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We present a new initial data formulation to solve the full set of Einstein equations for spacetimes that
contain a black hole under general conditions. The method can be used to construct complete initial data for
spacetimes (the full metric) that contain a black hole. Contrary to most current studies the formulation
requires minimal assumptions. For example, rather than imposing the form of the spatial conformal metric
we impose 3 gauge conditions adapted to the coordinates describing the system under consideration. For
stationary, axisymmetric spacetimes our method yields Kerr-Schild black holes in vacuum and rotating
equilibrium neutron stars. We demonstrate the power of our new method by solving for the first time the
whole system of Einstein equations for a nonaxisymmetric, self-gravitating torus in the presence of a black
hole. The black hole has dimensionless spin Jbh=M2

bh ¼ 0.9918, a rotation axis tilted at a 30° angle with
respect to the angular momentum of the disk, and a mass of ∼1=5 of the disk.
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I. INTRODUCTION

Although the term “black hole”was coined fairly recently
by JohnWheeler 52 years ago, and its physical significance
was questioned earlier by Einstein himself, it turns out that
21st century physics will be dominated by these extraordi-
nary objects. The spectacular first detection by the Laser
Interferometer Gravitational-WaveObservatory (LIGO) of a
merging binary black hole system [1], as well as the nine
follow-up detections, unequivocally confirmed their exist-
ence and many of their properties.
Accurate modeling of black hole spacetimes requires

initial data that precisely describe the systems under
consideration. Over the years three main different ideas
have been heavily employed to address this problem. These
are the conformal transverse traceless (CTT) decomposi-
tion [2–4], the puncture method [5], and the conformal thin-
sandwich (CTS) approach [6] (see [7] for summary and
discussions). Many variants of these formulations exist but
of particular importance is the so-called Isenberg-Wilson-
Mathews [8] formulation, whose strength stems from its
simplicity and versatility, as it is used for black hole as well
as neutron star spacetimes.
All methods described above solve a subset of the

Einstein equations. One common characteristic is that they
assume the form of the spatial conformal metric which is
associated with the true dynamical degrees of freedom of
the gravitational field [3]. In [9] the authors used a
constrained scheme presented in [10] for the Einstein
equations to solve for the conformal metric as well. In
doing so they discovered solutions that better satisfy the

Einstein equations (at least in comparison to conformally
flat solutions) and reach dimensionless spins up to
Jbh=M2

bh ∼ 0.85. Their solutions displayed Kerr-like prop-
erties but they were not expressed in any of the well-known
coordinates, like the Kerr-Schild ones [11], which are
known to yield high-spin initial data and exhibit good
behaviour in evolution simulations.
In this paper we present a new formulation and a new

code within the COCAL (Compact Object CALculator)
project [12] that solves all the Einstein equations in a
self-consistent manner and achieves the following: (1) In
the absence of matter our code can reproduce the exact
Kerr-Schild solution, even for high spins. No assumptions
on axisymmetry are imposed and therefore this is the first
generic 3-d method that obtains an exact Kerr solution and
can be applied with minimal changes to a broad range of
nonaxisymmetric problems, such as tilted disks or binary
systems. (2) The domain of the solution extends inside the
apparent horizon, which is well-suited for evolution sim-
ulations. (3) In the presence of massless disks around the
black hole our code reproduces well-known solutions (e.g.,
[13,14]). (4) The first self-consistent, tilted black hole-torus
solutions are presented that solve for the total spacetime
metric. In addition, these are the highest mass ratio and
black hole spin solutions constructed for black hole-torus
systems to date. We present a solution with a spinning black
hole whose dimensionless spin is Jbh=M2

bh ¼ 0.9918, has
an angle with respect to the angular momentum of the torus
of θ ¼ 30°, while the torus has rest mass approximately five
times the black hole mass.
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Tilted disk-black hole systems can be produced in the
merger of black hole-neutron star systems where the spin of
the black hole is tilted with respect to the total angular
momentum of the system [15,16]. Tilted black holes may
also arise in massive disks in active galactic nuclei and
quasars [17].
In the following, greek letters denote spacetime indices

while latin letters indicate spatial ones. We adopt units with
G ¼ c ¼ M⊙ ¼ 1, unless otherwise stated.

