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We examine the phase structure of an Abelian Chern-Simons system with relativistic charged matter
fields with a sixth-order potential. Using a large N technique, we compute the quantum effective potential
and the renormalization group function of the coupling to the next-to-leading order of the 1=N expansion in
terms of the Chern-Simons coefficient. The model has a phase which exhibits spontaneous breaking of
scale symmetry accompanied by a massless dilaton which is a Goldstone mode. We show that the beta
function of the sextic coupling exhibits, at the next order in the 1=N expansion, nontrivial running that we
analyze explicitly in terms of the Chern-Simons coefficient. Viewed as a dynamical system, the
renormalization group (RG) flow exhibits a topological normal form of a generic one-dimensional system
having a fold bifurcation. We demonstrate that the corresponding IR and UV fixed points, each describing a
conformal phase of the theory, approach each other until they merge, giving rise to a scaling behavior
similar to Berezinskii-Kosterlitz-Thouless phase transitions. Our study identifies a window in the parameter
space of the Chern-Simons coefficient where the renormalization group flow has a stable infrared fixed
point and where scale invariance is recovered. We also find that the Chern-Simons interaction modifies the
scaling dimension of the operator crossing marginality at the bifurcation points.
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I. INTRODUCTION

The O(N)-symmetric model of N component scalar
fields with sixth-order coupling, ηjΦj6, presents a unique
laboratory to study several interesting aspects of quantum
field theory, as well as critical and tricritical behavior
in condensed matter systems observed, e.g., in liquid
helium and in metamagnets [1]. In three dimensions the
theory is renormalizable and allows a 1=N expansion
with an interesting beta function for large N [2], βðηÞ ¼
ð3=4π2NÞη2ð1 − η=192Þ. It has an ultraviolet stable fixed
point at η ¼ 192, and an infrared stable fixed point at η ¼ 0.
For small positive values of η, the quadratic term in this beta
function shows that the coupling is marginally irrelevant. As
η increases, the cubic term becomes important and a
perturbative UV fixed point is reached at η� ¼ 192. More
interestingly, though, a self-consistent nonperturbative UV
fixed point was found in [3], in the strict N ¼ ∞ limit, at a
smaller value η ¼ 16π2 < η�, whereupon a mass is dynami-
cally generated, resulting in the spontaneous breaking
of scale symmetry in a nonperturbative way. This is seen
from the effective potential at the tricritical point, V ¼
ðN=3Þðη� − ηÞφ3, which shows that the system has various

