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We address the problem of reconstructing the phase-space distribution function for an extended
collisionless system, with known density profile and in equilibrium within an axisymmetric gravitational
potential. Assuming that it depends on only two integrals of motion, namely the energy and the component
of the angular momentum along the axis of symmetry Lz, there is a one-to-one correspondence between the
density profile and the component of the distribution function that is even in Lz, as well as between the
weighted azimuthal velocity profile and the odd component. This inversion procedure was originally
proposed by Lynden-Bell and later refined in its numerical implementation by Hunter and Qian; after
overcoming a technical difficulty, we apply it here for the first time in presence of a strongly flattened
component, as a novel approach of extracting the phase-space distribution function for dark matter particles
in the halo of spiral galaxies. We compare results obtained for realistic axisymmetric models to those in the
spherical symmetric limit as assumed in previous analyses, showing the rather severe shortcomings in the
latter. We then apply the scheme to the Milky Way and discuss the implications for the direct dark matter
searches. In particular, we reinterpret the null results of the Xenon1T experiment for spin-(in)dependent
interactions and make predictions for the annual modulation of the signal for a set of axisymmetric models,
including a self-consistently defined corotating halo.
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I. INTRODUCTION

In recent years considerable efforts have been dedicated to
the problem of identifying the nature of the dark matter
component of the Universe. While a clean evidence for a
signal is still missing, direct and indirect detection methods
have set stringent constraints on several particle dark matter
scenarios. Along with the improvement in experimental
sensitivities, it is becoming increasingly urgent to refine
theoretical predictions and properly assess various system-
atic errors to allow for an unbiased comparison of results
from complementary techniques. Severe limitations to accu-
rate theoretical predictions often stem from the difficulty of
projecting the available observational and theoretical insights
regarding dark matter halos into the underlying particle
distribution models. Most critical are the cases in which the
dark matter signals depend on the full phase-space distri-
bution structure, such as when estimating the scattering
probability of galactic dark matter on a target nucleus in a
detector on the Earth (for a review, see, e.g., [1]) or when
considering annihilation probabilities depending on the
relative velocity in the particle pair (see, e.g., [2–8]).

The impact on direct detection has been under the closest
scrutiny and it is timely to investigate it further today, given
that the information on local dynamical tracers in the
Galaxy is getting much richer with the data that the Gaia
satellite is collecting [9]. While the vast majority of
theoretical estimates and experimental analyses rely on
approximating dark matter particle velocity distribution as a
truncated isotropic Maxwelian, inspired by the configura-
tion valid for an isolated isothermal sphere [10] and
sometimes referred to as standard halo model (SHM), it
has been long recognized that this is a idealized model that
fails to account for important effects, such as: deviations
from isotropy [11], deviations from spherical symmetry
[12] and nonthermalized components with peculiar velocity
patterns [13] (for a phenomenological update on the SHM
incorporating recent inputs from Gaia, see [14]). To the
extremes in possible attempts to go beyond the SHM, one
can refer to numerical realizations of Milky Way-like
galaxies, see, e.g., recently [15–18], or directly mutuate
dark matter velocity distributions from observed properties
of halo stars [19–21]. There are shortcomings in both
approaches: While in a given simulation it is not straight-
forward to match local dynamical observables and reach
the required resolution to properly account for all relevant
effects, the assumptions in the second approach that the
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dark matter population is mostly nonthermal and properly
traced by a given class of metal-poor stars are rather strong
and at odd with the fact that density profiles for dark matter
and halo stars appears to be significantly different, see also
the discussion in [14].
We follow here a third route, based instead on the

hypothesis that the local dark matter population has reached
equilibrium within the underlying gravitational potential
well, and hence retrieving its distribution function from
the collisionless Boltzmann equation [22]. This route
becomes particularly convenient if one introduces the
simplifying assumption that all components in the system
are spherically symmetric: In this case the ergodic dark
matter distribution function depends only on energy, is
unique and can be numerically computed via the so-called
Eddington’s inversion formula [22]. The latter requires as
inputs only the dark matter density profile and the overall
gravitational potential profile, which can be both oppor-
tunely tuned to available dynamical tracers and other
observables. This method, as well as its generalization to
some classes of anisotropic distribution functions, has been
applied—within the spherical symmetry approximation—
to the Milky Way and used for direct and indirect dark
matter detection studies, see, e.g., [2,7,11,23–26].
The method has several virtues: Distribution function

and dark matter density profile are a priori self-consistent;
The velocity profile can be directly matched onto
Milky Way observables, with no need for normalizing to
some estimated value of the local velocity dispersion or
imposing by hand a sharp cutoff to a given local escape
velocity (both being an output of the model); Within this
approach, scans of the parameter space connected to, e.g.,
the Galactic mass model decomposition, on one hand, are
much less onerous than through numerical realizations,
and, on the other, produce more realistic uncertainty
estimates than with phenomenological models, having an
implicit embedding of the cross-correlation among relevant
quantities (compare, e.g., the impact on direct detection
estimated in [24] to the one in, e.g., [27]; despite consid-
ering analogous sets of dynamical constraints, in the latter
the uncertainties on the local halo density, the local dark
matter velocity dispersion and the local escape velocity
need to be treated as independent quantities). The main
drawback is that this method cannot account for eventual
dark matter components that have not thermalized and
might play a relevant role for phenomenology, see, e.g.,
most recently [28].
A second major issue—which we wish to address in

this paper—is the fact that applying an inversion method
devised for spherical systems to the Milky Way, and in
particular to the local neighborhood or at even smaller
galactocentric distances, is more motivated at the level of
coping with a technical difficulty rather than on physical
grounds. The local potential well is largely dominated by
the stellar disc, inducing a vertical gradient much larger
than the radial gradient. This affects all components of

the system in dynamical equilibrium, including the dark
matter halo, generating a pressure that particles feel in the
azimuthal direction which is different from the pressure in
the meridional plane. We therefore dismiss the approxi-
mation of “spherical disc,” and consider instead an axi-
symmetric environment embedding the dark halo (that in
turn can be oblate/prolate rather than spherical): If one
restricts to distribution functions depending only on energy
and the component of the angular momentum parallel to
the axis of symmetry (rather than also to the third integral
of motion, rarely known), there is still a one-to-one
correspondence between density profile and distribution
function for a nonrotating collisionless population in
equilibrium within a given axisymmetric gravitational
potential. The extension of Eddington’s formula to axi-
symmetric systems was worked out by Lynden-Bell [29]
and involves inverting Laplace transforms of the density
with analytic continuations in the complex plane. It has
been used to find few analytic distribution functions from
some rather specific density profiles [30–34]. Later, Hunter
and Qian [35] improved it to make it more tractable from a
numerical point of view, but even in this second version
there have been very few applications [36], in particular
none involving highly flattened components, possibly in
connection to a technical issue encountered and solved
while developing this project.
We present here for the first time two-integral-of-motion

distribution functions describing an extended axisymmetric
component in equilibrium within a gravitational potential
getting a major contribution from a thin axisymmetric disc.
This applies to the dark matter halo of a spiral galaxy,
as discussed in Sec. II, but can also be readily extended
to stellar halo populations. In Sec. III we focus on the
MilkyWay dark matter halo, tuning the model to dynamical
observables. In Sec. IV, as a first application of the deve-
loped formalism, we illustrate the impact on the predictions
for dark matter direct detection rates. Finally, Sec. V
contains our conclusions.