II. FORMULATION FOR GRAVITY

Weuse the standard 3þ 1 formalism to express spacetime
M ¼ R × Σt as a foliation of three dimensional spacelike
hypersurfaces Σt (t labels the hypersurface) with spatial
coordinates xi and unit normal vector nμ. Points with the
same values of xi in neighboring hypersurfaces are con-
nected with a timelike vector tμ that can be decomposed as
tμ ≔ αnμ þ βμ, where α is the lapse and βμ is the (spatial)
shift vector. The first fundamental form of the hypersurfaces
is γαβ ≔ gαβ þ nαnβ, and the full spacetime line element is
ds2 ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ. A conformal
geometry is introduced by setting γij ≔ ψ4γ̃ij. We further
define γ̃ij ≔ fij þ hij, where fij is the flat metric in arbitrary
coordinates and hij the nonflat contributions which we wish
to evaluate together with the rest of the potentials, ψ , α, βi,
that are computed traditionally. For the conformal geometry
we assume detðγ̃ijÞ ¼ γ̃ ¼ detðfijÞ.
The initial data are the 3-metric γij and the extrinsic

curvature Kij ¼ − 1
2
Lnγij (Ln denotes the Lie derivative

with respect to the unit normal nα) which is further
decomposed as Kij ¼ Aij þ 1

3
γijK, where K is its trace

and Aij its tracefree part. The conformal tracefree part of the

extrinsic curvature is defined as Ãij ¼ ψ−4Aij and we
introduce the decomposition

Ãij ¼ ÃKS
ij þ σ̃ðL̃ W̃Þij; ð1Þ

where ÃKS
ij is the Kerr-Schild part, W̃i an unknown spatial

vector, and σ̃ a scalar. L̃ is the conformal Killing oper-
ator: ðL̃ W̃Þij ¼ D̃iW̃j þ D̃jW̃i − 2

3
γ̃ijD̃kW̃k.

A Kerr black hole spacetime in Kerr-Schild coordi-
nates [11] can be written as ds2 ¼ ðηαβ þ 2HlαlβÞdxαdxβ,
where H ¼ mr3=ðr4 þ ðaixiÞ2Þ, r2 ¼ ðxixi − aiaiÞ=2þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxixi − aiaiÞ=4þ ðaixiÞ2

p
, and lα ¼ ð1; liÞ with li¼

xjðr2δijþrϵijkakþaiajÞ=ðrðr2þa2ÞÞ. Note r2≠xixi¼ r̂2.
Here xi ¼ xi and ai is the spin of the black hole,
a2 ¼ aiai, and lα is a null vector, both with respect to
the spacetime metric gαβ as well as the Minkowski metric
ηαβ. The 3þ 1 quantities of an arbitrarily spinning black
hole in Kerr-Schild coordinates are ψKS ¼ ð1þ 2HÞ1=12,
αKS ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2H

p
, βiKS ¼ 2Hα2li, γKSij ¼ δij þ 2Hlilj and

therefore hKSij ¼ ψ−4
KSðδij þ 2HliljÞ − δij. Using the 3þ 1

quantities above one can compute ÃKS
ij which appears in

Eq. (1). The trace of the extrinsic curvature in Kerr-Schild
coordinates is

KKS ¼
2Hα3KS

r

�
1þH þ 2H2r

m

�
ð2Þ

and in our calculations we assume K ¼ KKS.
Taking combinations of the projections of the Einstein

equations (ðGμν−8πTμνÞnμnν¼0, ðGμν − 8πTμνÞnμγνi ¼ 0,
ðGμν − 8πTμνÞγμiγνj ¼ 0) onto the spatial hypersurface
[18,19] one can arrive at a set of elliptic equations