phases. For η < η� there is no spontaneous symmetry
breaking (φ ¼ 0), and the system consists of N massless
noninteracting Φ particles. However, for the special value
η ¼ η�, a flat direction in φ opens up and any constant φ is a
solution. For a zero expectation value hφi ¼ 0, the theory
continues to consist of N massless Φ fields. When hφi ≠ 0,
the theory hasNmassiveΦ particles,which all have the same
mass due to the unbrokenO(N) symmetry, but in a phase that
breaks the scale invariance. The Goldstone boson associated
with the spontaneous breaking of scale invariance, the
dilaton, is massless and identified as the O(N) singlet field
φ − hφi. All the particles are noninteracting in the infiniteN
limit. For larger values of η the effective potential is
unbounded from below, and the system becomes unstable.
The analysis of [3] suggests that the instability reflects the
inability to define a renormalizable interacting theory. All
masses are of the order of the cutoff and there is no
mechanism to scale them down to low mass values, i.e.,
the theory depends strongly on its UV completion. Other
aspects of that phenomenon including 1=N corrections were
analyzed in [4,5]. Models with non-Abelian Chern-Simons
gauge fields [6] and the fate of light dilaton under 1=N
corrections [7] were also investigated.
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In this paper we investigate these phenomena in theUð1Þ
gauged (2þ 1)-dimensional theory with a Chem-Simons
term. The possibility of describing gauge theories with a
Chern-Simons term rather than with a Maxwell term is a
special feature of odd-dimensional space-time, and the
2þ 1-dimensional case is especially distinguished since
the derivative part of the Chern-Simons Lagrangian is
quadratic in the gauge fields. This is important from
condensed matter point of view since at long distance,
the Chern-Simons term having only one derivative is
expected to dominate over the Maxwell term which has
two derivatives. Another important feature of Chern-
Simons theories is that the Chern-Simons term can be
induced by radiative quantum effects, even if it is not
present as a bare term in the original Lagrangian. The
simplest manifestation of this phenomenon occurs in 2þ 1-
dimensional QED, where a Chern-Simons term is induced
in a simple one-loop computation of the fermion effective
action [8]. A Chern-Simons term can also be induced in
gauge theories without fermions, and in the broken phases
of Chern-Simons-Higgs theories [9]. On the other hand, it
should be noted that the Chern-Simons gauge field does not
have any real dynamics of its own—it is a nonpropagating
field which inherits its dynamics from the matter fields to
which it is minimally coupled, and so it can be coupled to
either relativistic or nonrelativistic matter fields. The
implementation of this canonical structure in a quantum
theory leads to many interesting features in Chern-Simons
theories. For instance, a pure Chern-Simons theory with a
symmetry breaking relativistic scalar field potential sup-
ports vortex solutions analogue of the Bogomol’nyi self-
dual structure of the Abelian-Higgs model [10], provided a
suitable sixth-order scalar potential is chosen [11]. Such
calculations carried out within the framework of the
photonless gauge theory [12] support soliton solutions that
minimize the energy within certain constraints of topo-
logical nature, characterized by first-order self-dual equa-
tions if the Higgs potential takes a special form involving
jΦj6 potential instead of the standard fourth-order self-
interaction scalar potential. Moreover, in Chern-Simons
theories the phenomenon of quantum breaking of classical
scale invariance takes on more interesting aspects. This
occurrence was recognized in Chern-Simons theories with
nonrelativistic matter fields with quartic self-interactions in
which case one-loop correction to the quantum effective
potential break scale invariance, unless the quartic coupling
g is chosen to take its self-dual value g ¼ 1=κ (which means
self-duality condition in the quantum theory is tied to the
preservation of scale invariance) [13]. In recent years,
Chern-Simons theories have found diverse applications
in condensed matter physics. For example, the possibility
of anyonic statistics [14] and anyonic theories of super-
conductivity can be elegantly formulated by using the
Chern-Simons term [15]. Chern-Simons theories were also
featured in describing the phase transitions between

quantum Hall liquids and insulators [16], in the quantum
phase transitions of quantum antiferromagnets in two spatial
dimensions [17], and in the insulator-superconductor quan-
tum transition in Josephson junction array systems [18].
In this work we uncover another aspect of the tricritical

behavior of the gauged (2þ 1)-dimensional ηjΦj6 theory,
which will be analyzed with a controlled large N technique
combined with a renormalization group procedure. We
compute the quantum effective potential from which we
obtain information about the phase diagram and the beta
functions of the coupling at the next order in the 1=N
expansion. We invoke bifurcation method of dynamical
systems to analyze the renormalization group flow, as was
proposed in other models [19]. This paper is organized as
follows. In Sec. II, the gauged model is introduced. In
Sec. III, the effective potential is derived to leading order of
the large N technique. In Sec. IV, the corrections to the
effective potential arising from the scalar fields and the
fluctuating gauge fields are computed and used to derive
the renormalization group flow beta function. In Sec. V, the
fixed points of the model are examined analytically and
numerically in terms of the Chern-Simons coefficient, and
we determine the domains in the parameter space where
fixed points exist. Finally Sec. VI summarizes the results.

II. THE MODEL

We consider the model defined by the three-dimensional
Euclidean action:

S ¼
Z

d3x

�
jð∂μ − iaμÞΦj2 þ rjΦj2 þ λ

2N
jΦj4 þ η

3N2
jΦj6

þ i
κ

2
Naμϵμνλ∂νaλ

�
: ð1Þ

In order to facilitate the 1=N expansion, this theory is
enlarged to an O(N)-symmetric model and all couplings are
rescaled to produce a meaningful N → ∞ limit. The model
at hand is renormalizable in (2þ 1) dimensions by the
standard power counting procedure and possesses the usual
UV divergences.

