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The structures of strange quark stars are studied within a quasiparticle model obtained by the two-loop
approximation. A softer equation of state yields a smaller maximum mass, a smaller radius, and makes the
surface energy density and the surface quark chemical potential larger. The parameter space is obtained
under the following constraints: the maximum mass of the strange quark star should be larger than 2.0 solar
masses, which matches the masses of PSR J0348þ 0432 and PSR J1614-2230, and the surface energy
density should be larger than 2.80 × 1014 g=cm3. In our parameter space, the surface quark chemical
potential is smaller than 308 MeV which is the critical quark chemical potential in QCD without
electromagnetism. Also, the tidal Love number k2 and deformability Λ are calculated for a 1.4-solar-mass
strange quark star. A softer equation of state yields a smaller Λð1.4Þ and leads to a strange quark star that is
more compact and less likely to be tidally deformed. The data of GW170817 indicate that the upper bound
of Λð1.4Þ is 800 for the low-spin prior, which gives an upper bound of the parameter ζ of the running
coupling constant αs and gives a lower bound of the vacuum pressure density B, i.e., ζ < 0.098 GeV,
B > ð0.111 GeVÞ4. Moreover, the constraint on ζ also plays an important role in phenomenological studies
of the quark-gluon plasma.

DOI: 10.1103/PhysRevD.99.043001

I. INTRODUCTION

Most compact stars are the end points of stellar evolution
and are thought to be composed of the densest matter in the
cosmos, which provides a natural laboratory for cold and
condensed matter studies. Over the past few years, even
though considerable efforts have been made to study the
structures of the neutronlike stars (the neutron stars and the
strange quark stars), their properties are not yet completely
understood, due to the lack of a proper equation of state
(EOS) in this region. One apparent reason is that quantum
chromodynamics (QCD) has complicated nonperturbative
effects in the low-energy domain, i.e., the running coupling
constant will be significantly enhanced, and experimental
data also have large uncertainties there [1]. Therefore, at
present, it is still not possible to get a reliable EOS of quark
matter from the first principles of QCD. Hence, the
commonly used approaches in the study of high-density
quark matter are turning to phenomenological models
which could incorporate some basic features of QCD.
For example, the MIT bag model has been widely used to

describe the properties of quark matter. The MIT bag model
treats the quarks as free fermions in a bag with negative
pressure B, which is called the bag constant, and it also
contains the perturbative QCD corrections [2–5]. The
Nambu–Jona-Lasinio model possesses chiral symmetry
and its breaking, which is the vital feature of low-energy
QCD [6–8]. The quasiparticle model with a few fitting
parameters has been widely used to simulate the properties
of the quark-gluon plasma (QGP) at finite temperature (T)
and chemical potential (μ) [9–11]. Besides, it was con-
jectured that strange quark matter which consists of up (u),
down (d) and strange (s) quarks, might be the true ground
state of the strong interaction [12,13]. Therefore, the
investigation of the EOS for cold and dense strongly
interacting quark matter plays a crucial role in the studies
of neutronlike stars in astrophysics [14,15].
Recently, the observations of the pulsars PSR J0348þ

0432 (M ¼ 2.01� 0.04 M⊙) [16] and PSR J1614-2230
(M ¼ 1.928� 0.017 M⊙) [17] have given a strong con-
straint on the EOS of strongly interacting matter. From the
direct detection of gravitational waves, which originated
from a binary system inspiral, by the LIGO and VIRGO
network [18], the tidal deformability measurement has also
been used to constrain the stiffness of the EOS. Here, in this
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paper, we will use the quasiparticle model to describe the
EOS of quark matter, and use the above observations to
constrain the parameters of the model to obtain a reliable
parameter space.
This paper is organized as follows. In Sec. II, we

introduce the quasiparticle model and the calculations of
the EOS, and the effects of the parameters on the stiffness
of the EOS are also been explored. The calculations of
MTOV, the tidal Love number and the tidal deformability
are exhibited in detail in Sec. III, where various EOS
models are extensively investigated with different choices
of parameters for the vacuum pressure density B and the
nonperturbative effect parameter ζ. Subject to the mass
constraints from the observations of pulsars and the tidal
deformability Λð1.4Þ constraints from the astronomical
data of GW170817, we derive a reliable parameter space,
in which one could choose the desirable parameters for the
EOS satisfying specific requirements. Finally, we give a
summary of our work in Sec. IV.