Δ
∘
ψ ¼ −hijD

∘
iD
∘
jψ þ γ̃ijCk

ijD
∘
kψ þ 1

8
ψR̃ −

ψ5

8

�
ÃijÃ

ij −
2

3
K2

�
− 2πρHψ

5; ð3Þ

Δ
∘
W̃i ¼ −habD

∘
aD
∘
bW̃i þ γ̃ab½D∘ aðCm

biW̃mÞ þ Cm
abD̃mW̃i þ Cm

aiD̃bW̃m� −
1

3
D
∘
iD
∘
jW̃j − R̃ijW̃j

−
1

σ̃
D̃jÃKS

ij −
1

σ̃
D̃jσ̃ðL̃ W̃Þij −

6

ψσ̃
D̃jψÃij þ

2

3σ̃
D
∘
iK þ 8π

σ̃
ji; ð4Þ

Δ
∘
β̃i ¼ −habD

∘
aD
∘
bβ̃i þ γ̃ab½D∘ aðCm

biβ̃mÞ þ Cm
abD̃mβ̃i þ Cm

aiD̃bβ̃m� −
1

3
D
∘
iD
∘
jβ̃

j − R̃ijβ̃
j −

2α2

ψ6
Ãi

jD
∘
j

�
ψ6

α

�

þ 4α

3
D
∘
iK þ γ̃jmD̃jũim þ 16παji; ð5Þ

Δ
∘ ðαψÞ ¼ −hijD

∘
iD
∘
jðαψÞ þ γ̃ijCk

ijD
∘
kðαψÞ þ

αψ

8
R̃þ αψ5

�
7

8
ÃijÃ

ij þ 5

12
K2

�
− ψ5LαnK þ 2παψ5ðρH þ 2SÞ; ð6Þ

Δ
∘
hij ¼ −

1

3
γ̃ijD

∘
khabD

∘
khab þ 2

3
γ̃ijD

∘
kCa

ak þ 2

�
R̃KS

ij þ R̃NL
ij − 8πSij þ ψ4

�
1

3
KÃij − 2ÃikÃ

k
j

�

þ 1

αψ2
ð−D∘ iD

∘
jðαψ2Þ þ Ck

ijD
∘
kðαψ2Þ þ 4D

∘
iðαψÞD

∘
jψ þ 4D

∘
iψD

∘
jðαψÞÞ −

1

α
Lαnðψ4ÃijÞ

�
TF
; ð7Þ
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for the eleven metric potentials ψ , α, β̃i, hij and the three
auxiliary components of W̃i. We define hij through γ̃ij ¼
fij þ hij where γ̃ij, fij the inverses of γ̃ij, fij. The covariant
derivatives associated with γij, γ̃ij, fij are respectively D,

D̃, and D
∘
. The symbol Δ

∘
means Δ

∘ ¼ D
∘
kD
∘
k. It is Diβ

k ¼
D̃iβ

k þ C̃k
ijβ

j and D̃iβ
k ¼ D

∘
iβ

k þ Ck
ijβ

j where C̃k
ij¼

2
ψ ðγ̃kiD̃jψþ γ̃kjD̃iψ− γ̃ijγ̃kmD̃mψÞ and Ck

ij¼1
2
γ̃kmðD∘ ihmjþ

D
∘
jhmi−D

∘
mhijÞ. Contraction on the first two indices results

to Ck
kj ¼ 1

2γ̃D
∘
jγ̃ and C̃k

kj ¼ 1
2γ D̃jγ. For γ̃ ¼ 1, as in our

computations, Ck
kj ¼ 0. In the case where Cartesian

coordinates are used for the flat metric, fij ¼ δij then D
∘

is the usual partial derivative ∂, and Δ
∘
the Laplacian in

Cartesian coordinates. The superscript TF means the trace-
free part. The conformal shift is defined as β̃i ¼ βi and thus
β̃i ¼ γ̃ijβ̃

j ¼ ψ−4βi. The matter sources that appear on
the right-hand side of Eqs. (3)–(7) are ρH ¼ Tμνnμnν,
ji ¼ −Tμνγ

μ
inν, S ¼ Tμνγ

μν, and Sij ¼ Tμνγ
μ
iγ

ν
j.

Equation (3) is the Hamiltonian constraint, Eq. (4) as
well as Eq. (5) are the momentum constraints, Eq. (6) is the
spatial trace of the Einstein’s equation for ∂tKij combined
with the Hamiltonian constraint, and Eq. (7) is the spatial
tracefree part of Einstein’s equation. Equations (4) and (5)
imply that we solve for the momentum constraint twice.
This idea has been used successfully in [20] and there are
two reasons for adopting this method. First by introducing
Eq. (1) one has now two expressions for the conformal
traceless extrinsic curvature, the second being

Ãij ¼
1

2α
½ðL̃ β̃Þij − ũij�; ũij ¼ ½∂tγ̃ij�TF; ð8Þ

which involves the shift vector. Solving for βi is necessary
since it will be used in the computation of LαnK in Eq. (6)
and Lαnðψ4ÃijÞ in Eq. (7). The second reason is that the
introduction of Eq. (1) (i.e., resolving the momentum
constrain for W̃i) enables us to obtain apparent horizon
penetrating solutions. In particular since in our method we
use excision, the use of this extra decomposition makes
possible the use of grids that excise a region inside the
apparent horizon, which facilitates the evolution of our
systems. Without decomposition (1) the system of Eqs. (3),
(5), (6), and (7) with Kerr-Schild inner boundary conditions
and extrinsic curvature given by Eq. (8) converges only
when the excised region is outside the apparent horizon.
The faster the black hole spins the further out one has to
perform the excision.
In this work we choose ∂tγ̃ij ¼ 0 and therefore ũij ¼ 0.

Similarly we assume ∂tÃij ¼ ∂tK ¼ 0. This is consistent
with stationary systems like rotating stars or a Kerr black
hole. In binary systems where one typically assumes a
helical symmetry, kα ¼ tα þ Ωϕα, a better choice would be
Lkγ̃ij ¼ 0 ¼ LkÃij which results to ũij ¼ −ΩðL̃ ϕ̃Þij.