II. SELF-CONSISTENT AXISYMMETRIC
MODELLING

The latest astronomical surveys are providing a wealth of
new data, making it possible to study the dynamics within
galaxies with unprecedented precision. By combining
various dynamical observables, it is possible to reconstruct
gravitational potentials of galaxies with ever-increasing
accuracy. While photometric and radio observations
allow to determine in fine details the morphology of the
stellar and gas components, mass model decompositions
are getting more constrained and enable to improve the
estimates of the distribution of dark matter within the
studied objects. In turn, these precise determinations of
gravitational potential Φ and dark matter density profile
ρ can be exploited to reconstruct the full phase-space
distribution of relaxed collisionless galactic components by
means of Boltzmann equation.
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In the spherically symmetric limit, the phase-space
distribution function (PSDF) for isotropic systems depends
only on one integral of motion—the energy—and can be
retrieved from the density profile making use of the well
known Eddington’s inversion formula (see e.g., [22]):

fEddðEÞ ¼
1ffiffiffi
8

p
π2

·
d
dE

Z
E

0

dΨffiffiffiffiffiffiffiffiffiffiffiffi
E − Ψ

p ·
dρ
dΨ

: ð1Þ

In this formula, the relative energy E ≡ ΨðrÞ − v2
2
has been

introduced in terms of the relative potential ΨðrÞ≡
Φb −ΦðrÞ, having chosen the boundary term Φb in such
way that fEdd > 0 for E > 0 and fEdd ¼ 0 for E ≤ 0. There
are a few generalizations extending Eddington’s inversion
to anisotropic systems, such as the Ospikov-Merritt or
constant-βmodels [22], however their applicability is rather
limited. Furthermore, the assumption of spherical sym-
metry seems oversimplifying, particularly when addressing
rotationally supported galaxies, that are characterized by
their stellar disc. Our work is dedicated to applying a
generalization of Eddington’s approach to axisymmetric
systems, with the aim of studying the DM velocity
distribution within spiral galaxies. It allows us to find a
stationary solution of the collisionless Boltzmann equation
for an arbitrary axisymmetric gravitational potential and
density distribution. This is particularly interesting in the
light of direct DM searches, since the local galactic
potential is strongly influenced by the stellar disc, but
can be in principle used to study other collisionless
component of spiral galaxies.

A. Phase-space inversion for axisymmetric systems

According to the strong formulation of Jeans theorem,
for a system with regular nonresonant orbits, any steady-
state solution of the collisionless Boltzmann equation in a
given stationary gravitational potential depends on up to
three independent integrals of motion. For an axisymmetric
configuration, the isolating integrals are the energy, the
component of the angular momentum parallel to the axis of
symmetry, Lz, and a so-called nonclassical third integral I3,
which however takes an analytic expression only in very
few specific cases. Hence, most often, PSDFs for axisym-
metric systems have been assumed to depend on the first
two only; while this is a limitation in our analysis, still it
is sufficient to address the shortcomings of the spherical
symmetry approximation and for building much more
realistic models.
Under the two-integral-of-motion assumption, the PSDF

can be decomposed in two parts, fþ that is even in Lz and
the f− that is odd:

fðE; LzÞ ¼ fþðE; LzÞ þ f−ðE; LzÞ: ð2Þ
The even part contains information regarding the density
distribution, while the odd part describes the rotational
properties of the considered system, given that:

ρðR; zÞ≡
Z
jv⃗j≤

ffiffiffiffiffiffiffiffiffiffiffiffi
2ΨðR;zÞ

p d3vfðE; LzÞ ¼
2π

R

Z
ΨðR;zÞ

0

dE

×
Z

R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðΨðR;zÞ−EÞ

p

−R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðΨðR;zÞ−EÞ

p dLzfþðE; LzÞ ð3Þ

ðρv̄ϕÞðR; zÞ≡
Z
jv⃗j≤

ffiffiffiffiffiffiffiffiffiffiffiffi
2ΨðR;zÞ

p d3vjv⃗j · fðE; LzÞ

¼ 2π

R2

Z
ΨðR;zÞ

0

dE
Z

R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðΨðR;zÞ−EÞ

p

−R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðΨðR;zÞ−EÞ

p

× dLzLz · f−ðE; LzÞ: ð4Þ

In the formulas above v̄ϕ is the rotational velocity around
the symmetry axis, while R and z are the radial distance and
vertical height in the usual cylindrical coordinate frame.
Analogously to Eddington’s formula, the two-integral-

of-motion PSDFs can be reconstructed via an inversion of
Eqs. (3) and (4). In this work we follow the approach
proposed by Hunter and Qian [35], which we refer in the
following as “HQ method.” One starts with the analytic
continuation of the density ρðR; zÞ and relative gravitational
potential ΨðR; zÞ into the complex plane; restricting to
models which are symmetric with respect to the equatorial
plane, and provided that Ψ decreases monotonically with
increasing z, one can replace the cylindrical coordinates R
and z with the variables R2 and Ψ. After a few steps (see
[35] for details), one can show that the Lz-even part of
PSDF can be computed as:

fþðE; LzÞ ¼
1

4π2i
ffiffiffi
2

p
I
CðEÞ

dξffiffiffiffiffiffiffiffiffiffiffi
ξ − E

p d2ρðR2;ΨÞ
dΨ2

����
Ψ¼ξ

R2¼ L2z
2ðξ−EÞ

; ð5Þ

where CðEÞ is an appropriate path which tightly wraps
around the real axis between the value of the potential at
infinity, Ψ∞, and a characteristic value Ψenv, which, for
any given value of the relative energy E, is the value of the
relative potential corresponding to the position on the
galactic plane at which a circular orbit of radius Rc has
relative energy E, namelyΨenvðEÞ ¼ ΨðR ¼ RcðEÞ; z ¼ 0Þ.
Hunter and Qian propose, as useful way to parametrize the
contour, to define an ellipse in terms of a real variable
θ ∈ ½0; 2π�:

ξðθÞ ¼ ΨenvðEÞ
2

ð1þ cos θÞ þ ih sin θ; ð6Þ

ξðθÞ ¼ ΨenvðEÞ þ l

�
1 − sec

θ

2

�
þ ih sin θ; ð7Þ

where the first expression should be used in case of finite
Ψ∞ and the second one in case of Ψ∞ → −∞. The
parameter h controls the width of the contour in the
imaginary plane, while l is relevant only for infinite
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potentials and determines where the contour reaches its
maximum width. In practice it is good to keep h small to
avoid including possible additional singularities that arise
from the analytical continuation of ρ, however large enough
to maintain good numerical convergence. Having this, the
crucial point becomes the evaluation of the second deriva-
tive of the density with respect to the potential. In most
cases one cannot perform the change of variables explicitly,
and is forced to use the implicit derivation in cylindrical
coordinates:

d2ρðR2;ΨÞ
dΨ2

¼ d2ρðR2; z2Þ
dðz2Þ2

�
dΨðR2; z2Þ

dz2

�−2

−
dρðR2; z2Þ

dz2
ΨðR2; z2Þ
dðz2Þ2

�
dΨðR2; z2Þ

dz2

�−3
;

ð8Þ

evaluated at R2 ¼ L2

2ðξ−EÞ and z2 such that ΨðR2; z2Þ ¼ ξ.

