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Far-from-equilibrium dynamics of SUð2Þ gauge theory with Wilson fermions is studied in 1þ 1 space-
time dimensions using a real-time lattice approach. Lattice improved Hamiltonians are shown to be very
efficient in simulating Schwinger pair creation and emergent phenomena such as plasma oscillations. As a
consequence, significantly smaller lattices can be employed to approach continuum physics in the infinite-
volume limit as compared to unimproved implementations. This allows us to compute also higher-order
correlation functions including four fermion fields, which give unprecedented insights into the real-time
dynamics of the fragmentation process of strings between fermions and antifermions.
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I. INTRODUCTION

Confinement in quantum chromodynamics (QCD) man-
ifests itself, amongst others, in that the energy stored in a
gluon string between a quark and an antiquark rises linearly
with the string length. A critical distance between the quark
and the antiquark exists, at which the string starts to break
through fermion-antifermion pair production, reducing the
energy stored in the string [1–4]. The real-time dynamics of
the nonperturbative string formation and fragmentation
process, however, poses serious obstacles to a computation
from first principles. In general, the nonequilibrium dynam-
ics of quantum fields is not amenable to a formulation in
Euclidean space-time and the use of importance sampling
techniques, such that alternative approaches have to be
employed.
Already the dynamics of geometric confinement and

string breaking for gauge theories in 1þ 1 space-time
dimensions is very rich with a hierarchy of timescales and a
close link to the Schwinger pair production mechanism,
sharing important aspects with their higher dimensional
counterparts. In 1þ 1 dimensions, Abelian string dynamics
and the phenomenon of multiple string breaking from
supercritical field strength has been studied using classical-
statistical reweighting techniques on the lattice [5]. For
gauge theories with fermions these methods have also been
employed to fermion production in 1þ 1 [6] and 3þ 1
space-time dimensions [7] using staggered fermions, as

well as Wilson fermions [8–12]. For real-time Wilson
fermions, lattice improvement techniques have been shown
to be extremely useful in studies of quantum anomalies in
QCD [13,14] and QED [15] in 3þ 1 dimensions.
Much of the recent interest in the low-dimensional

dynamics comes from the prospect of studying important
aspects of the gauge theory using quantum simulators
[16–22], with a first proof-of-principle implementation on
a trapped-ion quantum computer [23]. In this context,
the dynamics of Abelian gauge theory has been studied in
great detail using classical statistical reweighting techniques
[12,24,25]. Important developments concerning string-
breaking dynamics inAbelian and non-Abelian gauge theory
have also been based on tensor network techniques in 1þ 1
dimensions [26–29] and recently on a Gaussian variational
ansatz [30]. Additionally, the dynamics of flux strings has
been studied in theUð1Þgauge-Higgsmodel [31]. Compared
to the Schwingermodel, (1þ 1)-dimensional SUðNÞ-theory
with massive fermions shares with full QCD the existence of
confining strings between color charges as well as mesonic
bound states in its spectrum [32–35]. Non-Abelian
Schwinger pair production exhibits several distinct features
such as interference and cancellations of currents between
the different participating color charges [36–38].
In the present work we investigate for the first time

the process of non-Abelian Schwinger pair production
and the dynamics of string breaking in 1þ 1 dimensions
using classical-statistical reweighting techniques. For
Wilson fermions, we analyze the use of lattice improved
Hamiltonians in a Kogut-Susskind-like real-time approach.
We demonstrate that next-to-leading order (NLO) and
next-to-next-to-leading order (NNLO) improvements in
the fermion sector of the Hamiltonian can be efficiently
employed to significantly reduce the lattice sizes required
to approach the continuum and infinite-volume limit of
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the results. This seems crucial in view of the prospect of
implementing these theories on a quantum simulator with
a limited number of qubits. Moreover, this allows us to
compute higher correlation functions involving four fer-
mion fields. Together with the chromoelectric field
strength, color charge and fermion number distributions,
these charge-charge correlations provide a very detailed
picture of the string dynamics and fragmentation process
far from equilibrium.
This publication is structured as follows: In Sec. II the

real-time lattice setup is developed, including field equa-
tions of motion and formulas for the computation of various
observables from the lattice gauge theory. Subsequently,
in Sec. III we focus on coherent chromoelectric fields that
give rise to a homogeneous production of fermions. The
available analytics provide a stringent precision test for the
simulated lattice improved fermion number momentum
spectra and fermion production rates. We explore thor-
oughly the occurring non-Abelian plasma oscillations,
including an analysis of the effects of lattice improvements
up to second order. In Sec. IV the breaking of color strings
is investigated. Beginning with a description of correspond-
ing initial conditions, we move on to a phenomenological
analysis of the processes that take place in breaking color
strings. Observing various dynamical color charge accu-
mulations between the static external charges, we study
charge-charge correlations among them and the propagation
characteristics of such correlations. In Sec. Vwe summarize,
draw conclusions and give an outlook.

II. REAL-TIME LATTICE GAUGE THEORY
WITH WILSON FERMIONS

The Lagrangian density of SUð2Þ gauge theory with
gauge potential Aμðt; xÞ and one fermion flavor ψðt; xÞ
transforming in the fundamental representation of the
gauge group reads in continuous space-time,

L ¼ −
1

2
trF2 þ ψ̄ðiγμ∂μ − gγμAμ −mÞψ : ð1Þ

In (1þ 1) space-time dimensions there are no color-
magnetic fields, and the field-strength tensor Fμν is
determined by the color-electric field Eðt; xÞwith nontrivial
components,

F10ðt; xÞ ¼ −F01ðt; xÞ ¼ Eðt; xÞ ¼ Eaðt; xÞTa; ð2Þ

where the summation over gauge indices a ¼ 1, 2, 3 is
implied and Ta denote the gauge group generators. In what
follows temporal-axial gauge is employed, i.e.,A0ðt; xÞ ¼ 0,
thus denoting Aðt; xÞ≡ A1ðt; xÞ. Since gluon self-couplings
vanish in temporal-axial gauge in one spatial dimension, the
gauge dynamics simplifies tremendously.
The (1þ 1)-dimensional Dirac algebra is composed of

two Dirac gamma matrices,

fγμ; γνg ¼ 2ημν; with ðγμÞ† ¼ γ0γμγ0; ð3Þ

with Minkowski metric ημν ¼ diagð1;−1Þ. Pauli matrices
serve as a representation of this algebra: γ0 ≡ σ1 and γ1 ≡
−iσ2. The chirality matrix then reads

fγμ; γ5g ¼ 0; with ðγ5Þ† ¼ γ5; ðγ5Þ2 ¼ 1; ð4Þ

which is defined using the third Pauli matrix γ5 ≡ σ3.

A. Lattice implementation with improved
Hamiltonian

To formulate the theory on the lattice we discretize the
spatial degree of freedom (d.o.f.),

Λ ¼ fn ¼ x=a ∈ f0;…; N1 − 1gg; ð5Þ

such that positions may be labeled by integers n ¼ x=a.
The total number of lattice sites is N1, the lattice spacing a.
The lattice has total length L ¼ N1a. We employ spatially
periodic boundary conditions. We neither discretize the
time direction nor impose temporal periodicity assump-
tions. In momentum space we find the inverse lattice

Λ̃ ¼
�
q̃≡ q − N1=2 ¼ Lp

2π
∈ f−N1=2;…; N1=2 − 1g

�
:

ð6Þ

Spatial link variables are constructed as

UnðtÞ≡ expðigaAnðtÞÞ; ð7Þ

parallel transporting chromoelectric flux from site n to site
nþ 1. Temporal link variables are identically unity in
temporal-axial gauge. Inverse link variables are given by
U†

nþ1ðtÞ, parallel transporting chromoelectric flux from site
nþ 1 to site n. For fermion fields and link variables the
following behavior under a given gauge transformation
VnðtÞ ∈ SUð2Þ is observed:

ψnðtÞ ↦ VnðtÞψnðtÞ; ð8aÞ

UnðtÞ ↦ VnðtÞUnðtÞV†
nþ1ðtÞ: ð8bÞ

For later use we construct products of neighboring link
variables with integer z > 0,

Un;zðtÞ≡UnðtÞUnþ1ðtÞ � � �Unþz−2ðtÞUnþz−1ðtÞ; ð9aÞ

Un;−zðtÞ≡U†
n−1ðtÞU†

n−2ðtÞ � � �U†
n−zþ1ðtÞU†

n−zðtÞ: ð9bÞ

Nontrivial path-ordering of gauge group elements
applies here. The gauge sector Hamiltonian of our model
reads
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HðgÞðtÞ ¼ a
X
n∈Λ

trE2
nðtÞ ¼

a
2

X
n

Ea
nEa

n: ð10Þ

To implement spinor fields on the lattice without doubler
excitations we employ Wilson fermions [8,9,39]. Working
in the Hamiltonian formulation of lattice gauge theory, the
fermion sector Hamiltonian is given by