Another important term in our system is the one that
involves R̃ij, the 3-d Ricci tensor associated with the
conformal geometry γ̃ij. One can show [18] that

R̃ij ¼ −
1

2
Δ
∘
hij þ R̃KS

ij þ R̃NL
ij ; ð9Þ

where

R̃KS
ij ¼ −

1

2
ðfikD

∘
jFk þ fjkD

∘
iFkÞ; ð10Þ

R̃NL
ij ¼−

1

2
ðhabD∘ aD

∘
bhijþD

∘
ihabD

∘
bhajþD

∘
jhabD

∘
ahibÞ

−
1

2
½D∘ iðhkjFkÞþD

∘
jðhikFkÞ�

−D
∘
iCk

kjþCk
kmCm

ijþFkCkij−Ck
imCm

kj; ð11Þ

and Fi ¼ D
∘
aγ̃

ia. Notice that the terms R̃KS
ij , R̃

NL
ij also enter

into Eq. (7), which we discuss below. The nonlinear term
R̃NL

ij is second order in hij and therefore smaller than the

first order terms R̃KS
ij and Δ

∘
hij in Eq. (9). The term R̃KS

ij

involves the gauge functions Fi which are identical to the
Γ̃i in the Baumgarte-Shapiro-Shibata-Nakamura (BSSN)
formulation [7]. For initial data, in order for the whole
system (3)–(7) to converge, these functions must be fixed
[18]. For rotating stars the Dirac gauge condition Fi ¼ 0
was used [21,22], which in the case of stationary and
axisymmetric problems is also known to yield solutions
numerically identical to the exact ones [21]. For binary
neutron star systems the same Dirac gauge condition
Fi ¼ 0 was used in [19,23] to produce the most accurate
initial data, especially for the late inspiral binaries.
Similarly [9] applied that gauge for single black hole
spacetimes. Here, since we want to be able to retrieve
the Kerr-Schild black hole, we set

Fj ¼ D
∘
ih

ij
KS: ð12Þ

where hijKS are the exact Kerr-Schild potentials.
Equation (12) are gauge conditions that are related to
our freedom in choosing spatial coordinates. Setting Fi ¼ 0
for black holes may yield solutions qualitatively close to
Kerr-Schild, but spins only up to 0.85 [9].
Imposing conditions (12) to the solutions of the system

Eq. (3)–(7), and thereby having a self-consistent iteration
scheme, an adjustment is necessary for the hij. Following
[19], [or [22] Eq. (29)–(32)] gauge vector potentials ξa

introduced in the transformation

δγab → δγab −D
∘
aξb −D

∘
bξa; ð13Þ

are used to adjust hab as
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hab0 ¼ hab −D
∘
aξb −D

∘
bξa þ 2

3
fabD

∘
cξ

c; ð14Þ

where now hab0 are chosen to satisfy the condition

D
∘
bhab0 ¼ Fa given by (12). The gauge vector potentials

ξa are solved from the elliptic equations,

Δ
∘
ξa ¼ D

∘
bhab −

1

3
D
∘
aD
∘
bξ

b − Fa; ð15Þ

and then hab are replaced by Eq. (14).
In our method we use excision [24] with inner boundary

conditions being the exact Kerr-Schild values on some
excised sphere, chosen inside the outer black hole horizon.
For outer boundary conditions we use ones that lead to an
asymptotically flat spacetime. The augmented system of
the 17 elliptic equations (3)–(7), (15) with σ̃ ¼ 1=ð2αÞ and
zero boundary conditions for the gauge potentials and the
vector W̃i converges smoothly in vacuum or in the presence
of matter (like a massive disk), even for near maximally-
spinning black holes. In a typical iteration we first solve
Eq. (4) to obtain W̃i, then Ãij is constructed through Eq. (1)
which is then used in the right-hand side of Eqs. (3)–(7) to
compute the rest of the potentials. We want to emphasize
that any solution of our method not only satisfies the
constraint equations but it also solves for the conformal
geometry, thus providing a way to control the gravitational
wave content of the initial data in a self-consistent way.

III. FORMULATION FOR THE FLUID

As a first application of our new formulation we compute
massive disks in the presence of tilted black holes. Such
systems will inevitably have rich behavior as they cannot
be in equilibrium [25–27].
We assume that the stress energy tensor is described by a

perfect fluid with 4-velocity uα: Tαβ ¼ ρhuαuβ þ pgαβ,
where h is the specific enthalpy, ρ the rest-mass density and
p the fluid pressure. It is ρh ¼ ρþ p. Bianchi identity
together with the 1st law of thermodynamics ρdh ¼
ρTdsþ dp, implies ∇αTαβ ¼ ρuβωαβ þ huα∇βðρuβÞ−
ρT∇αs ¼ 0. Here ωαβ ¼ ∇αðhuβÞ −∇βðhuαÞ is the rela-
tivistic vorticity. By assuming conservation of rest-mass
∇αðρuαÞ ¼ 0 and an isentropic flow one arrives at the
relativistic Euler equation uβωαβ ¼ 0 [22].
The approximate symmetries that will be invoked will

