
Eq. (6), and the width w in Eq. (3) are not identical [25] but
related by

s ¼ w=jΔαj: ð7Þ
DAMPE finds, for best-fit parameters, a break
energy Eb ≃ 0.914� 0.098 TeV, Γ1 ¼ 3.09� 0.01, Γ2 ¼
3.92� 0.20, with the value of s fixed at 0.1 (which
corresponds roughly to w ¼ 0.083).
In addition, VERITAS published a fit [23] with a broken

power-law form (which is w → 0) where the best-fit break
energy EVeritas ≃ 0.71� 0.04 TeV is somewhat lower than
the estimates of HESS and DAMPE.
The imperfect agreement between the different measure-

ments suggests the existence of some systematic effects,
and for this reason, we will not attempt to perform a global
fit to all data. Even in the presence of these uncertainties,
the existence of a sharp break in the spectrum of the sum
(e− þ eþ) should be considered as solidly established.

B. Observed features in the e∓ spectra

A useful quantity to study the properties of a CR
spectrum is the (energy-dependent) spectral index, defined
in Eq. (2). Figure 6 shows the spectral indices of the e−, eþ
and (e− þ eþ) fluxes calculated from fits to the data. For
the AMS02 data we use the best-fit functions presented in
this work; for the DAMPE [18] and HESS [21] data we use
the fits obtained in the original publications.
The main points that emerge from a study of the

measurements of the electron and positron spectra are
the following:
(1) For E≲ 20 GeV the e− and eþ spectra have a

“curved” shape, with spectral indices that change
continuously. In this energy range the effects of solar
modulations are important, and the estimate of the
interstellar spectra is model dependent. In this work
we have shown that if the solar modulations are
modeled with the FFA approximations, the inter-
stellar spectra for both electrons and positrons are
consistent with unbroken power laws. This is an
intriguing result that clearly requires a more de-
tailed study.

(2) The spectral indices for e− and eþ have a similar
behavior in the energy range 10–40 GeV, reaching a
maximum at E ≃ 20 GeV, and then reaching an
approximately constant value (with a step Δγ ≃ 0.15
for electrons and 0.24 for positrons). The existence
of this structure was first noted by the AMS02
Collaboration [6]. Both spectra therefore have
gradual hardenings at E ∼ 30 GeV, generated by a
mechanism (or mechanisms) that need to be clari-
fied (a more detailed discussion can be found in
Appendix).

(3) In the energy range 40–400 GeV both the e− and eþ
spectra can be reasonably well described by simple
power laws. Electrons have a significantly softer
spectrum (γe− ≃ 3.17, γeþ ≃ 2.74). The electron
spectrum is much steeper than the proton one.

(4) The spectrum of the sum (e− þ eþ) exhibits a sharp
and large break at E ≃ 1 TeV. This (together with
the “GZK cutoff”) is perhaps the most prominent
spectral structure is all of the cosmic ray data.

(5) From the published data, it is not possible to reach a
firm conclusion about the spectral shape of the
separate spectra of e− and eþ above E≳ 500 GeV.

(6) At E ≈ 1 TeV, the sum (e− þ eþ) is dominated by
electrons (extrapolating the lower energy data as
unbroken power laws, one estimates a ratio
e−=eþ ≃ 3–4). Therefore, the measurements of the
(e− þ eþ) flux imply that the electrons have a
spectral break at E ≃ 1 TeV. On the other hand,
one can also conclude that the positron spectrum
cannot continue as an unbroken power law and must
undergo a softening at E≲ 1.5 TeV, because in the
absence of such a break, the eþ flux would emerge
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FIG. 6. Spectral indices of the e−, eþ and (e− þ eþ) fluxes. The
index is calculated from Eq. (2) using analytic expressions to fit
the data. The fits to the AMS02 data are discussed in the text. The
fits to the DAMPE and HESS data are from [18] and [21]. The
shaded regions are estimates of the 1σ uncertainties.
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as the dominant component of the (e− þ eþ) spec-
trum, in contrast to the observation (see Fig. 5). The
eþ spectral break could develop at the same energy
as for electrons, but it could also be at lower (perhaps
as low as 600 GeV) or higher energy.

(7) At present, the measurements of DAMPE extend to
4.5 TeV, and those of HESS to 20 TeV, and the data
above the break at 1 TeVappear to be consistent with
a power-law spectrum. This is in fact a significant
constraint for the modeling of the CR sources.

The question we want to investigate is where in the
electron and positron spectra it is possible to identify

signatures associated with energy losses. To address this
question we study some simple models of CR propagation
to see what kind of effects one could expect to see.

III. THEORETICAL MODELS FOR COSMIC
RAY SPECTRA

A. Formation of CR spectra

In general, the flux of cosmic rays of type j and energy E
that are observed at the point x⃗ at time tobs can be written as
the convolution:

ϕjðE; x⃗; tobsÞ ¼
βc
4π

njðE; x⃗; tobsÞ ¼
βc
4π

Z
tobs

−∞
dti

Z
d3xi

Z
dEiqjðEi; x⃗i; tobs − tiÞPjðx⃗; E; x⃗i; Ei; tobs − tiÞ: ð8Þ

In this equation the factor βc=ð4πÞ relates, assuming
isotropy, the flux to the particle density nj. The CR density
is obtained as the integral over space, time, and initial
energy of an integrand that is the product of two funda-
mental quantities: the source spectrum qjðEi; x⃗i; tiÞ and the
propagation function Pjðx⃗; E; x⃗i; Ei; tÞ. The source spec-
trum (with dimensions L−3T−1E−1) is the rate of particles
of type j and energy Ei that are released in interstellar space
per unit volume around the point x⃗i at the time ti. The
propagation function (with dimensions L−3E−1) expresses
the probability that a particle of type j, created with energy
Ei at point x⃗i and t the time ti, is then found at time ti þ t
with energy E at point x⃗.
Equation (8) is a general expression for the CR fluxes,

valid for most types of models. The most important
nontrivial hypothesis that enters into the equation is the
assumption that (with respect to CR propagation) the
Galaxy is in a stationary state so that the propagation
function Pj is only a function of the time difference
t ¼ tobs − ti.
In most cases Eq. (8) is only a formal solution for the

formation of the CR fluxes because it can be very difficult
to compute the propagation functions, but in the following
we discuss two simple models where the functions Pj have
exact analytic expressions.
Integrating the propagation function over x⃗ and E, one

obtains the probability that a particle (created at point x⃗i
with energy Ei) is still confined in the Galaxy after a time t:

Z
d3x

Z
dEPjðx⃗; E; x⃗i; Ei; tÞ ¼ PsurvðEi; x⃗i; tÞ: ð9Þ

This survival probability must be in the interval [0,1], and it
decreases monotonically with t, with the (physically obvi-
ous) limits Psurv ¼ 1 for t → 0, and Psurv ¼ 0 for t → ∞.

The average residence time in the Galaxy for a particle
created at point x⃗i with energy E is then

htresðE; x⃗iÞi ¼
Z

∞

0

dtt

���� dPsurvðE; x⃗i; tÞ
dt

����: ð10Þ

B. Energy losses

The main mechanisms of energy losses for relativistic
electrons and positrons traveling in interstellar space are
synchrotron radiation and Compton scattering, and the rate
of energy loss is reasonably well approximated with the
form

−
dE
dt

≡ βðEÞ ≃ bE2 ≃
4

3
σThc½ρB þ ρ�γðEÞ�

E2

m2
e
: ð11Þ

In this expression σTh is the Thomson cross section, ρB ¼
B2=ð8πÞ is the energy density stored in the magnetic field,
and ρ�γðEÞ is the energy density in target photons with
energy ε≲m2

e=E. This kinematical constraint ensures that
the eγ scatterings are in the Thomson regime, excluding
collisions at higher center-of-mass energy (in the Klein-
Nishina regime) where the cross section is suppressed.
Other mechanisms, such as bremsstrahlung and ioniza-

tion, give smaller contributions to the energy loss, and it is a
reasonable approximation to neglect them and use the
simple expression of Eq. (11) that grows quadratically with
energy.
Because of the dependence on ρB and ργ , the rate of

energy loss is not constant in space. In this work, however,
we make the approximation to consider the Galactic
confinement volume as homogeneous, taking for ρB and
ργ a constant average value.
In the vicinity of the Solar System, the magnetic field is

of order B ≃ 3 μG, with a corresponding energy density
ρB ≃ 0.22 eV=cm−3. The magnetic field is larger near the
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Galactic center but also falls rapidly with the distance from
the Galactic equatorial plane. The interstellar radiation
field is formed by three components: the cosmic micro-
wave background radiation (CMBR), stellar light, and dust
emitted infrared radiation. The CMBR homogeneously fills
all space with an energy density ρCMBR ≃ 0.260 eV=cm3

formed by very soft photons (with average energy
hεi ≃ 6.3 × 10−4 eV), which are an effective target also
for high energy photons. Stellar light and infrared radiation
have, in the solar neighborhood, an energy density of order
0.5 eV=cm3, which, however, changes rapidly in space. In
the following, when needed, we use as a first-order estimate
the value hρB þ ρ�γi ≃ 0.5 eV=cm3. One should keep in
mind that this average depends on the size and shape of the
CR confinement volume, which are very poorly known. It
is straightforward to rescale the results for a different
estimate if desired.
From the rate of energy loss it is possible to compute a

characteristic time for energy loss:

T lossðEÞ ¼
E

jdE=dtj ≃
1

bE
: ð12Þ

In the last equality we have used the quadratic form for the
energy loss βðEÞ ¼ bE2; this results in the dependence
T loss ∝ E−1. A numerical estimate is

T lossðEÞ ≃ 621.6

�
0.5 eV cm−3

hρB þ ρ�γi
��

GeV
E

�
Myr: ð13Þ

If the energy loss is considered as a stationary, continu-
ous process that does not depend on the space coordinates,
the energy of a particle is a well-determined function of
time. The three quantities fEi; Ef; tg (that is, the initial and
final energy of a particle that propagates for a time t) are
related by the equation

Z
Ei

Ef

dE0

βðE0Þ ¼ t: ð14Þ

This equation can be solved to obtain any one of the three
quantities as a function of the other two. For βðEÞ ¼ bE2

one has simple explicit expressions:

EfðEi; tÞ ¼
Ei

1þ bEit
; ð15Þ

EiðEf; tÞ ¼
Ef

1 − bEft
ð16Þ

[for the assumptions made, one must have EfðE; tÞ ¼
EiðE;−tÞ], and

tðEi; EfÞ ¼
1

bEf
−

1

bEi
: ð17Þ

The limit of tðEi; EfÞ for Ei → ∞ is finite, indicating that
electrons and positrons observed at the Earth with energy
Ef have a maximum age:

tmaxðEfÞ ¼ lim
Ei→∞

tðEi; EfÞ ¼
Z

∞

Ef

dE0

βðE0Þ ≃
1

bEf
: ð18Þ

C. Leaky box model

The simplest model to describe the Galactic cosmic ray
spectra is the so-called leaky box model. In the model the
space dependence of the cosmic ray fluxes and sources is
neglected, and each CR species is entirely described by the
function nðE; tÞ that gives the density of the particles as a
function of energy and time (in the following the subscript j
that indicates the particle type will be left implicit). The
time evolution of nðE; tÞ is controlled by the equation

∂nðE; tÞ
∂t ¼ qðE; tÞ − nðE; tÞ

TescðEÞ
þ ∂
∂E ½βðEÞnðE; tÞ�: ð19Þ

The spectrum of one particle type is therefore entirely
determined by three functions: the source spectrum qðE; tÞ,
the escape time TescðEÞ, and the rate of energy loss βðEÞ.
The propagation function (which obviously cannot

depend on the space coordinates) is determined by TescðEÞ
and βðEÞ, and has the form

PðE;Ei; tÞ ¼ PsurvðEi; tÞδ½E − EfðEi; tÞ�: ð20Þ
In this expression the delta function expresses the fact that
(using the assumption of continuous energy loss) a CR
particle has a well-defined energy at all times. The function
PsurvðEi; tÞ is the probability that a CR particle released in
interstellar space with energy Ei is still in the Galaxy after a
time interval t, and can be calculated as

PsurvðEi; tÞ ¼ exp

�
−
Z

t

0

dt0

Tesc½EfðEi; t0Þ�
�
: ð21Þ

If energy losses are negligible [that is, in the limit
βðEÞ ¼ 0], the survival probability becomes a simple
exponential PsurvðE; tÞ ¼ e−t=TescðEÞ. In this case TescðEÞ
is also exactly equal [see Eq. (10)] to the average residence
time of the particles.
The CR density can be calculated using the general

expression of Eq. (8). The integration over Ei can be
performed using the delta function, obtaining a general
solution in the form of one single integral over time:

nðEÞ ¼
Z

tmaxðEÞ

0

dt
β½EiðE; tÞ�

βðEÞ q½EiðE; tÞ; t�Psurv½EiðE; tÞ; t�;

ð22Þ

where tmaxðEÞ is the maximum residence time in
the Galaxy for a particle observed with energy E
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[see Eq. (18)], and EiðE; tÞ is the past energy of a particle
observed with energy E [see Eq. (16)].
If the source spectrum is constant in time and energy

losses are negligible (so that E ¼ Ei, with the survival
probability, is a simple exponential), the time integration is
trivial, and one obtains the simple and obvious result

nðEÞ ¼ qðEÞTescðEÞ: ð23Þ

If the CR source is stationary and the escape probability
is negligible (that is, in the limit Tesc → ∞), the survival
probability is unity, and the CR spectrum becomes

nðEÞ ¼ 1

βðEÞ
Z

∞

E
dEiqðEiÞ: ð24Þ

A phenomenologically interesting case is as follows:
(i) The source spectrum is stationary in time, confined

to the Galactic plane, and constant, with a simple
power-law form

qðE; x⃗Þ ¼ q0E−αδ½z�: ð25Þ

(ii) The escape time is also a power law: TescðEÞ ¼
T0E−δ.