II. THE QUASIPARTICLE MODEL

The quasiparticle model which was first proposed by
Peshier et al. [19] and reformulated by Gorenstein and
Yang [20], provides a phenomenological method to study
the thermodynamic properties of QGP. Using the quasi-
particle model, the authors of Refs. [21,22] have obtained
explicit analytic expressions for the EOS at zero T and
finite chemical potential by means of the path-integral
method with an effective quark propagator. In this paper,
we will use this model in which the coupling g is obtained
by the two-loop approximation, to construct the EOS to
study the structures of the quark stars.
If we have the full quark propagator at finite μ and zero

T, the quark number density can be obtained via [21],

ρðμÞ ¼ −NcNf

Z
d4p
ð2πÞ4 trDfγ4Sðp; μÞg; ð1Þ

where Sðp; μÞ is the quark propagator, Nc and Nf represent
the numbers of colors and quark flavors respectively, and
the trace operator “trD” is taken over Dirac indices.
Unfortunately, so far the exact form of the quark propagator
at finite μ and zero T has not been determined from the first
principles of QCD. Hence, an effective quark propagator
which has the same form as the free quark propagator in
field theory but with a density-dependent effective mass is
used as the approximation of the full quark propagator.
Here, we choose the effective quark propagator proposed in
Ref. [22],

Sðp; μÞ ¼ 1

iγ · p̃þmðμÞ ; ð2Þ

where p̃≡ ðp⃗; p4 þ iμÞ is the four-momentum of the quark
at finite μ, and in Euclidean space, the gamma matrices

satisfy fγμ; γνg ¼ 2δμν. Here, we work in the case of the
chiral limit, i.e., the masses of the current quarks (u, d,
and s) are equal to zero, which would satisfy chemical
equilibrium and neutrality naturally. Hence, the effective
quark mass which depends on μ reads [9,23,24],

m2ðμÞ ¼ Nfμ
2g2ðμÞ
9π2

; ð3Þ

where gðμ2Þ is the effective coupling constant obtained by
the two-loop approximation [10,25–27],

αsðμÞ ¼
g2ðμÞ
4π

¼ 6π

ð33 − 2NfÞ lnðaμÞ

×
�
1 −

3ð153 − 19NfÞ
ð33 − 2NfÞ2

lnð2 lnðaμÞÞ
lnðaμÞ

�
; ð4Þ

where a ¼ 1.91=ð2.91ζÞ, and ζ is a phenomenological
parameter of the quasiparticle model, which characterizes
the strength of the nonperturbative effect. The effective
coupling constant as a function of quark chemical potential
for different ζ is shown in Fig. 1, from which we can see
clearly that the effective coupling constant remains sub-
stantially smaller than unity in our working region where
the quark chemical potential is larger than about 0.3 GeV.
This indicates that our theory has a more “fundamental”
character.
With this equipment at hand and employing the contour

integration method, we can obtain the quark number
density

FIG. 1. The effective coupling constant αsðμÞ as a function of
chemical potential is presented. The red-solid line represents the
effective coupling constant for ζ ¼ 0.09 GeV, the blue-dotted
line represents the effective coupling constant for ζ ¼ 0.07 GeV,
while the green-dashed line represents the effective coupling
constant for ζ ¼ 0.05 GeV. We can see clearly that the effective
coupling constant remains substantially smaller than unity in our
working region where the quark chemical potential is larger than
about 0.3 GeV.
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ρðμÞ ¼ NcNf

3π2
ðμ2 −m2ðμÞÞ3=2θðμ −mðμÞÞ: ð5Þ

Since there is a step function on the right-hand side of
Eq. (5), we can see that the quark number density will
vanish when μ is smaller than a critical value μc. This
phenomenon qualitatively agrees with the general conclu-
sion in Ref. [28]. In this model, the critical value depends
on the parameter ζ, i.e., μc ≐ 2.23ζ forNc ¼ 3 andNf ¼ 3.
Then, according to Refs. [29,30], we can get the EOS of
QCD at finite μ and zero T,

