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We study the transverse single-spin asymmetries for p↑p → πX and p↑p → γX within the so-called
color gauge invariant generalized parton model (CGI-GPM) which, in addition to spin and transverse
momentum effects, includes initial and final state interactions with the polarized proton remnants. We
compute all relevant contributions, focusing in particular on the process dependence of the gluon Sivers
function, which, for these processes, can always be expressed as a linear combination of two independent,
universal terms. This study extends and completes a previous one, where only quark initiated partonic
processes were considered. We then perform a combined phenomenological analysis of RHIC data on
transverse single-spin asymmetries in p↑p → πX and p↑p → DX, putting the first preliminary constraints
on these two gluon Sivers functions. We show how their size can be estimated by means of these data,
and use our results to provide predictions for the process p↑p → J=ψX, comparing them with data, and
p↑p → γX, for which experimental information will soon become available. Corresponding estimates
within the simpler GPM approach, without initial and final state interactions and with a single universal
gluon Sivers function, are also given, showing that a clear discrimination between these two models is,
for the moment, not possible.

DOI: 10.1103/PhysRevD.99.036013

I. INTRODUCTION

Among the various transverse momentum dependent
parton distribution and fragmentation functions (TMDs for
short), the Sivers function [1,2] is of great interest, both
experimentally and theoretically. It is related to the asym-
metry in the azimuthal distribution of unpolarized quarks
and gluons inside a high-energy proton that is transversely
polarized with respect to its momentum. As such, it can in
turn give rise to azimuthal asymmetries of the produced
particles in high-energy scattering processes initiated by
transversely polarized protons. Moreover, the Sivers func-
tion is known to be very sensitive to the color exchanges
among initial and final states, and to the color flow in
the scattering processes. These peculiar properties have a

clear signature [3,4], providing a strong test of the TMD
formalism.
A first evidence of a nonzero Sivers distribution for

quarks has come from data on single spin asymmetries for
semi-inclusive deep inelastic processes (SIDIS), measured
by the HERMES Collaboration at DESY [5], and con-
firmed later by the COMPASS Collaboration at CERN [6].
Nowadays, thanks to a continuous and dedicated exper-
imental investigation and to new phenomenological extrac-
tions, it can be considered established.
The knowledge of the quark Sivers function, quite

important by itself, provides an indirect constraint on the
much less known gluon Sivers function by means of the
Burkardt sum rule [7], which states that the transverse
momenta of all unpolarized partons inside a transversely
polarized proton add up to zero. Available parametrizations
for the quark Sivers function [8,9] almost fulfill, within
uncertainties, the Burkardt sum rule, pointing toward a
small gluon contribution. This is consistent with theoretical
arguments valid in the large-Nc limit of QCD [10,11],
according to which the gluon Sivers function should be
suppressed by a factor 1=Nc with respect to the valence
quark Sivers distributions at values of the light-cone
momentum fraction x of the order of 1=Nc.
Turning now to the discussion of direct probes of the

gluon Sivers effect, we note that a first extraction of the
gluon Sivers function from very precise data on single spin
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asymmetries in p↑p → π0X at central rapidities [12] has
been attempted in the framework of the generalized parton
model (GPM) [13]. In this approach, the TMD formalism is
applied even to single-scale processes and transverse
momentum dependent distribution and fragmentation func-
tions are conditionally taken to be universal. Although
lacking a formal proof, the GPM is phenomenologically
very successful in describing many processes for which
data are available, see Refs. [14–20].
In the meantime, a color gauge invariant formulation

of the GPM, named CGI-GPM [21–23] has been proposed,
in which the effects of initial (ISI) and final (FSI) state
interactions on the quark Sivers function are taken into
account, within a one-gluon exchange approximation. As a
result, the Sivers function for quarks becomes nonuniver-
sal, and its process dependence can be absorbed into the
partonic cross sections. Hence, in the calculation of
physical observables, for example in proton-proton colli-
sions, one can still use the quark Sivers functions obtained
from SIDIS data, but they need to be convoluted with the
modified partonic cross sections calculated in Ref. [21].
In particular, the CGI-GPM can reproduce the expected
opposite relative sign of the quark Sivers functions in
SIDIS and in the Drell-Yan processes [3,4].
In Ref. [24], the CGI-GPM has been for the first time

extended to the gluon Sivers function in the study of
inclusive J=ψ and D meson production in proton-proton
collisions at RHIC. These processes, as compared to pion
production, have the advantage of probing gluon TMDs
directly, since quark induced subprocesses can be safely
neglected in the kinematical regions considered. Similarly
to the quark case, the process dependence of the gluon
Sivers function can still be absorbed into the hard partonic
cross sections. However, one needs to introduce two
different classes of modified partonic cross sections,
corresponding to the two different ways in which a
color-singlet state can be formed out of three gluons,
i.e., either through an antisymmetric or a symmetric color
combination. Each one of them has to be convoluted with a
different gluon Sivers distribution. These two universal and
independent distributions are named, respectively, the
f-type and d-type gluon Sivers functions [25], or A1 and
A2 in the notation of Ref. [26]: the former is even under
charge conjugation, while the latter is odd. It turns out that
only the f-type distribution contributes to J=ψ production, at
least in the analyzed kinematical region where the color-
singlet mechanism is dominant, while for D-meson produc-
tion the d-type is the most relevant one [24]. Corresponding
studies, within the GPM framework only, have been pre-
sented in Ref. [27] and later on in Refs. [28,29].
In the present paper we extend the formalism of the CGI-

GPM to the processes p↑p → πX and p↑p → γX. We
calculate all modified partonic cross sections induced by
gluons, needed for a re-analysis of the RHIC pion data of
Ref. [12]. These results are therefore complementary to the

quark-induced ones published in Ref. [21]. Moreover, we
perform a detailed phenomenological analysis and show
how it is possible to disentangle and give an estimate of the
size of the two gluon Sivers functions. To this end we study,
in the same framework (see Ref. [24]), also the latest
available data on inclusive D-meson production [30]. We
then compare our new predictions for single spin asym-
metries in p↑p → J=ψX with the most recent RHIC data
[31] and give the corresponding theoretical estimates for
the kinematics reachable at LHC with a fixed polarized
target. Finally, we give predictions for the process p↑p →
γX currently under investigation at RHIC, for which data
are expected in the near future.
The paper is organized as follows: in Sec. II we present

the leading order partonic cross sections, within the
framework of the CGI-GPM, for the gluon induced sub-
processes that contribute to the Sivers asymmetry in p↑p →
hX (Sec. II A) and in p↑p → γX (Sec. II B). In Sec. III we
perform a phenomenological analysis of available data on
single spin asymmetries in p↑p → πX and p↑p → DX
putting some reliable constraints on the gluon Sivers
function, then in Sec. III B we present our predictions
for the same observable in p↑p → J=ψX (for which a
comparison with data is possible) and p↑p → γX.
Conclusions and final remarks are collected in Sec. IV.
The color factors needed for the calculation of the hard
functionsHInc

ab→cd within the CGI-GPM are listed in the two
Appendixes.