HðfÞðtÞ ¼ a
X
n

ψnðtÞ†γ0
�
ðmþ Kr=aÞψnðtÞ

−
1

2a

XK
k¼1

Ckðiγ1 þ krÞUn;kðtÞψnþkðtÞ

þ 1

2a

XK
k¼1

Ckðiγ1 − krÞUn;−kðtÞψn−kðtÞ
�
: ð11Þ

Here r is the Wilson parameter with 0 < r, and the integer
K denotes the order of the lattice improvement for the
Hamiltonian: Using an appropriate choice of coefficients
Ck for k ¼ 1;…K it is possible to cancel certain lattice
artifacts of order Oða2K−1Þ in the fermion lattice
Hamiltonian [14]. Choosing C1 ¼ 1 and all other coeffi-
cients to vanish, one recovers the unimproved Wilson
Hamiltonian, which is accurate to OðaÞ and which we
call leading order (LO). Using C1 ¼ 4=3 and C2 ¼ −1=6
we obtain Oða3Þ-accuracy, labeled NLO. Including a third
nonvanishing term, C1 ¼ 3=2, C2 ¼ −3=10, C3 ¼ 1=30,
we obtain Oða5Þ-accuracy, labeled NNLO.
The complete Hamiltonian including gauge and fermion

fields reads

HðtÞ ¼ HðgÞðtÞ þHðfÞðtÞ: ð12Þ

B. Initial conditions and classical-statistical
reweighting

To solve the Cauchy problem of the time evolution of
field d.o.f., we need to specify both fermion and gauge
initial conditions at time t ¼ 0. We assume that initially the
two sectors decouple, subsequently quenching the system
into a coupled state via time evolution with the full
Hamiltonian (12). For the physics of fermion production
from strong gauge fields or color charges, fermions are
initialized as free fermions throughout this work. Details on
the fermion initial conditions are given in Appendix A 1.
While the gauge field initial conditions are specified in

more detail in Secs. III and IV, we consider strong fields
for which the initial color-electric fields are of order of
the critical field strength Ec ¼ m2=g. In this case, well-
established classical-statistical reweighting techniques can
be employed to replace the full quantum dynamics to very
good accuracy by sampling classical gauge field dynamics
[40–44]. Observables are then computed as ensemble
averages of the results from a sufficiently large number

of sampling runs until convergence is observed. For details
on the sampling of gauge field quantum initial conditions
we refer to Appendix A 2.
To this end, gauge d.o.f., i.e., Un and En, are evolved

classically from given gauge field configurations and fer-
mion correlations. To resolve themanifest quantum nature of
the fermions, the fermion equation of motion is solved on
operator level, applying a mode-function expansion,

ψnðtÞ ¼
1

L

X
q∈Λ̃

X2
a¼1

½ϕu
n;q;aðtÞbq;a þ ϕv

n;q;aðtÞd†q;a�; ð13Þ

with time-dependent mode functions ϕu
n;q;aðtÞ, ϕv

n;q;aðtÞ.
The time-independent creation and annihilation operators
bq;a and d†q;a, respectively, satisfy

fbq;a; b†p;bg ¼ fdq;a; d†p;bg ¼ Lδq;pδa;b: ð14Þ

Fermion occupation numbers are determined by

hb†q;abq;ai ¼ Lnuq;a; ð15aÞ

hd†q;adq;ai ¼ Lnvq;a: ð15bÞ

We construct the statistical propagator on the lattice,

Δm;nðtÞ ¼
1

2
h½ψmðtÞ; ψ̄nðtÞ�i; ð16Þ

which reads in terms of mode functions,

Δab;αβ
m;n ðtÞ ¼ 1

2L

X
q∈Λ̃

ðϕu;α
m;q;aðtÞϕ̄u;β

n;q;bðtÞð1 − 2nuq;aÞ

− ϕv;α
m;q;aðtÞϕ̄v;β

n;q;bðtÞð1 − 2nvq;aÞÞ: ð17Þ

The temporal derivative of an operatorOmay be calculated
using

i∂tO ¼ ½O;H�: ð18Þ

Key steps in the derivation of each of the following time-
evolution equations are given in Appendix A 3. For the
chromoelectric field one obtains the equation

∂tEa
nðtÞ ¼ g

XK
k¼1

Xk
m¼1

CkReTrðΔnþm;nþm−kðtÞðγ1 − ikrÞ

×Unþm−k;k−mðtÞTaUn;mðtÞÞ; ð19Þ

where the trace runs over color and Dirac indices. The time
evolution of the link variable follows from

∂tUn ¼ igaEnUn; ð20Þ

SCHWINGER PAIR PRODUCTION AND STRING BREAKING … PHYS. REV. D 99, 036020 (2019)

036020-3



with En and Un acting upon each other via the standard
matrix product. Finally, the fermion field operators obey

∂tψn ¼ −iγ0
�
mþ K

r
a

�
ψn

−
1

2a

XK
k¼1

Ckγ
0ðγ1 − ikrÞUn;kðtÞψnþkðtÞ

þ 1

2a

XK
k¼1

Ckγ
0ðγ1 þ ikrÞUn;−kðtÞψn−kðtÞ: ð21Þ

By linear independency of the creation and annihilation
operators bq;a, d

†
q;a, the equation of motion for each and

every mode function takes this form. To solve the given
system of equations, we specify a time-step width at and
employ a four-step Runge-Kutta algorithm.

C. Abelianization for homogeneous fields

Diagonalizing gauge d.o.f. in color space, which is
generally possible by a local gauge transformation, pro-
vides a way to simplify the SUð2Þ gauge group structure.
It results in a Uð1Þ ×Uð1Þ gauge theory, which may be
understood intuitively better compared to the SUð2Þ theory
[36,37]. For later interpretation of lattice results in the
context of Schwinger pair production, we consider in the
following the Abelianization procedure for homogeneous
field configurations.
Let EnðtÞ be homogeneous with no rotations in color

space taking place. We write for all n ∈ Λ,

EnðtÞ ¼ EaðtÞTa ¼ EðtÞnaTa; ð22Þ

with a constant vectorna, such thatnana ¼ 1. ByHermiticity
of naTa there exists a unitary matrix U, such that

UnaTaU† ¼ diagð1=2;−1=2Þ: ð23Þ

Explicitly, U may be given by

U ¼ 1ffiffiffi
2

p
 
þðn1 þ in2Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − n3

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − n3

p

−ðn1 þ in2Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n3

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n3

p
!
: ð24Þ

Due to Eq. (23) one finds

gUEnðtÞU† ¼ g
2
diagðEðtÞ;−EðtÞÞ: ð25Þ

This may be interpreted as effectively decomposing the
SUð2Þ gauge group into Uð1Þ ×Uð1Þ with an Abelian
coupling constant half as strong as the original non-
Abelian one. By homogeneity and constancy of the trans-
formation matrix, the given Abelianization procedure leaves
equations of motion invariant.

D. Correlation functions

The time evolution of all fields involved allows the
computation of a wide range of bosonic and fermionic
observables at any simulation time. Inter alia, the color
charge density ρanðtÞ and the fermion color current janðtÞ can
be computed with the help of the statistical propagator (16)
according to

ρanðtÞ ¼
1

2
h½ψnðtÞ; ψ̄nðtÞγ0Ta�i ¼ ReTr½Δn;nðtÞγ0Ta�;

ð26Þ

janðtÞ ¼
1

2

XK
k¼1

Xk
m¼1

Ckh½ψnþmðtÞ; ψ̄nþm−kðtÞðγ1 − ikrÞ

×Unþm−k;k−mTaUn;m�i

¼
XK
k¼1

Xk
m¼1

CkReTr½Δnþm;nþm−kðtÞðγ1 − ikrÞ

×Unþm−k;k−mðtÞTaUn;mðtÞ�: ð27Þ
Here janðtÞ naturally incorporates lattice improvements due to
the spatial derivative in the respective continuum expression.
From HðgÞ one infers the bosonic energy density at site

n ∈ Λ,

EðgÞ
n ðtÞ ¼ 1

2

X3
a¼1

Ea
nðtÞEa

nðtÞ: ð28Þ

Though not indicated explicitly, correlation functions are
computed as ensemble averages of the data calculated in
individual runs.