(iii) The rate of energy loss is quadratic in energy
[βðEÞ ¼ bE2], and therefore the loss time
is T loss ¼ 1=ðbEÞ.

In this situation the critical energy E� defined by the
condition that the escape and loss time are equal is given by

E� ¼ ðT0bÞ1=ðδ−1Þ: ð26Þ

The form of the CR spectrum in the limits of low and high
energy can be obtained from the more general expressions
of Eqs. (23) and (24). These asymptotic solutions are power
laws with exponents (αþ δ) at low energy and αþ 1 at
high energy:

nðEÞ ¼
�
q0T0E−ðαþδÞ for E ≪ E�

q0=½bðα − 1Þ�E−ðαþ1Þ for E ≫ E�:
ð27Þ

The general solution can be written in the form

nðEÞ ¼ ðq0T0ÞE−ðαþδÞFLB
lossðaÞ ð28Þ

which is the product of the no-energy-loss solution multi-
plied by a correction factor that can be expressed as a
function of the energy-dependent parameter a:

a ¼ TescðEÞ
T lossðEÞ

¼
�
E
E�

�
1−δ

: ð29Þ

The function FLB
lossðEÞ is given by

FLB
lossðaÞ ¼

Z
1=a

0

dτð1 − aτÞα−2

× exp

�
−

1

að1 − δÞ ½1 − ð1 − aτÞ1−δ�
�
: ð30Þ

It is straightforward to check that in the limit a → 0, one
has FLB

loss → 1; while for a ≫ 1 one has

FLB
lossðaÞ ≃ ½aðα − 1Þ�−1 ¼ ðα − 1Þ−1ðE=E�Þδ−1; ð31Þ

recovering the asymptotic expressions for E ≪ E� and
E ≫ E� in Eq. (27).
Having found an exact expression for the CR spectrum,

it is straightforward to compute the energy dependence of
the spectral index γðEÞ. The effect of energy losses is to
generate a “step” in the index of size (Δγ ¼ 1 − δ), as the
spectrum slope changes from the value (αþ δ) at low
energy to the values γ ¼ ðαþ 1Þ at high energy. Some
examples of the spectral feature generated by energy losses,
calculated for the set of assumptions outlined above, are
given in Fig. 7.
The step in the spectral index is centered at an energy

proportional to E� [defined in Eq. (26)] but is approx-
imately a factor of 2 smaller. The width of the energy range
where the step develops is very broad and depends strongly
on δ (and more weakly also on α). For δ ≃ 0.5 the step Δγ
develops when the particle energy grows by a factor of
approximately 30, and this corresponds to a width w of
order 1.6 to 1.7 (depending on α). For δ ≃ 0, the step in
spectral index develops when the energy grows by a factor
of order 5, and the width w is of order 0.4 to 0.6.

D. Diffusion model

The idea of describing the propagation of cosmic rays in
the Milky Way as diffusion was introduced by Morrison,
Olbert, and Rossi in the 1950s [26] and then discussed
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FIG. 7. Spectral feature generated by energy losses calculated
in a leaky box model. The source spectrum and the escape time
have energy dependence qðEÞ ∝ E−α and TescðEÞ ∝ E−δ.
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extensively by Ginzburg and Syrovatskii [27]. At present, it
is the basis for essentially all models for the propagation of
CR in the Galaxy.
In this work we use the simplest possible diffusive

propagation model, where the CR confinement volume is
taken in the (infinitely large) region of space with jzj ≤ H
(with the z plane coincident with the Galactic equatorial
plane). In the confinement volume the effects of the
magnetic field are described as isotropic diffusion with a
diffusion coefficient DðEÞ that is a function of rigidity, but
it is independent of position [28]. The two surfaces z ¼ �H
are considered absorption barriers, and particles that reach
these surfaces leave the Galaxy permanently. Particles (of a
given type) in the diffusive volume lose energy with a
space-independent rate described by βðEÞ. The model is
therefore entirely defined by the “halo size” H and by the
two functions βðEÞ and DðEÞ.
Some important quantities in the model are the loss time

T lossðEÞ, the diffusion or escape time TdiffðEÞ, the critical
energy E�, the diffusion radius RðEi; Ef; tÞ, and the
maximum diffusion radius RlossðEÞ.
The loss time has been defined in Eq. (12), and the

diffusion time,

TdiffðEÞ≡ TescðEÞ ¼
H2

2DðEÞ ; ð32Þ

is the time after which a particle of constant energy E,
diffusing in a homogeneous medium with diffusion coef-
ficient DðEÞ, travels an average distance hx2i ¼ hy2i ¼
hz2i ¼ H2. It can be demonstrated [29] that this quantity is
equal to the average escape time from the Galaxy for a
particle of energy E created on the Galactic plane z ¼ 0.
The critical energy E� is determined by the condi-
tion T lossðE�Þ ¼ TescðE�Þ.
The quantity R2ðEi; Ef; tÞ is equal to the average square

distance (R2 ¼ hx2i ¼ hy2i ¼ hz2i) traveled by a particle
of initial energy Ei (and final energy Ef) propagating in a
homogeneous medium with diffusion coefficient DðEÞ for
a time t. The propagation includes the effects of energy
losses [determined by the function βðEÞ], but it neglects
absorption effects. The quantity can be calculated by
performing one the three integrals:

R2ðEi; Ef; tÞ ¼ 2

Z
t

0

dt0D½EiðEf; t0Þ�

¼ 2

Z
t

0

dt0D½EfðEi; t0Þ� ¼ 2

Z
Ei

Ef

dE0 DðE0Þ
βðE0Þ :

ð33Þ

The three quantities Ei, Ef, and t are not independent
because they are related by Eq. (14); therefore, R can be
expressed as a function of any pair of variables out of the

set fEi; Ef; tg. In the limit of negligible energy losses, one
has Ei ¼ Ef and R2ðE; tÞ ¼ 2DðEÞt.
The maximum diffusion radius RlossðEÞ is the maximum

value of R for particles with final (observed) energy E, and
it corresponds to the limit for Ei → ∞ of RðEi; E; tÞ. This
quantity is finite if the rate of energy loss grows sufficiently
rapidly with E.
In the following we consider again the phenomenologi-

cally interesting case where the rate of energy loss is
quadratic in energy [βðEÞ ¼ bE2] and the diffusion coef-
ficient is a power law with exponent δ (DðEÞ ¼ D0Eδ). In
this situation the loss time has the form T lossðEÞ ¼ 1=ðbEÞ,
and the diffusion time is also a power law [TescðEÞ ¼
ðH2=ð2D0ÞÞE−δ]. This implies that the critical energy E� is

E� ¼
�
H2b
2D0

�
1=ðδ−1Þ

: ð34Þ

The maximum diffusion radius is finite and has the form

R2
lossðEÞ¼

2D0

bð1−δÞE
−ð1−δÞ ¼ H2

1−δ

T lossðEÞ
TescðEÞ

¼ H2

1−δ

�
E
E�

�
δ−1

:

ð35Þ

If (as is expected) δ < 1, the maximum diffusion radius
decreases with energy ∝ E−ð1−δÞ=2.
For a finite value of Ei [or for a time t < tmaxðEÞ], the

diffusion radius is

R2ðEi; Ef; tÞ ¼ R2
lossðEfÞ

�
1 −

�
1 −

t
tmaxðEÞ

�
1−δ

�

¼ R2
lossðEfÞ

�
1 −

�
Ef

Ei

�
1−δ

�
: ð36Þ

In the simple diffusive model that we have just described,
the propagation function can be written explicitly:

Pðx⃗; E; x⃗i; Ei; tÞ ¼
1

2πR2
e−r

2=ð2R2Þ 1
H
g

�
z
H
;
zi
H
;
R2

H2

�

× δ½E − EfðEi; tÞ� ð37Þ

where R is the diffusion distance defined above in Eq. (33).
Inspecting Eq. (37) one can see that the propagation

along the x and y directions is described by a simple
Gaussian, while in the z direction, one has to take into
account the presence of the absorption planes at z ¼ �H,
and the propagation has a more complicated expression,
encoded in the function g.
The solution of the diffusion equation in the presence of

the two absorption barriers can be obtained (see e.g., [30])
as the solution without the barriers but including, together
with the real source at point xi, an infinity of “mirror”
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sources and sinks located symmetrically in the unphysical
region outside the region between the two barriers.
Putting the absorption barriers at �1, and using adimen-

sional variables for x, xi, and σ2, the solution takes the form

gðx; xi; σ2Þ

¼ 1ffiffiffiffiffiffi
2π

p
σ

Xþ∞

n¼−∞
½e−½x−xþn ðxiÞ�2=ð2σ2Þ − e−½x−x−n ðxiÞ�2=ð2σ2Þ�:

ð38Þ

This expression contains infinite sources located at the
points

xþn ¼ xi þ 4n ð39Þ

(with xþ0 ¼ xi the real source) and infinite sinks at the
points

x−n ¼ −xi þ 4nþ 2: ð40Þ

The solution for the problem where the absorption barriers
are at z ¼ �H can be obtained simply by rescaling the
expression in Eq. (38). Some numerical examples of the
function gðx; xi; σ2Þ are shown in Fig. 8. The function is
always positive in the interval ½−1; 1�, vanishing at the
boundary points (x ¼ �1). For σ2 ≪ 1 the function is, to a
good approximation, a simple Gaussian of unit normali-
zation and width σ centered at the point x ¼ xi.
A useful property of the function g is that

Z
∞

0

dτgðx; xi; τÞ ¼
� ð1þ xÞð1 − xiÞ for x < xi
ð1 − xÞð1þ xiÞ for x > xi:

ð41Þ

Having an explicit analytic expression for the propaga-
tion function, it is straightforward to compute the CR
spectrum for arbitrary forms of the energy-loss function
βðEÞ and the diffusion coefficient DðEÞ and for any source

spectrum qðE; x⃗; tÞ numerically performing the integrations
in Eq. (8).
If one makes the assumptions that
(i) the observation point is on the plane z ¼ 0, and
(ii) the source spectrum is constant in time, confined to

the plane z ¼ 0 and homogeneous in the plane,
then the integration over space and energy in Eq. (8) is
trivial, and the CR density can be expressed as an integral
over time:

nðEÞ ¼ 1

H

Z
tmaxðEÞ

0

dt
β½EiðE; tÞ�

βðEÞ

× q½EiðE; tÞ; t�g
�
0; 0;

R2½EiðE; tÞ; tÞ
H2

�
: ð42Þ

The last integration must, in general, be performed numeri-
cally; however, in the limit where the energy loss is
negligible—that is, for βðEÞ ¼ 0 when Ei ¼ E, tmaxðEÞ →
∞ and R2ðE; tÞ ¼ 2DðEÞt—making use of Eq. (41), the
integration can be done analytically, with the result
nðEÞ ¼ qðEÞTescðEÞ=H.
If one makes the additional assumptions that
(iii) the source spectrum is a power law: qðEÞ ¼ q0E−α,
(iv) the diffusion coefficient is also a power law:

DðEÞ ¼ D0Eδ, and
(v) the rate of energy loss is quadratic in energy:

βðEÞ ¼ bE2,
then the CR spectrum in the limit of no energy loss takes
the power-law form

nðEÞ ≃ n0ðEÞ ¼
qðEÞTescðEÞ

H
¼ q0H

2D0

E−ðαþδÞ: ð43Þ

An exact solution can also be found if the escape of the
Galaxy can be neglected (this corresponds to the limit
H → ∞, or T loss=Tesc ≪ 1). In this limit the function g,
which describes propagation in the z direction, simply
becomes a Gaussian, and the CR density takes the form

nðEÞ ≃ nlossðEÞ ¼ kðα; δÞ qðEÞT lossðEÞ
RlossðEÞ

¼ kðα; δÞ
ffiffiffiffiffiffiffiffiffiffi
1 − δ

p q0ffiffiffiffiffiffiffiffiffiffiffi
2D0b

p E−ðαþð1þδÞ=2Þ

ð44Þ

where kðα; δÞ is an adimensional constant of order unity
that depends on the exponents α and δ:

kðα; δÞ ¼ 1ffiffiffiffiffiffi
2π

p
Z

1

0

dτ0
ð1 − τ0Þα−2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1 − τ0Þ1−δ

p : ð45Þ

In the general case, the CR spectrum can be written in the
form
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FIG. 8. Examples of the function gðx; xi; σ2Þ.
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nðEÞ ¼ n0ðEÞFdiff
lossðaÞ ¼

qðEÞTescðEÞ
H

Fdiff
lossðaÞ ð46Þ

as the product of the no-energy-loss expression times a
correction factor that depends on the ratio E=E� via the
parameter a:

a ¼
�
E
E�

�
1−δ

¼ TdiffðEÞ
T lossðEÞ

: ð47Þ

The function Fdiff
lossðaÞ has the form

Fdiff
lossðaÞ ¼

Z
1=a

0

dτð1 − aτÞα−2g½0; 0; σ2ða; τÞ� ð48Þ

with

σ2ðτ; aÞ ¼ 1

ð1 − δÞa ½1 − ð1 − aτÞ1−δ�: ð49Þ

It is straightforward to see that in the limit a → 0 one has
Fdiff
lossð0Þ ¼ 1, while in the limit a → ∞ one finds

Fdiff
loss ∝ a−1=2 ∝ E−ð1−δÞ=2. The exact expression is

lim
a→∞

Fdiff
lossðaÞ ¼ kðα; δÞ

ffiffiffiffiffiffiffiffiffiffi
1 − δ

a

r
: ð50Þ

These results are consistent with the asymptotic behaviors
given in Eqs. (43) and (44). The CR density has spectral
index αþ δ at low energy (E=E� ≪ 1) and index αþ
ð1þ δÞ=2 at high energy (E=E� ≫ 1).
The transition from low to high energy behavior has a

shape that is completely determined by the exponents α and
δ. Some examples of this transition are shown in Fig. 9.

The step in the spectral index is again centered at an
energy that is proportional to E� (but a factor 0.4–0.5
smaller) and develops in a region of logE of order 1–2 (a
factor 3–10). This approximately a factor of 2 smaller than
in the case of the leaky box but still a rather gradual break.
Figures 7 and 9 show the shape of the spectral features

imprinted on the e∓ fluxes by the effects of energy loss for
two specific (and simple) models that are significantly
different from each other. A comparison of these results
suggests that the effects of energy losses can generate
spectral structures with a detailed shape that depends on the
properties of CR propagation in the Galaxy. However, the
existence of these (energy loss) softening features appears
to be a robust prediction that can be considered model
independent. The energy E� (where the spectral features are
centered) can, in general, be interpreted as the point where
energy losses become important and therefore measures,
with only little model dependence, the average residence
time of CR in the Galaxy. The study of the spectral shapes
of the e∓ around E� can provide additional valuable
information for CR Galactic propagation.
It is well known that a diffusion model not only allows us

to compute the flux as a function of position but also the
dipole d⃗ of the angular distribution at each point:

ϕðE;Ω; x⃗Þ ¼ ϕðE; x⃗Þ½1þ d⃗ðE; x⃗Þ · ûðΩÞ� ð51Þ
[where ûðΩÞ is a versor in the direction Ω]. The dipole
momentum is antiparallel to the gradient of the CR density
with the value

d⃗ðE; x⃗Þ ¼ −
3DðEÞ
βc

∇⃗nðE; x⃗Þ
nðE; x⃗Þ : ð52Þ

For the simple model we have constructed (with the Solar
System exactly on the Galactic plane, and the CR homo-
geneously distributed on the plane), the dipole at the
position of the Sun is zero.

E. Energy-loss softening feature

In the discussion above we have calculated, in some
detail, the shape of the CR spectra for electrons and
positrons, assuming a very simple model for the source
(which is an unbroken power law) and two simple models
of propagation. The main result is that the observable
spectrum, which is in fact easy to predict, exhibits a clear
“softening feature” with a spectral index that has a “step”
around the energy E�. The calculations performed above
give a detailed description of the shape of the softening
feature [see Eqs. (30) and (48)]. Given the simplicity of
these models it is, however, possible (in fact likely)
that these detailed predictions are only an imperfect
description of the real fluxes. On the other hand, the
prediction of the existence of a softening feature (in both
e− and eþ spectra) should be considered a robust pre-
diction, and the identification of these structures is a very
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FIG. 9. Spectral feature generated by energy losses in a
diffusive model. The diffusion coefficient is homogeneous in
the finite layer jzj < H and has the energy dependence
DðEÞ ¼ D0Eδ. The CR source is confined in a thin layer at z ≃
0 and has the form qðEÞ ¼ q0; E−α.
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important task. The shape of the softening features (after
their identification) could then be used to constrain the
modeling of CR propagation in the Galaxy.

IV. DISCRETE SOURCES

The source of primary Galactic cosmic rays (such as
protons and electrons) can very likely be modeled as the
emission from an ensemble of discrete astrophysical
“events” that can be approximated as pointlike and
short-lived for Galactic space and time scales.
Accordingly, the flux can be written as the sum of
components, in the form

ϕðEÞ ¼
X
k

ϕs;kðEÞ: ð53Þ

In the “standard paradigm” [27,31] the sources of CR
protons and electrons are supernovae explosions, but other
possibilities (e.g., gamma ray bursts) have been considered.
If positrons are generated in interstellar space by a standard
mechanism of secondary production, the source is
smoothly distributed in space and time; however, the
possibility that the main source of eþ is acceleration in
astrophysical objects (such as young pulsars) has been the
subject of many studies.
Several authors (see e.g., [32]) have discussed the idea

that if CR of a certain type (p; e−; eþ;…) are indeed
generated in discrete astrophysical events, the “granularity”
of the source could have observable consequences. In this
section we discuss this problem and show that the discrete
nature of the sources should become manifest for electrons
(and also for positrons, if they are generated in discrete
accelerators) above a minimum energy (which we will
denote E†) that could be as low as a few hundred GeV
(depending on the properties of the CR sources and
propagation). The effects of the source granularity should
be significantly smaller for protons and nuclei and should
become observable only at much higher energy.
The fundamental idea in this discussion is simple. It is

intuitive that if a large number of source events contribute
to the generation of the observed flux of cosmic rays, it is a
good approximation to consider the source as continuous;
on the contrary, if the CR flux is generated by only a few
source events, one can expect observable effects. When the
particle energy E increases, the space-time volume where
the observed CR particles have their origin shrinks, and
therefore the number of source events that contribute to the
flux becomes smaller. At sufficiently high energy the
effects of the discreteness of the sources (if the sources
are indeed discrete) should become manifest.
The discrete nature of the sources can become visible via

effects on the angular and energy distribution of the CR
flux. An excess (or scarcity) of sources in one direction can
clearly generate an anisotropy in the angular distribution of
the CR particles, and similarly, an excess (scarcity) of near

source events can result in a hardening (softening) of the
flux with respect to the smooth behavior predicted for a
continuous distribution.
There are two important difficulties in constructing a

prediction for the critical energy for source granularity E†.
The first one is that the effects that can reveal this
granularity are model dependent. The second, more fun-
damental difficulty is that the observable effects depend on
the real distribution in space and time of the sources that
generate the cosmic rays, and this distribution is unknown.
Different configurations in space and time of the sources
closer to the Solar System can result in observational effects
that are very different (and of very different sizes).
Keeping these difficulties in mind, we construct some

predictions for the energy E† as a guide to interpret existing
and future observations. The predictions are based on three
elements: (i) a model for CR propagation in the Galaxy,
(ii) a model for the sources, and (iii) a criterion to estimate
when the granularity effect should become manifest.
To describe the propagation of CR in the Galaxy, we use

the diffusion model presented in Sec. III D. The model (for
one particle type) is entirely defined by four parameters that
can be chosen as fb;H; E�; δg, which is the constant that
describes energy loss (jdE=dtj ¼ bE2), the vertical size of
the CR halo, the critical energy E�, and the exponent
that describes the rigidity dependence of the diffusion
coefficient.
To keep the discussion as simple as possible, we assume

that the source events are all identical, each generating a CR
population Q0E−α. The CR source spectrum can then be
written as the sum

qðE; x⃗; tÞ ¼ Q0E−α
X
k

δ½x⃗ − x⃗k�δ½t − tk� ð54Þ

with the index k, which runs over all source events. The
quantities x⃗k and tk are the position and time of the kth
event. It is obviously not possible to predict the space-time
positions of the source events, but one can make assump-
tions about the probability distribution for these events. We
assume that the source events form on the Galactic plane,
independently from each other, with a constant probability
density (per unit time and unit area) ps:

psðx⃗; tÞ ¼
ns
Ts

δ½z�: ð55Þ

In this equation the quantity T−1
s is the frequency of source

events in the entire Galaxy (so if supernova explosions are
the dominant CR source, then Ts ≃ 50 years), and ns is the
probability density per unit area for one source event in the
disk of the Galaxy, taken in the vicinity of the Solar System.
To estimate ns one can use studies of the space

distributions for possible classes of sources such as super-
novae remnants (SNR) [33] or pulsars [34]. These obser-
vations show the sources are indeed confined to a narrow
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layer close to the Galactic equator and have a distribution
in the plane that can be fitted with a cylindrically sym-
metric form nsðrÞ (with r the distance from the Galactic
center), which (by construction) satisfies the normalization
condition

Z
d2rnsðrÞ ¼ 1: ð56Þ

The fits obtained in [33,34] are shown in Fig. 10. The
detailed form of nsðrÞ can be used as a template for
numerical studies of cosmic ray production. In this work,
however, we simply take ns as a constant: ns ¼ nsðr⊙Þ≃
0.0015 kpc−2, with the value at the position of the Solar
System. This is a reasonable approximation because at high
energy only sources not too distant from the Earth give
significant contributions to the CR flux (see discussion
below), and nsðrÞ changes rather slowly with r. The
(average properties) of the source model are then deter-
mined by four parameters: fns; Ts; Q0; αg.
Combining the propagation and source models, the

description of the CR flux for one particle type depends
on a total of 8 parameters: fb; E�; H; δg for propagation
and fns; Ts; Q0; αg for the source model. In the discussion
below we consider two parameters (b and ns) as fixed. The
parameter b (which describes the rate of energy loss) has a
value b ≃ 0 for p and p̄, while for e∓ one has b ≃ 5.10 ×
10−17 ðGeV sÞ−1 [see Eq. (13)]. The value of ns (the surface
density of the source events normalized to unity in the
entire Galaxy) has been discussed above (see Fig. 10) and,
in a reasonably good approximation, is determined by the
size of the Galactic disk: ns ≈ ðπR2

diskÞ−1. The two other
parameters (α and Q0) can be determined by the condition
that the calculation matches the observed spectrum (in
spectral shape and absolute normalization). This leaves four
parameters as free: fTs;H; E�; δg.