PðμÞ ¼ PðμÞjμ¼0 þ
Z

μ

0

dμ0ρðμ0Þ; ð6Þ

where PðμÞjμ¼0 is the pressure density at μ ¼ 0, which
represents the vacuum pressure density. Here we can
rewrite it as PðμÞjμ¼0 ≡ −BðB > 0Þ, where B is also a
phenomenological parameter in our present work. We
should note that B is a positive number, since we treat it
as the bag constant in the MIT bag model, while the
vacuum pressure must be negative, which preserves the
confinement of QCD. It should be noticed that Eq. (6) is a
model-independent formula, for the pressure density PðμÞ
at finite μ and zero T could be determined by the quark
number density ρðμÞ [up to a constant PðμÞjμ¼0]. Therefore,
once the quark number density ρðμÞ matches the phenom-
ena of QCD, the pressure density surely satisfies the
behavior of QCD at finite μ and zero T.
From Eqs. (5) and (6), we can obtain

PðμÞ¼−BþNcNf

3π2

Z
μ

0

dμ0ðμ02−m2ðμ0ÞÞð3=2Þθðμ0−mðμ0ÞÞ:

ð7Þ

As we can see from Eq. (7), the EOS constructed from the
quasiparticle model depends on the parameter ζ and the so-
called vacuum pressure B which also affect the EOS in the
study of the quark stars. Then, the energy density of our
model is given by

ϵ ¼ −PðμÞ þ μ ·
∂P
∂μ ð8Þ

¼ −PðμÞ þ μρðμÞ: ð9Þ
Now, let us discuss the effects of the parameters ζ and B

on the behavior of the quark number density, the pressure
density, the energy density and the EOS of the quark matter.
In Fig. 2, we can see clearly that, when μ < μc (μc ¼ 2.23ζ)
the quark number density stays zero, as we discussed below
Eq. (5); once μ > μc, the quark number density becomes a
monotonically increasing function of μ. The pressure
density PðμÞ as a function of μ is presented in Fig. 3. It
shows that, when μ < μc, the pressure density equals −B,
and the pressure density for the smaller ζ grows a little bit

faster than the one for the larger ζ. Figure 4 exhibits the
behavior of the energy density as a function of μ. Just as in
the case of the pressure density, when μ < μc, the energy
density equals B. The relation between the pressure and
energy density is illustrated in Fig. 5. The red-solid EOS for
the smaller ζ becomes stiffer than the blue-dotted one for
the larger ζ, and the EOS for the larger B becomes softer
than the one for the smaller B. Because the quark number
density will vanish when μ < μc, and the vacuum pressure
density is negative, i.e., PðμÞjμ¼0 ¼ −B, the starting point
of the EOS in the pressure–energy density plane is
ðP; ϵÞ ¼ ð−B;BÞ.

FIG. 2. The quark number density ρðμÞ as a function of μ is
presented. The red-solid line represents the quark number density
for ζ ¼ 0.075 GeV, the blue-dotted line represents the quark
number density for ζ ¼ 0.080 GeV, while the green-dashed line
represents the quark number density for ζ ¼ 0.085 GeV. We can
see clearly that the quark number density will stay zero when
μ < μc (μc ¼ 2.23ζ), as we discussed below Eq. (5); once μ > μc,
the quark number density becomes a monotonically increasing
function of μ.

FIG. 3. The pressure density PðμÞ as a function of μ is
presented. The red-solid and green-dashed lines represent the
pressure density for ζ ¼ 0.075 GeV, but with B ¼ ð0.120 GeVÞ4
and B ¼ ð0.130 GeVÞ4, respectively. It shows that, when μ < μc,
the pressure density equals −B. The blue-dotted line exhibits the
pressure density for ζ ¼ 0.085 GeV and B ¼ ð0.120 GeVÞ4, and
compared with the red-solid line, the pressure density for smaller
ζ grows a little bit faster than the one for larger ζ.
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III. THE STRUCTURES OF STRANGE
QUARK STARS