E. Abelianized fermion numbers

For the interpretation of results, in particular in situations
with homogeneous fields, it is often useful to define
fermion pseudoparticle numbers from single-particle
energy densities following the lines of Ref. [7]. To this
end, gauge d.o.f. are considered to be spatially uniform at
all times, i.e., AaðtÞ≡ Aa

nðtÞ, EaðtÞ≡ Ea
nðtÞ. From the

fermion Hamiltonian given in Eq. (11) we read off a
Hamiltonian operator with spatial indices, n;m ∈ Λ,

HðfÞ
n;mðtÞ ¼

�
mþ Kr

a

�
δn;m

−
1

2a

XK
k¼1

Ckðiγ1 þ krÞUn;kðtÞδnþk;m

þ 1

2a

XK
k¼1

Ckðiγ1 − krÞUn;−kðtÞδn−k;m: ð29Þ

From this one can compute a fermion energy density as

EðfÞ
n ðtÞ ¼ −

1

2

X
m∈Λ

TrðHðfÞ
n;mðtÞΔm;nðtÞÞ; ð30Þ
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with a trace over color and Dirac indices. Using the
diagonalization matrix U as given in Eq. (24) and

EaðtÞ ¼ naEðtÞ; Aa
nðtÞ≡ naAðtÞ ¼ −na

Z
t

0

dt0Eðt0Þ;

ð31Þ

one may diagonalize HðfÞ
m;n,

UHðfÞ
n;mðtÞU† ¼

�
mþ Kr

a

�
δn;m

−
1

2a

XK
k¼1

Ckðiγ1 þ krÞTkδnþk;m

þ 1

2a

XK
k¼1

Ckðiγ1 − krÞT†
kδn−k;m: ð32Þ

Here we employed

Tk ≡
�
eþikgaAðtÞ=2 0

0 e−ikgaAðtÞ=2

�
: ð33Þ

We define

 
ϕu=v;þ
n;q ðtÞ

ϕu=v;−
n;q ðtÞ

!
≡U

 
ϕu=v
n;q;1ðtÞ

ϕu=v
n;q;2ðtÞ

!
; ð34aÞ

HðfÞ;þ=−
n;m ðtÞ≡ ðUHðfÞ

n;mðtÞU†Þ11=22: ð34bÞ

From this we can compute a diagonalized phase-space
energy density ϵ�n;qðtÞ,

ϵ�n;qðtÞ ¼
1

2L2

X
m∈Λ

e2πiq1m=N1

X
q0∈Λ̃

h
ϕ̄v;�
n;q0H

ðfÞ;�
n;m ðtÞϕv;�

q;q0

− ϕ̄u;�
n;q0H

ðfÞ;�
n;m ðtÞϕu;�

q;q0

i
; ð35Þ

where ϕu=v;�
q;q0 denote the Fourier-transformed Abelianized

mode functions,

ϕu=v;�
q;q0 ≡ a

X
n∈Λ

e−2πinq̃=N1ϕu=v;�
n;q0 ; ð36Þ

with q̃≡ q − N1=2. We find an Abelianized single-particle
energy density

ω�
n;qðtÞ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm�

n;qðtÞÞ2 þ ðp�
n;qðtÞÞ2

q
; ð37Þ

computed from physical masses m�
n;qðtÞ and physical

momenta p�
n;qðtÞ given by

m�
n;qðtÞ≡mþ r

2a

XK
k¼1

kCk½2 − V�
q;kðtÞ − V̄�

q;kðtÞ�; ð38aÞ

p�
n;qðtÞ≡ i

2a

XK
k¼1

Ck½V̄�
q;kðtÞ − V�

q;kðtÞ�: ð38bÞ

For notational simplicity we introduced

V�
q;kðtÞ≡ exp

�
ik

�
2πq̃
N1

� gaAðtÞ
2

��
: ð39Þ

Using ω�
n;qðtÞ we may define an Abelianized fermion

pseudoparticle number as follows:

n�n;qðtÞ≡ ϵ�n;qðtÞ
2ω�

n;qðtÞ
þ 1

2L
: ð40Þ

From this we can compute marginal distributions via [7]

n�n ðtÞ≡ 1

L

X
q

n�n;qðtÞ; ð41aÞ

n�q ðtÞ≡ a
X
n

n�n;qðtÞ; ð41bÞ

and a total pseudoparticle number as [7]

n�ðtÞ ¼ 1

N1

X
n;q

n�n;qðtÞ: ð42Þ

Since n�ðtÞ represents an expectation value obtained from
an ensemble average, it gives in general rise to noninteger
particle numbers. In what follows we refer to this method
of computing fermion numbers as Abelianized fermion
numbers, indicating that the single-particle energy ω�

n;pðtÞ
has a well-motivated interpretation if one can diagonalize
color d.o.f.

F. Gauge-invariant fermion numbers

For comparison, and for the interpretation of the results
from inhomogeneous initial conditions, we consider a
second definition of fermion number using a Wigner
function approach [6]. To this end, first a gauge-invariant
statistical propagator is constructed,

Δ̃m;nðtÞ≡ trðWn;mðtÞΔm;nðtÞÞ; ð43Þ

with a trace over color indices only. Wn;mðtÞ is constructed
as the lattice Wilson line along the shortest spatial path that
connects the points n, m. It transforms under a gauge
transformation VnðtÞ∈SUð2Þ as Wn;mðtÞ↦VnðtÞWn;mðtÞ
V†
mðtÞ, while Δm;nðtÞ ↦ VmðtÞΔm;nðtÞV†

nðtÞ. Setting
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δ≡ n −m and dropping the time argument in the notation,
if δ ≥ 0 we find

δ ≤
N1

2
∶ Wn;m ≡U†

n−1U
†
n−2 � � �U†

mþ1U
†
m ð44aÞ

δ >
N1

2
∶ Wn;m ≡UnUnþ1 � � �UN1−1U0 � � �Um−2Um−1:

ð44bÞ

If δ < 0,

δ > −
N1

2
∶ Wn;m ≡UnUnþ1 � � �Um−2Um−1 ð44cÞ

δ ≤ −
N1

2
∶ Wn;m ≡U†

n−1U
†
n−2 � � �U†

0U
†
N1−1 � � �U

†
mþ1U

†
m:

ð44dÞ

From Δ̃n;mðtÞ we compute the lattice Wigner function as

Wl;qðtÞ≡ −
a
2
eπilq=Nq

X
k∈Λ

e−2πikq=N1Δ̃k;½l−k�N1
ðtÞ þ γ:c:;

ð45Þ

where Oþ γ:c: denotes Oþ γ0O†γ0. Here, l ∈ ΛW and
q ∈ Λ̃W with Wigner lattices

ΛW ¼
�
l ¼ 2x

a
∈ f0;…; 2N1 − 1g

�
; ð46aÞ

Λ̃W ¼
�
q ¼ Lp

π
∈ f−N1;…; N1 − 1g

�
: ð46bÞ

We account for the periodicity of the lattice by taking
the module operation in the second argument of
Δ̃k;½l−k�N1

ðtÞ, with ½l − k�N1
≡ ðl − kÞmodN1. Since the

Wigner function W fulfils W† ¼ γ0Wγ0, we can employ
the decomposition [6]

W ¼ 1

2
ðsþ iγ5pþ γ0v0 − γ1vÞ; ð47Þ

where s;p; v0; v are all real. In the free case, (38a) and
(38b) reduce to

mq ≡mþ 2r
a

XK
k¼1

kCk sin2
�
kπq̃
N1

�
; ð48Þ

pq ≡ 1

a

XK
k¼1

Ck sin

�
2kπq̃
N1

�
: ð49Þ

From the decomposition components we calculate various
pseudodistributions,

ϱl;qðtÞ ¼ gv0;l;qðtÞ; ð50Þ

ϵl;qðtÞ ¼ mqsl;qðtÞ þ pqvl;qðtÞ; ð51Þ

corresponding to charge and energy density, respectively.
We define a phase-space resolved gauge-invariant fermion
quasiparticle number,

nl;qðtÞ≡ ϵl;qðtÞ − ϵvac;l;qðtÞ þ ωqv0;l;qðtÞ
2ωq

; ð52aÞ

n̄l;qðtÞ≡ ϵl;qðtÞ − ϵvac;l;qðtÞ − ωqv0;l;qðtÞ
2ωq

; ð52bÞ

where nl;qðtÞ, n̄l;qðtÞ label particle and antiparticle con-
tributions, respectively. We refer to this method of
computing fermion numbers as gauge-invariant fermion
numbers, justified by the included Wilson-line Wn;mðtÞ to
construct fermion numbers in a gauge-invariant fashion.