III. EFFECTIVE POTENTIAL
AT THE LEADING ORDER

To get the effective potential, we examine the fluctua-
tions in the Euclidean functional integral

eWðJÞ ¼
Z

DΦDΦ† exp

�
−Sþ

Z
d3xðJ† ·Φþ J ·Φ†Þ

�
;

ð2aÞ
where the source J is introduced in order to use the
functional integral as a generating functional for the
correlators of Φ. For instance the two-point connected
correlation functions are
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δ2W
δJ†ðx1ÞδJðx2Þ

����
J¼0

¼ hΦðx1ÞΦ†ðx2Þi: ð2bÞ

The generating functional of the connected one-particle
irreducible correlation functions is obtained by performing
a Legendre transformation

ΓðΦÞ ¼ −WðJÞ þ
Z

d3xðJ† ·Φþ J ·Φ†Þ; ð3aÞ

and

ΓðnÞðx1; x2;…; xnÞ ¼
δnΓ

δΦðx1ÞδΦðx2Þ…δΦðxnÞ
; ð3bÞ

The effective potential is obtained from the action for
x-independent Φ,

ΓðΦÞ ¼ ð2πÞ3δ3ðp ¼ 0ÞVeffðΦÞ: ð3cÞ

In order to facilitate a systematic 1=N expansion we
introduce a pair of auxiliary fields σ and χ and rewrite
the scalar potential Eq. (1) as

U ¼ σðjΦj2 − NχÞ þ N

�
rχ þ λ

2
χ2 þ η

3
χ3
�
: ð4Þ

The functional integral over σ from −i∞ to i∞ gives a
delta function which renders the physical content of
Eqs. (4) and (1) identical. The leading order (in 1=N)
effective potential Veffðσ; χÞ is obtained by integrating out
the Φ field which appears in Eq. (4) in a quadratic form

Veffðσ; χÞ ¼ N

�
−σχ þ rχ þ λ

2
χ2 þ η

3
χ3
�

þ N
Z
p
lnðp2 þ σÞ�: ð5Þ

Here we adopt the convention that the Fourier integralR
p ≡

R
d3p=ð2πÞ3, which is used throughout this paper. We

study the region of phase diagram where the O(N) is
unbroken, but when the system is in a phase with sponta-
neously broken scale invariance, characterized by nonzero
condensates for χ and σ. In the symmetric phase with zero
expectation value of the field Φ, the vacuum structure is
characterized by the gap equations:

∂V
∂σ ¼ N

Z
p

1

p2 þ σ
− Nχ ¼ 0; ð6aÞ

whose solution is

φ ¼
ffiffiffi
σ

p
4π

¼ m
4π

; ð6bÞ

where m assumes the role of mass and the momentum
integral has been cut off at p ¼ Λ ≫ m. The renormalized
fields are defined by φ ¼ −χ þ Λ=ð2π2Þ. Eliminating the
unphysical fields σ using the above gap equations, we
obtain the leading order effective potential:

Vð0Þ
eff ðφÞ=N ¼ 1

3
ð16π2 − ηÞφ3 þ λ

2
φ2 − rφ: ð7Þ

In Eq. (7), the parameters r, λ have been renormalized in
order to make the effective potential cutoff independent. At
the leading order (in 1=N), the coupling η remains
unrenormalized. Furthermore, for the theory to make sense,
we require that the effective potential be bounded from
below: η < 16π2.