Smoothing out the discreteness of the events, the CR
source takes the stationary form:

hqðE; x⃗Þi ¼ ns
Ts

Q0E−αδ½z�: ð57Þ

This source spectrum (with the identification q0 ¼
Q0ns=Ts) is in fact identical to the source spectrum of
Eq. (25) discussed in Sec. III D. The question that we are
addressing here is under which conditions one can expect
observable differences between the flux generated by the
smoothed-out source spectrum of Eq. (57) and the flux
generated by an ensemble of discrete sources as in Eq. (54).
All models where the combination Q0ns=Ts has the

same value have the same smoothed-out source spectrum;
however, this spectrum can be generated by an ensemble of
frequent and faint events (small Ts and small Q0) or an
ensemble of rare and bright events (large Ts and large Q0).
It is obvious that in the second case the source granularity is
easier to observe.
The simple criterion that we use to estimate the con-

ditions for which the granularity of the sources is manifest
is the condition that one single source generates a large
fraction of the flux. It is clearly desirable to express this
qualitative idea in a more precise form. For this purpose one
can introduce the concept of the cumulative flux
ϕcumðNs; EÞ, which is the sum of the largest Ns contribu-
tions to the total flux at energy E.
Having a model for the sources and for CR propagation,

the cumulative flux can be calculated for a smoothed-out
distribution of the source spectrum to determine the
conditions for which the brightest source event accounts
for one-half of the observed flux. It is intuitive (and it will
also be demonstrated in detail below) that for a fixed model
of sources and propagation, the fraction of the total flux
associated with the brightest source grows with energy; one
can therefore solve for E:

ϕcumð1; EÞ
ϕðEÞ ¼ 1

2
ð58Þ

to calculate an energy E† that we interpret as a best estimate
of where the source granularity effects should become
manifest.
It should be noted that the criterion that we have

constructed for the observability of the source granularity
could very well be too stringent, and it is possible that
evidence for the existence of discrete sources will be
obtained in situations where dozens (and not just one or
very very few) sources give significant contributions to the
CR flux.
In the following we outline a calculation of the cumu-

lative flux ϕcumðNs; EÞ.

A. Flux components

The flux received by one source event at position x⃗ and
time t can be calculated by having a model for the spectrum
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FIG. 10. Fits of the radial distribution of pulsars (Yusifov and
Kucuk [34]) and supernova remnants (Case and Bhattacharya
[33]) in the Mikly Way (r is the distance from the Galactic
center).
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of particles generated in the event and a model for CR
propagation in the Galaxy. In general, one has

ϕsðE; x⃗; tÞ ¼
Z

dEiQsðEiÞPðE; x⃗⊙; Ei; x⃗; tÞ: ð59Þ

In the following we make the (good) approximation that
the Solar System is on the Galactic plane; we assume that
all source events are on this plane and generate identical
spectra of particles with a power-law spectrum Q0E−α. It is
then straightforward to find that if energy losses are
negligible (that is, for b ≃ 0), as is the case for protons
and nuclei, the flux from a source event at a distance r ¼
jx⃗s − x⃗⊙j and at time t in the past is

ϕsðE; r; tÞ ¼
c
4π

Q0E−α

H3
G0

�
r
H
;

t
TescðEÞ

�
; ð60Þ

where the function G0ðρ; τÞ has the form

G0ðρ; τÞ ¼
1

2πτ
e−ρ

2=ð2τÞgð0; 0; τÞ ð61Þ

[with g defined in Eq. (38)]. The function G0 satisfies the
normalization condition

ð2πÞ
Z

∞

0

dρρ
Z

∞

0

dτG0ðρ; τÞ ¼ 1: ð62Þ

In the case where energy losses are the dominant effect
for propagation (that is, the case for high energy electrons
and positrons, when E ≫ E�), the spectrum from a single
source is

ϕsðE; r; tÞ ¼
c
4π

Q0E−α

R3
lossðEÞ

Gloss

�
r

RlossðEÞ
;

t
T lossðEÞ

�
; ð63Þ

where the function Glossðρ0; τ0Þ has the form

Glossðρ0; τ0Þ ¼
1

ð2πÞ3=2χ3ðτ0Þ ð1 − τ0Þα−2e−ðρ0Þ2=½2χ2ðτ0Þ� ð64Þ

with

χ2ðτ0Þ ¼ 1 − ð1 − τ0Þ1−δ ð65Þ

[note that ρ0 ¼ r=RlossðEÞ can take values in the interval
(0;∞) while τ0 is defined in the interval (0,1)].
The function Glossðρ0; τ0Þ satisfies the normalization

condition

ð2πÞ
Z

1

0

dτ0
Z

∞

0

dρ0ρ0Glossðρ0; τ0Þ ¼ kðα; δÞ ð66Þ

with kðα; δÞ the adimensional quantity given in Eq. (45).

It is important to note that in both cases the shape of the
CR flux generated by a source that is observable at the
Earth is not a simple power law, even if the source spectrum
is a power law. This is because particles of different energy
(or rigidity) propagate in different ways. This results in an
observable spectrum that evolves with time in normaliza-
tion and in shape.
For both cases considered the flux generated by a single

source event at distance r and time t has the scaling form

ϕsðr; tÞ ¼ ϕ�G
�
r
R
;
t
T

�
ð67Þ

(where the energy dependence has been left implicit). In the
case of negligible energy loss, one has R ¼ H and
T ¼ TescðEÞ, while when escape is negligible, one has R ¼
RlossðEÞ and t ¼ T lossðEÞ. In Eq. (67) ϕ� is a characteristic
flux given by

ϕ� ¼ c
4π

QsðEÞ
R3

ð68Þ

with QsðEÞ the emission from the source.
Lines of constant value for the contributions of a source

event (for some values of the ratio ϕs=ϕ�) in the plane
fρ; τg are shown in Fig. 11 for the case of negligible energy
loss and in Fig. 13 for the case of dominant energy loss.
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FIG. 11. Space-time distribution of the CR flux (energy losses
are considered negligible). The thick closed lines in and around
the shaded area are defined by the equation dϕ=ðd ln rd ln tÞ ¼
const and chosen so that the integral in the region inside the line
corresponds to a fraction 0.1, 0.5, and 0.9 of the total flux. The
thinner lines are defined by the equation ϕsðr; tÞ=ϕ� ¼ f, with
f ¼ 10−4, 10−3, 10−2, 10−1, 1, 10, and 102.
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The contributions from sources at a fixed distance r
depend on the time t. For a(n) (arbitrary) fixed value of E,
the flux received from one source initially grows with time,
reaching its maximum value at the time t ≃ r2=½2DðEÞ�,
and then decreases slowly. A contribution of a certain size
ϕs can therefore be obtained from events that have a
distance r < rmaxðϕsÞ. For each r < rmax there are two
solutions for the age that give the same contribution ϕs. The
two solutions correspond to the cases where the flux from
the sources is growing or decreasing with time.
A simple but very important point is that, for the model

of diffusive propagation that we are discussing here, the
contribution to the flux of each source event has an
associated dipole momentum in the direction of the source,
whose size can be calculated using the general expression
of Eq. (52).
The vanishing dipole momentum of the total flux for the

smoothed-out source spectrum is the effect of the cancella-
tion of the dipoles of the different source events that are
located symmetrically around the Solar System, but the
contribution of the closest source events will not balance
exactly because of stochastic effects. If few sources con-
tribute to the flux, one can expect large anisotropic effects.

B. Space-time distribution of the CR source

It is instructive to study the size and shape of the space-
time volume where the cosmic rays observed at the Earth
are generated. In general, the space-time distribution of the
CR sources can be calculated from the knowledge of the
source spectrum and the propagation function as

dϕðE; x⃗i; tÞ
d3xidt

¼
Z

dEiqðEi; x⃗i; tÞPðE; x⃗⊙; Ei; x⃗i; tÞ ð69Þ

(where t ¼ 0 is the present, and x⃗⊙ is the position of the
Solar System).
For the model we are discussing here, and a smoothed-

out source spectrum, the space-time volume takes a simple
scaling form in the cases of negligible energy loss and
negligible escape probability. In the first case one finds

dϕðE; ri; tÞ
d2rdt

����
no losses

¼ ϕðEÞ
H2TescðEÞ

G0

�
r
H
;

t
TescðEÞ

�
ð70Þ

where r is the distance of the source event, and the function
G0ðρ; τÞ is given in Eq. (60). A graphic representation of the
function ρ2τG0ðρ; τÞ [which is proportional to the distri-
bution dϕ=ðd ln rd ln tÞ] is shown in the form of a contour
plot in Fig. 11. The ρ and τ distributions of the source can
be obtained by integrating over the other variable, and they
are shown in Fig. 12.
These results show that CRs observed at the Earth have

their origin in a time interval of order TescðEÞ (with the
contributions of older emission suppressed exponentially)
and in a space region that is approximately a disk centered
on the position of the Solar System with a radius of orderH
(and again the contributions of more distant sources are
suppressed exponentially).
The time interval in which the observed CRs are

produced becomes shorter with increasing energy because
TescðEÞ decreases ∝ E−δ; on the other hand, the space
region where the CRs are produced is energy independent.
This is the result of a cancellation: Particles of higher
energy have a shorter Galactic residence time but also a
larger diffuse coefficient; the result is a propagation
distance that is independent from energy.
For the case in which energy losses are the dominant

effect in propagation, the space-time distribution of the
source takes the form

dϕðE; r; tÞ
d2rdt

����
no escape

¼ ϕðEÞ
R2
lossðEÞT lossðEÞ

1

kðα; δÞ

× Gloss

�
r

RlossðEÞ
;

t
T lossðEÞ

�
ð71Þ

where the function Glossðρ0; τ0Þ is given in Eq. (64).
The function ðρ0Þ2τ0Glossðρ0; τ0Þ is shown in the form of a

contour plot in Fig. 13, and the ρ0 and τ0 distributions
(obtained by integrating over the other variable) are shown
in Fig. 14.
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FIG. 12. Space and time distribution of the CR sources (energy losses are considered to be negligible). Left panel: Plot of 1=ϕdϕ=dρ
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These results demonstrate that, in this case, CRs
observed at the Earth have their origin in a time
interval of order T lossðEÞ and in a space region that is
approximately a disk of radius RlossðEÞ, with the contri-
butions of older and more distant sources suppressed
exponentially.
The time T loss decreases with energy ∝ E−1, and the

radius RlossðEÞ decreases ∝ E−ð1−δÞ=2 (because the growth
withE of the diffusion coefficient is not sufficiently rapid to
compensate for the shorter propagation time). The space-
time volume of the CR sources therefore shrinks rapidly
with energy ∝ E−ð2−δÞ, much more rapidly than in the case
where the energy loss is negligible.

C. Cumulative flux

Assuming that the CR flux is formed by the sum of the
contributions of discrete events and considering a
smoothed-out source (so that the quantities Ns and ϕs,
which are the number of sources and the size of source
contribution, can be considered as continuous variables), it
is straightforward to compute the differential distributions
dNs=dϕs, which give the number of sources with flux in
the interval ½ϕs;ϕs þ dϕs�, and dϕ=dϕs, which gives the
flux generated by contributions in the same size interval.
For the model discussed here, these quantities can be
calculated by performing the integrals

dNs

dϕs
¼ ns

Ts

Z
d2r

Z
dtδ½ϕs − ϕsðr; tÞ�; ð72Þ

dϕ
dϕs

¼ ns
Ts

Z
d2r

Z
dtϕsδ½ϕs − ϕsðr; tÞ� ð73Þ

(where we have left the energy dependence implicit). Using
the results of Sec. IVA and the general form of the flux
from each source of Eq. (67), one finds that the distribu-
tions have the simple scaling forms

dNs

dx
¼ N�AðxÞ; ð74Þ

dϕ
dx

¼ N�ϕ�BðxÞ ð75Þ

where x ¼ ϕs=ϕ�, with ϕ� the characteristic flux given in
Eq. (68). The energy-dependent quantity N� is given by

N� ¼ ns
Ts

R2T; ð76Þ

and in first approximation, it gives the total number of
sources that contribute to the CR flux.
The total flux can be expressed in terms of ϕ� and N� as

ϕðEÞ ¼ kN�ðEÞϕ�ðEÞ ð77Þ
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FIG. 13. Space-time distribution of the CR flux (energy losses
are considered to be dominant). See Fig. 11 for the meaning of
the different lines. The calculation is performed by assuming
that the source spectrum is a power law with exponent α ¼ 2.4,
and the diffusion coefficient has the energy dependence D0Eδ

with δ ¼ 0.4.
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where k is an energy-independent constant given by the
integral

k ¼ ð2πÞ
Z

τmax

0

Z
∞

0

dρρGðρ; τÞ: ð78Þ

The quantity τmax is the maximum value of τ, and it has the
value τmax → ∞ in the case of negligible energy loss and
τmax ¼ 1 when energy loss is dominant in propagation. As
shown above, the constant k is unity in the case of
negligible energy loss, and for the case where energy
losses are dominant, it is given by Eq. (45). The functions
AðxÞ and BðxÞ can be calculated as