G. Connected charge-charge correlation function

In the study of color string dynamics a measure of
connected color charge-color charge correlations is con-
sidered. For this purpose we introduce here the connected
equal-time charge-charge correlation function

Cab
mnðtÞ≡ hTρamðtÞρbnðtÞi − hρamðtÞihρbnðtÞi

¼ 1

2
hfρamðtÞ; ρbnðtÞgi − hρamðtÞihρbnðtÞi: ð53Þ

In terms of mode functions one finds

Cab
mnðtÞ ¼

1

2L2

X
q;p∈Λ̃

X2
c;d¼1

½ϕv;†
m;q;cTaϕu

m;p;dϕ
u;†
n;p;dT

bϕv
n;q;c

þ ϕu;†
m;q;cTaϕv

m;p;dϕ
v;†
n;p;dT

bϕu
n;q;c�: ð54Þ

H. Gauss’s law

To simulate states in the physical Hilbert space, Gauss’s
law needs to be met. In our model it reads

Ga
n ≡ 1

a
ðEa

n − ðU†
n−1En−1Un−1ÞaÞ ¼ −ρan: ð55Þ

If the color charge ρan vanishes, we can iteratively solve this
equation for arbitrary n > nref ∈ Λ,

Ea
nðtÞ ¼ ðU†

n−1ðtÞU†
n−2ðtÞ � � �U†

nref ðtÞEnref ðtÞUnref ðtÞ
� � �Un−2ðtÞUn−1ðtÞÞa: ð56Þ

For the Ga
n commuting with the model’s Hamiltonian H, a

state that initially fulfils Gauss’s law does so for an arbitrary
later point in time as well.
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III. FERMION PRODUCTION AND IMPROVED
HAMILTONIAN BENCHMARKS

In this section we investigate fermion production from
homogeneous chromoelectric fields exceeding the critical
field strength for Schwinger pair creation. In particular,
we establish how improved Hamiltonians can be used to
simulate this process and emergent phenomena such as
plasma oscillations using significantly smaller lattices as
compared to unimproved lattice implementations.

A. Fermion production: Benchmark at early times

To benchmark the lattice setup, we first compare our
lattice simulation results with established analytic formulas
for the non-Abelian Schwinger mechanism in a static
coherent chromoelectric background field [45–47]. With
this in mind we disregard the backaction of the fermion
sector onto the gauge sector and exclude sampling. This
approximate description is expected to be accurate at
sufficiently early times, for which the analytic results are
available. To be able to go to later times, we consider the
fully nonlinear dynamics including backaction below.
We introduce the dimensionless field-strength parameter

ϵa ¼ Ea
0

Ec
; ð57Þ

with Ec ¼ m2=g being the critical field strength. We fix
g=m ¼ 0.1 throughout this subsection and apply vacuum
initial conditions for fermions, while the homogeneous
chromoelectric field is set to the value stated. The simu-
lations correspond to solving the fermion equation of
motion, Eq. (21), with a sudden switch-on of the chromo-
electric field at initial time t0 ¼ 0=m.
In Fig. 1 the total number of fermions as a function of

time for diagonalized color direction þ and various back-
ground fields ϵ ¼ ðϵ1; 0; 0Þ is displayed. The calculations

are based on NLO lattice improvements with lattice
parameters as given in the figure caption. After a transient
regime of enhanced fermion production at small times
ttr ≲ 1=m, the curves show a linear regime in which
fermion-antifermion pairs are produced at a constant rate.
Linearly fitting the data curves for nþðtÞ=m2 at times

t ≥ ttr, the rates together with results from respective
analytical calculations are displayed in Fig. 2. As detailed
in Appendix B, one expects a fermion production rate per
unit length and per diagonalized color direction of

_n�

Lm2
¼ ϵ

4π
exp

�
−
2π

ϵ

�
: ð58Þ

The results from simulations are seen to agree with the
analytics to very good accuracy. An exponential suppres-
sion of pair production below Ec takes place both analyti-
cally and numerically, in accordance with prior studies in
the framework of the Schwinger model and QED [6,7,36].
We now study the role of lattice improvements for the

approach of the simulation results of the discretized theory
in a finite volume to the analytic prediction for the
continuum theory in an infinite volume. Figure 3 shows
results for fermion production rates for various numbers of
lattice sites N1 in the unimproved LO formulation, which is
then compared to NLO and NNLO improvements. Here,
the total lattice size L ¼ N1a is kept constant such that a is
decreasing with increased N1 to approach the continuum.
For the unimproved lattice theory we find that getting

close to continuum results for the production rate requires
extremely small lattice spacings, in accordance with pre-
vious studies in QED1þ1 [6]. We observe that this situation
changes dramatically, once improved Hamiltonians are
employed. Figure 3 indicates that significantly smaller
numbers of lattice sites N1 lead already to results in the
vicinity of the continuum theory. The NLO improved
theory is seen to be extremely efficient with only minor
differences to NNLO results, both converging very well at

FIG. 1. Abelianized fermion numbers from simulations for
various background field strength ϵ ¼ ðϵ1; 0; 0Þ, ranging from
ϵ1 ¼ 10 (dark blue line) to ϵ1 ¼ 2 (light blue line) in integer
steps. The lattice parameters are N1 ¼ 512, L ¼ 25.6=m,
a ¼ 0.05=m, at ¼ 0.05a, computed at NLO.

FIG. 2. Abelianized fermion production rates from both sim-
ulations (blue dots) and analytics (solid, gray line). The employed
lattice parameters are the same as for Fig. 1. The background
chromoelectric field is ϵ ¼ ðϵ1; 0; 0Þ, with ϵ1 being varied here.
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least for N1 ≳ 250 for the employed parameters. Already
around N1 ≃ 100 the NLO (NNLO) improvement only
slightly overestimates (underestimates) the continuum
result, and smaller lattices may be employed if one is
willing to accept errors exceeding the few-percent level.
Relatively small lattices are crucial, e.g., for any realistic
chance to implement this physics in quantum simulators in
the not too distant future.
Apart from integrated quantities such as the total particle

number, it is instructive to analyze also momentum-
resolved fermion numbers. In Fig. 4 the momentum
spectrum of created fermions, nþp ðtÞ, is displayed at time
t ¼ 16=m for diagonalized color direction þ. Switching to
diagonalized color direction−is equivalent to reflecting the
graph at p=m ¼ 0. Shown are results without (LO) and
with first-order (NLO) lattice improvements for a fixed

number of lattice sites as given in the figure caption,
together with the analytic result.
The fermion number distribution shows a clear peak

around p=m ¼ 0, reflecting the fact that most of the
fermion-antifermion pairs are created at rest. Subse-
quently, they are accelerated in the applied chromoelectric
field towards higher momenta. The low-momentum fer-
mions are seen to be rather well described both at LO and
NLO. At higher momenta, however, the accelerated fer-
mions are significantly better described using the lattice
improved Hamiltonian. These improvements become par-
ticularly visible for integrated quantities such as the total
particle number, which sum over all momentum modes.
We note that in analytical computations the initial time

is sent to the remote past, t0 → −∞, such that produced
particles occupy arbitrarily high momenta. In contrast, the
actual simulations start at t0 ¼ 0=m and produced particles
only occupy finite momenta at finite times in the presence
of a constant background field. This initial-time difference
is also the reason for the transient regime of enhanced
fermion production at small times ttr ≲ 1=m visible in the
simulation data of Fig. 1, which is not present in the
analytic estimates. Of course, only at sufficiently early
times restricting to a constant background field is a valid
approximation. Since total energy must be conserved, at
later times the backaction of the produced fermion pairs on
the applied chromoelectric field becomes relevant, which
we address in the following.

B. Plasma oscillations: reaching longer times
using lattice improved Hamiltonians

We now include the back-coupling of fermion currents
onto the gauge sector, correspondingly taking the chromo-
electric field equation of motion (19) into account. We keep
g=m ¼ 0.3 fixed throughout this subsection.
Figure 5(a) displays the Abelianized fermion number

momentum spectrum nþp ðtÞ þ n−pðtÞ as a function of time.
The initial acceleration of the produced fermions is visible
along with a subsequent deceleration process, then an
acceleration to lower maximum momenta than before
and so on. To understand this oscillating behavior, it is
helpful to consider also the time evolution of the chromo-
electric field displayed in Fig. 5(b). A fermion current is
induced at times when the gauge field is strong, accom-
panied by a respective gauge field decay. Once the gauge
field decayed fully, via the produced fermions’ backaction
onto the gauge sector a gauge field builds up again but
pointing in the opposite direction. This process occurs again
and again, resulting in non-Abelian plasma oscillations.
In Fig. 5(c) different contributions to the total energy

density are shown as a function of time. The gauge part
reflects well the oscillating behavior of the chromoelectric
field. The fermion energy part is seen to be large whenever
the chromoelectric field part is small. Their sum stays
constant, as required by energy conservation.

FIG. 3. Comparison of the Abelianized fermion production rate
from simulations with the analytic one-loop result. Shown are
results without lattice improvements (violet dots), NLO improve-
ments (blue diamonds), NNLO improvements (red triangles) and
the corresponding analytical result (black dashed line). The lattice
parameters are L ¼ 25.6=m, a ¼ L=N1, at ¼ 0.02a for a back-
ground chromoelectric field ϵ ¼ ð2; 0; 0Þ.