IV. EFFECTIVE POTENTIAL
AT NEXT-TO-LEADING ORDER

A. Scalar field contribution

To find the effective action to the next-to-leading order in
large N, we expand the action to quadratic order in the
shifted fields δσ, defined as σ ¼ m2 þ iδσ. Differentiating
twice the action with respect to these fields, one obtains

δ2V
δσδσ

¼ 0;
δ2V
δσδχ

¼−i;
δ2V
δχδχ

¼ λ−2ηφ≡A: ð8Þ

Integrating out the quadratic scalar fluctuations, we
obtain the next-to-leading order contribution to the effec-
tive potential

Veff=N ¼
�
−
m3

6π
þ φm2

�
þ VðφÞ þ 1

2N

Z
p
ln ð1þ AΠÞ

ð9aÞ

where

ΠðpÞ ¼
Z
k

1

ðk2 þm2Þ½ðkþ pÞ2 þm2� ¼
1

4πp
tan−1

�
p
2m

�
:

ð9bÞ
The integral in the next-to-leading order contribution

equation (9a) presents new divergences which require
renormalization. In order to eliminate divergent terms
involving powers of m in the numerator, we express the
effective action in terms of the renormalized masses M,
which is defined from the self-energy Σðp;mÞ in diagram
in Fig. 1. The two-point function and the renormalized
mass M are given by

FIG. 1. Scalar field self-energy.
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Γð2Þðp;mÞ ¼ p2 þm2 − Σðp;mÞ ð10aÞ

M2 ¼ m2 − Σð0; mÞ þm2Σ0 ð10bÞ

where Σ0 ¼
h∂Σðp;mÞ

∂p2

i
p¼0

.

Evaluating diagram Fig. 1 we find

Σðp;mÞ ¼ −
Z
q

DσσðqÞ
ðqþ pÞ2 þm2

¼ −
Z
q

A
½ðqþ pÞ2 þm2�½1þ AΠ� : ð10cÞ

At this order in the large N expansion, in the pure scalar
case, no infinite Φ-field wave-function renormalization is
needed as can be seen by inspecting

�∂Σðp;mÞ
∂p2

�
p¼0

¼−1
3

Z
q

�
1

ðq2þm2Þ2−
4m2

ðq2þm2Þ3
�
DσσðqÞ

ð10dÞ

which yields a finite contribution. The divergent terms in
the self-energy for m at zero momentum are found by
expanding DσσðqÞ in a Taylor expansion in A:

Σdivð0; mÞ ¼ −
Z
q

1

q2 þm2
fA − A2ΠðqÞ þ � � �g

¼ −A
�

Λ
2π2

−
m
4π

�
þ A2

16π2
ln

�
Λ
m

�
: ð10eÞ

Now replacingm in Eq. (9a) by its renormalized quantity

m2 ¼ M2 þ Σð0;MÞ −M2Σ0; ð10fÞ

results in the cancellation of all divergent terms propor-
tional to m in the next-to-leading order contribution to the
effective potential [these are the first-, second- and third-
order terms in a Taylor expansion in A of the last term in
Eq. (9a)]. The remaining divergent terms involving φ can
be canceled by counterterms added to VðφÞ, which intro-
duce a scale μ, and the effective potential now reads as

Veff=N¼VðφÞþ
�
−
M3

6π
þφM2þ 1

N

�
φ−

M
4π

�
ðΣreg−M2Σ0Þ

�

þ 1

2N

Z
F:P

p
ln½ð1þAΠÞ�

þ 1

16Nπ2

�
φA2þ 1

384
A3

�
ln

�
μ

M

�
: ð10gÞ

The letters F.P on the integral indicate that its divergent
terms have been subtracted out to make the integral
finite. The last logarithmic terms in this renormalized
effective potential clearly show that scale invariance is

indeed violated. Since the effective potential is a physical
quantity that should not depend on the renormalization
scale [20], we require its couplings to depend on that scale
in such a way that the coefficients of Veff , when expanded
in powers of the fields φ, do not depend on the scale μ. This
yields the following β functions of the ungauged model:

β0ðrÞ ¼
λ2

16π2N

�
1 −

η

64

�
ð11aÞ

β0ðλÞ ¼
ηλ

2π2N

�
1 −

η

128

�
ð11bÞ

β0ðηÞ ¼
3η2

4π2N

�
1 −

η

192

�
: ð11cÞ

B. Gauge fields contribution

In this section we consider the full gauge invariant action
in Eq. (1). The first step is to integrate out the Φ degrees of
freedom which leads to an effective action for the gauge
fields that has, besides the Chern-Simons term in Eq. (1),
induced Maxwell terms from the bosonic functional deter-
minant