AðxÞ ¼ ð2πÞ
Z

dρρ
Z

τmax

0

dτδ½x − Gðρ; τÞ� ð79Þ

BðxÞ ¼ ð2πÞ
Z

dρρ
Z

τmax

0

dτxδ½x − Gðρ; τÞ�: ð80Þ

In the case of negligible energy loss, the functionsA0ðxÞ
and B0ðxÞ (which determine the shape of the distributions
dNs=dϕs and dϕ=dϕs) have a universal shape that is
independent from the values of the parameters in the
model. The functions are shown in Fig. 15. By inspecting
the figure one can see that the observed flux is formed by
components that have very broad distributions of relative
size, which span approximately 6 orders of magnitude.
In the case where energy loss is dominant, the shape of

the functions AlossðxÞ and BlossðxÞ is determined by the
values of the exponents α and δ. Two examples are shown
in Fig. 16. The two curves (in both panels) are calculated
for the combinations (α ¼ 2.4, δ ¼ 0.4) and (α ¼ 2.6,
δ ¼ 0). Note that in both cases the observed flux (for a
smoothed-out source spectrum) has the same spectral
index: γ ≃ αþ ð1þ δÞ=2 ≃ 3.1. Also in this case one
can see that the CR flux is formed by components that
have very different sizes.
It is interesting to discuss how the quantity N�ðEÞ,

defined in Eq. (76), depends on the parameters of the
model. In the case of negligible energy loss, which is
applicable to protons, one has

N�
p ¼ ns

Ts
H2TescðEÞ ¼

ns
Ts

H2

b
ðE�Þ−ð1−δÞE−δ ð81Þ

(in the second equality the escape time has been expressed
as a function of the critical energy E�). The number
of sources that generate the flux of protons (and other
primary nuclei) decreases with energy ∝ E−δ and has a
value that depends on the model parameters as N�

p ∝
T−1
s H2ðE�Þ−ð1−δÞ. The quantity is proportional to the

frequency of source events (T−1
s ), and it becomes smaller

when E� increases (that is, when the CR residence time
becomes smaller). A numerical example (for δ ¼ 1=3) is

N�
pðEÞ≃ 2240

�
Ts

50 yr

�
−1
�

H
5 kpc

�
2
�

E�

3 GeV

�
−2=3

�
E

PeV

�
−1=3

ð82Þ

(note that E is measured in PeV). One can see that (for the
propagation model considered here) if supernova explo-
sions are the main CR source, the number of events that
contribute to the proton flux also remains rather large for
energies well above the “knee” (at E ≃ 3 PeV). This
statement also remains true if the critical energy E� has
a value close to 1 TeV [in this case the estimate in Eq. (82)
is reduced to approximately 50].
For the casewhere energy losses are the dominant effect in

propagation, which is relevant for e∓ at high energy, one has

N�
e ¼

ns
Ts

R2
lossðEÞT lossðEÞ ¼

ns
Ts

H2

bð1 − δÞ ðE
�Þð1−δÞE−ð2−δÞ

ð83Þ
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FIG. 15. The top (bottom) panel shows the shape of the
distribution dNs=dϕs (dϕ=dϕs) as a function of ϕs, calculated
assuming that energy losses are negligible. The distributions are
shown in the energy-independent scaling form, plotting the
quantity 1=N�dNs=d ln x (1=ϕdϕ=d ln x in the bottom panel)
where x ¼ ϕs=ϕ� and the quantities N� and ϕ� are given in
Eqs. (76) and (68), with R ¼ H and T ¼ TescðEÞ.
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(again, in the second equality we have expressedN�
e in terms

of the critical energy E�). In this case, the number
of sources that contribute to the flux decreases rapidly
with energy (∝ E−ð2−δÞ), reflecting the fact that both Rloss
and T loss decrease with E. The dependence of N�

e on
the parameters of the model is N�

e ∝ T−1
s H2ðE�Þð1−δÞ. Note

that in this case the estimate of N�
e increases with E�.

This reflects the fact thatwith increasingE� theCR residence
time becomes shorter, but the propagation radius grows; this
second effect is dominant. A numerical example (for
δ ¼ 1=3) is

N�
eðEÞ ≃ 9.6

�
Ts

50 yr

�
−1
�

H
5 kpc

�
2
�

E�

3 GeV

�
2=3

�
E

TeV

�
−5=3

ð84Þ

(note thatE is measured in TeV). This estimate shows that if
supernova explosions are the sources of electrons, and if the
criticalenergyE� is in theGeVrange(andtheCRpropagation
model used here is reasonably correct), then only a few
sources contribute to the flux for E≳ 1 TeV.
Figure 17 shows some examples of the energy depend-

ence of N�
pðEÞ and N�

eðEÞ. The curves are calculated by
assuming that the frequency of the source events is equal to
the estimated rate of supernovae explosions in the Galaxy
(Ts ¼ 50 yr) and for δ ¼ 0.4. The quantities N�

eðEÞ and
N�

pðEÞ are calculated for two values of the critical energy
E� (E� ¼ 3 GeV and E� ¼ 900 GeV). For E ≪ E�, when
energy losses are negligible, N�

e and N�
p are equal at the

same rigidity and (for ultrarelativistic particles) decrease
∝ E−δ. For E ≫ E� the number of sources for the electron
fluxes rapidly N�

e ∝ E−ð2−δÞ. It is important to note that
Np � ðEÞ and N�

e in the energy range E≲ E� are smaller for
large E� because a large E� corresponds to a shorter
residence time of CR in the Galaxy [Tesc ∝ ðE�Þ−1] and
therefore a smaller number of sources that can contribute to
the flux. On the other hand, when E ≫ E�, the quantity
NeðEÞ becomes larger when E� grows because a larger E�
corresponds to faster propagation for the CR particles, and
sources from a larger Galactic volume can reach the Solar
System, overcompensating the effect of the shorter time
integration. The important implication is that for larger E�
the discreteness of the CR sources should become signifi-
cant at higher energy (see discussion below).
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FIG. 16. The top (bottom) panel shows the shape of the
distribution dNs=dϕs (dϕ=dϕs) as a function of ϕs calculated
by assuming that energy losses are dominant for CR propagation
(escape is negligible). The distributions are shown in the energy-
independent scaling form, plotting the quantity 1=N�dNs=d ln x
(1=ϕdϕ=d ln x in the bottom panel) where x ¼ ϕs=ϕ� and the
quantities N� and ϕ� are given in Eqs. (76) and (68) with R ¼
RlossðEÞ and T ¼ T lossðEÞ. The shape of the distributions depends
on the exponents α and δ, and the curves describe the cases fα ¼
2.6; δ ¼ 0.4g and fα ¼ 2.6; δ ¼ 0.0g.
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FIG. 17. The curves show, as a function of the kinetic energy
Ek, the quantities N�

p and N�
e, which give the (approximate)

number of sources that contribute to the observed flux. The
curves are calculated using a generalization of Eqs. (82) and (84),
assuming that the frequency of sources in the entire Milky Way is
ð50 yearsÞ−1 with δ ¼ 0.4, and for two different values of the
critical energy E�: E� ¼ 3 GeV and E� ¼ 900 GeV. The two
points along the curves for N�

e indicate the energy E†
e [see

Eq. (93)] where one expects that granularity effects become
dominant.
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The calculation of N�
e;p already allows a first-order

estimate of when the source granularity effects should
become visible, using, e.g., the equation N�

e;pðE†Þ ≃ 1 to
calculate the energy where the effects should be large. In
fact (as discussed in the following) this simple argument
yields results that are, to a good approximation, correct for
protons and overestimate the energy E† by a factor of 3–5
for e∓. It is, however, desirable to construct a more robust
argument for the estimate of E†, as discussed below.
The results of Eqs. (74) and (75) for the differential

distributions dNs=dϕs and dϕ=dϕs imply that the quan-
tities Nsðϕs;minÞ [the number of sources that generate a flux
larger than ϕs;min] and ϕcumðϕs;minÞ [the flux formed by
components that have flux larger than ϕs;min] also have a
scaling form

Nsðϕs;minÞ ¼ N�Aint

�
ϕs;min

ϕ�

�
ð85Þ

and

ϕcumðϕs;minÞ ¼ ϕBint

�
ϕs;min

ϕ�

�
ð86Þ

where the functions AintðxÞ and BintðxÞ are given by

AintðxÞ ¼
Z

∞

x
dx0Aðx0Þ; ð87Þ

BintðxÞ ¼
1

k

Z
∞

x
dx0Bðx0Þ ð88Þ

[with k given by Eq. (78)]. Combining the last two
equations, it is straightforward to express the cumulative
flux ϕcum as a function of the Ns (the number of largest
sources):

ϕcumðNsÞ ¼ ϕC
�
Ns

N�

�
ð89Þ

where the function CðmÞ is

C ¼ Bint½A−1
int ðmÞ�: ð90Þ

The relation between ϕcum and Ns is shown for the cases
of negligible energy loss and negligible escape in Figs. 18
and 19. As already discussed, the shape of the relation
between the ratios ϕcumðNsÞ=ϕ and Ns=N� is universal
(that is, independent from the values of the parameters of
the model) for the case of negligible energy losses and
depends on the exponents α and δ when energy losses are
dominant.
Having in hand an explicit expression for the cumulative

flux as a function of the number of sources [see Eq. (89)],
the estimate of the energy where the source granularity

effects should become manifest according to the criterion of
Eq. (58) can be stated as

N�ðEÞ ¼ ns
Ts

R2ðEÞTðEÞ ≃ 1

C−1ð1=2Þ : ð91Þ

It should be noted that this equation has the same structure
as the “naive” criterion N�ðEÞ ¼ 1 [simply replacing unity
with the number C−1ð1=2Þ], but it is now derived in a more
rigorous way.
Using the calculations of the functions C0ðmÞ

and ClossðmÞ shown in Figs. 18 and 19 [which
give 1=C−10 ð1=2Þ ¼ 1.23 and 1=C−1lossð1=2Þ ¼ 7.76 (5.54)
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FIG. 18. Cumulative flux ϕcum as a function of the number of
source events Ns calculated by assuming that energy losses are
negligible. The relation is shown in the energy-independent form
ϕcumðNsÞ=ϕ versus Ns=N� where N� is given in Eq. (76) with
R ¼ H and T ¼ TescðEÞ.
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FIG. 19. As in Fig. 18, but with the flux calculated by assuming
that energy losses are the dominant effect in propagation. The
quantities N� are defined in Eq. (76) with R ¼ RlossðEÞ and
T ¼ T lossðEÞ. The shape of the curve depends on the exponents α
and δ. The two lines in the figure describe the cases fα ¼ 2.6; δ ¼
0.4g and fα ¼ 2.6; δ ¼ 0.0g.
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for the choice of parameters fα ¼ 2.6; δ ¼ 0.4g
ðfα ¼ 2.6; δ ¼ 0.0gÞ], one can obtain quantitative esti-
mates for E†.
In the case of protons (negligible energy losses) the

granularity energy has a very high value. For δ ¼ 1=3 one
finds

ðE†Þp≃ 5.4× 1019 eV

�
Ts

50 yr

�
−35

�
H

5 kpc

�
6
�
E�

TeV

�
−2

ð92Þ

(where we have taken as a “standard reference” the
frequency of supernovae in the Milky Way, and a high
value for the critical energy E�). Observational evidence for
the discreteness of CR protons will therefore very likely be
possible only via the observations of subtle, small effects.
For the case of large energy losses, relevant for e∓, the

critical energy E† is many orders of magnitude smaller. For
example, for δ ¼ 0.4 (and therefore α ¼ 2.4) one finds

ðE†Þe∓ ≃ 1.57 TeV

�
Ts

50 yr

�
−0.625

�
H

5 kpc

�
1.25

�
E�

3 GeV

�
0.375

:

ð93Þ

For δ ¼ 0 (that is, rigidity-independent diffusion), one has

ðE†Þe∓ ≃ 0.490 TeV

�
Ts

50 yr

�
−0.5

�
H

5 kpc

�
1.0
�

E�

3 GeV

�
0.5
:

ð94Þ

In Fig. 17 the granularity energy E†
e is shown for two

examples where the critical energy E� is 3 or 900 GeV (in
both cases Ts ¼ 50 yr and δ ¼ 0.4). The important point
illustrated in this figure is that when E� is low (and the
propagation of the CR particles is slow), the effects of the
granularity of the sources become important at lower
energy.
If the frequency of the source events that generate the

electrons is comparable to SN explosions, and the critical
energy is E� ≲ 3 GeV, then the source granularity effects
should be visible at E of order of 1 TeVor less. On the other
hand, if E� ≈ 900 GeV, of order 1 TeV, then the CRs
propagate faster, more sources contribute to the flux, and
the granularity effects become visible at an energy approx-
imately 1 order of magnitude higher.
At the moment, there is no clear evidence for effects

associated with the discreteness of the sources up to an
energy of order 10 TeV. To reconcile the absence of source
discreteness effects with the assumption of a low value for
the critical energy E�, the frequency of source events must
be much higher than a few per century. An alternative
solution is to assume a higher value of the critical energy.