Values of z2 fulfilling the latter equality typically need to be
found via numerical minimization routines. Further diffi-
culties might arise if ΨðR2; z2Þ contains a branch cut along
the contour, inducing a discontinuity in the Jacobian of the
coordinate transformation; this typically happens for cer-
tain values of E and Lz for a system embedded in very
flattened potential and requires a proper adjustment ofCðEÞ
and of the method in which the numerical integral is
performed (we discuss this technical issue and its possible
solutions in Appendix). Finally, one can simplify the
contour integral by using the Schwarz reflection principle,
which implies that the values of integral above and below
x-axis must be complex conjugates of each other. Therefore
one can shrink the domain of integration to θ ∈ ½0; π�,
compute only the real part and multiply the final result by
factor of 2. The Lz-odd part of PSDF can be computed
analogously, using the following expression:

f−ðE; LzÞ ¼
signðLzÞ
8π2i

I
CðEÞ

dξ
ξ − E

d2ðρv̄ϕÞ
dΨ2

����
Ψ¼ξ

R2¼ L2z
2ðξ−EÞ

: ð9Þ

It is important to note that in order to evaluate f− one needs
to specify also v̄ϕðR2; z2Þ, which is unfortunately often
unknown. To surmount this one can either assume a
parametric form for v̄ϕ or construct the PSDF using only
fþ. We address this issue in greater detail in the following
section.
In principle the HQ method can be used to compute the

PSDF for any choice of axisymmetric ρðR2; z2Þ, ΨðR2; z2Þ
and v̄ϕðR2; z2Þ, however there is no guarantee that the
resulting PSDF will be positive definite (i.e., physical).
This needs to be checked explicitly after performing the
contour integrals. At this point we also note that one can
check the accuracy of resulting PSDF by, for example,
plugging it back in Eq. (3), which should reproduce the

initially assumed density distribution. In our analysis we
were able to reconstruct the initial density within one
percent accuracy in the regions of interest for all the
studied cases.

B. Modeling of spiral galaxies

The HQ method, described in the previous section, turns
out to be indispensable for determining the phase-space
distributions within spiral galaxies. The method can be
applied to the DM halo, but also stars or any other
component that is well approximated by steady-state
distribution of collisionless point-like objects. To obtain
fþ for the component of interest, one needs to specify
its spatial distribution, as well as the total gravitational
potential. Spiral galaxies are typically composed of a stellar
disc with a bulge/bar structure in the center, embedded in
large DM halo. We consider a toy model with: (i) a
Myamoto-Nagai (MN) disc, with potential:

ΨMNðR2; z2Þ ¼ GMdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ

�
ad þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ b2d

q �
2

r ð10Þ

parametrized by the mass Md, the characteristic radius ad
and the characteristic height bd; (ii) a spherically symmetric
Hernquist bulge (we are not going to discuss results
regarding regions where the bulge is the dominant compo-
nent, hence this specific choice is not crucial), with
potential:

ΨHerðR2; z2Þ ¼ GMbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ z2

p
þ ab

ð11Þ

parametrized by its mass Mb and characteristic radius ab;
and (iii) a spheroidal DM halo with a NFW density profile
[37] (again, we are not going to zoom to the very central
region of spiral galaxies, so results we are presenting are
not crucially dependent on this specific choice):

ρNFWðmÞ ¼ ρs
m=rs · ð1þm=rsÞ2

where m2 ¼ R2 þ z2=q2;

ð12Þ

parametrized by the scale density ρs, the scale radius rs and
the “flattening” parameter q. For spherical halos, obtained
by setting q ¼ 1, the corresponding gravitational potential
can be computed analytically:

ΨNFWðrÞ ¼ 2πGρsr2s ·
logð1þ r=rsÞ

r=rs
where

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ z2

p
; ð13Þ

while for oblate (q < 1) or prolate (q > 1) halos, a
numerical evaluation of the following integral is required:
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ΨNFWðR2; z2Þ ¼ πGq
Z

∞

0

du

ð1þ uÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ u

p Z
∞

U
ρðm2Þdm2

where U ¼ R2

1þ u
þ z2

q2 þ u
: ð14Þ

The above model involves a set of free parameters that
need to be inferred from observations. In this section
(unless specified otherwise), we will mostly refer to a
sample case in which the number of free parameters is
reduced introducing the following correlations, which are
in rough agreement with what is typically found in spiral
galaxies [38–40]:

Mb ¼ 0.05M2.2; Md ¼ 0.45M2.2 ð15Þ

ab ¼
ad
3
; bd ¼

ad
10

; rs ¼ 5ad ð16Þ

where M2.2 is the total mass of the object within a radius
equal to 2.2 disc lengths ad. This characteristic scale turned
out to be particularly useful as a benchmark distance for
determining the fraction of DM mass in a given galaxy
[41]. We use the corresponding circular velocity V̂c ≡
VcðR ¼ 2.2adÞ as a normalization scale in the rest of this
section.

C. From spherical to axial symmetry

When connecting the model to observations, one needs
to fit the total gravitational potential Ψtot, which is the sum
of bulge, disc and halo components, to reproduce the
observed circular velocity profile in the galactic plane
VcðRÞ:

V2
cðRÞ ¼ −2R2 ·

dΨtotðR2; z2Þ
dR2

����
z¼0

: ð17Þ

It is evident that spherical, as well axysimmetric, modeling
can reproduce given VcðRÞ. Hence, spherically symmetric
models were used in the past to compute PSDF of halos
using the Eddingtons inversion. We demonstrate that such
simplification can drastically affect the PSDF and the
axisymmetric HQ method should be used instead. To
illustrate the difference, we used a combination of spherical
NFW potential for the halo and a linear combination
of MN and Plummer potential (spherical approximation
of MN potential, ΨPluðr2Þ ∼ΨMNðR2 → r2; z2 → 0Þ) for
the disc:

ΨdiscðR2; z2Þ ¼ xaxiΨMNðR2; z2Þ þ ð1 − xaxiÞΨPluðR2 þ z2Þ
ð18Þ

(for the moment we omit the subdominant bulge compo-
nent). In Fig. 1 we present the comparison of radial and
azimuthal velocity distributions, as well as the residuals

with respect to the spherical limit, for various values of xaxi.
As the admixture of the axisymmetic potential increases,
the radial velocity distribution becomes shifted towards
higher velocities, while the azimuthal component gains
power at low velocities. This results in skewed velocity
distributions that cannot be accurately modeled within the
spherical approximation, nor using a Gaussian profile. The
differences are most significant in central part of the halo
and gradually diminish with increasing distance from the
center, as the effect of disc component becomes negligible.
The changes in the velocity distributions naturally lead also
to changes in the velocity dispersion σ2ðR; zÞ, as well as in
velocity anisotropy. Analogously to spherical systems, for
which the anisotropy is usually described in terms of an
anisotropy parameter defined as ratio of velocity second
moments in tangential and radial direction, we introduce
here the following quantity, better suited for describing
axial systems:

β⊖ðR; zÞ≡ 1

2
−
σ2ϕðR2; z2Þ
σ2MðR2; z2Þ ; ð19Þ

where σ2ϕ is the velocity dispersion in azimuthal direction,
while σ2M ¼ σ2R þ σ2z is the velocity dispersion in meridio-
nal plane (note that for fðE; LzÞ the velocity dispersion in
meridional plane is isotropic, i.e., σ2R ¼ σ2z , by construc-
tion). On the right hand side of Fig. 2 we show that the
velocity anisotropy in the galactic plane, β⊖ðR; 0Þ,
becomes increasingly radial as the admixture of axisym-
metric potential increases, with the radial velocity
dispersion increasing with xaxi and the azimuthal com-
ponent diminishing. In the plot on left-hand side of the
same Fig. 2, we show the total velocity dispersion
(σ2 ¼ 2σ2R þ σ2ϕ), which also increases with xaxi. These
effects are, however, again limited only to the central part of
the galaxy, where the influence of disc is significant, and
slowly diminish as one moves toward the outskirts of the
system.
Similarly, one can check how the PSDF of the halo

particles changes if one varies the relative weight of
axisymmetric disc and spherical halo components, while
keeping the characteristic circular velocity V̂c unchanged:

V̂c ¼ −2 · ð2.2adÞ2
�
xdisc·

dΨMNðR2; z2Þ
dR2

����R¼2.2ad
z¼0

þ ð1 − xdiscÞ ·
dΨNFWðR2; z2Þ

dR2

����R¼2.2ad
z¼0

�
ð20Þ

In Fig. 3 we show the comparison of radial and azimuthal
velocity distributions for various values of xdisc. The span of
values displayed go from xdisc ¼ 0 (when the flattening
induced by the disc is ignored), to values that are repre-
sentative of minimal/average/maximal disc models for
spiral galaxies. The trends are similar as when varying
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FIG. 2. Total velocity dispersion (left) and velocity anisotropy (right) in the galactic plane as a function of radial distance for various
fractions of axisymmetric component, parametrized by xaxi. In the lower left panel we show the relative difference of the velocity
dispersion with respect to the xaxi ¼ 0 case.

FIG. 1. Radial (left) and azimuthal (right) velocity distributions in the galactic plane for various fraction of the axisymmetric
component, parametrized by xaxi. In lower panels we show the relative difference with respect to the xaxi ¼ 0 case, computed at
different radii.
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xaxi, since also xdisc interpolates between spherically
symmetric and axisymmetric configurations. However,
an important difference is the fact that the local escape
velocity, vesc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ΨðR2; z2Þ

p
, decreases with increasing

xdisc, since smaller amount of total mass is needed to
produce the same V̂c. Therefore the corresponding velocity
distributions become suppressed at high velocities with
respect to the halo-only case. This effect is somewhat
compensated by the aforementioned shift of power in the
radial velocity distribution towards higher v, which occurs
in presence of flattened disc. The differences are again most
significant in the central part of the galaxy, where the disc
component dominates, but remain noticeable even at large
radii due to the change in vesc. The interplay of these effects
again highlights the need for careful modeling that goes
beyond the standard approximations.
Degeneracies in mass model decompositions sometimes

make it hard to precisely infer the DM density profile.
Beside the well known cusp/core problem, one often faces
large uncertainties in inferring the halo scale radius rs. In
Fig. 4 we show the velocity probability distributions for
three different rs=ad ratios, which cover a range of values

typically encountered in disc galaxies [40]. We find that for
large rs=ad the velocity distributions contain features that
can not be encaptured by a simple Gaussian curve, while
decreasing the ratio leads to increasingly Maxwellian
distribution. An important difference with respect to vary-
ing the admixture of disc component is that both radial and
azimuthal velocity distributions get shifted towards lower
velocities as rs decreases, which leads to “colder” halos at
R≳ ad. This can also be seen from the corresponding
velocity dispersion, shown in the plot on left-hand side of
Fig. 5. In the right hand side plot of same Fig. 5, we show
the resulting velocity anisotropy in the galactic plane for
same rs=ad ratios, which demonstrates that decreasing rs
make the DM particle trajectories increasing radially
biased.
Finally, we note that the effects of the stellar disc on

the halo particles softens more rapidly as one moves
along the z-axis, as compared to the radial direction.
This can be seen from Fig. 6, where we plot the radial
and azimuthal velocity probability distributions for
various heights above the galactic plane. As one moves
toward larger values of z, the radial velocity distribution

FIG. 3. Radial (left) and azimuthal (right) velocity distributions in the galactic plane for various fractions of the stellar disc component,
parametrized by xdisc. In the lower panels we show the relative difference with respect to the xdisc ¼ 0 case, computed at different radii.
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gets shifted back to lower velocities, while the azimuthal
components gets more power at high velocities. These
trends are the opposite as one finds for increasing the
amount of disc component. Furthermore, at z ≫ bd the

velocity distribution becomes closer to isotropic, which
is most significant for R≲ ad, while the velocity
dispersions are driven towards constant central value,
as shown in Fig. 7.

FIG. 5. Total velocity dispersion (left) and velocity anisotropy (right) in the galactic plane as a function of radial distance for various
ratios of rs=ad. In the lower left panel we show the relative difference of velocity dispersion with respect to the rs=ad ¼ 8 case.

FIG. 4. Radial (left) and azimuthal (right) velocity distributions in the galactic plane for various ratios of rs=ad. In the lower panels we
show the relative difference with respect to the rs=ad ¼ 8 case, computed at different radii.
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FIG. 7. Total velocity dispersion (left) and velocity anisotropy (right) as a function of radial distance for various heights z above the
galactic disc (normalized to the disc height bd). In the lower left panel we show the relative difference of velocity dispersion with respect
to the z ¼ 0 case.

FIG. 6. Radial (left) and azimuthal (right) velocity distributions for various heights z above the galactic disc, normalized to the disc
height bd. In the lower panels we show the relative difference respect to the z ¼ 0 case, computed at different radii.
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D. Halo flattening

Using the HQ method one can also study the effect of
flattening or elongation of the DM halo along the axis of
symmetry. As already mentioned, in our toy model the
sphericity of halo is controlled by parameter q, where q < 1
corresponds to oblate and q > 1 to prolate configura-
tions. Even though some recent studies suggest that the
Milky Way halo is very close to spherical [42], there is
substantial evidence for a highly flattened DM subcompo-
nent coming from past mergers, see [14] and references
therein. Furthermore, hydrodynamical simulations of struc-
ture growth, which include baryons, generically predict
oblate halos [43,44] with significant spread in the q
parameter, whose value is strongly influenced by the
formation history of the particular object. In Fig. 8 we show
the halo velocity distributions obtained for a range of typical
q values, while keeping the baryonic component fixed. We
find that for oblate halos the radial velocity distribution gets
shifted towards smaller velocities, while the azimuthal
velocity distribution is boosted at intermediate velocities
and suppressed elsewhere. The morphology of the halo also
affects the depth of the gravitational potential when keeping
V̂c fixed, which in turn leads to lower vesc for q < 1, while
changes are in the opposite direction in case of prolate halos.