SGðaμÞ ¼ NTr ln½−ð∂μ − iaμÞ2 þm2�: ð12aÞ

Expanding this nonlocal term about aμ ¼ 0 and keeping
only quadratic terms in the fields gives at an intermediate
step

SGðaμÞ¼
N
2

Z
q
aμð−qÞΓðqÞδTμνaνðqÞ−κaμð−qÞϵμλνqλaνðqÞ

ð12bÞ

here δTμν ¼ ðδμν − qμqν=q2Þ and where the ΓðqÞ term arises
from the usual bosonic one-loop polarization diagrams
[10], which are expressed as

2

Z
k

δμν
k2 þm2

−
Z
k

½2kμ þ qμ�½2kν þ qν�
ðk2 þm2Þððkþ qÞ2 þm2Þ ¼ ΓðqÞδTμν:

ð12cÞ

A full analytic evaluation of the integrals is possible
using some standard steps, and the result is

ΓðqÞ ¼ q2 þ 4m2

8πq
tan−1

�
q
2m

�
−

m
4π

: ð12dÞ

The resulting gauge propagator in Landau gauge is
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GμνðqÞ ¼
1

N

�
ΓðqÞ

Γ2ðqÞ þ q2κ2
δTμν þ

κ

Γ2ðqÞ þ q2κ2
ϵμλνqλ

�
:

ð12eÞ

Next, integrating out the gauge fluctuations yields a new
next-to-leading order contribution to the effective potential

Vð1Þ
gauge ¼ 1

2

Z
q
ln ½Γ2 þ κ2q2�: ð13aÞ

We find it convenient to subtract out the zero mass terms
from this contribution and write it as

Vð1Þ
gaugeðmÞ − Vð1Þ

gaugeð0; 0Þ ¼ 1

2

Z
q
ln

�
1þ ϵ

�
28Γ2

q2
− 1

��

ð13bÞ

where the parameter ϵ ¼ 1=½1þ ð16κÞ2� takes values in
the interval [0, 1] with ϵ ¼ 0 corresponding to no gauge
coupling (pure scalar model) and ϵ ¼ 1 corresponding
to zero Chern-Simons term (gauge model with induced
Maxwell term). The gauge fields contribution to the
effective potential equation (13b) presents divergences
which are contained in the first-, second- and third-order
terms in a Taylor expansion in ϵ. To handle such diver-
gences we first express the effective action in terms of the
renormalized mass M which involves another self-energy
Σgaugeðp;mÞ in diagram Fig. 2 and by adding counterterms
to VðφÞ:

Σgaugeðp;mÞ ¼
Z
q

ð2pμ þ qμÞGμνðqÞð2pν þ qνÞ
ðpþ qÞ2 þm2

¼ 4

Z
q

½p2 − ðp · qÞ2=q2Þ�ΓðqÞ
ðΓ2 þ κ2q2Þ½ðpþ qÞ2 þm2� : ð13cÞ

This is easily evaluated to give

Σgaugeð0; mÞ ¼ 0 ð13dÞ
�∂Σgaugeðp;mÞ

∂p2

�
p¼0

¼ 64ϵ

3π2
ln

�
Λ
m

�
: ð13eÞ

The divergence in Eq. (13e) introduces infinite scalar
field wave-function renormalization Φ ¼ Z1=2 ΦR, with
Z ¼ 1þ ∂Σgauge=∂p2. The term introduced by mass
renormalization is

−
�
φ −

M
4π

�
M2

�∂Σgaugeðp;mÞ
∂p2

�
p¼0

: ð13fÞ

These terms are proportional to (φ − M
4π) and vanish on

shell. The remaining terms in the gauge field contribution
to the effective potential including logarithmic divergent
terms are