FIG. 4. The Abelianized fermion number momentum spectrum
without (LO, solid, blue line) and with first-order (NLO, dashed,
pink line) lattice improvements, as well as analytics (solid, black
line). All curves show the diagonalizedþ color at simulation time
t ¼ 16=m. The employed lattice parameters read N1 ¼ 512,
L ¼ 25.6=m, a ¼ 0.05=m, ϵ ¼ ð2; 0; 0Þ, at ¼ 0.05a.
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All results shown in Fig. 5 have been obtained at NNLO.
We now address the role of lattice improvements for the
nonlinear dynamics. We have seen that the back-coupling
of fermions and gauge fields leads to plasma oscillations
with decreasing maximum fermion momenta and multiple
zero crossings at later times. In general, finite-volume effects
and the associated limits on resolving low-momentum scales
are expected to play an enhanced role at late times.
To illustrate the dependence of the results on the volume,

we display in Fig. 6 the total fermion number nþðtÞ þ n−ðtÞ
as a function of time. The computations are done for two
different lattice sizes withN1 ¼ 512 andN2 ¼ 768 for fixed
lattice spacing such that thevolumes differ accordingly. Panel

(a) displays respective results at NLO, forwhich one observes
a practically volume-independent early-time behavior. But
already after about the first plasma oscillation, indicated by a
plateau in the function nþðtÞ þ n−ðtÞ which is due to a zero-
crossing of the chromoelectric field around that time, devia-
tions between the N1 ¼ 512 and N2 ¼ 768 setups become
visible. This has to be confronted with the corresponding
simulations at NNLO given in panel (b). In this case, both
lattice sizes givevery similar results up to about the timeof the
fourth plateau, and even afterwards the larger lattice seems to
give reasonable predictions. The ability to quantitatively
describe longer time scales for a given lattice size is a very
powerful property of the lattice improvements.
We end this section by noting that the qualitative

behavior of the plasma oscillations in QCD1þ1, including
the growth in oscillation frequency with time, coincides
well with previous classical-statistical studies in the frame-
work ofUð1Þ gauge theory [6,7]. However, from Fig. 5(a) a
characteristic property of SUð2Þ theory plasma oscillations
can be observed: Against the gauge field background half
of the produced fermions are accelerated into positive
direction, while simultaneously the other half is accelerated
into negative spatial direction. The gauge field changing
sign around its first 0, the produced fermions start being
accelerated into the respectively opposite direction. The
pattern of fermion acceleration closely mimics the oscillat-
ing gauge field dynamics at later times, too.

FIG. 5. Plasma oscillations manifest in multiple observables.
Panel (a): Fermion number momentum spectrum nþp ðtÞ þ n−pðtÞ.
Panel (b): Volume-averaged chromoelectric field E1ðtÞ, E2ðtÞ ¼
E3ðtÞ ¼ 0. Panel (c): Gauge field energy (blue, dashed line),
fermion energy (red, solid line) and total energy (grey, dotted
line) with the fermion vacuum energy subtracted from fermion
and total energy. Lattice parameters of all panels are N1 ¼ 768,
L ¼ 38.4=m, a ¼ 0.05=m, at ¼ 0.02a, g=m ¼ 0.3, computed at
NNLO, with initial chromoelectric field ϵ ¼ ð3; 0; 0Þ.

FIG. 6. Total fermion numbers nþðtÞ þ n−ðtÞ vs time, with
N1 ¼ 512, L ¼ 25.6=m (blue line) and N1 ¼ 768, L ¼ 38.4=m
(red line). Panel (a): NLO improvements. Panel (b): NNLO
improvements. The remaining parameters of both panels are as in
Fig. 5.
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Resulting from temporary fermion production dropouts
in the zero-momentum mode, substructures emerge in the
time-evolving momentum spectrum of fermions from times
t ≃ 80=m onwards. In fact, the pattern is a finite-volume
lattice artefact, continuously vanishing with an increasing
number of lattice sites. For corresponding details we refer
to Appendix A 4.
For homogeneous initial conditions we can diagonalize

color d.o.f. as pointed out in Sec. II C. We define the
Abelianized fermion current using the already established
fermion current (27) and the diagonalization matrix U,
given by Eq. (24),

�
jþn ðtÞ 0

0 j−n ðtÞ

�
≡X3

a¼1

UjanðtÞTaU†: ð59Þ

In Fig. 7 the Abelianized fermion currents j�ðtÞ are
shown. One being the negative of the other, they indicate
propagation of the produced fermions into opposite spatial
directions. The oscillating behavior is a manifestation of
the occurring plasma oscillations. The two Abelianized
fermion currents sum up to 0, in accordance with both
theory and previous studies [36,37].

IV. STRING-BREAKING DYNAMICS AND
HIGHER CORRELATION FUNCTIONS

After the benchmark tests for homogeneous fields in
the previous section, we now apply the lattice improved
Hamiltonian approach to string-breaking dynamics in
QCD1þ1. This involves computations of the nonequilibrium
dynamics for inhomogeneous field configurations, constitut-
ing a particular strength of the approach. Moreover, we
demonstrate that even higher-order correlation functions
such as the charge-charge correlator (54) involving four
fermion fields are accessible with these techniques.

A. Setup and initial conditions

To motivate our setup and initial conditions, we start by
considering a confining gauge string of length d ¼ la
between two external color charges, specified classically
by the color charge distribution

ρ30;n ¼ gN3
0ðδn;ðN1þlÞ=2 − δn;ðN1−lÞ=2Þ; ð60Þ

whereas ρ10;n ¼ ρ20;n ¼ 0 due to N1
0 ¼ N2

0 ¼ 0. By Gauss’s
law (55) this results, classically, in a homogeneous chromo-
electric field 3-component along the string,

E3
n ¼

�
gN3

0 if ðN1 − lÞ=2 ≤ n < ðN1 þ lÞ=2;
0 else:

ð61Þ

The string constructed in such a way from external color
charges �gN3

0 has an energy content of

Vstr ¼
g2ðN3

0Þ2d
2

: ð62Þ

If we demand that the initial classical chromoelectric field
in the string’s interior reads by value ϵinit ¼ ð0; 0; cÞ for a
real constant c, the external color charges need to provide
the energy

Vstr ¼ a
X
n∈Λ

EðgÞ
n ¼ c2E2

cd
2

: ð63Þ

This results in the requirement

g
m

¼
ffiffiffiffiffiffi
c
N3

0

r
: ð64Þ

We apply this argumentation to a string with initial interior
chromoelectric field ϵini ¼ ð0; 0; 2.0Þ. Thus obtaining g ¼ m
for N3

0 ¼ 2.0, we keep g ¼ m fixed throughout this section.
Simulations to be described in the following demonstrate that
to show critical string-breaking behavior the string length

needs to be around dSUð2Þ
crit ≃ 40.5=m. Comparing to the

critical string in Uð1Þ-theory with dUð1Þ
crit ≃ 28=m [5], from

40.5=m ≃
ffiffiffi
2

p
dUð1Þ
crit ¼

ffiffiffiffiffiffiffiffiffiffiffi
NUð1Þ

0

q
dUð1Þ
crit ð65Þ

we deduce that the critical SUð2Þ-string in QCD1þ1 corre-
sponds to an Abelian string in 1þ 1 dimensions with

effective external Uð1Þ-charges [5,25] of NUð1Þ
0 ¼ 2.

These initial conditions are supplemented by vacuum
fluctuations in the gauge sector. As in previous sections, for
fermions we employ vacuum initial conditions. We discuss
the impact of initial vacuum fluctuations on the gauge fields
below and for details on their implementation we refer to
Appendix A 2, again. The number of averaged runs is set

FIG. 7. Volume-averaged Abelianized currents j�ðtÞ. The
initial chromoelectric field is ϵ ¼ ð3; 0; 0Þ. Displayed are both
the diagonalized þ color direction (red line) and the−direction
(blue line), as well as their sum (grey, dotted line). Parameters are
the same as in Fig. 5.
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to 3 throughout this section, whenever classical-statistical
sampling for the generation of the initial vacuum
“quantum-half” for gauge fields is applied.