determine the fluid motion. One approximation that can be
adopted is to extend the quasistationarity condition of the
gravitational fields to the initial fluid variables as well.
Thus assume LtðhuαÞ ¼ Ltρ ¼ 0. We can also assume that
the fluidmotion is axisymmetric about the fluid axis, which
we take to be the z-axis. Thus LϕðhuαÞ ¼ Lϕρ ¼ 0, where
ϕi the generator of rotations around the z-axis. Under these
assumptions, and the fact that the matter 4-velocity can be

written as uα ¼ utkα with kα ¼ tα þ Ωϕα, the Euler equa-
tion becomes ∇α ln h

ut þ utuϕ∇Ω ¼ 0.
Assuming that the combination utuϕ is a function of the

angular velocity Ω one arrives at

h
ut
e
R

jðΩÞdΩ ¼ E; jðΩÞ ¼ utuϕ; ð16Þ

where E a constant. In terms of the gravitational variables it
is jðΩÞ ¼ γijω

iϕj=ðα2 − γijω
iωjÞ, with ωi ¼ βi þ Ωϕi.

For this work we assumed a barotropic fluid EoS with
p ¼ KρΓ, where K, Γ are constants, but our code can
compute more exotic EoSs as in [28] or even in a tabulated
form. Given an EoS, as well as a differential rotation form
for jðΩÞ [29], the algebraic equation (16) must be solved
together with (3)–(7), and (15) in order to compute the fluid
variables ut, ρ (alternatively h or p) and the constant E
together with the gravitational variables.

IV. NUMERICAL IMPLEMENTATION

For the numerical solution of the Poisson-type of
equations, Eqs. (3)–(7), and (15) we use the Komatsu-
Eriguchi-Hachisu (KEH) method for black holes, which
was first developed in [24] and implemented within the
COCAL code in [12]. The Green’s functions used in the
representation formula match the boundary conditions that
we impose on our variables, fψ ; β̃i; α; hij; ξi; W̃ig, and in
the present calculation are the Dirichlet-Dirichlet functions
(for all variables), Eq. (B8) in [24]. A single spherical
ðr̂; θ̂; ϕ̂Þ grid is used, identical to the black-hole grids of
[24], with uniform intervals in θ̂, ϕ̂ and non-uniform
intervals in r̂. In the solutions presented here we used
Nr × Nθ × Nϕ ¼ 660 × 48 × 48 intervals that cover the
whole space r̂ ∈ ½r̂a; r̂b�, θ̂ ∈ ½0; π�, and ϕ̂ ∈ ½0; 2π�. Here
r̂a denotes the excised sphere inside the horizon and
r̂b ¼ 105m. Convergence studies in the new formulation
will be presented elsewhere [30].
Apart from the isolated Kerr solution we have computed

as a check massless axisymmetric disks in the presence of a
Kerr black hole using the differential law Ω ¼ klα [13]
where k, α constants and l ¼ −uϕ=ut the specific angular
momentum. Note that jðΩÞ ¼ utuϕ ¼ l=ð1 −ΩlÞ. For a
black hole spin a=m ¼ 0.9, differential law parameter
α ¼ −17=3, polytropic index Γ ¼ 1.4̄, and inner point disk
characteristics lin=m ¼ 3.313, rin=m ¼ 6 our solution
shows excellent agreement (maximum density agrees to
four significant digits) with a calculation of [31], used to
generate an equilibrium solution prescribed in [14] and
constructed via the ILLINOIS GRMHD code [32].

V. TILTED BLACK-HOLE-TORUS SYSTEM

The first self-gravitating black hole-toroidal systems
have been computed by Nishida and Eriguchi, [33], (see
also Stergioulas [34]), while more recently, using different
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methods, by Ansorg and Petroff [35], as well as Shibata
[36] (see also Karkowski et al. [37]). All authors computed
equilibria by solving the 2-d problem of stationary and
axisymmetric Einstein equations.
With our new method we computed sequences of full 3-d

nonaxisymmetric solutions of self-gravitating tori around
tilted black holes. In order to do that we fix the inner point
of the torus along the x-axis (here we used r̂in ¼ 8m) and
the maximum rest-mass density inside the torus (but not its
position). No assumptions are made regarding the shape or
the outer boundary of the torus. Solving the equation of
hydrostatic equilibrium (16) together with (3)–(7), and (15)
we obtain one black hole-toroid model. Then we slightly
increase the rest-mass density and recompute the same
equations. In this way a sequence of black hole-toroids with
increasing mass of the torus is obtained. For lowmass ratios
and low black hole spins one model needs ∼100 iterations,
while for high mass ratios and high spins ∼1500 iterations
are required. A model is computed when all gravitational
and fluid variables have a difference ∼10−7 between two
successive iterations.
For the particular example shown in Fig. 1 we have black

hole parameters, a=m ¼ 0.95 tilted at an angle θ̂ ¼ 30°,
ϕ̂ ¼ 0 (these parameters determine the 3þ 1 quantities of
the initial background solution αKS, βiKS, ψKS, hKSij ), a
barotropic EoS with K ¼ 123.6, Γ ¼ 2, and a rotation law
of the form jðΩÞ ¼ A2Ω½ðΩc