II. THEORETICAL FRAMEWORK

The single-spin asymmetries (SSAs) for the processes
p↑p → hX and p↑p → γX are defined as follows

AN ≡ dσ↑ − dσ↓

dσ↑ þ dσ↓
≡ dΔσ

2dσ
; ð1Þ

where dσ↑ð↓Þ denotes the single-polarized cross
section, in which one of the protons in the initial state
is polarized along the transverse direction ↑ (↓) with
respect to the production plane. As extensively studied
in Ref. [16], within a TMD approach, the numerator of
the asymmetry is mainly driven by only two contribu-
tions: the Sivers [1,2] and the Collins [32] effects.
Furthermore, in suitable kinematical regions, as we are
going to discuss below, only the Sivers effect can be
sizeable. Hence, the numerator of the asymmetry is
sensitive to the quantity [33]

Δf̂a=p↑ðxa; k⊥aÞ≡ f̂a=p↑ðxa; k⊥aÞ − f̂a=p↓ðxa; k⊥aÞ
¼ ΔNfa=p↑ðxa; k⊥aÞ cosϕa

¼ −2
k⊥a

Mp
f⊥a
1T ðxa; k⊥aÞ cosϕa; ð2Þ
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with f̂a=p↑ðxa; k⊥aÞ being the number density of partons a
with light-cone momentum fraction xa and transverse
momentum k⊥a ¼ k⊥aðcosϕa; sinϕaÞ inside the trans-
versely polarized proton with mass Mp, which is taken
to move along the ẑ-axis. The Sivers distribution of
parton a is represented either by ΔNfa=p↑ðxa; k⊥aÞ or
f⊥a
1T ðxa; k⊥aÞ and fulfills the following positivity bound

jΔNfa=p↑ðxa; k⊥aÞj ≤ 2fa=pðxa; k⊥aÞ; or

k⊥a

Mp
jf⊥a

1T ðxa; k⊥aÞj ≤ fa=pðxa; k⊥aÞ: ð3Þ

We note that, since a can be either a quark (antiquark) or a
gluon, the Sivers contribution to the asymmetry can be
expressed as a sum of two terms, namely

AN ¼ Aquark
N þ Agluon

N ; ð4Þ

where quark (gluon) refers to the parton inside the polarized
proton in the numerator of AN . The quark and gluon
contributions to AN cannot be directly disentangled either
in p↑p → πX or in p↑p → γX. For this reason, in our
numerical studies, focused on the extraction of the gluon
Sivers function, we will use all the available information on
the quark Sivers functions coming from the analysis of
azimuthal asymmetries in SIDIS processes.
In the next two subsections, we provide the explicit

expressions of the numerators of the asymmetries for
p↑p → πX and p↑p → γX, respectively, in the CGI-
GPM approach. The corresponding formulas for p↑p →
J=ψX and p↑p → DX are given in Ref. [24], where it was
found that, for such processes, the gluon contribution to the
asymmetry is dominant.

A. SSA in p↑p → πX

Within the framework of the CGI-GPM, the numerator
of the asymmetry is given by

dΔσCGI−GPM ≡ Eπdσ↑

d3pπ
−
Eπdσ↓

d3pπ
≃
2α2s
s

X
a;b;c;d

Z
dxadxbdz
xaxbz2

d2k⊥ad2k⊥bd3k⊥πδðk⊥π · p̂cÞJðk⊥πÞ

×

�
−
k⊥a

Mp

�
f⊥a
1T ðxa; k⊥aÞ cosϕafb=pðxb; k⊥bÞHInc

ab→cdðxa; xb; ŝ; t̂; ûÞδðŝþ t̂þ ûÞDπ=cðz; k⊥πÞ; ð5Þ

where Jðk⊥πÞ is a kinematical factor [15] and ŝ, t̂, û are the
usual Mandelstam variables for the partonic subprocess
ab → cd. Furthermore, fb=pðxb; k⊥bÞ is the TMD distri-
bution for an unpolarized parton b inside the unpolarized
proton, while Dπ=cðz; k⊥πÞ is the fragmentation function of
an unpolarized parton c into a pion. Finally, HInc

ab→cd are the
perturbatively calculable hard scattering functions. In
particular, the ones for which a is a quark or an antiquark,
are well known and can be found in Ref. [21], while the
remaining ones have been evaluated here for the first time
along the lines of Ref. [24]. As already pointed out, in
the CGI-GPM approach there are two independent gluon
Sivers contributions: the f- and d-type. The leading order
(LO) explicit expressions for the hard functions corre-
sponding to the gluon Sivers distribution f⊥gðfÞ

1T read

HIncðfÞ
gq→gq ¼ HIncðfÞ

gq̄→gq̄ ¼ −
ŝ2 þ û2

4ŝ û

�
ŝ2

t̂2
þ 1

N2
c

�
; ð6Þ

HIncðfÞ
gq→qg ¼ HIncðfÞ

gq̄→q̄g ¼ −
ŝ4 − t̂4

4ŝ t̂ û2
; ð7Þ

HIncðfÞ
gg→qq̄ ¼ HIncðfÞ

gg→q̄q ¼ −
Nc

4ðN2
c − 1Þ

t̂2 þ û2

t̂ û

�
t̂2

ŝ2
þ 1

N2
c

�
;

ð8Þ

HIncðfÞ
gg→gg ¼ N2

c

N2
c − 1

�
t̂
û
−
ŝ
û

� ðŝ2 þ ŝ t̂þt̂2Þ2
ŝ2 t̂2

; ð9Þ

where Nc is the number of colors. For the other gluon
Sivers function f⊥gðdÞ

1T , one has

HIncðdÞ
gq→gq ¼ −HIncðdÞ

gq̄→gq̄ ¼
ŝ2 þ û2

4ŝ û

�
ŝ2 − 2û2

t̂2
þ 1

N2
c

�
; ð10Þ

HIncðdÞ
gq→qg ¼ −HIncðdÞ

gq̄→q̄g ¼ −
ŝ2 þ t̂2

4ŝ t̂

�
ŝ2 þ t̂2

û2
−

2

N2
c

�
; ð11Þ

HIncðdÞ
gg→qq̄ ¼−HIncðdÞ

gg→q̄q ¼−
Nc

4ðN2
c−1Þ

t̂2þ û2

t̂ û

�
t̂2−2û2

ŝ2
þ 1

N2
c

�
;

ð12Þ

HIncðdÞ
gg→gg ¼ 0: ð13Þ

More details on their calculation are given in Appendix A.
For comparison, we show the corresponding, well-known
unpolarized hard functions,

HU
gq→gq ¼ −

ŝ2 þ û2

2ŝ û

�
ŝ2 þ û2

t̂2
−

1

N2
c

�
; ð14Þ
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HU
gg→qq̄ ¼

Nc

N2
c − 1

t̂2 þ û2

2t̂ û

�
t̂2 þ û2

ŝ2
−

1

N2
c

�
; ð15Þ

HU
gg→gg ¼

N2
c

N2
c − 1

ðŝ4 þ t̂4 þ û4Þðŝ2 þ t̂2 þ û2Þ
ŝ2t̂2û2

; ð16Þ

defined in such a way that

dσ̂
dt̂

¼ πα2s
ŝ2

HU
ab→cd; ð17Þ

which appear in the denominators of the asymmetries.