B. String breaking and supercritical color strings

A string between two external charges that breaks
completely, in particular with the center chromoelectric field
asymptotically approaching 0, is called a critical string.
A “supercritical” string is a string that shows multiple string
breaking [5], such that the center chromoelectric field
oscillates around 0 as it does in plasma oscillations.
Illustrating string-breaking dynamics by means of the

gauge field, the color charge distribution and fermion
numbers, in Fig. 8 we display space- and time-resolved
simulational outcomes for four values of external charges
N3

0 ¼ 2.0, 3.0, 4.0, 8.0. In the absence of initial quantum
fluctuations in the gauge field sector, due to N1

0 ¼ N2
0 ¼ 0

all dynamics take place in the 3-components; 1- and
2-components stay 0 at all times simulated. If vacuum
gauge field fluctuations are taken into account for the
present initial conditions, this remains approximately
true. The gauge-invariant fermion number definition is
employed. For a comparison with Abelianized fermion
numbers we refer to Appendix A 5, the essence being that
the two agree well with each other.
In row A of Fig. 8 variables are displayed for external

charges�2.0g. At early times, fermion-antifermion pairs are
produced via the non-Abelian Schwinger mechanism, as can
be seen in fermion numbers [panel (a3)]. The dynamically
created fermions and antifermions are initially produced on
top of each other, resulting in the absence of color charge
inside the string at early times [panel (a2)]. They get
separated with nearly the speed of light by the chromo-
electric field, gradually screening the external color charges.
First, the center chromoelectric field roughly decays linearly,
later asymptotically approaching 0 [panel (a1)]. Indeed, we
find that for a string of length d ¼ 40.5=m complete string
breaking occurs. Additionally, part of the produced particles
gets accelerated towards the outside of the string and
propagates freely with approximately the speed of light
beyond the external charges at both string ends, continuously
occupying the space that surrounds the string, as can be
observed in all three variables [panels (a1)–(a3)]. Once the
string broke and the external charges got screened, the sole
dynamical objects that remain—apart from small effects
close to and inside the string—are these fermions and
antifermions that at constant speed fly away from the string.
This behavior matches closely the corresponding Schwinger
model string-breaking behavior [5,25].
While in row A of Fig. 8 the color string breaks exactly

once, in rows B to E the strings break multiple times. The
external charges are set to �3.0g, �4.0g and �8.0g, giving
rise to supercritical color strings. Due to the stronger initial
chromoelectric field the external charges get screened faster
than in the N3

0 ¼ 2.0-case. The strings break faster. In all

four cases, however, the center chromoelectric field does
not asymptotically approach 0 within the simulated time
interval, but instead shows an oscillating behavior, indicat-
ing the occurrence of plasma oscillations and multiple
string breaking. In contrast to the homogeneous plasma
oscillations described in Sec. III B, the plasma oscillations
inside color strings happen inhomogeneously [panels
(b1)–(e1)]. By Gauss’s law (55) chromoelectric field
inhomogeneities are generated by the presence of color
charges. Considering color charge distributions, we find a
clear pattern of peaks and falls that oscillates in time [panels
(b2)–(e2)], getting more fragmented with increasing time
the higher the external charge values get. Within this
process, color charge accumulations occur that by sign
differ from their immediate neighborhood. As in the critical
case, part of the produced fermions and antifermions is
accelerated towards the outside of the supercritical string,
propagating approximately freely beyond the external
charges at both string ends. But now the color charge
outside the string varies strongly both spatially and tem-
porally. Moreover, the space- and time-resolved fermion
numbers closely follow the chromoelectric field dynamics.
A large amount of fermion-antifermion pairs is produced
wherever the gauge field is large [panels (b3)–(e3)]. This is
in accordance with the non-Abelian Schwinger mechanism.
We now address the role of vacuum fluctuations in the

initial conditions of the gauge field configurations consid-
ered. In fact, the data shown in rows A to D are obtained
without initializing the vacuum quantum-half for gauge field
configurations. The initial vacuum fluctuations translate for
each sample run into additional small inhomogeneities,
which are averaged in the end. We check in the following
whether this could change some of the smaller substructures
observed, in particular in the N3

0 ¼ 8.0-case. The simula-
tions for rows D and E of Fig. 8 are both generated with
external charge values of�8.0g, in row E including vacuum
fluctuations in gauge field initial conditions for comparison.
While qualitatively both D and E show very similar results,
in the chromoelectric field and color charge distributions
tiny spatiotemporal oscillations are present if fluctuations are
taken into account [panels (d1)–(e2)]. Fermion numbers are
nearly not affected by these oscillations since fermion pro-
duction by small chromoelectric fields is strongly suppressed
in the non-Abelian Schwinger mechanism [panel (e3)]. We
expect the tiny oscillations to become smaller with an
increasing number of samplings. Furthermore, the behavior
of chromoelectric fields in the immediate vicinity of the
external charges exhibits some differences: While without
initial gauge field quantum fluctuations the chromoelectric
field outside the string shows distinctive falls approximately at
times 15=m, 33=m and 50=m and peaks at times 22=m, 39=m
and 57=m inside the string [panel (d1)], the last two peaks and
falls both inside and outside the string in the external charges’
vicinity nearly disappear if fluctuations are taken into account
[panel (e1)]. Thus, taking into account the initial vacuum
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FIG. 8. Color string characteristics for various external color charges. The color map of each graph is adjusted to its individual
maximum. Column 1: Chromoelectric field 3-component E3ðt; xÞ. Column 2: Color charge distribution 3-component ρ3ðt; xÞ. Column
3: Gauge-invariant fermion numbers. Row A: External charges N3

0 ¼ 2.0. Row B: External charges N3
0 ¼ 3.0. Row C: External charges

N3
0 ¼ 4.0. Row D: External charges N3

0 ¼ 8.0. Row E: External charges N3
0 ¼ 8.0, including vacuum gauge field fluctuations,

3 sampling runs averaged. Parameters of all panels are N1 ¼ 1536, L ¼ 153.6=m, a ¼ 0.1=m, at ¼ 0.02a, g=m ¼ 1, NLO

improvements, string length d ¼ dSUð2Þ
crit ¼ 40.5=m.
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gauge field fluctuations by means of sampling can have an
effect on the oscillating chromoelectric field “afterglow”
around external charges sitting at color string ends. The color
charge distribution resembles this effect [panels (d2) and (e2)];
so does the fermion number distribution, though smaller by
value [panels (d3) and (e3)].
Fundamentally, the external charges at supercritical color

string ends never get screened fully: Always a remnant
chromoelectric field inside the string is present. Time-
evolving the given initial conditions, supercritical color
strings remain confining in our model at all times simulated.

C. Higher correlation functions:
charge-charge correlators

In this subsection we study charge-charge correlations
involving four fermion fields. This is used to further
analyze the color-charge accumulations in the interior of
supercritical strings, whose existence is inferred in the
previous section from the fermion charge distribution and
gauge-invariant fermion numbers of Fig. 8, involving
expectation values of two fermion fields. The quantity of
interest is the connected anticommutator

Cab
nmðtÞ ¼

1

2
hfρanðtÞ; ρbmðtÞgi − hρanðtÞihρbmðtÞi; ð66Þ

which is computed using Eq. (54). This quantity is not
gauge invariant, but turns out to be very suitable for
discussing some characteristic nonequilibrium phenomena
in QCD1þ1 associated to four-fields correlations. For all
results shown, initial vacuum fluctuations have been taken
into account.
In the following we consider Cab

nmðtÞ≡ Cab
n ðt; xÞjx≡ma as

a function of time t and position x for given reference site n
or position x ¼ n=ð10mÞ for the parameters employed. In
Fig. 9, C33

n ðt; xÞ-data are displayed both for reference site
n ¼ 768 and reference site n ¼ 667. The external charges
are N3

0 ¼ 8.0 at position x− ≃ 57=m and at xþ ≃ 97=m,
respectively, such that both reference sites are located
between the charges.
One observes that charge-charge correlations spread in

space as time is increasing, propagating beyond the
external charges. The correlations are sharply peaked at
equal points x=a ¼ n. In a first temporal regime correla-
tions spread with approximately twice the speed of light
and less along the string and beyond, with a comparably
large front peak value. The regime of propagation with
twice the speed of light lasts until correlations have reached
part of the boundary of the external charges’ future light
cones that lies outside the string. Subsequently, a second
temporal regime begins, in which correlations propagate
with a maximum front velocity of approximately the speed
of light.
Since the correlation (66) represents an anticommutator

(as opposed to commutator) expectation value of two

bosonic composites, the propagation can exceed the speed
of light without being in conflict with any fundamental
principle. We have seen above in Fig. 8 that the color
charges can move close to the speed of light and in opposite
directions. If the charge-charge anticommutator expect-
ation value is approximately a function of the spatial
difference, then the spreading of correlations within the
medium would exhibit approximately a maximum velocity
of twice the speed of light as observed. In fact, once the
light cone boundaries of the external charges are reached,

FIG. 9. Connected charge-charge correlation function C33
n ðt; xÞ.