V. INTERPRETATION

In this work we have argued that two crucial problems
for the interpretation of the electron and positron cosmic
rays are the identification of the effects of energy losses and
that of the discreteness of the sources in the observed
spectra. After reviewing the existing observations in Sec. II
and theoretical models in Secs. III and IV, it is now possible
to summarize the main results.

A. Critical energy E�

On the basis of very general considerations, one can
predict that the spectra of both electrons and positrons
should exhibit a softening feature at approximately the
same energy E�. At this energy the residence time and
energy-loss time are approximately equal, and the effects of
energy loss become significant. The shape and structure of
these softening features should be considered model
dependent, but the existence of the features is a robust
prediction.
Since the loss time T lossðEÞ is determined by well-

known physics (with the main uncertainty associated with
the shape and size of the CR confinement volume),
the identification of E� corresponds to a measurement of
the CR residence time at the energy E�.
The phenomenological study of the e∓ spectra shows the

existence of one clear softening, observed for the sum
(e− þ eþ), at E ≈ 1 TeV. At lower energy (where separate
measurements of e− and eþ spectra are available) it is not
easy to identify spectral features that can be interpreted as
the signature of energy-loss effects. A possibility, however,
is to place E� below 10 GeV, in the energy range where the
exponents of both spectra change continuously, and where
solar modulations are important.
One can therefore conclude that there are two alternative

possibilities for the value of the critical energy E�. The first
one is to have E� ≲ 3 GeV, well inside the region where
solar modulations are important. The second one is to
identify the spectral break observed in the (e− þ eþ)
spectrum as the energy-loss feature, so that E� ≃ 1 TeV.
The two solutions differ by a very large factor and

therefore imply CR residence times that are very different.
A critical energy of order E� ≃ 3 GeV implies (for CR of
the same rigidity) a residence time of order 200 Myr. Such a
long time is in tension (if not in open conflict) with
estimates of the CR residence time based on measurements
of the abundances of beryllium isotopes [35].
A critical energy of order E� ≃ 1 TeV implies a resi-

dence time of order 0.5 Myr. The extrapolation at lower
energy depends on the exponent δ of the escape time [since
TescðEÞ ¼ T lossðE�ÞðE=E�Þ−δ]. For a rigidity of 10 GVone
obtains a residence time of order 1–4 Myr for δ ¼ 0.1–0.4.
This short residence time is not inconsistent with the
beryllium isotope measurements, but it is in conflict with
the grammage estimated from the measurements of
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secondary nuclei (lithium, beryllium, and boron), assuming
that this grammage is accumulated during propagation in
interstellar space [36,37].
To establish the validity of the low energy solution for

E�, one needs a good understanding of the e∓ interstellar
spectra. These spectra are not directly observable and must
be inferred from the measured ones by correcting for the
effects of solar modulations. This procedure is, at the
moment, model dependent. In Sec. II we have shown that if
the solar modulations are described with the force field
approximation, the interstellar spectra of both e− and eþ

can be well represented as unbroken power-law spectra in
the energy range 1–10 GeV. This result is inconsistent with
the presence of a softening feature in the same energy range
and therefore is in conflict with the hypothesis of a low
value for the critical energy. More detailed studies of the
solar modulation effects could, in the future, demonstrate
that the interstellar e− and eþ spectra deviate from a simple
smooth form the 1–10 GeV range, and that the recon-
structed spectral features can be understood as the conse-
quence of energy losses. Alternatively, these studies could
yield smooth interstellar spectra and therefore exclude the
possibility that E� is at low energy.
The existence of the spectral break at E ≈ 1 TeV is clear;

however, its shape appears to be narrower than what is
predicted by the models we have discussed in this work. If
this spectral structure is in fact generated by energy-loss
effects, this could require improved models for propaga-
tion. It is, however, also clear that it is very desirable to
obtain more precise measurements of the spectral shape in
this energy range.
It should also be added that if energy losses are not the

explanation for the spectral break at 1 TeV, one needs an
alternative explanation for its origin, and the apparent
narrowness of the observed spectral break is a problem
also for these models.

B. Source granularity

A second, robust prediction for the spectra of electrons is
that if the particles are generated in rare events such as
supernova explosions or GRB’s, the granularity of the
source should become visible at sufficiently high energy,
when the number of source events that contribute to the
observed flux becomes small. The observable effects
should be anisotropies for the angular distributions and
deviations from a power-law shape for the energy spectra.
At very large E, when the maximum propagation distance
becomes shorter than the distance of the closest source
active in a time interval of order T lossðEÞ, the CR flux
should become exponentially suppressed.
At the moment, there are only upper limits [38] on the

anisotropy of the electron and positron spectra, and the
measurements above the spectral break at E ≃ 1 TeV of
DAMPE, HESS and the other Cherenkov telescopes are

consistent with a simple power law up to an energy of order
10–20 TeV.
These results are in tension with the hypothesis that the

sources of the electrons are supernova (SN) explosions (that
have a known frequency and space density), if the “SN
paradigm” is combined with the assumption that cosmic
rays have a long Galactic residence time (and the critical
energy E� is of order a few GeV), because in this case [see
Eqs. (93) and (94)] one expects large effects already
at E ≃ 500 GeV.
One explanation for this problem is that the sources that

generate the electrons are not SN explosions and have a
higher frequency in the Galaxy. An alternative possibility is
to conclude that the propagation distance for CR electrons
(and positrons) is longer (and correspondingly the critical
energy E� is higher) so that more objects can contribute to
the flux.

VI. ASTROPHYSICAL IMPLICATIONS

The identification of the critical energy E� where energy
losses become important for CR propagation in the Galaxy
has profound implications for cosmic ray astrophysics. In
this section we show that E� can only have values in two
distinct energy intervals, that is, E� ≲ 3 GeV (“low critical
energy hypothesis”) or E� ≳ 900 GeV (“high critical
energy hypothesis”). In this second case, it is natural to
identify E� with the energy where the (e− þ eþ) spectrum
has a break, and therefore E� ≈ 900 GeV. These two
solutions for the critical energy have important and very
different implications.
If E� is at high energy, then we have the following

conditions.
(i) The electron and proton source spectra must have

different shapes. This is an important constraint on
the structure and properties of the CR accelerators.

(ii) The positron and antiproton spectra can be well
described under the hypothesis that the main source
for both types of antiparticles is the standard
mechanism of secondary production.

(iii) Cosmic rays propagate over long distances, and
therefore more distant sources can contribute to the
flux. In the multi-TeV energy range the number of
sources that generate the e− flux can then be
sufficiently large so that source granularity effects
remain small and the spectrum smooth.

(iv) The spectral break in the (e− þ eþ) at E ≈ 1 TeV
can be naturally interpreted as the signature of
energy-loss effects.

(v) The residence time of a CR particle with a rigidity of
order ≈1 GV is predicted to be of order ≈1 Myr.
This can be directly tested in a model-independent
way with measurements of the isotope abundances
in the beryllium flux.

(vi) The interpretation of the fluxes of secondary nuclei
(such as lithium, beryllium, and boron) likely
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requires that most of the nuclei are generated by
fragmentation of primary nuclei inside (or in the
envelope) of the CR accelerators.

If E� is at low energy, then we have the following
conditions:

(i) The difference in spectral shape between the electron
and proton (in the energy interval 10–900 GeV) can
be attributed to energy-loss effects imprinted on
source spectra of equal shape.

(ii) A new hard source of positrons (in addition to the
standard mechanism of secondary production) is
required.

(iii) The propagation distance that e∓ of TeV energy can
travel is short, and therefore only or few accelerator
sources can contribute to the flux. This has to be
reconciled with the observed spectral shape of the
all-electron flux.

(iv) The spectral break in the all-electron flux must be
attributed to properties of the sources.

(v) The residence time of CR particles with rigidity
≈1 GV is predicted to be of order ≈300 Myr.

(vi) The measurements of the fluxes of secondary nuclei
(Li, Be, and B) are consistent with the hypothesis
that they are mostly formed in interstellar space.

To understand the origin of the CR spectra, it is very
instructive to compare the spectra of p, e−, p̄, and eþ. The
four energy distributions are shown in Fig. 20. In the energy
interval 30–400 GeV, the spectra of e∓ and p̄ can be well
described as simple power laws:

ϕjðEÞ ≃ Kj

�
E
E0

�
−γj ð95Þ

(with E0 an arbitrary energy scale that we will fix at the
value E0 ¼ 50 GeV). The results of fits based on Eq. (95)
are listed in Table IV.
In the case of protons, an unbroken power law cannot

describe the spectrum because of the existence of a hard-
ening around E ≃ 300 GeV. The expression of Eq. (95)
can, however, describe the p spectrum in separate energy
intervals. For E≲ 300 GeV the spectral index is of order
γlowp ≃ 2.80, while at high energy it is of order γhighp ≃ 2.61.
This high energy result is determined by the measurements
of CREAM [39].
The comparison of the spectral shapes of the different

particle types shows some intriguing results:
(a) The shapes of the e− and p spectra are very different

from each other, and the energy distribution of
electrons is much softer. In the energy range 30–
400 GeV γp ≃ 2.80, while γe− ≃ 3.20.

(b) The spectral indices of the eþ and p̄ fluxes are
consistent with being equal to each other with the
value γeþ ≃ γp̄ ≃ 2.78. The positron/antiproton ratio is
approximately constant in the energy interval consid-
ered with the value eþ=p̄ ≈ 2.02.

The observation that the CR flux (for a certain particle
type) has a power-law form in the energy interval [Emin,
Emax] suggests that both the source spectrum and the escape
time TescðEÞ are of power-law form in the same interval. In
the cases of electrons and positrons this also implies (as
already discussed) that the critical energy is outside the
energy interval considered, that is, either below Emin (“low
critical energy hypothesis”) or above Emax (“high critical
energy hypothesis”).
If the standard mechanism of secondary production is the

dominant source of CR positrons and antiprotons, the
source spectrum for E≳ 10 GeV (when threshold and
mass effects are negligible) is in fact, to a reasonably good
approximation, of power-law form, with an exponent equal
to the spectral index of the proton flux:

qp̄ðeþÞðE; x⃗Þ

≃ 4πσppΣismCnucleiZpp→p̄ðeþÞðγpÞKp

�
E
E0

�
−γp

δ½z�: ð96Þ

Writing this equation we have used the fact that interstellar
gas is concentrated in the Galactic disk, σpp is the inelastic
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FIG. 20. Spectra of p, e−, eþ, (e− þ eþ), and p̄. The high
energy data points for protons are from CREAM [39]; the data
points for (e− þ eþ) are from DAMPE and HESS. All other
points are from AMS02. The lines superimposed to the e−, eþ,
and p̄ data points are simple power-law fits for E > 30 GeV. The
line for the proton data is a broken power-law fit taken from [9].

TABLE IV. Power-law fits to the CR spectra.