B. SSA in p↑p → γX

The numerator of the SSA for the process p↑p → γX
reads

Eγdσ↑

d3pγ
−
Eγdσ↓

d3pγ

≃
2ααse2q

s

X
a;b;d

Z
dxadxb
xaxb

d2k⊥ad2k⊥b

×

�
−
k⊥a

Mp

�
f⊥a
1T ðxa; k⊥aÞ cosϕafb=pðxb; k⊥bÞ

×HInc
ab→γdðxa; xb; ŝ; t̂; ûÞδðŝþ t̂þ ûÞ: ð18Þ

As for p↑p → πX, the partonic hard functions in which the
parton a inside the polarized proton is a quark or an
antiquark are given in Ref. [21]. For the gluon induced
subprocesses, we find

HIncðfÞ
gq→γq ¼ HIncðfÞ

gq̄→γq̄ ¼ −
1

2
HU

gq→γq; ð19Þ

HIncðdÞ
gq→γq ¼ −HIncðdÞ

gq̄→γq̄ ¼
1

2
HU

gq→γq; ð20Þ

for the f- and d-type gluon Sivers functions, respectively.
The unpolarized hard function is given by

HU
gq→γq ¼ HU

gq̄→γq̄ ¼
1

Nc

�
−
û
ŝ
−
ŝ
û

�
; ð21Þ

and is normalized such that the corresponding partonic
cross section has the following form:

dσ̂
dt̂

¼ πααse2q
ŝ2

HU
gq→γq: ð22Þ

We refer to Appendix B for further details of the
calculation.

III. PHENOMENOLOGY

We are now able to devise a possible strategy to put the
first reliable constraints on the two independent gluon
Sivers functions within the CGI-GPM approach. To this
aim, in Sec. III Awe will present a detailed analysis of SSA
data in p↑p → πX and p↑p → DX. We will compare our
findings with the available data, as well as with the
corresponding results in the GPM scheme, as obtained
in Ref. [13]. Finally, in Sec. III B we will show new
predictions for SSAs in p↑p → J=ψX and p↑p → γX.

A. Constraints on the gluon Sivers functions
from available data

As discussed in the previous section, in the CGI-GPM
framework there are two universal and independent gluon
Sivers functions (GSFs), the f- and d-type, and the
phenomenological analysis appears more difficult with
respect to the one in the GPM scheme. The reason is that,
in principle, different combinations of these two contribu-
tions could lead to similar results and describe equally well
the same set of data. Therefore, in order to carry out this
analysis we will have to use at least two independent sets of
data. In particular, we will use the extremely precise and
accurate data on SSAs in pp collisions for inclusive pion
production at midrapidity [12] and those for D-meson
production [30] by the PHENIX Collaboration. They also
collected SSA data for J=ψ production [31], which we will
compare against our estimates. From the phenomenological
point of view, it is worth noticing that for the latter process,
in the CGI-GPM approach, only the f-type contribution
appears. Therefore, as it will become more clear in the
following, it is important to consider additional processes,
where also the d-type GSF plays a role.
All these processes have a common feature: the gluon

initiated subprocesses dominate over the quark ones. As
was already pointed out in Refs. [13,34], the SSA for
inclusive pion production in pp collisions at midrapidity is
directly sensitive to the gluon Sivers distribution. In fact,
the contribution involving the quark Sivers functions, as
extracted from SIDIS azimuthal asymmetry data, is totally
negligible—this is true also in the CGI-GPM approach, as
we will show in the following—and all other effects, like
the one driven by the Collins function, are washed out by
integrations over the azimuthal phases. Concerning the
SSAs in D-meson production, as discussed in Ref. [24],
one has a clear and direct access to the GSF, due to the
dominance of the gg → cc̄ channel.
Within our strategy, the first issue we address is to

which extent the f- and d-type contributions are effectively
relevant in the process under consideration. More precisely,
we start with the observation that the numerators of the
SSAs, Eqs. (5) and (18), contain three fundamental quan-
tities: the azimuthal factor of the gluon Sivers function,
cosϕa (with ϕa to be integrated over), the perturbatively
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calculable hard partonic parts, Hab→cd, and the unknown
GSF, f⊥g

1T . In order to explore the role played by the first two
factors, we calculate the SSAs by maximizing the corre-
sponding GSFs. To do this we adopt the well-known
Gaussian-like and factorized parametrization for the GSF,
as follows:

ΔNfg=p↑ðx; k⊥Þ ¼
�
−2

k⊥
Mp

�
f⊥g
1T ðx; k⊥Þ

¼ 2N gðxÞfg=pðxÞhðk⊥Þ
e−k

2⊥=hk2⊥i

πhk2⊥i
; ð23Þ

where fg=pðxÞ is the standard unpolarized collinear gluon
distribution,

N gðxÞ ¼ Ngxαð1 − xÞβ ðαþ βÞðαþβÞ

ααββ
; ð24Þ

with jNgj ≤ 1, and

hðk⊥Þ ¼
ffiffiffiffiffi
2e

p k⊥
M0 e

−k2⊥=M02
: ð25Þ

Alternatively, if we define the parameter

ρ ¼ M02

hk2⊥i þM02 ; ð26Þ

such that 0 < ρ < 1, then Eq. (23) becomes

ΔNfg=p↑ðx;k⊥Þ¼2

ffiffiffiffiffi
2e

p

π
N gðxÞfg=pðxÞ

ffiffiffiffiffiffiffiffiffiffi
1−ρ

ρ

s
k⊥

e−k
2⊥=ρhk2⊥i

hk2⊥i3=2
:

ð27Þ

With these choices, assuming that the unpolarized TMD
gluon distribution is given by

fg=pðx; k⊥Þ ¼ fg=pðxÞ
e−k

2⊥=hk2⊥i

πhk2⊥i
; ð28Þ

the Sivers function automatically fulfills its proper positivity
bound for any ðx; k⊥Þ values [see Eq. (3)]. Analogously, for
the unpolarized TMD fragmentation function (for a parton c)
we use [35]