During the inspiral and merger of two stars, the
EOS-dependent tidal deformability Λ describes the ratio
of each star’s induced mass quadrupole moment to the tidal
field of its companion [31–35]. When a low-spin prior is
considered for both stars in the binary inspiral, and it is
reasonable to think about the magnetic breaking during the
merger evolution, the tidal deformability Λ for a 1.4 M⊙

star [denoted as Λð1.4Þ below] is restricted to be smaller
than 800, while in the high-spin prior case, it is determined
to be smaller than 1400 [18]. The tidal deformability Λ
related to the l ¼ 2 dimensionless tidal Love number k2, is
given by (in units G ¼ c ¼ 1),

k2 ¼
3

2
Λ
�
M
R

�
5

: ð10Þ

The Love number describes how easily the substantial part
of a star is deformed by an external tidal field. As discussed
in Refs. [33,34,36], with our EOS table, we could obtain
the structure of a quark star by integrating the Tolman-
Oppenheimer-Volkoff equation

dPðrÞ
dr

¼ −
ðϵþ PÞðM þ 4πr3PÞ

rðr − 2MÞ ; ð11Þ

dMðrÞ
dr

¼ 4πr2ϵ; ð12Þ

and

dHðrÞ
dr

¼ β; ð13Þ
dβðrÞ
dr

¼ 2

�
1 − 2

M
r

�
−1
H

�
−2π½5ϵþ 9Pþ fðϵþ PÞ�

þ 3

r2
þ 2

�
1 − 2

M
r

�
−1
�
M
r2

þ 4πrP

�
2
�

þ 2β

r

�
1 − 2

M
r

�
−1
�
−1þM

r
þ 2πr2ðϵ − PÞ

�
;

ð14Þ
where f is given by

f ¼ dϵ
dP

ð15Þ

for slow changes in matter configurations. The augmented
Eqs. (13) and (14) are integrated outward starting just
outside the center via the expansions HðrÞ ¼ a0r2, and
βðrÞ ¼ 2a0r as r → 0, where a0 is a constant which
determines how much the star is deformed by an external
tidal field and can be chosen arbitrarily as it cancels in the
expression for the Love number k2. Hence, in our calcu-
lations, we choose a0 ¼ 1 for simplicity.
For the internal solution, the l ¼ 2 tidal Love number k2 is,

k2 ¼
8C5

5
ð1 − 2CÞ2½2þ 2Cðy − 1Þ − y�

× f2C½6 − 3yþ 3Cð5y − 8Þ�
þ 4C3½13 − 11yþ Cð3y − 2Þ þ 2C2ð1þ yÞ�
þ 3ð1 − 2CÞ2½2 − yþ 2Cðy − 1Þ� lnð1 − 2CÞg−1;

ð16Þ

FIG. 4. The energy density ϵðμÞ as a function of μ is exhibited.
Just as in the case of the pressure density, the red-solid and green-
dashed lines represent the energy density for ζ ¼ 0.075 GeV, but
with B ¼ ð0.120 GeVÞ4 and B ¼ ð0.130 GeVÞ4, respectively. It
shows that, when μ < μc, the energy density equals B. The blue-
dotted line exhibits the energy density for ζ ¼ 0.085 GeV and
B ¼ ð0.120 GeVÞ4.

FIG. 5. The energy density ϵ as a function of pressure density P
is shown. The red-solid and blue-dotted lines represent the EOS
for B ¼ ð0.120 GeVÞ4, but with ζ ¼ 0.075 GeV and ζ ¼
0.085 GeV, respectively. The red-solid EOS for smaller ζ
becomes stiffer than the blue-dotted one for larger ζ. The
green-dashed line exhibits the EOS for ζ ¼ 0.075 GeV and
B ¼ ð0.130 GeVÞ4; compared with the red-solid line, the EOS
for largerB becomes softer than the one for smallerB. Because the
quark number density will vanish when μ < μc, and the vacuum
pressure is negative, i.e., PðμÞjμ¼0 ¼ −B, the staring point of the
EOS in the pressure-energy density plane is ðP; ϵÞ ¼ ð−B; BÞ.
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where C ¼ M=R is the compactness of the star, and

y ¼ RβðRÞ
HðRÞ −

4πR3ϵ0
M

; ð17Þ

for in the case of the strange quark stars, there is a nonzero
energy density ϵ0 just inside the surface.
The mass-radius relation is shown in Fig. 6. It is