Panel (a): Reference site n ¼ 768. Panel (b): Reference site
n ¼ 667. White data points correspond to clipped data outside the
given color range. Dashed lines denote positions of the external
charges; dotted lines denote the outer boundaries of initial future
light cones of the external charges. Parameters read N1 ¼ 1536,
L ¼ 153.6=m, a ¼ 0.1=m, at ¼ 0.02a, g=m ¼ 1, NLO improve-
ments, string length d ¼ 40.5=m, external charges N3

0 ¼ 8.0, 3
sampling runs averaged.
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since there is no medium outside the light cones, there is no
relative motion possible between the fermions inside and
outside the light cones and the maximum correlation
spreading drops down to the speed of light. We emphasize
that this observation is a genuine nonequilibrium phenome-
non, which would not be possible in thermal equilibrium
where equal-time correlators are constant and anticommu-
tator and commutator expectation values are related by the
fluctuation-dissipation relation [48].
Having globally studied connected ρρ-correlations, we

now take a closer look at an example Cauchy surface of
constant time with the aim of relating the correlation peaks
and falls to the color charge accumulations appearing.
In Fig. 10(a) the color charge 3-component is displayed at
time t ¼ 16.8=m. Apart from the peaks around the external
color charges at the denoted positions x− ≡ x2 ≃ 57=m
and xþ ≡ x5 ≃ 97=m, four dominant accumulations are
present at positions x1 ≃ 43=m, x3 ≃ 68=m, x4 ≃ 86=m,

x6 ≃ 111=m. A simple picture of the external color charges
being gradually screened could only explain the peaks
around the external charges, not the four additional ones.
In Fig. 10(b) the connected ρρ-correlation function

C33
n ðt; xÞ is displayed at time t ¼ 16.8=m and reference

site n ¼ 667. For illustration purposes its negative values
are shown. Primarily, we notice that the correlation function
peaks match the color charge accumulations. Since the
reference site n ¼ 667 is lying inside the color charge
accumulation around position x3, the pictured correlation
function C33

667ðt; xÞ can be interpreted to measure the
charge-charge correlation at position x with the accumu-
lation around position x3 at time t ¼ 16.8=m. We clearly
find that the peak at x3 is correlated with the color charge
accumulations at positions x1; x2;…; x5, but not with the
accumulation around x6 at time t ¼ 16.8=m yet. The reason
for this can be seen in Fig. 9(b): At the time displayed
ρρ-correlations did not propagate yet to the vicinity of x6.
Indeed, at the respective later times we find also a non-
vanishing value for the correlation function at x6, such that
the color charge accumulations arising inside and around
a supercritical color string are correlated with each other.
As the data in Sec. IV B already suggest, these multiparticle
excitations become increasingly fragmentated with time
increasing.

V. CONCLUSIONS

In the present study we investigated real-time fermion
production via the non-Abelian Schwinger mechanism as
well as the dynamical breaking of color strings between
external static color charges in QCD1þ1 with gauge group
SUð2Þ using classical-statistical reweighting techniques.
Within this setting we confirmed available analytic results
and demonstrated that lattice improvements up to second
order can significantly improve convergence towards the
continuum limit of nonvanishing fermion numbers in
homogeneous configurations. We observed non-Abelian
plasma oscillations upon including the backaction of
created fermions onto the gauge sector. For SUð2Þ gauge
theory plasma oscillations half of the produced fermions
and antifermions is accelerated in positive spatial direction,
the other half simultaneously in negative spatial direction.
By means of improving the fermion current which feeds
back to the chromoelectric field, the fermion number
convergence behavior in non-Abelian plasma oscillations
at late times can be optimized using higher-order lattice
improvement terms, as well.
Additionally, we studied inhomogeneous initial condi-

tions, focusing on configurations with a color string
stretched between two external color charges. Being far
from equilibrium, non-Abelian string breaking gives rise to a
wide variety of involved dynamical processes, including
fermion pair production, charge screening, plasma oscilla-
tions, fermions and antifermions continuously occupying the
surrounding space around the string—all of which emerging

(a)

(b)

FIG. 10. Panel (a): Color charge ρ3ðxÞ. Panel (b): Connected
charge-charge correlator C33

n ðt ¼ 18=m; xÞ at reference site
n ¼ 667; C33

n -data is averaged among each six lattice sites to
smooth occurring oscillations among neighboring lattice sites.
Both plots show data at time t ¼ 16.8=m. Dashed lines denote
positions of the external color charges. Parameters read
N1 ¼ 1536, L ¼ 153.6=m, a ¼ 0.1=m, at ¼ 0.02a, g=m ¼ 1,
NLO improvements, string length d ¼ 40.5=m, external charges
N3

0 ¼ 8.0, 3 sampling runs averaged.
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from apparently simple initial conditions. In particular, we
showed that within supercritical color strings dynamical color
charge accumulations can arise. Employing a connected
charge-charge correlation function we demonstrated that
these charge accumulations are correlated, with correla-
tions propagating initially with almost twice the speed
of light.
These phenomena may become accessible in quantum

simulators in the not too distant future, if efficient imple-
mentations become available. Improved lattice Hamiltonian
formulations as those employed in this work can be a crucial
ingredient, since significantly smaller lattices may be
employed to obtain physical results. This becomes particu-
larly important going beyond the one-dimensional bench-
mark case, when the real-time confinement dynamics is no
longer of geometric origin but arises solely from the non-
Abelian character of the gauge theory.
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APPENDIX A: ASPECTS OF THE
LATTICE SETUP

1. Fermion initial conditions

Initially, we implement free fermions with nuq;að0Þ ¼
nvq;að0Þ ¼ 0 for all q, a, using the free solution to the Dirac
equation,

ϕu;α
n;q;að0Þ ¼ uαq exp

�
þ 2πiq̃n

N1

�
; ðA1aÞ

ϕv;α
n;q;að0Þ ¼ vαq exp

�
−
2πiq̃n
N1

�
; ðA1bÞ

the u- and v-eigenspinors reading

uαq ¼
1ffiffiffiffiffiffiffiffi
2ωq

p
 
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωq þ pq
p

þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωq − pq

p
!
; ðA2aÞ

vαq ¼
1ffiffiffiffiffiffiffiffi
2ωq

p
 
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωq þ pq
p

− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωq − pq

p
!
: ðA2bÞ

ωq is computed frommq, pq using Eqs. (48) and (49) via

ω2
q ¼ m2

q þ p2
q: ðA3Þ

2. Bosonic quantum fluctuations

Here we describe the initial bosonic quantum fluctua-
tions, added to the classical gauge string configuration
investigated in Sec. IV.
We denote creation and annihilation operators of a gauge

boson with lattice momentum q̃ ¼ −N1=2;…; N1=2 − 1

and color index a by aa;†q , aaq, respectively. The quantum
fluctuations to construct correspond to the quantum-half
contribution to bosonic vacuum occupation numbers, thus
requiring

haaqi ¼ haa;†q i ¼ 0; ðA4aÞ
1

2
hfaa;†q ; aaqgi ¼

1

2
ΘðQ − 2πq̃=LÞΘðQþ 2πq̃=LÞ: ðA4bÞ

In order to stay well below the lattice UV cutoff, we
introduced a finite momentum scale Q up to which
fluctuations are taken into account, merely. We carefully
checked for insensitivity of the obtained results to the
precise choice ofQ and consistently specifiedQ ¼ π=ð3aÞ.
The quantum dynamics of aa;†q , aaq are in the classical-
statistical approximation imposed by sampling complex
numbers αa;�q , αaq from a given distribution function and

computing expectation values of aa;†q , aaq according to the

latter. As a distribution function Wðαaq; αa;†q Þ we chose the
standard Gaussian distribution, ᾱaq denoting its average
value and σaq its width,

Wðαaq;αa;†q Þ ¼ 1

2πðσaqÞ2
exp

�
−
jαaq − ᾱaqj2
2ðσaqÞ2

�
: ðA5Þ

The imposed one- and two-point functions for quantum-
half fluctuations then read

haaqi ¼
Z

dαaqdα
a;�
q Wðαaq; αa;†q Þαaq ¼ 0; ðA6aÞ

1

2
hfaa;†q ; aaqgi ¼

Z
dαaqdα

a;�
q Wðαaq; αa;†q Þαa;�q αaq

¼ 1

2
ΘðQ − 2πq̃=LÞΘðQþ 2πq̃=LÞ; ðA6bÞ

resulting in ᾱaq ¼ 0 and σaq ¼ ΘðQ − 2πq̃=LÞΘ
ðQþ 2πq̃=LÞ= ffiffiffi

2
p

. αa;�q and αaq being drawn randomly

according to Wðαaq; αa;†q Þ, we compute their Fourier-
transformed spatial counterparts as

αan ¼
1

L

X
q∈Λ̃

αaqe2πiq̃n=N1 : ðA7Þ

Fluctuations of the gauge potential and the chromoelectric
field, added to the classical initial conditions, are computed
from this as
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δAa
n ¼

ffiffiffiffiffiffiffi
2a2

p
ReðαanÞ; δEa

n ¼
ffiffiffi
2

p
ImðαanÞ: ðA8Þ

Since link variables are classically initialized to unity in this
work, upon inclusion of classical-statistical sampling they
initially read

Unðt ¼ 0Þ ¼ expðigaδAa
nTaÞ: ðA9Þ

Observables are computed at each time step as ensemble
averages of a given number of simulated runs with different
fluctuating initial conditions generated this way.