Dπ=cðz; k⊥πÞ ¼ Dπ=cðzÞ
e−k

2⊥π=hk2⊥πi

πhk2⊥πi
hk2⊥πi ¼ 0.20 GeV2:

ð29Þ

In this analysis we adopt the CTEQ6-LO parametrization
[36] for the unpolarized gluon distribution, fg=pðxÞ, with the
factorization scale equal to the pion transverse momentum,
pT , and the leading-order DSS set for the collinear frag-
mentation functions [37]. Notice that all TMDs defined

above evolve with the hard scale through the scale depend-
ence of the collinear distributions entering in their para-
metrizations, that is following a Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi evolution.
The first k⊥-moment of the Sivers function is also of

relevance:

ΔNfð1Þ
g=p↑ðxÞ ¼

Z
d2k⊥

k⊥
4Mp

ΔNfg=p↑ðx; k⊥Þ≡ −f⊥ð1Þg
1T ðxÞ:

ð30Þ
Adopting the parametrization of Eqs. (23)–(25),

ΔNfð1Þ
g=p↑ðxÞ¼

ffiffi
e
2

p hk2⊥iM03

Mpðhk2⊥iþM02Þ2N gðxÞfg=pðxÞ

¼
ffiffiffi
e
2

r ffiffiffiffiffiffiffiffiffi
hk2⊥i

p
Mp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ3ð1−ρÞ

q
N gðxÞfg=pðxÞ: ð31Þ

In Ref. [13] a single value hk2⊥i ¼ 0.25 GeV2 [35] was
adopted, the same for the unpolarized quark and gluon
TMDs, while the parameters Ng, α, β, ρ were fitted to the
data, within the GPM scheme. Here, following Ref. [24],
for the unpolarized gluon TMD we use a different value,
hk2⊥i ¼ 1 GeV2. This, indeed, gives a better account of
the unpolarized cross sections for J=ψ production at not
so large pT values, still allowing a good description, for
instance, of the inclusive pion production. For this reason,
we have reanalyzed the same set of data within the GPM
approach, getting results very similar to those reported in
Ref. [13], although with slightly different parameters:

Ng¼0.25; α¼0.6; β¼0.6; ρ¼0.1: ð32Þ

Notice that an equally good description of pion SSA data
can be obtained even with different sets of the above
parameters, that are strongly correlated among each other.
While this could imply very different k⊥ dependences of
the GSF, its first k⊥-moment remains almost unchanged in
the range of x probed by data (10−3 ≤ x ≤ 0.4).
Moving to the CGI-GPM approach, we note that the

amount of available data do not allow us to extract precise
information on the x- and k⊥-dependence of the two GSFs.
For this reason, as a first attempt, we adopt the same
parametrization for the f- and d-type GSFs. Moreover, in
order to maximize the effects of the two functions, we
saturate the positivity bound for their x-dependent parts
(i.e., we take N gðxÞ ¼ �1) and adopt the value ρ ¼ 2=3
[38] in Eq. (27).
For the x-dependent part of the GSF one can also use the

following notation

ΔNfg=p↑ðxÞ ¼ 2N gðxÞfg=pðxÞ; ð33Þ

which, for N gðxÞ ¼ �1, implies ΔNfg=p↑ðxÞ¼�2fg=pðxÞ.
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In Fig. 1 (left panel) we present the maximized
(N gðxÞ ¼ þ1) gluon Sivers contributions to AN for the
process p↑p → π0X at

ffiffiffi
s

p ¼ 200 GeV and midrapidity as
a function of pT , together with PHENIX data [12], for the
f-type (red solid line) and d-type (blue dot-dashed line)
pieces. For completeness we also show the maximized
gluon Sivers term in the GPM (green dashed line). As
mentioned above, the quark Sivers contribution, also within
the CGI-GPM scheme and adopting the parametrization as
extracted from SIDIS data [9], is totally negligible (red
dotted line). From this plot we realize that while the d-type
contribution, for this process and in this kinematical region,
is dynamically suppressed, the f-type one can be poten-
tially large. The reason is that for the d-type term the hard
partonic cross sections for the processes initiated by gq and
gq̄ pairs enter with a relative sign [see Eqs. (10) and (11)]
and at midrapidity the quark and antiquark unpolarized
TMD parton distributions are equally important. On top of
that, there is no gg → gg contribution (see Eq. (13)), the
dominant channel at moderate values of pT . This is in
contrast with the f-type term, which indeed could be
potentially very large. We also notice that the correspond-
ing effect in the GPM approach is even larger: the reason is
that its partonic contributions are exactly those entering the
unpolarized cross section, all positive and unsuppressed.
These considerations lead us to the second step of our

strategy: the attempt to describe reasonably well the AN

data for π0 production at midrapidity within the CGI-GPM
approach, by adopting at the same time the most
conservative (that is less stringent) bounds on the f- and
d-type GSFs. Notice that in the region where they are more
precise (pT ≲ 5 GeV), the data are tiny, of the order
of per mille, and positive. It is then clear that the most
conservative scenario that could give SSAs comparable to
the data implies a cancellation between the two contribu-
tions, with a strongly suppressed and positive f-type GSF

and a saturated, negative d-type one (supposed totally

unknown). The corresponding results, for N ðfÞ
g ðxÞ ¼ þ0.1

and N ðdÞ
g ðxÞ ¼ −1, are shown in the right panel of Fig. 1,

together with an estimated overall uncertainty band of

about �20% on N ðfÞ
g . Notice that a smaller d-type GSF

(in size, that is either positive or negative) would imply an
even smaller f-type GSF. This issue will be addressed in
the following.
Let us now consider AN for D0 production at

ffiffiffi
s

p ¼
200 GeV in the kinematical region relevant to carry out
the corresponding analysis for its muon decays, for which
data are available [30]. Actually, to be more general, we
consider an even larger region both in xF ¼ 2pL=

ffiffiffi
s

p
(where pL is the D-meson longitudinal momentum) and
pT . In Fig. 2 we show the results for AN as a function of xF
and for different pT values, obtained by separately maxi-
mizing the d- (left panel) and f-type (right panel) con-
tributions, as explained above. One can see that in the
forward region, while the d-type term could be sizeable, the
f-type one is relatively small. This is in contrast to what
was discussed above for the case of π0 production. The
reason is that, since for D0 production at leading order we
consistently consider only the dominant fragmentation of
the charm quark into the heavy meson, the cancellations
between the gq and gq̄ initiated processes, affecting the
previous case, are not present anymore. Moreover, the hard
partonic parts favor the d-type with respect to the f-type
term: as one can see from Eq. (41) of Ref. [24], besides
some common factors, the hard part for the f-type GSF
contains a factor t̂2=ŝ2, whilst that for the d-type GSF
contains a term ðt̂2 − 2û2Þ=ŝ2. Since jt̂j becomes smaller
and smaller as xF increases, the first piece is relatively
suppressed with respect to the second one. On the other
hand, in the backward region, where the two hard parts are
similar, both contributions are relatively suppressed by the