Particle K ðm2 s srÞ−1 γ Nd:o:f: χ2min

e− ð1.19� 0.01Þ × 10−3 3.20� 0.01 30 12.7
eþ ð1.14� 0.02Þ × 10−4 2.77� 0.02 29 12.0
p̄ ð5.6� 0.2Þ × 10−5 2.78� 0.03 12 1.6
p (low E) ð0.301� 0.002Þ 2.790� 0.005 12 1.6
p (high E) ð0.210� 0.001Þ 2.61� 0.01 9 19.7
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cross section for pp interactions, Σism is the density per unit
area of gas calculated by integrating the density along the
z axis, Cnuclei ≃ 1.7 is an adimensional factor that takes into
account the contribution of other CR and target nuclei to the
production of antiparticles, and Zpp→jðγÞ is the so-called
“Z factor,” that is, the (γ − 1) moment of the inclusive
spectrum for the production of particle j in pp collisions:

Zpp→jðγÞ ¼
Z

1

0

dxxγ−1
dnpp→jðxÞ

dx
: ð97Þ

Secondary particles of energy E are generated by the
collisions of protons in a broad energy range Ep ≃
10–100 E, and therefore, in the expression above, one
should use the parameters Kp and γp of protons at higher
energy.
A very important point is that the source spectra of

antiprotons and positrons are proportional to each other,
with an energy-independent ratio:

qeþðEÞ
qp̄ðEÞ

≃
Zpp→eþðγpÞ
Zpp→p̄ðγpÞ

≃ 1.9� 0.3: ð98Þ

The numerical estimate of this ratio (and its uncertainty) is
determined by modeling of the properties of hadronic
interactions (see discussion in the Appendix of [40]).
The observable CR fluxes can be obtained from the

source spectra using the results presented in Sec. III D. If
energy losses are negligible one has

ϕjðEÞ ¼
c
4π

qjðEÞ
TescðEÞ

H
¼ c

4π

q0;jTescðE0Þ
H

�
E
E0

�
−ðαjþδÞ

;

ð99Þ

where αj is the exponent of the source spectrum for particle
type j, and δ is the exponent that controls the rigidity
dependence of the diffusion time for all particles.
If energy losses are the main effect in the propagation,

then the CR flux is

ϕjðEÞ

¼ c
4π

q0;jTescðE0Þ
H

kðαj; δÞ
ffiffiffiffiffiffiffiffiffiffi
1 − δ

p �
E�

E0

�ð1−δÞ
2

�
E
E0

�
αjþð1þδÞ

2

ð100Þ

with kðα; δÞ the constant of Eq. (45).
The important point of this discussion is that the spectral

index γj of the CR flux for particle j is determined by the
spectral index αj of the source spectrum and by the
exponent δ of the diffusion time; however, the result
depends on whether energy losses are negligible or not.
In the first case one has

γj ¼ αj þ δ; ð101Þ

and in the second one,

γj ¼ αj þ
ð1þ δÞ

2
: ð102Þ

It is therefore clear that scenarios where the critical energy
is small (E� < Emin) or large (E� > Emax) have profoundly
different implications.

A. High critical energy hypothesis

If the critical energy E� is large (above the maximum
energy of the energy interval we are considering), then the
propagation properties of protons and electrons are approx-
imately equal. The observation that the spectral indices of p
and e− are different immediately implies that the two
particles must have source spectra of different shape, and
using Eq. (101) one can deduce that αe− − αp ≃ γe− − γp.
Such a conclusion would obviously have important impli-
cations for the properties of the CR accelerators.
On the other hand, the assumption that positrons and

antiprotons (in the energy interval considered) propagate in
approximately the same way is consistent with the hypoth-
esis that the antiparticle fluxes are generated by the
standard mechanism. This consistency is quite striking
because it emerges from two independent observations.
The first one is that the spectral indices are equal within
errors:

γp̄ ≃ γeþ : ð103Þ

The second one is that the ratio eþ=p̄ is (within systematic
uncertainties) equal to the ratio for the source spectra:

eþ

p̄
≡ ϕeþðEÞ

ϕp̄ðEÞ
≃
qeþðEÞ
qp̄ðEÞ

≃
Zpp→eþðγpÞ
Zpp→p̄ðγpÞ

≈ 1.9� 0.3: ð104Þ

Accepting the result that the antiparticle fluxes are
generated by the standard mechanism (and therefore that
αeþ ≃ αp̄ ≃ γp), it becomes possible to estimate the value of
δ from Eq. (101) (the exponent that controls the rigidity
dependence of the diffusion) and also the spectral index of
the proton source αþ p:

δ ≃ γp̄ − γp ≃ γeþ − γp ≈ 0.2 ð105Þ

and

αp ≃ γp − δ ≈ 2.4 ð106Þ

(where we have used for γp the result of the fit of
the proton flux at high energy). Combining Eqs. (99)
and (96) it is also possible to estimate the quantity
TescðE0Þ=H ∼ 1 Myr=Kpc.
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B. Low critical energy hypothesis

If the critical energy E� is smaller than Emin, the relation
between the observed flux and the source spectrum is
different for p and p̄ compared to e− and eþ. This offers the
interesting possibility to assume that the difference in shape
for the fluxes of electrons and protons is generated by
propagation. Assuming αp ≃ αe− , one can use Eq. (100) to
estimate δ and Eq. (99) to estimate αp, with the results

δ ¼ 1 − 2ðγe− − γpÞ ≃ 0.2 ð107Þ

and (for E ≤ 300 GeV)

αp ≃ γp − δ ≃ 2.6: ð108Þ

Using Eq. (100) one can then estimate the ratio of the
electron and proton source spectra:

q0;e
q0;p

¼ Ke

Kp

�
E�

E0

�ðδ−1Þ=2 1

kðα; δÞ ≃ 0.020

�
E�

3 GeV

�
−0.4

:

ð109Þ

The assumption that the propagation of eþ and p̄ is
different (because of energy-loss effects for positrons) is,
however, in clear conflict with the hypothesis that the main
source of antiparticles is secondary production. This con-
flict is manifest in the observation that the spectral indices
of the positron and antiproton fluxes are approximately
equal. The relation between the flux and the source spectral
indices is now given by Eq. (101) for antiprotons and by
Eq. (102) for positrons, so in this case the observation that
γeþ ≃ γp̄ implies that the shapes of the source spectra are
different and

αp̄ − αeþ ≃
1 − δ

2
: ð110Þ

This result is in conflict with the hypothesis that antiprotons
and positrons are generated by the secondary production
mechanism, or also by other mechanisms (such as most
models for dark matter self-annihilation or decay) where
the eþ and p̄ are generated with spectra of similar shape.
The bottom line is that the assumption that the critical

energy E� is below 10 GeV requires the existence of a new
source of high energy positrons. The two observations [see
Eqs. (103) and (104)] that the spectral indices of the
antiproton and positron fluxes are approximately equal,
and that the ratio eþ=p̄ of the fluxes is of order unity (and
equal to the ratio of the hadronic Z factors), are now simply
meaningless numerical “coincidences” that constrain the
shape and absolute normalization of the new positron
source.
The conclusion that the positron flux contains a hard,

nonstandard component generates the crucial prediction

that the spectrum should exhibit a hardening feature
associated with the transition from the regime where the
standard mechanism of secondary production is the dom-
inant mechanism of positron production to the regime
where the new source is dominant. A discussion of the
possible identification of this hardening feature in the
positron flux is contained in the Appendix.

VII. OUTLOOK

The spectra of Galactic cosmic rays observable at the
Earth carry very important information about their sources
and about the structure of the magnetic field in our Galaxy.
The nuclear component (protons and nuclei) dominates the
flux, but the study of the smaller electron and positron
components is of great importance to understand the
mechanisms that shape the spectra. In some sense, the
fluxes of e− and eþ carry more information than the fluxes
of protons and nuclei because their spectral shape should
show the imprints of energy losses.
In this work we have argued that the effects of energy

loss should be significant only above a critical energy E�
and very quickly become dominant for propagation. The
spectra of both e− and eþ should therefore exhibit softening
features at approximately the same energy that mark the
onset of the regime in propagation where energy losses are
important. The identification of the critical energy is a
crucial problem for CR astrophysics.
The study of the spectral shapes of the electron and

positron spectra suggests for E� two possible solutions that
differ by a large factor and have profoundly different
implications.
The first solution, which is in fact implicitly the

“orthodody” most commonly (but not universally)
accepted, is that the critical energy has a value of order
of a few GeV. This implies a very long residence time for
CR in the Galaxy, and a nonstandard hard source for
positrons in the Galaxy. This “low critical energy” scenario
is consistent with the hypothesis that the CR accelerators
are released in interstellar space spectra of e− and p, which,
in a broad energy range, have the same shape. In this
scenario, the softening features associated with the energy
loss are in an energy range where the CR spectra are
distorted by solar modulations. Understanding the (inter-
stellar) shape of the spectra therefore requires a sufficiently
good understanding of the solar modulation effects. In the
present work we have shown, using a very simple model for
the modulations, that the observations are possibly con-
sistent with interstellar spectra that, in the regime
E≲ 30 GeV, are unbroken power laws, in conflict with
the hypothesis that the critical energy E� is in this energy
range. Additional studies, based on more detailed model-
ings of solar modulations, are clearly needed to reach a
more firm conclusion.
The alternative solution for the critical energy E� is to

identify the softening associated with energy-loss effects
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with the spectral break observed in the (e− þ eþ) spectrum
at E ≃ 1 TeV. This solution implies a much shorter CR
residence time in the Galaxy, probably in conflict with
models where the source of secondary nuclei is nuclear
fragmentation in interstellar space.
An attractive consequence of this “high critical energy

scenario” is that it provides a natural explanation for the
intriguing result that the spectra of positrons and antipro-
tons have (in a broad energy interval from 30–400 GeV)
approximately the same spectral index and a ratio eþ=p̄≃
2, simply assuming that the dominant source for both
antiparticles is secondary production. This is a straightfor-
ward consequence of the fact that in this energy range the
propagation of positrons and antiprotons is approximately
equal because the energy losses are small for both particles
(even if the rates of energy loss differ by many orders of
magnitude). An additional attractive feature of this solution
for the critical energy is that it provides a natural, simple
interpretation for the TeV break in the all-electron spectrum
as the imprint of energy losses. If E� is below 10 GeV it is
necessary to postulate a different mechanism as the origin
of the spectral break around 1 TeV, and this is not a trivial
task. The apparent narrowness of the observed spectral
feature is a problem for all models that address the origin of
this structure.
An important problem for the “high critical energy

scenario” is that it requires source spectra of electrons
and protons with very different shapes. If this is correct the
consequences for the properties of the CR sources are
clearly very important.
An additional prediction for the electron spectrum (and

possibly also for the positron spectrum) is that at suffi-
ciently high energy (when energy losses are important) the
space-time volume of the source shrinks rapidly with E,
and since (as predicted) the sources are pointlike, transient,
astrophysical objects, the granularity of the sources should
leave an observable signature for the angular and energy
distributions. The minimum energy where the “source
granularity effects” should become observable grows with
E�. The nonobservation of source granularity effects, and
the measurement for the ðe− þ eþÞ spectrum of a shape
consistent with a simple power law above the break at
1 TeV (up to the highest energy where measurements are
available), appears to be in serious tension (if not open
conflict) with the hypothesis that the source of CR electrons
is SN explosions, if one chooses for E� the low energy
solution. The high critical energy scenario is consistent
with the idea that SN are the source of electrons, but the
evidence for the discreteness of the source should become
observable soon.
The main conclusion of this discussion is that the

question of when energy-loss effects become important
for the propagation of electrons and positrons is of central
importance for CR studies. Intimately connected to this
question are the problems of understanding the physical

mechanism that generates the break at TeV energy in the
(e− þ eþ) spectrum and the search for source granularity
effects in the spectra of electrons and positron.
Several lines of investigation, both theoretical and

experimental, promise to make progress toward a clarifi-
cation of these problems.

(i) Extend the measurements of the (separate) positron
and electron spectra to higher energy. If the e− and
eþ spectra have spectral breaks with a significantly
different shape, the high critical energy scenarios
could be excluded (and in the opposite case, re-
inforced).

(ii) Measure with precision the shape of the spectral
break around 1 TeV. Understanding the origin of the
discrepancies between different measurements in
this energy range is very desirable.

(iii) Extend the measurements of the (e− þ eþ) spectrum
to as high an energy as possible, with the hope of
identifying some of the sources.

(iv) Develop a better understanding of the solar modu-
lation effects to confirm (or refute) the low critical
energy scenario.

(v) Study the spectra of electrons and positrons in
different regions of the Galaxy (interpreting the
measurements of the diffuse gamma ray flux).