Vð1Þ
gauge ¼ 1

2

Z
F:P:

q
ln

�
1þ ϵ

�
28Γ2

q2
− 1

��

−
210

3
ϵ ln

�
μ

M

��
1 −

�
3

2
þ 12

π2

�
ϵþ 16

π2
ϵ2
�
φ3:

ð13gÞ

Collecting the leading order contribution in Eq. (7) and the
two next-to-leading order contributions in Eqs. (10g) and
(13g) give the complete effective potential to that order
which has an explicit dependence on the renormalization
scale. Since this scale is unphysical, there must be implicit
dependence of Veff on μ through the couplings and the
fields so that μ dV

dμ ¼ 0. This renormalization group equation
leads to the new β functions which now take account of
wave-function renormalization and are expressed in terms
of the ones we already found in the ungauged model as

βðηÞ ¼ β0ðηÞ − η
64ε

π2N
−
212

N
ϵ

�
1 −

�
3

2
þ 12

π2

�
ϵþ 16

π2
ϵ2
�
:

ð14Þ

The correction terms with powers of ϵ arise from the
gauge fields contribution. The beta function of r is as in
Eq. (11a), but with an extra term −r64ϵ=ð3π2NÞ, which
accounts for the wave-function renormalization. Similarly,
the beta function of λ is as in Eq. (11b) but with an extra
term −λ128ϵ=ð3π2NÞ. Consequently, both beta functions
for λ and r also vanish as well at λ ¼ r ¼ 0 in the presence
of Chern-Simons term.

V. FIXED POINTS ANALYSIS

We examine the theory at its tricritical point r ¼ λ ¼ 0
and we redefine η ¼ 192x. The beta function reads

_x ¼ x2 −
4ϵx
9

− x3 − α ð15Þ

where _x stands for π2N
144

dx=d lnðμÞ and α ¼ 4π2

27
ϵ½1−

ð3
2
þ 12

π2
Þϵþ 16

π2
ϵ2�. The set of fixed points is now obtained

from _x ¼ 0 and the general form of them is rather involved.
We know, however, that either one or three solutions will be
possible. Instead of finding analytically these points, we
will use a physically illustrative approach. The fixed points
are found at the intersection of the curveFIG. 2. Gauge fields self-energy.
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y1 ¼ x2 − x3 −
4ϵx
9

ð16Þ

and the constant line y2 ¼ α. Very different qualitative
behaviors are observed depending on the parameter ϵ. For
0.11024 < ϵ < 0.53965 or ϵ > 0.57192 a single fixed
point is obtained (an example is shown in Fig. 3), whereas
for 0.53965 < ϵ < 0.57192 three simultaneous fixed points
are present. As we move the constant line y2, we can see
that it crosses the y1 curve in different ways. For some
values only one crossing is allowed (giving a single fixed
point) whereas for a domain of values three crossings occur.
We show in Fig. 4, the corresponding curve with the

location of the fixed points x� ¼ x�ðϵÞ, as defined by the
implicit function x2 − x3 − 4ϵ

9
x − α ¼ 0. We note the shape

in the folded curve. A consequence of this folded curve is
the presence of a hysteresis effect.
The impact of this folded curve on the system’s dynam-

ics is illustrated in Fig. 5, which shows a zoom of the curve
x�ðϵÞ and shows the change in the states as ϵ is contin-
uously tuned. Starting from point 1 on the curve and

continuously tuning ϵ so that the state moves continuously
on the curve as the control parameter is varied. After
reaching point 2 the state jumps into the lower part of the
curve (at 3) and if we keep reducing ϵ a new point is
reached under continuous changes (4). On the other hand,
starting from 3 and increasing ϵ, the state does not jump
back to 2 but instead moves on to the lower branch until the
fold is reached again, this time at point 5. A new jump
occurs, but with a completely different trajectory. This
illustrates that a slow change of the control parameter does
not always produce a slow dynamical response.
To show that the beta function exhibits a topological

normal form of a generic one-dimensional system having a
fold bifurcation (also known as limit point bifurcation or
saddle-node bifurcation), we expand the beta function
around the turning points up to second-order terms. This
gives