FIG. 1. Left panel: maximized gluon Sivers contributions (N gðxÞ ¼ þ1) to AN for the process p↑p → π0X at
ffiffiffi
s

p ¼ 200 GeV and
midrapidity as a function of pT within the GPM (green dashed line) and the CGI-GPM approaches: f-type (red solid line) and d-type
(blue dot-dashed line). The quark Sivers contribution within the CGI-GPM scheme, as extracted from SIDIS data, is also shown (red

dotted line). Right panel: AN estimates, in the moderate pT range, obtained adopting a suitably reduced f-type GSF (N ðfÞ
g ðxÞ ¼ 0.1) and

a negative saturated d-type GSF (N ðdÞ
g ðxÞ ¼ −1). Shaded area represents a �20% uncertainty on N ðfÞ

g . Data are from Ref. [12].
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integration over the Sivers azimuthal phase, which for
xF < 0 is less effective in the hard parts.
If we now use the information extracted from the analysis

of π0 SSA data, the f-type contribution in Fig. 2 should be
accordingly reduced by a factor of about 0.1 (coming from
the corresponding GSF), thus becoming practically negli-
gible. This implies that for D0 production only the d-type
GSF could be considered active and therefore constrained by
a comparison with the available data. Similar considerations
apply also to D̄0 production. In this case, as discussed in
Ref. [24], within the CGI-GPM approach the f-type con-
tribution to AN is the same as the one for D0 production,
while the d-type gets an opposite sign.
At this point, one has to convert the estimates for

D-meson production to the corresponding SSAs for its
muon decay products,1 for which data are available [30].
Notice that in our LO approach the SSAs for D0 and Dþ
production (leading to the μþ results) are equal, as are those
for D̄0 and D− production (μ− results).
Since the muon SSA data are still very few and with

large error bars, we refrain from performing a fit, and will

consider a simple x-independent N ðf;dÞ
g ðxÞ≡ Nðf;dÞ

g . In the
following we discuss different possible scenarios for the
d- and f-type GSFs, taking into account the complemen-
tary information coming from π0 SSAs. As we will see in a
moment, even from this very conservative approach we can
extract some important information.
As one can see from Fig. 3, for both μþ (left panel) and

μ− (right panel) production, the data are compatible with
zero, with only one data point, at the largest Feynman x
value, slightly positive for the μþ case. It is also clear that
the maximized d-type GSF contributions (thin red solid

line: N ðdÞ
g ¼ þ1, thin blue dot-dashed line: N ðdÞ

g ¼ −1)
largely overestimate the positive xF experimental data in

size. Notice that the value N ðdÞ
g ¼ −1, together with

N ðfÞ
g ¼ þ0.1, was adopted in order to reasonably repro-

duce the π0 SSA data (see Fig. 1, right panel). On the other
hand, to get a fair account of the muon SSA data, one has to

take indicatively jN ðdÞ
g j ≤ 0.15, with a mild preference

for positive values, because of the positive μþ data point.

As an example, the results obtained adopting N ðdÞ
g ¼

þ0.15ð−0.15Þ are shown as thick red solid lines (thick
blue dot-dashed lines) in Fig. 3 both for μþ (left panel) and
μ− (right panel) production. Taking into account this new
piece of information on the d-type GSF, we can reconsider
the pion SSA data more accurately. We find that by varying

N ðdÞ
g in the range −0.15 ÷þ0.15, while keeping ρ ¼ 2=3,

a very good description of both the μ� and π0 data can

be obtained by taking N ðfÞ
g in the corresponding range

þ0.05 ÷ −0.01, that is:

N ðdÞ
g ¼ −0.15 → N ðfÞ

g ¼ þ0.05

N ðdÞ
g ¼ þ0.15 → N ðfÞ

g ¼ −0.01: ð34Þ

In other words, a stronger suppression of the f-type GSF
is required by the combined analysis of muon and pion
SSA data. On the contrary, in the GPM approach the
parametrization of the GSF extracted from the π0 SSA data,
see Eq. (32), leads to SSAs for μ� leptons in very good
agreement with available data (Fig. 3, green dashed lines).
For completeness, in Fig. 4 we also show the corresponding
SSA estimates as a function of pT in the positive and
negative xF regions.
It is worth recalling that a similar analysis of SSAs for

D-meson production, within the twist-three approach, was
carried out in Ref. [39]. The corresponding predictions
for muon production were compared against the data in
Ref. [30], showing a similar fairly good agreement.
A few comments on the above procedure are in order.

The use of a fixed ρ value implies a fixed k⊥ dependence of
the GSF, therefore no such information has been extracted

FIG. 2. Maximized (N gðxÞ ¼ þ1) AN for the process p↑p → D0X at
ffiffiffi
s

p ¼ 200 GeV and different pT values (between 1 and 6 GeV)
as a function of xF, within the CGI-GPM approach: d-type (left panel) and f-type (right panel) contributions.

1We thank Jeongsu Bok (PHENIX Collaboration) for provid-
ing us with the muon SSA results, obtained from our D-meson
estimates.
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within the CGI-GPM approach. On the other hand, the
adopted value leaves the size of the GSF practically
unconstrained. Then, by tuning the parameter Ng against
the data we can control and estimate its size. We have also
to recall that there are strong correlations between these
parameters, but the amount and the precision of available
data, as already stated above, prevent us from performing a
true fit.
For all these reasons, in the following we will show only

the first k⊥-moment of the GSF, which better represents its
size in an almost unbiased form (at least in the x region
probed by the data, 10−3 ≤ x ≤ 0.4), without speculating
on its detailed k⊥ or x dependences. Further studies in this
respect will be necessary.
In Fig. 5 we show the results for the absolute value of the

first k⊥-moment of the GSFs as extracted from our analysis
for the GPM (green dashed line) and the CGI-GPM
approaches, d-type (blue dot-dashed line) and f-type

(NðfÞ
g ¼ 0.05, red solid line), together with the positivity

bound (black dotted line). The most stringent bound is the

one for the GPM approach, since in this case there are
no relative cancellations between the hard partonic parts,
being them all positive. In contrast, the d-type GSF within
the CGI-GPM scheme is the less bounded (see comments
above).