Ω Þq − 1� with A ¼ 0.1, q ¼ 1

[22]. The two constants that appear in our equations,
(E, Ωc), are computed by evaluating Eq. (16) at two
points (the inner fixed point of the torus and the point
of maximum density) and solving the resulting nonlinear
system at each iteration.

The disk has maximum height of 200m and maxi-
mum width of 242m with inner point at r̂ ¼ 8m as seen
in Fig. 1. Its rest mass is M0 ¼ 5.181m. The apparent
horizon of the vacuum Kerr black hole is at rþ=m ¼ 1þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ða=mÞ2

p
¼ 1.312. It intersects the x-axis at r̂þ ¼

1.5233m while its intersection with the z-axis happens
at r̂þ ¼ 1.3726m. Our grid covers the region r̂ ∈
½1.2498; 105�m and all angles, and excises the region
r̂ < 1.2498. The system has Arnowitt-Deser-Misner
(ADM) mass M ¼ 6.144m and angular momentum
Ji ¼ ð0.4908;−0.001519; 31.19Þm2.
The angular momentum of the black hole is calculated

through the isolated horizon formalism [38], Jibh ¼
ð0.5169;−0.0006792; 0.8925Þm2. Using the apparent hori-
zon finder described in [24] we calculated the mass of the
black hole [39] to beMbh ¼ 1.0198m. Thus the dimension-
less spin of the black hole in the black hole-toroid system is
Jbh=M2

bh ¼ 0.9918. The angular momentum of the torus is
then Jit ¼ Ji − Jibh ¼ ð−0.02614;−0.0008393; 30.29Þm2.
If one uses a Komar integral to calculate the angular mome-
ntum of the torus the result is Jit;Komar ¼ ð0; 0; 30.17Þm2

which shows good agreement in the z-component. This
model was the last member of a sequence of black hole-
toroids with increasing rest-masses starting from an infini-
tesimal disk of rest mass ∼10−4m around a Kerr black hole
of dimensionless spin a=m ¼ 0.95. As the torus gains mass
and angular momentum it spins-up the black hole. The last
model computed here with M0 ¼ 5.181m has spinned up
the black hole to almost maximal spin. A further increase in
the angular momentum and mass of the torus in a
quasiequilibrium state is impossible since it will drive
the spin of the black hole beyond the maximum value.

VI. DISCUSSION

In this work we present a new formulation for the initial
value problem in general relativity for spacetimes that
contain a black hole and the first nonaxisymmetric black
hole-disk solution. Here the disk is ∼5 times more massive
than the black hole and the hole has near-extremal spin.
Our formulation provides a good starting point for

numerical evolution calculations. Unlike other methods
it does not assume a conformal metric (6 components)
but instead 3 gauge conditions (3 components) chosen to
match known, closely related, physical models (e.g., Kerr-
Schild black holes or axisymmetric stars). For stationary
axisymmetric spacetimes our formulation yields the
unique equilibrium solutions. For nonaxisymmetric space-
times our solutions are not equilibria, but in contrast to
other commonly adopted formulations, they provide a
way of controlling the gravitational wave content in a
self-consistent way.
Although in the present article we used excision, it would

not be difficult using the same decompositions to solve also
for puncture initial data (by decomposing the conformal

FIG. 1. Density plot of the function p=ρ (pressure over
rest-mass density) on the x–z plane for the solution presented
in the (Tilted black-hole-torus system) section. All units are
in G ¼ c ¼ M⊙ ¼ 1. The inner part of the torus corresponds
to r̂in ¼ 8m.
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factor and solving the Hamiltonian for the regular part),
which are widely also used. We think that our method will
be useful in the gravitational wave detection-multimessenger
astronomy era since it can compute more accurate initial
values needed for simulations similarly to what the original
waveless formulation did for binary neutron stars [19,23].
Problems such as junk radiation, better imposition of helical
symmetry, or more accurate resolution of tidal effects are
examples where our new method can be more appropriate
than current studies.

ACKNOWLEDGMENTS

We thankM. Ruiz for providing the massless disk model.
This work was supported by NSF Grants No. PHY-
1602536 and No. PHY-1662211 and NASA Grant
No. 80NSSC17K0070 to the University of Illinois at
Urbana-Champaign, as well as by JSPS Grant-in-Aid for
Scientific Research (C) 15K05085 and 18K03624 to the
University of Ryukyus. A. T. would like to thank the
University of Ryukyus for their hospitality during a visit.