obviously that a larger B yields a smaller maximum mass
and radius, and a larger ζ yields a smaller maximum mass
and radius. Figure 7 exhibits the surface energy density ϵ0
as a function of B. And we can see that a larger Bmakes the
surface energy density larger, and a larger ζ makes the
surface energy density larger. This behavior could be
understood from Fig. 5. In Fig. 5, we can see that the
EOS becomes softer for a larger ζ or a larger B, which
means that just inside the surface of the strange quark star
where the pressure is nearly zero, the surface energy
density ϵ0 becomes larger for a larger ζ or a larger B.
This phenomenon will help us to derive constraints on the
parameters ζ and B. Hence, we can obtain our parameter
space (see the orange region in Fig. 11) under the following
constraints: the obtained maximum mass (denoted as
MTOV) should be larger than 2.0 solar masses, which
matches the masses of PSR J0348þ 0432 (M ¼ 2.01�
0.04 M⊙) [16], and PSR J1614-2230 (M ¼ 1.928�
0.017 M⊙) [17]; and the surface energy density should
be larger than 2.80 × 1014 g=cm3.
We have calculated some strange quark stars for different

ζ and B, and some results are shown in Table I. The masses
of these strange quark stars are larger than 2.0 solar masses,
and the radii are near 12 km. Because the pressure density
at the surface of a strange quark star is nearly zero, the
surface quark chemical potential can be simply given by,

μ0 ≐
ϵ0
ρ0

; ð18Þ

where ϵ0 is the surface energy density, and ρ0 is the quark
number density at the surface of the strange quark star. The
surface quark chemical potential for a larger ζ or a larger B
will become larger, which is the same behavior as for the
surface energy. In Table I, all the surface quark chemical
potentials are smaller than 308 MeV, which is the critical
one in QCD without electromagnetism [28]. The same
holds for the other surface quark chemical potentials for the
parameters ζ and B in the orange region of Fig. 11.
In order to make a comparison between our strange

quark matter EOS and the ordinary nuclear matter, we take
the data from the EOS described using the compressible
liquid-drop model (CLDM) of nuclei with the parameters
calculated using the SLy effective nucleon-nucleon inter-
actions [37], and extract the relation between the energy per
baryon and baryon number density from the red-solid line
in Fig. 8. This relation extracted from our strange quark
matter EOS is also presented. The set of parameters we
choose are typical. We can see from our parameter space,

FIG. 6. The mass-radius relation of the strange quark star is
presented. The red-solid and green-dashed lines represent the
mass-radius relation for ζ ¼ 0.075 GeV, but with B ¼
ð0.120 GeVÞ4 and B ¼ ð0.130 GeVÞ4, respectively. The blue-
dotted line exhibits the mass-radius relation with ζ ¼ 0.085 GeV
and B ¼ ð0.120 GeVÞ4. It is obvious that both larger ζ and larger
B make the mass and radius of the quark star smaller.

FIG. 7. The surface energy density of the strange quark star is
presented as a function of B. The purple-solid line represents the
surface energy density for ζ ¼ 0.075 GeV, the blue-dotted line
exhibits the surface energy density for ζ ¼ 0.080 GeV, and the
green-dashed line shows the surface energy density for
ζ ¼ 0.085 GeV. We can see that both larger ζ and larger B
make the surface energy density larger.

TABLE I. Properties of the strange quark stars, including the
radius R, the maximum massMTOV, the surface energy density ϵ0
and the surface quark chemical potential μ0, for different choices
of ζ and B.

B1=4

(GeV)
ζ

(GeV) R (km)
MTOV
(M⊙) ϵ0 (1014g=cm3) μ0 (GeV)

0.122 0.082 11.829 2.0666 3.1882 0.29096
0.122 0.080 11.966 2.0993 3.1203 0.28847
0.122 0.078 12.102 2.1316 3.0548 0.28604
0.124 0.078 11.863 2.0821 3.2176 0.28921
0.126 0.078 11.497 2.0353 3.3875 0.29240
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i.e., Fig. 11 that ðζ; B1=4Þ ¼ ð0.101; 0.108Þ is the inter-
section point of the red-solid line and the blue-dotted
line, ðζ; B1=4Þ ¼ ð0.078; 0.119Þ is the intersection point of
the red-solid line and the purple-dot-dashed line, and
ðζ; B1=4Þ ¼ ð0.078; 0.127Þ stays on the blue-dotted line.
And it is obvious that the absolute minimum of the energy
per baryon for our strange quark matter EOS is smaller than
that for the EOS of ordinary nuclear matter described by the
CLDM, which fulfills the Bodmer-Witten hypothesis
[12,13]. Also, the EOS for smaller ζ and smaller B has
a lower absolute minimum in energy.
The properties of a 1.4-solar-mass strange quark star are