(vi) Construct better models for the propagation of CR in
the Galaxy.
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APPENDIX: MULTIPLE COMPONENTS
IN THE e∓ SPECTRA

A large number of models for the interpretation of the
positron flux assume that the spectrum is formed by two
components, generated by different mechanisms, and
predict the existence of a hardening feature associated
with the transition from a (low energy) regime dominated
by one component to a (high energy) regime dominated by
the second component.
As discussed in the main text, if one assumes that the

critical energy is E� ≲ 10 GeV, the observations require
the existence of a hard source of positrons, together with
the standard mechanism of secondary production in the
inelastic interactions of protons and nuclei.
It is straightforward that in this situation it is natural to

expect that the spectrum contains a hardening feature.
In the simplest possible situation, the two compo-
nents can be described by power laws with different
exponents:

PAOLO LIPARI PHYS. REV. D 99, 043005 (2019)

043005-26



ϕðEÞ ¼ K1

�
E
E0

�
−γ1 þ K2

�
E
E0

�
−γ2

: ðA1Þ

If γ1 > γ2, the first component has the softest spectrum and
is dominant at low energy. The cross-over energy where the
two components are equal is

Ecross ¼ E0

�
K1

K2

�
1=ðγ1−γ2Þ ðA2Þ

and the spectrum can also be expressed in the form

ϕðEÞ ¼ K1

�
E
E0

�
−γ1

�
1þ

�
E

Ecross

�
−ðγ2−γ1Þ�

: ðA3Þ

Comparing Eqs. (A3) and (3) one can see that the two
model components are exactly described by the form of
Eq. (3), when the width parameter has the value

w ¼ 1

γ1 − γ2
: ðA4Þ

In fact, the widths of the best fits for positrons and electrons
estimated in Sec. II are of the same order of ðγ1 − γ2Þ−1,
and therefore it is interesting to verify if it is possible to
describe the hardenings in the positron and electron spectra
as the manifestations of the presence of two components. In
order to do this, one can fit the observations using as a

template the expression in Eq. (A3) distorted by solar
modulations (described by the FFA algorithm), that is, with
the five-parameter form:

ϕðEÞ ¼ K1

E2

ðEþ εÞ2
�
Eþ ε

E0

�
−γ1

�
1þ

�
E

Ecross

�
−ðγ2−γ1Þ�

:

ðA5Þ
The results of fits performed on the basis of Eq. (A5) are
given in Table V and are of good quality.
In the case of positrons the fit has χ2min ¼ 21.6 (for

64 d.o.f.), only marginally worse (Δχ2 ≃ 0.6) than the more
general fit performed with the model of Eq. (5), when in
fact one has one less parameter. For the electron flux one
has χ2min ¼ 14.1 (for 65 d.o.f.). This has Δχ2 ≃ 2.4 with
respect to the fit performed in the more general model
where the width w is a free parameter. The crossing
energies for the best fits are Ecross ≃ 24.2þ7.3

−4.5 for electrons
and Ecross ≃ 15.6þ5.0

−2.9 for positrons.
The crucial question is if the two components that

emerge from this fit procedure are real or simply a
mathematical artefact.
A reason to doubt that the hardening seen in the positron

flux is associated with a new component is the fact that
hardenings of similar structure are seen in both the e− and
eþ spectra. Most models for a new source of positrons
(including acceleration from young pulsars and creation in
dark matter particle self-annihilation or decay) predict that
the new mechanism generates approximately equal source
spectra of e− and eþ.
The hypothesis of a new hard component with equal

contributions to the e− and eþ spectra is, however, not
consistent with the data. In the energy range 10–30 GeV,
where the spectral hardenings are visible, the electron flux
is more than 1 order of magnitude larger than the positron
flux, and therefore the second (hard) component for
electrons is much larger than the same component for
positrons (see also Table V).
The existence of the hardening in the e− and eþ spectra

remains an intriguing feature, perhaps generated by propa-
gation effects, that has not yet found a convincing
explanation.

[1] O. Adriani et al. (PAMELA Collaboration), Phys. Rev. Lett.
106, 201101 (2011).

[2] O. Adriani et al. (PAMELA Collaboration), Phys. Rev. Lett.
111, 081102 (2013).

[3] O. Adriani et al., Phys. Rep. 544, 323 (2014).
[4] O. Adriani et al., Astrophys. J. 810, 142 (2015).
[5] O. Adriani et al., Phys. Rev. Lett. 116, 241105 (2016).

[6] M. Aguilar et al. (AMS Collaboration), Phys. Rev. Lett.
113, 121102 (2014).

[7] M. Aguilar et al. (AMS Collaboration), Phys. Rev. Lett.
121, 051102 (2018).

[8] L. J. Gleeson and W. I. Axford, Astrophys. J. 154, 1011
(1968).

[9] P. Lipari, Astropart. Phys. 97, 197 (2018).

TABLE V. Parameters of fits to the electron and positron
spectra measured by AMS02.

Electrons Positrons

K ½GeVm2 s sr�−1 0.40� 0.02 0.014� 0.001

γ1 4.26þ0.15
−0.14 3.99þ0.21

−0.18

γ2 3.07þ0.06
−0.07 2.68þ0.07

−0.08

Ecross [GeV] 24.2þ7.3
−4.5 15.64þ5.0

−2.9

ε [GeV] 1.63� 0.10 1.09þ0.12
−0.11

χ2min 14.1 21.6

Nd:o:f: 65 64

SPECTRAL SHAPES OF THE FLUXES OF ELECTRONS … PHYS. REV. D 99, 043005 (2019)

043005-27

https://doi.org/10.1103/PhysRevLett.106.201101
https://doi.org/10.1103/PhysRevLett.106.201101
https://doi.org/10.1103/PhysRevLett.111.081102
https://doi.org/10.1103/PhysRevLett.111.081102
https://doi.org/10.1016/j.physrep.2014.06.003
https://doi.org/10.1088/0004-637X/810/2/142
https://doi.org/10.1103/PhysRevLett.116.241105
https://doi.org/10.1103/PhysRevLett.113.121102
https://doi.org/10.1103/PhysRevLett.113.121102
https://doi.org/10.1103/PhysRevLett.121.051102
https://doi.org/10.1103/PhysRevLett.121.051102
https://doi.org/10.1086/149822
https://doi.org/10.1086/149822
https://doi.org/10.1016/j.astropartphys.2017.11.008


[10] M. Potgieter, Living Rev. Solar Phys. 10, 3 (2013).
[11] It can be noted that the χ2 per degree of freedom of the fit (of

order 0.18) is small. This is the consequence of the existence
of significant correlations between the systematic errors for
the flux measurements at different energies. The same point
can be made for the other fits to the data discussed in this
paper. The relevant error correlation matrices have not been
made public by the collaborations that performed the
measurements.

[12] Treating the quantity f as a nuisance parameter, including
an additional term ðδf=σfÞ2 in the χ2 expression does not
appreciably change the result of the fit.

[13] M. Aguilar et al. (AMS Collaboration), Phys. Rev. Lett.
113, 221102 (2014).

[14] S. Abdollahi et al. (Fermi-LAT Collaboration), Phys. Rev. D
95, 082007 (2017).

[15] J. Chang et al., Nature (London) 456, 362 (2008).
[16] O. Adriani et al. (CALET Collaboration), Phys. Rev. Lett.

119, 181101 (2017).
[17] O. Adriani et al., Phys. Rev. Lett. 120, 261102 (2018).
[18] G. Ambrosi et al. (DAMPE Collaboration), Nature

(London) 552, 63 (2017).
[19] F. Aharonian et al. (HESS Collaboration), Phys. Rev. Lett.

101, 261104 (2008).
[20] F. Aharonian et al. (HESS Collaboration), Astron.

Astrophys. 508, 561 (2009).
[21] D. Kerszberg (HESS Collaboration), in Proceedings of the

35th ICRC (2017), https://www.mpi-hd.mpg.de/hfm/HESS/
pages/home/som/2017/09/.

[22] D. B. Tridon et al. (MAGIC Collaboration), arXiv:
1110.4008.

[23] D. Staszak (VERITAS Collaboration), Proc. Sci. ICRC2015
(2016) 411.

[24] P. Lipari and S. Vernetto, Phys. Rev. D 98, 043003 (2018).
[25] The use of the width parameter w is preferable because it has

a clear and intuitive physical meaning as the width of the

spectral break. In this case (where Δγ ≃ 1) s and w are
approximately the same, but in general, the two quantities
can be very different.

[26] P. Morrison, S. Olbert, and B. Rossi, Phys. Rev. 94, 440
(1954).

[27] V. L. Ginzburg and S. I. Syrovatskii, The Origin of Cosmic
Rays (Pergamon Press, New York, 1964).

[28] In this work we only consider ultrarelativistic particles of
unit electric charge, so that p=jZj ≃ E, and for simplicity, we
use the notation DðEÞ for the diffusion coefficient (which
depends on the absolute value of the rigidity and on the
particle velocity β).

[29] P. Lipari, arXiv:1407.5223.
[30] D. R. Cox and H. D. Miller, The Theory of Stochastic

Processes (Chapman and Hall, London, 1965).
[31] T. K. Gaisser, R. Engel, and E. Resconi, Cosmic Rays and

Particle Physics (Cambridge University Press, Cambridge,
England, 2016).

[32] D. Grasso et al. (Fermi-LAT Collaboration), Astropart.
Phys. 32, 140 (2009).

[33] G. L. Case and D. Bhattacharya, Astrophys. J. 504, 761
(1998).

[34] I. Yusifov and I. Kucuk, Astron. Astrophys. 422, 545
(2004).

[35] M. Garcia-Munoz, G. M. Mason, and J. A. Simpson,
Astrophys. J. 217, 859 (1977); S. P. Ahlen et al., Astrophys.
J. 534, 757 (2000); N. E. Yanasak et al., Astrophys. J. 563,
768 (2001).

[36] R. Cowsik and B. Burch, Phys. Rev. D 82, 023009
(2010).

[37] R. Cowsik, B. Burch, and T. Madziwa-Nussinov, Astrophys.
J. 786, 124 (2014).

[38] S. Abdollahi et al. (Fermi-LAT Collaboration), Phys. Rev.
Lett. 118, 091103 (2017).

[39] Y. S. Yoon et al., Astrophys. J. 839, 5 (2017).
[40] P. Lipari, Phys. Rev. D 95, 063009 (2017).

PAOLO LIPARI PHYS. REV. D 99, 043005 (2019)

043005-28

https://doi.org/10.12942/lrsp-2013-3
https://doi.org/10.1103/PhysRevLett.113.221102
https://doi.org/10.1103/PhysRevLett.113.221102
https://doi.org/10.1103/PhysRevD.95.082007
https://doi.org/10.1103/PhysRevD.95.082007
https://doi.org/10.1038/nature07477
https://doi.org/10.1103/PhysRevLett.119.181101
https://doi.org/10.1103/PhysRevLett.119.181101
https://doi.org/10.1103/PhysRevLett.120.261102
https://doi.org/10.1038/nature24475
https://doi.org/10.1038/nature24475
https://doi.org/10.1103/PhysRevLett.101.261104
https://doi.org/10.1103/PhysRevLett.101.261104
https://doi.org/10.1051/0004-6361/200913323
https://doi.org/10.1051/0004-6361/200913323
https://www.mpi-hd.mpg.de/hfm/HESS/pages/home/som/2017/09/
https://www.mpi-hd.mpg.de/hfm/HESS/pages/home/som/2017/09/
https://www.mpi-hd.mpg.de/hfm/HESS/pages/home/som/2017/09/
https://www.mpi-hd.mpg.de/hfm/HESS/pages/home/som/2017/09/
https://www.mpi-hd.mpg.de/hfm/HESS/pages/home/som/2017/09/
http://arXiv.org/abs/1110.4008
http://arXiv.org/abs/1110.4008
https://doi.org/10.22323/1.236.0411
https://doi.org/10.22323/1.236.0411
https://doi.org/10.1103/PhysRevD.98.043003
https://doi.org/10.1103/PhysRev.94.440
https://doi.org/10.1103/PhysRev.94.440
http://arXiv.org/abs/1407.5223
https://doi.org/10.1016/j.astropartphys.2009.07.003
https://doi.org/10.1016/j.astropartphys.2009.07.003
https://doi.org/10.1086/306089
https://doi.org/10.1086/306089
https://doi.org/10.1051/0004-6361:20040152
https://doi.org/10.1051/0004-6361:20040152
https://doi.org/10.1086/155632
https://doi.org/10.1086/308762
https://doi.org/10.1086/308762
https://doi.org/10.1086/323842
https://doi.org/10.1086/323842
https://doi.org/10.1103/PhysRevD.82.023009
https://doi.org/10.1103/PhysRevD.82.023009
https://doi.org/10.1088/0004-637X/786/2/124
https://doi.org/10.1088/0004-637X/786/2/124
https://doi.org/10.1103/PhysRevLett.118.091103
https://doi.org/10.1103/PhysRevLett.118.091103
https://doi.org/10.3847/1538-4357/aa68e4
https://doi.org/10.1103/PhysRevD.95.063009