B. Predictions for SSAs in p↑p → J=ψX
and p↑p → γX

As discussed in Ref. [24], AN for J=ψ production is
directly sensitive to the gluon Sivers function. Moreover,
within the CGI-GPM approach and the color singlet model,
only the f-type distribution contributes to the Sivers
asymmetry. We note that also the SSA for heavy quarko-
nium production in ep scattering, at leading order, is an
ideal tool to single out the f-type GSF [40]. In such a case
one expects that the only contribution to the SSA comes
when the heavy quark pair is produced in a color octet state.
See also Ref. [41].
In Figs. 6 and 7 we show a comparison of our estimates,

evaluated adopting M2
T ¼ M2

J=ψ þ p2
T as factorization

FIG. 4. d-type gluon contributions, within the CGI-GPM approach, to AN for the process p↑p → μþX (left panel) and p↑p → μ−X

(right panel) from D-meson production at
ffiffiffi
s

p ¼ 200 GeV as a function of pT : N
ðdÞ
g ðxÞ ¼ þ0.15 (thick red solid lines), N ðdÞ

g ðxÞ ¼
−0.15 (thick blue dot-dashed lines). GPM predictions (green dashed lines) are also shown. Data are from Ref. [30].

FIG. 3. d-type gluon contributions, within the CGI-GPM approach, to AN for the process p↑p → μþX (left panel) and p↑p → μ−X

(right panel) from D-meson production at
ffiffiffi
s

p ¼ 200 GeV as a function of xF: maximized effect, N ðdÞ
g ðxÞ ¼ þ1 (thin red solid lines),

N ðdÞ
g ðxÞ ¼ −1 (thin blue dot-dashed lines); reduced (constrained) contribution, N ðdÞ

g ðxÞ ¼ þ0.15 (thick red solid lines), N ðdÞ
g ðxÞ ¼

−0.15 (thick blue dot-dashed lines). GPM predictions (green dashed lines) are also shown. Data are from Ref. [30].
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scale, with PHENIX data [31] for AN in p↑p → J=ψX. In
particular, in Fig. 6, left panel, we show the maximized

(N ðfÞ
g ðxÞ¼�1) contributions to AN at fixed pT ¼1.65GeV

as a function of xF, both in the GPM (green dashed lines)
and the CGI-GPM (red solid lines) approaches. Notice
that, also in this case, the integration over the Sivers
azimuthal phase strongly suppresses the SSA in the back-
ward rapidity region. In the right panel of Fig. 6 we present
our corresponding predictions based on the present
analysis: GPM (green dashed line), CGI-GPM (red band:

−0.01 ≤ N ðfÞ
g ≤ 0.05). In Fig. 7 we show the correspond-

ing estimates as a function of pT at xF ¼ 0.1 (left panel)
and xF ¼ −0.1 (right panel).
With the exception of the experimental point in the most

backward rapidity region, data are compatible with zero
and our estimates describe them fairly well. Notice that, in

principle, by using a suitable x-dependent factor, N ðfÞ
g ðxÞ

(namely something like Ngð1 − xÞβ, with Ng ≃ −1 and a
large β), also the data points at xF < 0 could be accounted
for. On the other hand, this would prevent a description of

FIG. 5. Upper values for the first k⊥-moments of the gluon
Sivers functions in different approaches and scenarios at
Q2 ¼ 2 GeV2: GPM approach (green dashed line), CGI-GPM
d-type (blue dot-dashed line) and f-type (NðfÞ

g ¼ 0.05, red solid
line). The positivity bound (black dotted line) is also shown.

FIG. 6. AN for the process p↑p → J=ψX at
ffiffiffi
s

p ¼ 200 GeV and pT ¼ 1.65 GeV as a function of xF. Left panel: maximized AN in the
GPM (green dashed lines) and the CGI-GPM (red solid lines) approaches adopting jN gðxÞj ¼ 1. Right panel: estimates within the GPM
(green dashed line) and the CGI-GPM approaches, f-type (red band), obtained adopting the GSFs from the present analysis [see
Eqs. (32), (34)]. Data are from Ref. [31]. Notice the different scales in the two panels.

FIG. 7. Estimates of AN for the process p↑p → J=ψX at
ffiffiffi
s

p ¼ 200 GeV and xF ¼ þ0.1 (left panel) and xF ¼ −0.1 (right panel) as a
function of pT in the GPM (green dashed line) and the CGI-GPM approaches (red band), adopting the GSFs as extracted in the present
analysis [see Eqs. (32), (34)]. Data are from Ref. [31].
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pion SSAs at small pT , which require a strong suppression
of the f-type GSF, in particular in the small-x region (see
Fig. 1, left panel). If J=ψ measurements would be con-
firmed even in future higher statistics samples, this would
definitely represent a tension with the pion SSAs, at least
within a TMD approach. In this respect, more data, on a
wider kinematical range and with better statistics, would be
very helpful.
It is worth considering the corresponding analysis for AN

in J=ψ production for the kinematics reachable at LHC in

the fixed target mode with a transversely polarized target
(see the AFTER [42,43] and LHCb [44,45] proposals at
CERN). In such a configuration one could probe even
larger light-cone momentum fractions in the polarized
proton, accessing the gluon TMDs in a very interesting
and complementary region.
In Fig. 8 we present our estimates for AN for pp↑ →

J=ψX at
ffiffiffi
s

p ¼ 115 GeV, at fixed pT ¼ 2 GeV, as a
function of xF (left panel) and at fixed rapidity y ¼ −2,
as a function of pT (right panel). Notice that in such a

FIG. 8. AN for the process pp↑ → J=ψX at
ffiffiffi
s

p ¼ 115 GeV and pT ¼ 2 GeV as a function of xF (left panel) and at rapidity y ¼ −2 as
a function of pT (right panel). Notice that here negative rapidities correspond to the forward region for the polarized proton. Predictions
are for the GPM (thick green dashed lines) and the CGI-GPM (red band) approaches [see Eqs. (32), (34)]. The corresponding maximized
contributions for the GPM (thin green dashed lines) and the CGI-GPM (red solid lines) schemes are also shown.