[1] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. Lett. 116, 241102 (2016).

[2] J. W. York, Phys. Rev. Lett. 26, 1656 (1971).
[3] J. W. York, Phys. Rev. Lett. 28, 1082 (1972).
[4] H. P. Pfeiffer and J. W. York, Phys. Rev. D 67, 044022

(2003).
[5] S. Brandt and B. Brügmann, Phys. Rev. Lett. 78, 3606

(1997).
[6] J. W. York, Phys. Rev. Lett. 82, 1350 (1999).
[7] T. Baumgarte and S. Shapiro, Numerical Relativity:

Solving Einsteins Equations on the Computer (Cambridge
University Press, Cambridge, England, 2010).

[8] J. Isenberg, Int. J. Mod. Phys. D 17, 265 (2008); J. Isenberg
and J. Nester, in General Relativity and Gravitation, edited
by A. Held, (Plenum, New York 1980), Vol. 1; J. R. Wilson
and G. J. Mathews, Phys. Rev. Lett. 75, 4161 (1995); P.
Marronetti, G. J. Mathews, and J. R. Wilson, Phys. Rev. D
60, 087301 (1999).

[9] N. Vasset, J. Novak, and J. L. Jaramillo, Phys. Rev. D 79,
124010 (2009).

[10] S. Bonazzola, E. Gourgoulhon, P. Grandclement, and J.
Novak, Phys. Rev. D 70, 104007 (2004).

[11] R. P. Kerr, Phys. Rev. Lett. 11, 237 (1963).
[12] K. Uryū and A. Tsokaros, Phys. Rev. D 85, 064014 (2012);

K. Uryū, A. Tsokaros, and P. Grandclement, Phys. Rev. D
86, 104001 (2012); A. Tsokaros and K. Uryū, J. Eng. Math.
82, 133 (2013).

[13] S. K. Chakrabarti, Astrophys. J. 288, 1 (1985).
[14] J. P. De Villiers, J. F. Hawley, and J. H. Krolik, Astrophys. J.

599, 1238 (2003).
[15] F. Foucart, M. B. Deaton, M. D. Duez, L. E. Kidder, I.

MacDonald, C. D. Ott, H. P. Pfeiffer, M. A. Scheel, B.
Szilagyi, and S. A. Teukolsky, Phys. Rev. D 87, 084006
(2013).

[16] K. Kawaguchi, K. Kyutoku, H. Nakano, H. Okawa, M.
Shibata, and K. Taniguchi, Phys. Rev. D 92, 024014 (2015).

[17] P. Natarajan and P. J. Armitage, Mon. Not. R. Astron. Soc.
309, 961 (1999).

[18] M. Shibata, K. Uryū, and J. L. Friedman, Phys. Rev. D 70,
044044 (2004); 70, 129901(E) (2004).

[19] K. Uryū, F. Limousin, J. L. Friedman, E. Gourgoulhon, and
M. Shibata, Phys. Rev. D 80, 124004 (2009).

[20] M. Shibata and K. Uryū, Phys. Rev. D 74, 121503(R)
(2006).

[21] L. Lin and J. Novak, Classical Quantum Gravity 23, 4545
(2006).

[22] K. Uryū, A. Tsokaros, F. Galeazzi, H. Hotta, M. Sugimura,
K. Taniguchi, and S. Yoshida, Phys. Rev. D 93, 044056
(2016).

[23] K. Uryū, F. Limousin, J. L. Friedman, E. Gourgoulhon, and
M. Shibata, Phys. Rev. Lett. 97, 171101 (2006).

[24] A. Tsokaros and K. Uryū, Phys. Rev. D 75, 044026
(2007).

[25] L. Rezzolla, L. Baiotti, B. Giacomazzo, D. Link, and J. A.
Font, Classical Quantum Gravity 27, 114105 (2010).

[26] F. Foucart, M. D. Duez, L. E. Kidder, and S. A. Teukolsky,
Phys. Rev. D 83, 024005 (2011).

[27] V. Mewes, J. A. Font, F. Galeazzi, P. J. Montero, and N.
Stergioulas, Phys. Rev. D 93, 064055 (2016).

[28] E. Zhou, A. Tsokaros, L. Rezzolla, R. Xu, and K. Uryū,
Phys. Rev. D 97, 023013 (2018).

[29] K. Uryū, A. Tsokaros, L. Baiotti, F. Galeazzi, K. Taniguchi,
and S. Yoshida, Phys. Rev. D 96, 103011 (2017).