By comparing with Figs. 1 and 3 we can see that flattening
has roughly the opposite effect of increasing the disc
component, however the velocity distributions in presence
of both features are still poorly described by the Gaussian or
spherical approximation (this is discussed in greater details
in the next section, when considering the Milky Way). The
corresponding velocity dispersion, portrayed in the left hand
side plot of Fig. 9, is consistent with the changes in the
velocity probability distributions, as it decreases (increases)
for oblate (prolate) halos. The effect remains significant at
all radii, since the halo is the largest component of galaxy
and extends way beyond the stellar disc. The velocity
anisotropy in the galactic plane, showed in the right-hand
side plot of Fig. 9, remains radially biased in the central part
for oblate and prolate halos, however in the outskirts we see
different behaviors. Oblate halos generically lead to neg-
ative, i.e., circularly biased, velocity anisotropy, while for
prolate halos we find increasing radial bias at large gal-
actocentric distances.

E. Halo rotation

In order to compute the Lz-odd part of PSDF one needs
to specify also v̄ϕðR2; z2Þ. While it can be, at least in
principle, measured for stars or other baryonic components

FIG. 8. Radial (left) and azimuthal (right) velocity distributions in the galactic plane for various halo shapes, parametrized by q. In the
lower panels we show the relative difference with respect to the spherical halo, computed at different radii.
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of galaxy, we have no way of inferring the rotational profile
of the DM halo. Therefore, to address the uncertainty
arising from various possible realizations of f− one can
adopt the following parametrization:

f−ðE; LzÞ ¼ αðE; LzÞfþðE; LzÞ; ð21Þ

where α is an arbitrary functions that takes values in the
range of ½−1; 1� and is odd in Lz. One of the simplest
choices is αðLzÞ ¼ α0 · signðLzÞ, which has been used in
context of modeling stellar components of elliptical gal-
axies [22], however it introduces a discontinuity in fðE; LzÞ
at Lz ¼ 0. The corresponding velocity distribution Pα0ðvϕÞ

is simply obtained by scaling by a constant factor the result
for α0 ¼ 0:

Pα0ðvϕÞ ¼ Pα0¼0ðvϕÞ ·
�
1þ α0; vϕ > 0

1 − α0; vϕ < 0
: ð22Þ

To avoid the discontinuity one could choose, e.g.,
αðLzÞ ¼ Lz=Lz;max. While the resulting velocity distribu-
tion is smooth, it is not clear weather such v̄ϕ profile
describes a likely configuration for DM particles or not.
Therefore we also consider another option, where we
assume a functional form for v̄ϕðR; zÞ. A simple choice,
that was considered in the past [22], is the following:

FIG. 9. Total velocity dispersion (left) and velocity anisotropy (right) in the galactic plane as a function of radial distance for
various halo shapes, parametrized by q. In the lower left panel we show the relative difference of velocity dispersion with respect to the
spherical halo.

FIG. 10. Azimuthal velocity probability distribution (left) and average azimuthal velocity as a function of R (right) for PSDF with
f− ¼ αfþ and f− computed from v̄ϕðRÞ as defined in (23), using ra ¼ rs and ω such that the spin parameter λð0.25r200Þ ¼ 0.04.
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v̄ϕðRÞ ¼
ωR

1þ R2=r2a
: ð23Þ

It corresponds to a configuration where the system is
spinning “on cylinders,” as the expression in Eq. (23) is
independent of z (and this is convenient, since the implicit
derivation of ρv̄ϕ with respect to Ψ in Eq. (9) does not
produce additional terms). Physically, it resembles a core
with solid-body rotation that diminishes towards the out-
skirts as v̄ϕ ∝ 1=R for R ≫ ra. The comparison of v̄ϕðRÞ
and PðvϕÞ for various rotating models is shown in Fig. 10.
Since numerical simulations are essentially the only source
of information regarding halo rotation, we follow their
convention and recast halo rotation in terms of the spin
parameter:

λðrÞ ¼ JðrÞffiffiffi
2

p
rMDMðrÞVcðrÞ

; ð24Þ

where JðrÞ and MDMðrÞ are the total angular momentum
and DM mass within radius r. We have tuned the above
models to reproduce the values of spin parameter typically
found in hydrodynamic simulations, λð0.25r200Þ ∼ 0.04
[43], where r200 is one of the definitions in the literature
for the viral radius, and is the distance at which the average
halo density within it is 200 times the critical density.

III. APPLICATION TO MILKY WAY

In this section we apply the HQ method to the
Milky Way and reconstruct the PSDF of its DM halo.
For this purpose we use the same galactic model as in
previous section, however with specific values of the para-
meters that were inferred for our Galaxy. The resulting
PSDF, along with the assumed DM density profile, is
crucial in accurately predicting the expected signals in
direct DM searches (as well as in indirect searches
since there are several cases in which the relevant cross-
sections are velocity dependent). Furthermore, the annual

modulation rate in direct detection experiments can
strongly depend on the velocity anisotropy of DM particles.
An even larger effect can be produced by varying the halo
rotation, which also has not been previously studied in a
self-consistent way at the level of PSDF.

A. Mass modeling

The model adopted for the Milky Way is inspired by
[45,46]; while the Galactic modeling has further improved
in recent years, the main goal here is to highlight the trends
stemming from PSDFs in an axisymmetric environment, as
opposed to the spherically symmetric limit adopted so far,
leaving a more detailed discussion of uncertainties and of
refined mass models for future work. We therefore use the
same setup introduced in Sec. II B, with a Miyamoto-Nagai
model for the disc, a Hernquist model for the bulge and
spheroidal NFW for the DM halo profile. The values of
parameters used for the gravitational potentials and DM
density profile are summarized in Table I. Besides these, we
also fix the galactocentric distance to R⊙ ¼ 8 kpc and local
circular velocity VcðR⊙Þ ¼ 230 km=s. The gas component
and central super-massive black hole are not modeled
separately, however included in our model, since we
normalize the total potential according to the observed
local circular velocity. To check the validity of our model
we have compared it to a compilation of circular velocity
data provided by GALKIN software [47] and got a match,
well within the observational errors.