FIG. 9. Estimates of AN for the process p↑p → γX at
ffiffiffi
s

p ¼ 200 GeV as a function of pT within the GPM and the CGI-GPM
approaches. Upper panels: maximized contributions (N gðxÞ ¼ þ1) at xF ¼ 0 (left) and xF ¼ −0.1 (right); lower panels: estimates
based on the present analysis [see Eqs. (32), (34)]: GPM (green dashed line), CGI-GPM (red band).
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configuration the backward rapidity region refers to the
forward region for the polarized proton target. In particular,
we show our predictions within the GPM (thick green
dashed lines) and the CGI-GPM (red bands) approaches,
together with the corresponding upper/lower positivity
bounds (thin lines). From these results we see that any
further experimental information would be extremely
useful.
Another interesting observable, where the gluon Sivers

function could be directly accessed, is the SSA in
p↑p → γX, for which we have given the complete expres-
sions in the CGI-GPM scheme in the previous section. We
present here some estimates, both in the GPM and CGI-
GPM approaches, saturating their contributions as well as
adopting the results of the phenomenological analysis
presented above. As for the case of SSAs in π0 production,
the most interesting regions are those at mid and slightly
backward rapidity and not so large values of jxFj. The
reason is that, at large negative values of xF, the integration
over the Sivers azimuthal phase washes out the effect. This
would partially spoil the analysis proposed in Ref. [46],
where the authors discussed this process as a clear tool to
access the GSF, also in this kinematical region.
In Fig. 9 (upper panels) we show the maximized

contributions to AN at xF ¼ 0 (left) and xF ¼ −0.1 (right).
As one can see, the d-type term at xF ¼ 0 is dynamically
suppressed, as for the π0 production case: the reason is
indeed the same, that is the partial cancellation between the
hard gq → γq and gq̄ → γq̄ processes, see Eq. (20). Indeed,
this suppression is less pronounced at xF ¼ −0.1, where
the unpolarized quark and anti-quark TMDs inside the
unpolarized proton are probed at larger x values and
therefore are not equally important. Moreover, in the small
pT range (up to 3 GeV) the maximized estimates at xF ¼
−0.1 are more suppressed with respect to those at xF ¼ 0,
due, once again, to the integration over the Sivers azimuthal
phase. In the lower panels we show our estimates adopting
the results discussed in the previous subsection. In all cases
the values are very small and compatible with zero. Despite
of this, a measure of AN for direct photon production would
be extremely important to test the consistency of the whole
approach.

IV. CONCLUSIONS

In this paper we have performed a study of the gluon
Sivers function through a combined analysis of data on
transverse single-spin asymmetries for the processes
p↑p → π0X [12] and p↑p → DX → μX [30], measured
by the PHENIX Collaboration at RHIC. The theoretical
framework adopted is the so-called transverse momentum
dependent generalized parton model, in which intrinsic
parton motion and spin effects are considered. In addition,
we have used the color gauge invariant version of this
model, which takes into account also, in the one-gluon

exchange approximation, the initial and final state
interactions of the active parton with the remnants
of the polarized proton, leading to a process dependent
Sivers function.
From a theoretical point of view, we have extended the

calculation of the expressions for the single-spin asymme-
tries in p↑p → πX and p↑p → γX, within the CGI-GPM
approach, to the gluon sector. In this way, we completed
the study of Ref. [21], in which only the corresponding
quark-induced subprocesses were studied. As a byproduct,
we have also shown that the one-gluon approximation
employed here is sufficient to recover the exact gluonic
pole strengths in any partonic process calculated at LO in
perturbative QCD [25] (see the Appendixes).
The analogous formulas for the single spin asymmetries

in p↑p → DX and p↑p → J=ψX were derived in Ref. [24].
It turns out that for these processes the gluon Sivers
function can be reexpressed as a linear combination of
two independent, universal (and so far unknown) contri-
butions, namely the f-type and d-type Sivers distributions.
On the phenomenological side, using available knowl-

edge of the quark and antiquark Sivers functions from
SIDIS measurements, we have shown how the PHENIX
data on inclusive pion andD-meson production allow us to
partially disentangle and considerably constrain the size of
these two gluon Sivers functions, which should be much
smaller than their positivity bounds. This can be consid-
ered the first significant attempt towards a quantitative
extraction of these process dependent gluon Sivers func-
tions. On the other hand, since the number and the
precision of the available data is not very high, our findings
have still to be considered as preliminary. Furthermore, we
have compared the extractions of the gluon Sivers function
in the two approaches, with (CGI-GPM scheme) and
without (GPM scheme) initial/final state interactions.
The results are encouraging, even if it is not yet possible
to clearly discriminate between the GPM and the CGI-
GPM frameworks.
Our results have been used to predict the single-spin

asymmetry for the processes p↑p → J=ψX, which only
depends on the f-type Sivers function. Comparison with
existing PHENIX data [31], compatible with zero at
forward rapidities, shows a good agreement. Predictions
for the same processes have been presented in a kinematic
region accessible at LHC with a fixed polarized target, and
for the process p↑p → γX at RHIC kinematics as well,
for which data are not yet available. These will certainly
help in shedding light on the still poorly known gluon
Sivers function and towards our understanding of the three-
dimensional structure of the nucleons.
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Note added.—Recently, we have become aware of a similar
study on SSAs in p↑p → γX within the CGI-GPM
approach [47]. While the theoretical findings are in perfect
agreement, see Eqs. (19)–(20), the phenomenological

analysis presents some differences, which deserve further
attention. A possible explanation could be the different way
of handling the role of the azimuthal phases (to be
integrated over in the final observable) in the hard partonic
pieces.

APPENDIX A: COLOR FACTORS FOR THE
GLUON SIVERS EFFECT IN p↑p → πX

In this Appendix we present the color factors needed for
the evaluation of the partonic hard functions HInc

ab→cd in the
expression of the single spin asymmetry for the process
p↑p → πX in the CGI-GPM framework. We list the
explicit results for the subprocesses gq → gq (Table I),
gg → qq̄ (Table II) and gg → gg (Table III). In all the tables,

TABLE I. Color factors for the LO diagrams contributing to the process gq → gq. CU denotes the unpolarized color factor for the
diagramD, while CI , CFc

and CFd
, respectively for the f- and d-type, are the color factors obtained when an extra gluon is attached inD

to parton b (CI), parton c (CFc
) or parton d (CFd

). Furthermore, CInc ¼ CI þ CFc
.

D CU CðfÞ
I CðfÞ

Fc CðfÞ
Fd

CIncðfÞ CðdÞ
I CðdÞ

Fc
CðdÞ
Fd

CIncðdÞ

1
2

− 1
8

1
4

1
8

1
8

1
8

0 1
8

1
8

N2
c−1
4N2

c

1
8N2

c

1
8

N2
c−1
8N2

c

N2
cþ1

8N2
c

− 1
8N2

c
− 1

8
N2

c−1
8N2

c
− N2

cþ1

8N2
c

N2
c−1
4N2

c
− N2

c−1
8N2

c

1
8

− 1
8N2

c

1
8N2

c

N2
c−1
8N2

c

1
8

− 1
8N2

c

2N2
c−1

8N2
c

1
4

− 1
8

1
8

0 0 1
8

1
8

0 1
4

1
4

− 1
8

1
8

0 0 1
8

1
8

0 1
4

− 1
4N2

c

1
8N2

c
0 − 1

8N2
c

1
8N2

c
− 1

8N2
c

0 − 1
8N2

c
− 1

8N2
c

− 1
4N2

c

1
8N2

c
0 − 1

8N2
c

1
8N2

c
− 1

8N2
c

0 − 1
8N2

c
− 1

8N2
c

− 1
4

0 − 1
8

− 1
8

− 1
8

0 1
8

− 1
8

1
8

− 1
4

0 − 1
8

− 1
8

− 1
8

0 1
8

− 1
8

1
8

TABLE II. Color factors for the LO diagrams contributing to the process gg → qq̄. Notation is the same as in Table I.
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8Nc