[30] A. Tsokaros, K. Uryū, and S. L. Shapiro (to be published).
[31] B. D. Farris, Y. T. Liu, and S. L. Shapiro, Phys. Rev. D 84,

024024 (2011).
[32] Z. B. Etienne, Y. T. Liu, and S. L. Shapiro, Phys. Rev. D 82,

084031 (2010).
[33] S. Nishida and Y. Eriguchi, Astrophys. J. 427, 429

(1994).
[34] N. Stergioulas, Int. J. Mod. Phys. D 20, 1251 (2011).
[35] M. Ansorg and D. Petroff, Phys. Rev. D 72, 024019

(2005).
[36] M. Shibata, Phys. Rev. D 76, 064035 (2007).
[37] J. Karkowski, W. Kulczycki, P. Mach, E. Malec, A.

Odrzywolek, and M. Pirog, Phys. Rev. D 97, 104017
(2018).

[38] O. Dreyer, B. Krishnan, D. Shoemaker, and E. Schnetter,
Phys. Rev. D 67, 024018 (2003).

[39] D. Christodoulou, Phys. Rev. Lett. 25, 1596 (1970).

TSOKAROS, URYŪ, and SHAPIRO PHYS. REV. D 99, 041501 (2019)

041501-6

https://doi.org/10.1103/PhysRevLett.116.241102
https://doi.org/10.1103/PhysRevLett.26.1656
https://doi.org/10.1103/PhysRevLett.28.1082
https://doi.org/10.1103/PhysRevD.67.044022
https://doi.org/10.1103/PhysRevD.67.044022
https://doi.org/10.1103/PhysRevLett.78.3606
https://doi.org/10.1103/PhysRevLett.78.3606
https://doi.org/10.1103/PhysRevLett.82.1350
https://doi.org/10.1142/S0218271808011997
https://doi.org/10.1103/PhysRevLett.75.4161
https://doi.org/10.1103/PhysRevD.60.087301
https://doi.org/10.1103/PhysRevD.60.087301
https://doi.org/10.1103/PhysRevD.79.124010
https://doi.org/10.1103/PhysRevD.79.124010
https://doi.org/10.1103/PhysRevD.70.104007
https://doi.org/10.1103/PhysRevLett.11.237
https://doi.org/10.1103/PhysRevD.85.064014
https://doi.org/10.1103/PhysRevD.86.104001
https://doi.org/10.1103/PhysRevD.86.104001
https://doi.org/10.1007/s10665-012-9585-6
https://doi.org/10.1007/s10665-012-9585-6
https://doi.org/10.1086/162755
https://doi.org/10.1086/379509
https://doi.org/10.1086/379509
https://doi.org/10.1103/PhysRevD.87.084006
https://doi.org/10.1103/PhysRevD.87.084006
https://doi.org/10.1103/PhysRevD.92.024014
https://doi.org/10.1046/j.1365-8711.1999.02917.x
https://doi.org/10.1046/j.1365-8711.1999.02917.x
https://doi.org/10.1103/PhysRevD.70.044044
https://doi.org/10.1103/PhysRevD.70.044044
https://doi.org/10.1103/PhysRevD.70.129901
https://doi.org/10.1103/PhysRevD.80.124004
https://doi.org/10.1103/PhysRevD.74.121503
https://doi.org/10.1103/PhysRevD.74.121503
https://doi.org/10.1088/0264-9381/23/14/001
https://doi.org/10.1088/0264-9381/23/14/001
https://doi.org/10.1103/PhysRevD.93.044056
https://doi.org/10.1103/PhysRevD.93.044056
https://doi.org/10.1103/PhysRevLett.97.171101
https://doi.org/10.1103/PhysRevD.75.044026
https://doi.org/10.1103/PhysRevD.75.044026
https://doi.org/10.1088/0264-9381/27/11/114105
https://doi.org/10.1103/PhysRevD.83.024005
https://doi.org/10.1103/PhysRevD.93.064055
https://doi.org/10.1103/PhysRevD.97.023013
https://doi.org/10.1103/PhysRevD.96.103011
https://doi.org/10.1103/PhysRevD.84.024024
https://doi.org/10.1103/PhysRevD.84.024024
https://doi.org/10.1103/PhysRevD.82.084031
https://doi.org/10.1103/PhysRevD.82.084031
https://doi.org/10.1086/174153
https://doi.org/10.1086/174153
https://doi.org/10.1142/S021827181101944X
https://doi.org/10.1103/PhysRevD.72.024019
https://doi.org/10.1103/PhysRevD.72.024019
https://doi.org/10.1103/PhysRevD.76.064035
https://doi.org/10.1103/PhysRevD.97.104017
https://doi.org/10.1103/PhysRevD.97.104017
https://doi.org/10.1103/PhysRevD.67.024018
https://doi.org/10.1103/PhysRevLett.25.1596