βðx; ϵÞ ¼ ∂β
∂ϵ ðϵ − ϵjÞ þ

1

2

∂2β

∂x2 ðx − xjÞ2 ð17Þ

where ϵj, xj represent the location of the fold, which are
given by (ϵ1 ¼ 0.11, x1 ¼ 0.64), (ϵ2 ¼ 0.54, x2 ¼ 0.51),
and (ϵ3 ¼ 0.57, x3 ¼ 0.17). In deriving Eq. (17), we used
βðxj; ϵjÞ ¼ 0 at the fixed points and ∂β=∂x ¼ 0 at
the turning points (fold). Furthermore, terms such as
ðϵ − ϵjÞ2; ðϵ − ϵjÞðx − xjÞ are dropped because we
assumed jx − xjj ≫ jϵ − ϵjj. We note that around ðx1; ϵ1Þ
both ∂β

∂ϵ and
∂2β
∂x2 are negative; around ðx3; ϵ3Þ both ∂β

∂ϵ and
∂2β
∂x2

are positive; and around ðx2; ϵ2Þ, ∂β
∂ϵ is positive and ∂2β

∂x2 is
negative. The corresponding IR and UV fixed points, each
describing a conformal phase of the theory approach each
other until they merge at x ¼ xj. To see that fixed point
merger generically gives rise to Berezinskii-Kosterlitz-
Thouless (BKT) scaling, consider for example the case
where ϵ is slightly below ϵ2, and that at a UV scale the
coupling takes an initial value xUV < x2 as seen in Fig. 6.
On scaling to the IR, the coupling then flows to larger

values, lingering near x2 where the beta function is small,
and then blowing up quickly, defining an intrinsic IR scale,

FIG. 3. Plot of the two curves y1 ¼ x2 − x3 − 4ϵ
9
x (for ϵ ¼ 0.5)

and y2 ¼ α (dashed lines) whose intersections define the possible
fixed points.

FIG. 4. Folded curve associated with the possible fixed points.

FIG. 5. Folded curve associated with the possible fixed points
and hysteresis effect.
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which is insensitive to the initial value xUV. The scale IR
will characterize the longest correlation length in this
theory, and can be computed by integrating Eq. (17):

ΛIR

ΛUV
¼ exp½tIR − tUV� ¼ exp

�Z
xIR

xUV

dx
βðx; ϵÞ

�

¼ e−cπ=
ffiffiffiffiffiffiffi
ϵ2−ϵ

p ð18Þ
with c a constant. This indicates that the energy scales
exponentially (i.e., Miransky scaling [21]) close to the
bifurcation, and also indicates a walking behavior of the
mass just below the conformal window. The scaling dimen-
sion of the operator crossingmarginality at the bifurcations is
related to the eigenvalues of the Jacobian of the normal form
equation (17), with saddle-node bifurcation at ϵj, xj. This
gives the eigenvalue of the operator crossing marginality

� ∂2β

∂x2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2 ∂β

∂ϵ ðϵ − ϵjÞ
∂2β
∂x2

vuut ð19Þ

which is equal to the anomalous dimension of the sextic term
at the bifurcation

γ ¼ Δ6 − 3 ¼ � ∂2β

∂x2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2 ∂β

∂ϵ ðϵ − ϵjÞ
∂2β
∂x2

vuut ð20Þ

(ϵ1¼0.11,x1¼0.64) (ϵ2¼0.54,x2¼0.51) (ϵ3¼0.57,x3¼0.17)