B. The DM velocity distribution

They main comparison of our results will be done against
those obtained within the so-called standard halo model
(SHM). As the name suggests, the latter is commonly used
in approximating the phase space distribution of DM in
Milky Way halo. It assumes that the PSDF can be written as
the product of the DM density profile and a Maxwell-
Boltzmann velocity distribution, truncated at the escape
speed at a given radius in the Galaxy vescðrÞ:

fSHMðr; vÞ ¼ N · ρNFWðrÞ · exp
�
−

v2

2σ2ðrÞ
�
· ΘðvescðrÞ − vÞ

where N −1 ¼ ð2πσ2Þ3=2
�
erf

�
vescffiffiffiffiffiffiffi
2σ2

p
�
−

ffiffiffi
2

π

r
vesc
σ

exp

�
−
v2esc
2σ2

��
: ð25Þ

TABLE I. Summary of our Milky Way model parameters. Here xi stands for the fraction of total mass in ith
component within the solar radius R⊙, i.e., xi ≡MiðR⊙Þ=MtotðR⊙Þ where GMtotðR⊙Þ=R⊙ ¼ V2

cðR⊙Þ.
Component i Ψi ansatz Parameters

Bulge Hernquist xbulge ¼ 0.05, ab ¼ 1 kpc
Disc Myiamoto-Nagai xdisc ¼ 0.6, ad ¼ 3 kpc, bd ¼ 0.28 kpc
Halo NFW xhalo ¼ 0.35, rs ¼ 16 kpc
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The velocity dispersion σ2ðrÞ can be obtained from the
Jeans equation for a spherical isotropic system [22]:

σ2ðrÞ ¼ 1

ρNFWðrÞ
·
Z

∞

r
dr0ρNFWðr0Þ ·

dΨ
dr0

ðr0Þ: ð26Þ

The SHM has many shortcomings, among which the most
severe one is the fact that fSHMðr; vÞ is built ad hoc and
does not correspond to any given solution of the colli-
sionless Boltzmann equation, except in the limit of
isothermal sphere, which however does not match the
DM density profiles inferred from observations. Further-
more, modern hydrodynamical simulations of structure
growth indicate that DM velocity distribution signifi-
cantly deviates from Gaussian and therefore models based
only on the second moments of the velocity are not
sufficiently accurate [15–17].
To properly address the Milky Way-like structure,

presented in Sec. III A, one needs to resort to the HQ
axisymmetric generalization of Eddington’s approach. In
Fig. 11 we highlight the main differences in the local
DM velocity distributions that arise when using different

PSDF models, namely the SHM fSHMðR⊙; vÞ, the spheri-
cal limit obtained by implementing Eddington’s formula
fEddðEÞ, and the HQ model fHQðE; LzÞ with q ¼ 1 and
q ¼ 0.9. As already discussed in previous section, the
radial velocity distribution of DM is shifted toward
higher velocities when properly accounting for an axi-
symmetric disc, however such effect can be compensated
by flattening the halo. For the azimuthal velocity dis-
tribution, trends are the opposite; the axisymmetric disc
modeling leads to a velocity distribution that is skewed
toward lower velocities, while flattening the DM halo
shifts it toward higher velocities. Since there is evidence
for only a mild flattening of the Milky Way halo, the
effect of the axisymmetric disc prevails, even when using
the lower bound of inferred values of q. Moreover, the
resulting velocity distributions significantly deviate from
Gaussian shapes, despite the aforementioned apparent
compensation between the effects of stellar disc and
halo flattening, in further support to the need of going
beyond the SHM. The axisymmetric modelling also
introduces changes in the velocity dispersion and veloc-
ity anisotropy in the galactic plane, as displayed in

FIG. 11. Local radial (left) and azimuthal (right) DM velocity distributions for SHM, spherical modelling through Eddington’s
inversion and axisymmetric modeling with q ¼ 1 and q ¼ 0.9, computed for the considered Milky Way sample. In the lower panels we
show the relative differences with respect to the SHM.
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Fig. 12. For axisymmetric models, the total velocity
dispersion, shown in the left hand side plot, increases in
the central part of the Galaxy, while in the outskirts it
reduces to the case of spherical halos, as the effect of the
disc becomes negligible, while it is slightly lower for
oblate halo as in this case there is a lower total mass. In
agreement with the trends seen in velocity distribution
functions, when DM halo is assumed to be spherical, one
gets a radially biased anisotropy at all radii, while for the
flattened model there is a radial biased for R≲ R⊙ and an
azimuthal bias for R≳ R⊙, as shown in the plot on the
right-hand side of Fig. 12.

IV. IMPACT ON DIRECT
DETECTION SEARCHES

The local distribution of DM is one of the crucial
unknowns in constraining the DM interaction rate with
baryonic matter through direct detection experiments. The
latter are designed to measure nuclear recoils due to
scattering of halo DM particles on the nuclei in target
materials. The signal is typically quantified as differential
event rate:

dR
dEr

¼ 1

mAmχ
·
Z
jv⃗j>vmin

d3vfðE; LzÞ · v ·
dσ
dEr

vmin ¼
ffiffiffiffiffiffiffiffiffiffiffi
mAEr

2μ2Aχ

s
; μAχ ¼

mAmχ

mA þmχ
ð27Þ

where R is the event rate, Er the recoil energy, mA=χ the
nucleus/DM mass, v ¼ jv⃗j the velocity of DM particle in
the detector (LAB) frame and dσ

dEr
the corresponding

differential cross section. For spin-independent (SI) inter-
actions the latter can be written as:

dσ
dEr

¼ mAσ
SI
n

2μ2Aχv
2
A2F2ðErÞ; ð28Þ

where σSIn is the SI cross-section at zero momentum
transfer, A the mass number of target nucleus and FðErÞ
the corresponding (energy dependent) form factor. As can
been seen from the above expression, SI differential cross-
section introduces an additional factor of v−2, which also
appears in the case of spin-dependent (SD) interactions,
however this is not always true for more general scattering
operators. For SI and SD differential cross-sections one can
factorize Eq. (27) into a constant term stemming from the
specific particle physics model times an integral that is
determined by the DM velocity distribution:

gðvminÞ≡ 1

ρ⊙

Z
jv⃗j>vmin

d3v
fðE; LzÞ

v
: ð29Þ

where ρ⊙ is the local DM density. When considering a
broader range of effective two-to-two scattering operators
one generically encounters cross section terms with an
additional power of v2 and therefore it is useful to define
also:

hðvminÞ≡ 1

ρ⊙

Z
jv⃗j>vmin

d3vfðE; LzÞ · v: ð30Þ

In the above integrals one must note that Earth, together
with DM detectors, is moving with respect to the Galactic
rest frame with velocity v⃗⊕ðtÞ, which is a sum of the local

FIG. 12. Local DM velocity dispersion (left) and anisotropy (right) as function of galactocentric distance for SHM (the results for
spherical modeling through Eddington’s inversion are equivalent to the SHM ones, since we compute the velocity dispersion for the
latter according to the Eq. (26)) and axisymmetric modeling with q ¼ 1 and q ¼ 0.9, computed for the considered Milky Way sample.
In the lower left panel we show the relative difference of velocity dispersion with respect to the SHM.
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circular velocity VcðR⊙Þ, the peculiar motion of the Sun1

and the Earth velocity relative to the Sun.2 Therefore, the
relative energy and angular momentum entering the PSDF
become:

E ¼ ΨðR2
⊙; 0Þ − ðv⃗þ v⃗2⊕Þ=2 and

Lz ¼ R⊙ððv⃗þ v⃗⊕Þ · êϕÞ; ð31Þ

where êϕ is the unit vector pointing along the azimuthal
direction. Since the largest contribution to v⃗⊕ðtÞ comes
from the corotation of local standard of rest (LSR) with
galactic disc, this introduces a strong anisotropy along the
azimuthal direction, which can conspire with the axisym-
metric PSDF modeling to produce significant deviations
with respect to the isotropic approach.
In Fig. 13 we show gðvminÞ and hðvminÞ for the SHM

adopted by Xenon1T collaboration to present their results
[51] (SHM-Xe1T) and a set of axisymmetric models that
differ in flattening and rotation. The first notable difference
is the fact that the SHM-Xe1T has a somewhat higher local
escape velocity, vesc ¼ 544 km=s, compared to our axi-
symmetric models, which have vesc ≈ 535 km=s, as well as

a lower local DM density, ρ⊙ ¼ 0.3 GeV=cm3, with
respect to ρ⊙ ≈ 0.35 GeV=cm3 that we find for the sample
Milky Way model described in Sec. III A (we give
approximate values since both quantities slightly depend
on q). Furthermore, the SHM is sharply truncated at vesc,
while the velocity distributions in other models we display
fall smoothly to zero, leading to larger gðvminÞ and hðvminÞ
for SHM-Xe1Tat large values of vmin. For smaller values of
vmin the axisymmetric models take over and the rotating
halo gives the largest values for g and h. This follows from
the fact that the total velocity dispersion increases for the
axisymmetric models and therefore they increase the
number of “high velocity scatterings,” which contribute
the most to integrals in Eqs. (29) and (30). For corotating
halo, corresponding to the azimuthal velocity profile
defined in Eq. (23) with ω that yields λð0.25rsÞ ¼ 0.04
and assuming ra ¼ rs, the functions take even larger values
as the convolution in aforementioned integrals is performed
closer to the peak of fðE; LzÞ, while the effect for counter-
rotating halo would be the opposite.
In Fig. 14 we show the resulting exclusion plots of DM-

nucleon cross-section as a function of DM mass for the
standard spin-independent (SI) and spin-dependent (SD)
scattering computed from the Xenon1T null results [51]
using the DDCALC software [52]. As could be anticipated
from the trend seen in gðvminÞ, rotating halos give the
strongest limits, except at DM masses below ∼20 GeV
where the SHM-Xe1T gives an overestimated constraints
due to the (artificial) pile up of high velocity particles close
to the escape velocity. Nonrotating axisymmetric models

FIG. 13. Astrophysical factors defined in Eqs. (29) and (30), which appear in the deferential event rate, as a function of minimal
scattering velocity for SHM and axisymmetric model with q ¼ 1 (HQ), q ¼ 0.9 and spherical rotating halo with v̄ϕðRÞ as defined in
Eq. (23), using ra ¼ rs and ω such that the spin parameter λð0.25r200Þ ¼ 0.04.

1In this work we adoptU⊙ ¼ 11, V⊙ ¼ 12 andW⊙ ¼ 7 km=s,
consistent with [48], where Û points towards the galactic center,
V̂ in positive direction of the galactic rotation and Ŵ towards the
galactic north pole.

2For Earth velocity relative to the Sun we use jv⃗Ej ¼ 30 km=s,
with the orbit tilted by 60° about the radial axis with respect to the
galactic plane. For a more detail treatment see, e.g., [49,50].
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FIG. 15. Left: Annual modulation of the differential scattering rate as a function of recoil energy. Top panel shows the two extreme
cases with respect to the time of the year, while the lower plot shows the absolute difference between the two. Right: Annual modulation
of the event rate as a function of time. Upper panel shows the absolute value, while the lower panel shows the relative value with respect
to the annual average for the given model. The results are computed for 131Xe, assuming SI corss-section σSIn ¼ 10−46 cm2 and
mχ ¼ 20 GeV, while the considered PSDF models are the same as in Fig. 14.

FIG. 14. Xenon1T cross-section—mass exclusion plots for SHM and axisymmetric modeling with q ¼ 1, q ¼ 0.9 and spherical
rotating halo with v̄ϕðRÞ as defined in Eq. (23), using ra ¼ rs and ω such that the spin parameter λð0.25r200Þ ¼ 0.04. Left plot shows the
results for spin-independent and right plot for spin-dependent scattering.
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yield predictions much closer to the SHM-Xe1T for mχ ≳
20 GeV and therefore the exclusion limits remain almost
unchanged when viewed on the logarithmic scale. There are
however some minor differences around the kink at
mχ ∼ 30 GeV, where the sensitivity of Xenon experiments
is the highest, further strengthening the case for proper
axisymmetric modeling. By examining hðvminÞ, which is
suppressed for the SHM-Xe1T with respect to all the other
considered models for vmin ≲ 400 km=s, we expect more
significant changes in the case of other possible DM-
nucleus scattering operators, which include additional
powers of velocity dependence. We plan a detail inves-
tigation of exclusion limits for a general set of elastic,
as well inelastic, scattering cross sections in a subsequent
work.
Finally, we apply the self-consistent axisymmetric mod-

eling of galactic DM phase-space distribution to predict the
annual modulation in DM-nucleon scattering rates. This is
particularly interesting in the light of well established
DAMA/LIBRA anomaly [53,54], which is, however, very
difficult to reconcile with null results of other direct
detection experiments. In Fig. 15 we present our findings
regarding the impact of axisymmetric halo modeling on
the annual modulation rate. In the plots on left hand side
we show the yearly maximal and minimal differential
scattering rates (above) and their difference (below) for
the set of considered models. As expected, with find again
the largest difference for co-rotating halos, followed by the
q ¼ 1 model. The aforementioned cancellation of effects
between axisymmetric modeling and flattening of the halo
drives the q ¼ 0.9 case closer to the SHM-Xe1T, which
predicts the smallest modulation signal. On the right side of
Fig. 15 we show the absolute scattering rate for energy bin
Er∈ ½5 keV;15 keV� as a function of time, assuming 100%
detection efficiency in this range. Besides the over-all shift
in the rates, which is essentially analogous to the change
in limits on SI and SD cross-sections, there is also an
appreciable difference in the modulation amplitude. It is
the most pronounced for axisymmetric modeling with
spherical halos, leading to roughly 25% larger modulation
amplitude then the SHM, while it is somewhat smaller for
flattened halo. We note that this result depends on the
energy binning, as can be clearly seen from the difference
in differential event rates in the lower plot on the left-hand
side of Fig. 15.

V. CONCLUSION

In this paper we have addressed the problem of recon-
structing the phase-space distribution function for an
extended collisionless system, whose density profile is
known and which is in equilibrium within an axisymmetric
gravitational potential, with a large contribution from a
strongly flattened component. This picture is relevant in
several contexts; we have applied it to derive the phase-
space distribution function for dark matter particles in the

halo of spiral galaxies, with particular attention to the
Milky Way and its implications for dark matter direct
detection.
The method we have implemented relies on the

assumption that the distribution function depends only
on energy and on Lz, the component of the angular
momentum parallel to the axis of symmetry. Within such
a model, for a given gravitational potential, the relation
which gives the density as an integral over velocities of
the distribution function can be uniquely inverted. This
allows to self-consistently retrieve the dark matter phase-
space distribution function for any axisymmetric galactic
mass model decomposition, as derived from dynamical
observations. The procedure was originally proposed by
Lynden-Bell and later refined in its numerical implemen-
tation by Hunter and Qian; it has been applied here for the
first time to cases with a thin stellar disc, after overcoming a
technical difficulty which has probably prevented its use
before.
Our approach is a generalization of the Eddington’s