listed in Table II. It shows that the softer EOS will make a
strange quark star more compact for a given mass and less
likely to be tidally deformed, which can be seen clearly
from Figs. 9 and 10. Figures 9 and 10 illustrate that the tidal
deformability for a 1.4-solar-mass strange quark star
decreases with both increasing ζ and increasing B [38,39].

Figure 11 illustrates the parameter space of our quasipar-
ticle model. The parameters ζ and B below the red-solid
line yield a maximum mass larger than 2.0 solar masses,
while the parameters above the red-solid line yield a
maximum mass smaller than 2.0 solar masses. The surface
energy ϵ0 is larger than 2.80 × 1014 g=cm3 for the param-
eters above the blue-dotted line, while the surface energy ϵ0
is smaller than 2.80 × 1014 g=cm3 for the parameters below
the blue-dotted line. The tidal deformability for a 1.4 solar
mass strange quark star is larger than 800 and 600 for the
parameters above the green-dashed line and the purple-dot-
dashed line, respectively, and the tidal deformability for a
1.4 solar mass strange quark star is smaller than 800 and
600 for the parameters below the green-dashed line and the
purple-dot-dashed line, respectively. The intersection

FIG. 8. The relation between the energy per baryon and baryon
number density is exhibited. The red-solid line shows the relation
extracted from an EOS described using the CLDM of nuclei with
the parameters calculated using the SLy effective nucleon-
nucleon interactions. The blue-dotted, green-dashed, and pur-
ple-dot-dashed lines represent the relations extracted from our
strange quark EOS for ðζ; B1=4Þ ¼ ð0.101; 0.108Þ; ð0.078;
0.119Þ, and (0.078, 0.127), respectively. It is obvious that the
absolute minimum in energy per baryon for our strange quark
matter EOS is smaller than that for the EOS of ordinary nuclear
matter described by the CLDM, and the EOS for smaller ζ and
smaller B has a lower absolute minimum in energy.

FIG. 9. The tidal deformability for a 1.4-solar-mass strange
quark star Λð1.4Þ as a function of B is illustrated. The purple-
solid line represents Λð1.4Þ for ζ ¼ 0.075 GeV, the blue-dotted
line exhibits Λð1.4Þ for ζ ¼ 0.080 GeV, and the green-dashed
line shows Λð1.4Þ for ζ ¼ 0.85 GeV. It shows that Λð1.4Þ
decrease with increasing B.

FIG. 10. The tidal deformability for a 1.4-solar-mass strange
quark star Λð1.4Þ as a function of ζ is shown. The purple-solid
line represents Λð1.4Þ for B ¼ ð0.123 GeVÞ4, the blue-dotted
line exhibits Λð1.4Þ forB ¼ ð0.124 GeVÞ4, and the green-dashed
line shows Λð1.4Þ for B ¼ ð0.125 GeVÞ4. It exhibits that Λð1.4Þ
decreases with increasing ζ.

TABLE II. Properties of a 1.4 M⊙ strange quark star, including
the compactness M=R, the Love number k2 and the tidal
deformability Λ, for different choices of ζ and B.

B1=4 (GeV) ζ (GeV) M=R k2 Λ

0.122 0.082 0.17502 0.18669 757.76
0.122 0.080 0.17337 0.19041 810.35
0.122 0.078 0.17178 0.19403 864.93
0.124 0.078 0.17513 0.18761 759.08
0.126 0.078 0.17855 0.18119 665.66
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points of the red-solid line and the blue-dotted line,
green-dashed line, and purple-dot-dashed line are about
ðζ; B1=4Þ ¼ ð0.101; 0.108Þ, (0.098, 0.111), (0.078, 0.127),
respectively. These three intersections could give a con-
straint on ζ of the running coupling constant αs and on the
vacuum pressure density B via the observations about
strange quark stars. If a strange quark star exists, then, the
parameter ζ should be smaller than 0.101 GeV and the
vacuum pressure density B should be larger than
ð0.108 GeVÞ4. The data of GW170817 [18] indicates that
the upper bound of the tidal deformability Λð1.4Þ is 800,
and thus ζ must be smaller than 0.098 GeV and B must be
larger than ð0.111 GeVÞ4. And if the tidal deformability
Λð1.4Þ is smaller than 600, then ζ should be smaller than
0.078 GeVand B should be larger than ð0.127 GeVÞ4. The
constraint on ζ also plays an important role in phenom-
enological studies of QGP.