γ ∓ 27.45
N

ffiffiffiffiffiffiffiffiffiffiffiffi
ϵ1 − ϵ

p ∓ 15.41
N

ffiffiffiffiffiffiffiffiffiffiffiffi
ϵ − ϵ2

p � 16.77
N

ffiffiffiffiffiffiffiffiffiffiffiffi
ϵ3 − ϵ

p

This shows another feature of Chern-Simons matter
interaction, namely it modifies the scaling dimensions of
operators crossing marginality at the bifurcation points as
seen in the above table. Before summarizing our results, we
make some comments about the model with an added
Maxwell term to the action in Eq. (1) with a dimensionful

gauge coupling e2. Accordingly, the gauge propagator in
Eq. (12e) and the effective potential in Eqs. (13a) and (13b)
have to be modified by shifting Γ into Γþ q2=e2. In such a
case the resulting logarithmic divergent terms in the
gauge field contribution to the effective potential turn into
lnðΛ=mÞ½ðe4=16πÞφþ 2πe2φ2�, instead of those terms in
Eq. (13g). These contribute to the beta functions of r and λ but
not to the sextic coupling η. Consequently, in the Maxwell-
Chern-Simons case the RG flow of themarginal coupling η is
unaffected by the gauge fluctuations at least up to first
subleading order in 1=N expansion. Therefore, our analysis
of the phase structure of the fixed points involving the Chern-
Simons term should remain valid at energies well below the
scale set by the dimensionful gauge coupling e2.

VI. SUMMARY

We examined a U(1)-symmetric model in three-
dimensional space-time with a scalar field coupled to a
Chern-Simons term. The investigation was focused on the
neighborhood of the tricritical point, where the renormal-
ized quadratic and quartic couplings are set to zero and only
the sextic operator is retained. Using a large N technique,
we computed the quantum effective potential and the field
renormalization (effect of anomalous dimensions) from
which we derived the beta function of the scalar coupling.
The model has a phase which exhibits spontaneous break-
ing of scale symmetry accompanied by a massless dilaton
which is a Goldstone mode. In this relativistic quantum
field theory, the Abelian Chern-Simons term receives no
correction from interacting with matter fields. This results
in an identically vanishing beta function for the Chern-
Simons coupling. The insensibility of the Chern-Simons
coupling to energy scale is attributed to the topological
nature of the Chern-Simons action. However, the scalar
fields in this theory require infinite renormalization and
receive anomalous dimensions. We showed that the beta
function of the sextic coupling exhibits, at the next order in
the 1=N expansion, nontrivial running that we analyzed
explicitly in terms of the Chern–Simons coefficient. The
specific feature of the RG flow, viewed as a dynamical
system, exhibited a topological normal form of a generic
one-dimensional system having a fold bifurcation. The
control parameter is connected with a marginal operator
(Chern-Simons). We identified a window in the parameter
space where the renormalization group flow has a stable
infrared fixed point at which scale invariance is recovered.
However, as the control parameter is varied, the IR and UV
fixed points in this theory, each describing a conformal
phase of the theory, approach each other and ultimately
collide, giving rise to a scaling behavior similar to BKT
phase transition, although here it happens in a context
different from the original BKT phase transition. We also
found that the Chern-Simons interaction modifies the
scaling dimension of the operator crossing marginality at
the bifurcation points.

FIG. 6. Beta function. For ϵ > ϵ2 (red curve) there are two fixed
points at x� which areUVand IR stable; these fixed pointsmerge at
x2 for ϵ ¼ ϵ2 (green curve), and disappear for ϵ < ϵ2 (blue curve).
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Note added.—Recently, we became aware that the new
added Ref. [22] deals with a Φ6 model coupled to non-
Abelian Chern-Simons theory. The flow of the coupling of
the sextic term in the potential in that paper is a third-order
polynomial similar to our finding. The difference, though,
is that in the Abelian model considered here we are able to

compute exactly all coefficients of the third-order poly-
nomial, up to first subleading order in 1=N; while in [22]
only the coefficient of the cubic term (x36 in the notation of
[22]) is found exactly and the lower coefficients are only
known perturbatively but not for all values of the ’t Hooft
coupling. Furthermore, contrary to the conjecture made in
[22] pertaining to the flow always having three fixed points
at every nonzero value of the ’t Hooft parameter, we
demonstrate here that for certain values of the Chern-
Simons gauge coupling, the beta function of the sextic term
has only one fixed point rather than three. This occurs as
shown here when two fixed points collide and annihilate
each other leaving only one repulsive fixed point.
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