inversion formula, which is valid for spherically symmetric
systems and is much less demanding from a computational
point of view. While Eddington’s formula has been applied
to the Milky Way quite extensively before, we have shown
here that the spherically symmetric approximation fails to
address important features that are due to the Milky Way
axisymmetic structure, in particular at the location of the
Sun and in the inner Galaxy. The main feature is that the
pressure felt by the collisionless system in the axisymmetic
potential is different in the meridional plane with respect to
the azimuthal direction. Compared to the other phenom-
enological models, we have also noticed a strong deviation
from the case where the velocity distribution is described
by a simple truncated Gaussian.
In Sec. II we have introduced the method and discussed

some general results concerning the distribution function
for DM particles in spiral galaxies. We have found that
velocity distributions differ significantly when the shape of
stellar component is changed from a spherical profile to a
disc, despite keeping the total mass profile of the galaxy
unchanged. The radial velocity distribution tends to be
shifted toward higher velocities, while the azimuthal
component gains power at low velocities. We obtain similar
results when varying the fraction of total mass contained in
the stellar component while keeping constant circular
velocity at a chosen characteristic radius. Besides high-
lighting the need for axisymmetric modeling, this results
also show that it is crucial to correctly asses the mass model
decomposition, rather then just the overall normalization of
the potential well. The latter, however, is also important,
since it determines the escape velocity of the system and
plays a crucial role in correctly estimating limits on the
scattering cross-section for light DM candidates. Besides
the axisymmetric modeling of the stellar component, we
have also considered oblate and prolate DM halos, with
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again a non-negligible impact on the velocity distribution.
Flattening the DM profile leads to the opposite effect with
respect to making the axisymmetric stellar component
heavier and can, to some degree, compensate the changes
in the velocity distributions. The opposite is found in case
of prolate halos, where the radial velocity distribution
getting shifted to higher velocities while the azimuthal
component becoming even more peaked at low velocities.
Finally, we have considered rotating dark halos, exploiting
the fact that for any give rotational velocity profile one can
uniquely determine the Lz-odd part of the phase-space
distribution function. We have adopted various possible
ways of modelling the halo rotation, either by simply
constructing the Lz-odd part of the PSDF from Lz-even
part, or computing it for an assumed parametric rotation
velocity profile.
In second part of our work we have focused on the study

of Milky Way and reanalyzing the direct detection pre-
dictions within an axisymmetric setting. We have used a
sample Milky Way model, composed of stellar bulge, disc
and dark matter halo, which reproduces the galactic rotation
curve. This picture has been sufficient to highlight the main
effect of the presence of a thin stellar disc, compared to the
usually adopted spherical approximations, namely the so-
called standard halo model and the distribution function
obtained through Eddington’s inversion formula. As bench-
mark distribution functions we have implemented two
realizations of axisymmetric models, with a spherical
and a slightly flattened dark matter halo, illustrating the
relevant differences compared to the fully spherical models.
Finally, we have discussed the impact on direct detection

signals, first at the level of generic interactions, encoding
the dependence of the signal on dark matter velocity
distributions, and then going to an example case for
detection rates and annual modulation effects. The corre-
sponding bounds on spin-independent and spin-dependent
cross-sections are roughly 50% stronger for rotating halo,
while the effects are smaller for other models, except at low
mχ where the standard halo model over-predicts the rate of
scattering due to relatively large abundance of high velocity
particles that is induced by a sharp truncation of the
velocity distribution. For what regards the annual modu-
lation signal, there is both an enhancement in the expected
event rate and a sizable change in the modulation ampli-
tude, which can be roughly 25% larger with respect to the
standard halo model.
In our future work we plan to use the introduced

formalism to further explore mass modeling of the Milk
Way and perform a more comprehensive study of the
impact on direct detection, including additional velocity
dependent operators, as well as the case for inelastic
scatterings. Results of this paper are also readily applicable
to indirect detection of DM particles with velocity depen-
dent pair-annihilation rates. Moreover our approach is of
interest also in wider context, such as for studying the

dynamics of halo stars in spiral galaxies or for refining
estimates of gravitational lensing searches for primordial
black holes.
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APPENDIX: DIFFICULTIES ON THE PSDF
EVALUATION WITH THE HQ METHOD

The HQ method is rather efficient in numerically
computing phase-space distribution functions for isolated
self-gravitating populations, i.e., when the gravitational
potential ΨðR2; z2Þ is self-consistently generated by the
system density profile ρðR2; z2Þ. In this case, the proposal
by Hunter and Qian, as reproduced in Eqs. (6) and (7), for
the contour CðEÞ, entering critically in the evaluation of the
integral in Eq. (5), is a good choice. The reason for which it
works well is that it generally avoids the inclusion of
additional singularities and/or crossing of branch cuts
which the analytic continuation of dρ

dΨ in the complex plane
may introduce (see the discussion in [35] for details).
However, when addressing configurations in which the
total gravitational potential is not entirely sourced by the
density under consideration, but there are also additional
contributions from other components, the method may
encounter difficulties. For example, in the case considered
in this paper of a DM halo combined with an external
Myamoto-Nagai potential, Eq. (10), an additional branch
cut inΨðR2; z2Þ occurs along the real axis at z2 < −b2d. As a
consequence the Jacobian for the change of variables from
ρðR2; z2Þ to ρðR2;ΨÞ contains a discontinuity, due to which
it is not always possible to invert the potential at every point
ξðθÞ along the contour in Eqs. (6) or (7). The inverse for
ξðθ ¼ 0Þ does exist by construction, however, for larger
values of θ there is no guarantee that one can find z2 such
that:

ξðθÞ ¼ Ψ
�

L2
z

2ðξðθÞ − EÞ ; z
2

�
: ðA1Þ

This indeed does not happen for certain values of E and Lz,
depending also on the choice of the “thickness” of the
contour h. It is sometimes possible to mitigate the problem
by adjusting the value of h, or by choosing a different
contour shape, in order to avoid values of ξ for which the
inversion breaks down. For finite potentials an alternative
choice of the upper half of the contour is a boxy path
parametrized by:
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ξ1ðsÞ ¼ ψ env þ ihs; ðA2Þ

ξ2ðsÞ ¼ ψ envð1 − sÞ þ ih; ðA3Þ

ξ3ðsÞ ¼ ihð1 − sÞ; ðA4Þ

with s ∈ ½0; 1�. Again, by tuning the parameter h one can try
to avoid the values of ξwhere the inversion fails. If this is not
possible even along this second path (e.g., it requires again
such a small h that one faces loss of numerical precision
when integrating around the pole), an approximate solution

is to pick out h in such a way that the discontinuity occurs
along ξ3ðsÞ. Indeed, it turns out that the contribution to the
integral along ξ3ðsÞ is negligible, being orders of magnitude
smaller then the ones from ξ1ðsÞ and ξ2ðsÞ, as it approaches
the value of potential at infinity (i.e., ℜ½ξ3ðsÞ� ¼ 0, ∀ s),
where ρðR2; z2Þ and it’s derivatives vanish. We explicitly
checked that fðE; LzÞ computed through this approximation
successfully reproduces the initial density. Furthermore, in
practice the error of neglecting the ξ3ðsÞ contribution is
much smaller then the errors coming from the numerical
integration along the rest of the contour.
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