3. Deriving equations of motion

Crux of deriving equations of motion for the involved
field d.o.f. are commutation and anticommutation relations
between the fields to finally employ i∂tO ¼ ½O;H� for a
field operator O.
The chromoelectric field equation of motion follows

from using

½Ea
n; Ab

m� ¼
i
a
δn;mδa;b; ðA10aÞ

½Aa
n; Ab

m� ¼ ½Ea
n; Eb

m� ¼ 0; ðA10bÞ

in order to obtain by application of Baker-Campbell-
Hausdorff

½Ea
n; Um� ¼ −gδn;mTaUn; ðA11aÞ

½Ea
n; U

†
m� ¼ þgδn;mU

†
nTa: ðA11bÞ

Clearly, we find ½Ea
n;HðgÞ� ¼ 0 for all n, a. It remains to

compute ½Ea
n;HðfÞ�, for which we make extensive use of

relations (A11a) and (A11b). Expressions such as

½Ea
n; UmUmþ1Umþ2�

¼ −gðδn;mTaUmUmþ1Umþ2

þ δn;mþ1UmTaUmþ1Umþ2

þ δn;mþ2UmUmþ1TaUmþ2Þ ðA12Þ

occur.
The link variable equation of motion, Eq. (20), follows

easily from ½Un;HðgÞ� and

½Un; Ea
mEa

m� ¼ ½Un; Ea
m�Ea

m þ Ea
m½Un; Ea

m�: ðA13Þ

To obtain equations of motion for the fermion mode
functions we evaluate ½ψn; HðfÞ�. We make use of the
algebraic identity

½ψγ
n;c;ψ

†;α
l;aψ

†;β
m;b� ¼ fψγ

n;c;ψ
†;α
l;a gψ†;β

m;b − ψ†;α
l;a fψγ

n;c;ψ
†;β
m;bg;
ðA14Þ

where Dirac and color indices have explicitly been restored.
Using this identity, straightforwardly the equation of
motion (21) follows.

4. Volume dependence of substructures in
plasma oscillations

In Sec. III B we observed that substructures occur in
momentum space-resolved fermion numbers as a result of
temporary fermion production dropouts in the zero-
momentum mode. In Fig. 11 Abelianized fermion numbers
nþp ðtÞ are displayed again, now for both N1 ¼ 512 and
N1 ¼ 768. We primarily notice that structures are more
present at smaller lattice size. Related to finite volume and
being smaller at larger lattice size, we take this as a hint that
the occurring fermion production dropouts are, essentially,
infrared lattice artifacts, disappearing continuously with
increasing lattice sizes.

5. Comparing Abelianized and gauge-invariant
fermion numbers

A proof of consistency within our work is to compare
both the Abelianized and the gauge-invariant fermion

FIG. 11. Time-evolution of the Abelianized fermion number
momenta spectrum nþp ðtÞ. Panel (a): N1 ¼ 512. Panel (b):
N1 ¼ 768. The employed lattice parameters of both panels read
L ¼ 38.4=m, a ¼ 0.05=m, at ¼ 0.02a, g=m ¼ 0.3, NNLO im-
provements, with an initial chromoelectric field ϵ ¼ ð3; 0; 0Þ.
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number definitions. In Fig. 12 we find the two fermion
number definitions roughly match each other, comparing
fermion number momentum spectra for the two in a
constant chromoelectric background field. Merely, the
gauge-invariant fermion numbers oscillate around the
Abelianized ones with amplitudes varying in time. At
times, oscillations are larger than in Fig. 12, at times
smaller, even nearly vanishing.
Enabling backcoupling of the created fermions onto the

gauge sector, we find that both fermion number definitions
show the same oscillating pattern. Fermion number
momentum spectra and total fermion numbers computed
from both definitions agree with each other, though not
displayed here.
Furthermore, comparing to the gauge-invariant fermion

numbers in Hebenstreit et al. [6], we note that fluctuations
in the momentum spectra computed from our simulations
are sometimes much larger than those encountered for
example in Fig. 3 of [6]. We believe the reason for this to be
the different type of lattice fermions employed: While we
use Wilson fermions in the present work, Hebenstreit et al.
implemented low-cost fermions. We expect that if in our
Wilsonian approach we employed classical-statistical sam-
pling also in the homogeneous setting around a coherent
initial chromoelectric field, with increasing the number of
samples fluctuations in gauge-invariant fermion number
momentum spectra would continuously vanish.

APPENDIX B: ANALYTIC SU(2) PAIR
PRODUCTION RESULTS

Besides the original computation by Schwinger using
the one-loop effective action [49], it is possible to solve
the Dirac equation in homogeneous, constant background
Uð1Þ gauge fields using quantum kinetic theory [47].

Analogously, we can proceed in SUð2Þ gauge theory
upon diagonalizing color d.o.f. [46]. Most of the
derivation proceeds similarly to [45,47], reducing the
number of space-time dimensions to 2. We solely sketch
differences here.
We define an inner product for arbitrary mode functions

ϕ, χ as

ðϕajχbÞ≡
Z

dx ϕ†
aðt; xÞχbðt; xÞ; ðB1Þ

with color indices a, b restored. In what follows “in”
specifies a free fermionic initial state at time t → −∞;
“out” labels the asymptotically free but gauge-rotated
fermionic final state at time t → ∞. At t → −∞ we expand
the Dirac field color components ψa in momentum modes,

ψaðxÞ ¼
Z

dp
2π

ðϕin;þ
p;a ðxÞbinp;a þ ψ in;−

p;a ðxÞdin;†p;a Þ: ðB2Þ

We expand ψa as well in out-state momentum modes,

ψaðxÞ ¼
Z

dp
2π

ðϕout;þ
p;a ðxÞboutp;a þ ψout;−

p;a ðxÞdout;†p;a Þ; ðB3Þ

and find the Bogoliubov transformation coefficient

βðp; aÞ≡ 1

2ωp
ðϕout;þ

p;a jϕin;−
−p;aÞ; ðB4Þ

in order to arrive with βðpÞ≡ ðβðp; 1Þ; βðp; 2ÞÞ at

F ðpÞ≡ F ðt → ∞; pÞ≡ lim
V→∞

1

V

X
a

h0injaout;†p;a aoutp;aj0ini

¼ lim
V→∞

Trðβ†ðpÞβðpÞÞ; ðB5Þ

for the in-vacuum expectation value of the out-particle
number density operator. Here, V denotes configuration
space volume, finally taken to infinity. We note that if it is
possible to Abelianize color d.o.f., F ðpÞ is left invariant
upon the diagonalization scheme.
Restricting to a uniform, constant chromoelectric field

Ea
nðtÞ ¼ Ena with nana ¼ 1 for all n ∈ Λ, we can diago-

nalize color d.o.f. as in Sec. II C. We find a diagonalized
chromoelectric field diagðϵ=2;−ϵ=2Þ in units of Ec and
again label diagonalized color components by �, corre-
sponding to effective electric fields �E=2. Having applied
the diagonalization procedure, we proceed as in Uð1Þ
gauge theory [47] to finally find

FIG. 12. Abelianized fermion number momentum spectrum,
both diagonalized colors summed (violet, dashed line), compared
to the gauge-invariant fermion number momentum spectrum
(blue line) at time t ¼ 12=m. The employed lattice parameters
of both panels read L ¼ 25.6=m, a ¼ 0.05=m, at ¼ 0.02a,
g=m ¼ 0.1, NNLO improvements, constant chromoelectric field
ϵ ¼ ð2; 0; 0Þ.
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F ðpÞ ¼
X
�

1

8

�
1þ p̂�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2η� þ ðp̂�Þ2
p �

× e−πη
�=4

				
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2η� þ ðp̂�Þ2
q

− p̂�
�

×D−1þiη�=2ð−p̂�e−iπ=4Þ

− 2eiπ=4Diη�=2ð−p̂�e−iπ=4Þ
				2; ðB6Þ

with

p̂� ≡
ffiffiffiffiffiffiffi
� 4

ϵ

r
p� gEt=2

m
; ðB7aÞ

and

η� ≡� 2

ϵ
: ðB7bÞ

We denote the individual addends� in Eq. (B6) by F�ðpÞ.
F�ðpÞ approaches a nonvanishing constant value for
large p,

lim
p→∞

F�ðpÞ ¼ exp

�
−
2π

ϵ

�
; ðB8Þ

which translates, approximately, into a constant rate per
spatial volume L and per Abelianized color direction � at
which fermion-antifermion pairs are created [50,51],

_n�

L
¼ 1

T

Z
dp0

2π
Θðp0ÞΘðgET=2 − p0Þ lim

p→∞
F�ðpÞ

¼ m2ϵ

4π
exp

�
−
2π

ϵ

�
: ðB9Þ

The physically measurable, total production rate of fer-
mions and antifermions per volume L is thus given by

_n
L
≡ _nþ þ _n−

L
¼ m2ϵ

2π
exp

�
−
2π

ϵ

�
: ðB10Þ
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