IV. SUMMARY

In this work, we have studied the structures of the strange
quark stars using the quasiparticle model. In our model, the

EOS will become softer for a larger ζ or a larger B, which
leads to the result that a larger ζ or a larger B yields a
smaller maximum mass and a smaller radius. We can see
that it is easy to obtain an EOS for a strange quark star
whose mass is larger than 2.0 solar masses. And a larger ζ
or a larger B will make the surface energy density and the
surface quark chemical potential larger. In our parameter
space, i.e., for the parameters in the orange region of
Fig. 11, the surface quark chemical potential is smaller than
308 MeV, which is the critical quark chemical potential in
QCD without electromagnetism [28]. Also, the tidal Love
number k2 and deformability Λ were calculated for a 1.4-
solar-mass strange quark star. The tidal deformability
Λð1.4Þ decreases with increasing ζ and increasing B, which
indicates that the softer EOS will lead to a strange quark
star that is more compact and less likely to be tidally
deformed. At last, we have scanned the parameter space,
i.e., the (ζ, B1=4) plane, looking for the suitable parameters
ζ and B which yield the strange quark stars that satisfy the
constraints from the observable data. In the orange region
of Fig. 11, for the parameters in the domain between the
red-solid line and green-dashed line, the mass of the strange
quark star is larger than 2.0 solar masses, which matches
the masses of PSR J0348þ 0432 (M ¼ 2.01� 0.04 M⊙)
[16] and PSR J1614-2230 (M ¼ 1.928� 0.017 M⊙) [17],
the tidal deformability Λð1.4Þ is smaller than 800, which
satisfies the constraint from the data of GW170817 [18],
and the intersection of the red-solid line and the green-
dashed line gives an upper bound of ζ of the coupling
constant αs and gives a lower bound of the vacuum pressure
density B, i.e., ζ < 0.098 GeV, B > ð0.111 GeVÞ4; for the
parameters in the domain between the red-solid line and the
purple-dot-dashed line, the tidal deformability Λð1.4Þ is
smaller than 600. If further gravitational-wave data con-
strain Λð1.4Þ < 600, the intersection of the red-solid line
and the purple-dot-dashed line could also give an upper
bound of ζ of the coupling constant αs and give a lower
bound of the vacuum pressure density B, i.e.,
ζ < 0.078 GeV, B > ð0.127 GeVÞ4. Furthermore, the con-
straint on ζ also plays an important role in phenomeno-
logical studies of quark-gluon plasma.
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FIG. 11. The parameter space of our quasiparticle model is
presented. The parameters ζ and B below the red-solid line yield a
maximummass larger than 2.0 solar masses, while the parameters
above the red-solid line yield a maximum mass smaller than 2.0
solar masses. The surface energy ϵ0 is larger than 2.80 ×
1014 g=cm3 for the parameters under the blue-dotted line, while
the surface energy ϵ0 is smaller than 2.80 × 1014 g=cm3 for the
parameters below the blue-dotted line. The tidal deformability for
a 1.4 solar mass strange quark star [Λð1.4Þ] is larger than 800 and
600 for the parameters under the green-dashed line and the
purple-dot-dashed line, respectively, and the tidal deformability
for a 1.4 solar mass strange quark star [Λð1.4Þ] is smaller than
800 and 600 for the parameters below the green-dashed line and
the purple-dot-dashed line, respectively. The intersection points
of the red-solid line and the blue-dotted line, green-dashed line,
and purple-dot-dashed line are about ðζ; B1=4Þ ¼ ð0.101; 0.108Þ,
(0.098, 0.111), (0.078, 0.127), respectively.
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