− N2
cþ1

8NcðN2
c−1Þ − Nc

8ðN2
c−1Þ − 1

8NcðN2
c−1Þ − 1

8Nc
− N2

cþ1

8NcðN2
c−1Þ

Nc
2ðN2

c−1Þ − Nc
4ðN2

c−1Þ
Nc

8ðN2
c−1Þ

Nc
8ðN2

c−1Þ − Nc
8ðN2

c−1Þ 0 Nc
8ðN2

c−1Þ − Nc
8ðN2

c−1Þ
Nc

8ðN2
c−1Þ

Nc

4ðN2
c−1Þ − Nc

8ðN2
c−1Þ

Nc

8ðN2
c−1Þ 0 0 Nc

8ðN2
c−1Þ

Nc

8ðN2
c−1Þ 0 Nc

4ðN2
c−1Þ

Nc

4ðN2
c−1Þ − Nc

8ðN2
c−1Þ

Nc

8ðN2
c−1Þ 0 0 Nc

8ðN2
c−1Þ

Nc

8ðN2
c−1Þ 0 Nc

4ðN2
c−1Þ

− Nc
4ðN2

c−1Þ
Nc

8ðN2
c−1Þ 0 − Nc

8ðN2
c−1Þ

Nc
8ðN2

c−1Þ
Nc

8ðN2
c−1Þ 0 Nc

8ðN2
c−1Þ

Nc
8ðN2

c−1Þ

− Nc

4ðN2
c−1Þ

Nc

8ðN2
c−1Þ 0 − Nc

8ðN2
c−1Þ

Nc

8ðN2
c−1Þ

Nc

8ðN2
c−1Þ 0 Nc

8ðN2
c−1Þ

Nc

8ðN2
c−1Þ

− 1
4NcðN2

c−1Þ 0 − 1
8NcðN2

c−1Þ − 1
8NcðN2

c−1Þ − 1
8NcðN2

c−1Þ 0 − 1
8NcðN2

c−1Þ
1

8NcðN2
c−1Þ − 1

8NcðN2
c−1Þ

− 1
4NcðN2

c−1Þ 0 − 1
8NcðN2

c−1Þ − 1
8NcðN2

c−1Þ − 1
8NcðN2

c−1Þ 0 − 1
8NcðN2

c−1Þ
1

8NcðN2
c−1Þ − 1

8NcðN2
c−1Þ
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CU denotes the usual unpolarized color factor for the
specific diagram D, while CI , CFc

, CFd
are the color factors

obtained when an extra gluon is attached in D to parton
b (CI), parton c (CFc

) or parton d (CFd
). Furthermore, for

each diagram we need to distinguish between the two
possible ways in which color is neutralized, leading to
the two possible gluon Sivers functions, f-type and d-type.
For each process, the sum of all diagrams, taken with the

new color factors Cðf=dÞ
I and Cðf=dÞ

Fc
, givesHðf=dÞ

I andHðf=dÞ
Fc

,
respectively, and

HIncðf=dÞ ¼ Hðf=dÞ
I þHðf=dÞ

Fc
: ðA1Þ

Notice that the CFd
factors sum up to zero and do not play

any role in the single-inclusive hadron production.
Alternatively, HIncðf=dÞ can be obtained directly by

summing the diagrams with the color factors

CIncðf=dÞ ≡ Cðf=dÞ
I þ Cðf=dÞ

Fc
: ðA2Þ

Finally, we have checked that, for each diagram D, the
gluonic pole strengths defined by

Cðf=dÞ
G ¼ Cðf=dÞ

I þ Cðf=dÞ
Fc

þ Cðf=dÞ
Fd

CU
; ðA3Þ

are in full agreement with the ones given in Ref. [25] for
less inclusive processes like p↑p → ππX, for which the
FSIs of parton d need to be taken into account as well.

APPENDIX B: COLOR FACTORS FOR THE
GLUON SIVERS EFFECT IN p↑p → γX

The hard functions needed for the calculation of the
Sivers effect in p↑p → γX, evaluated in the framework of
the CGI-GPM, are given by

HIncðf=dÞ
ab→γd ¼ CIncðf=dÞ

CU
HU

ab→γd ≡ Cðf=dÞ
I

CU
HU

ab→γd; ðB1Þ

where ab → γd is a generic partonic subprocess contrib-
uting to p↑p → γX. Our results for the color factors
relevant for the gluon induced subprocesses gq → γq
and gq̄ → γq̄ are summarized in Table IV. Due to their
simple color structures, all diagrams D have the same
color factors. As before, CU is the unpolarized one, while
CI ðCFd

Þ is the color factor obtained when an extra gluon
is attached in D to parton b (parton d). Since the photon

TABLE III. Color factors for the LO diagrams contributing to the process gg → gg. Notation is the same as in Table I. In this case all
CðdÞ color factors are zero for symmetry reasons.

D CU CðfÞ
I CðfÞ

Fc CðfÞ
Fd

CIncðfÞ CðdÞ
I CðdÞ

Fc
CðdÞ
Fd

CIncðdÞ

N2
c

N2
c−1

− N2
c

4ðN2
c−1Þ

N2
c

2ðN2
c−1Þ

N2
c

4ðN2
c−1Þ

N2
c

4ðN2
c−1Þ 0 0 0 0

N2
c

N2
c−1

− N2
c

4ðN2
c−1Þ

N2
c

4ðN2
c−1Þ

N2
c

2ðN2
c−1Þ 0 0 0 0 0

N2
c

N2
c−1

− N2
c

2ðN2
c−1Þ

N2
c

4ðN2
c−1Þ

N2
c

4ðN2
c−1Þ − N2

c
4ðN2

c−1Þ 0 0 0 0

N2
c

2ðN2
c−1Þ − N2

c

4ðN2
c−1Þ

N2
c

4ðN2
c−1Þ 0 0 0 0 0 0

N2
c

2ðN2
c−1Þ − N2

c

4ðN2
c−1Þ

N2
c

4ðN2
c−1Þ 0 0 0 0 0 0

− N2
c

2ðN2
c−1Þ

N2
c

4ðN2
c−1Þ 0 − N2

c

4ðN2
c−1Þ

N2
c

4ðN2
c−1Þ 0 0 0 0

− N2
c

2ðN2
c−1Þ

N2
c

4ðN2
c−1Þ 0 − N2

c

4ðN2
c−1Þ

N2
c

4ðN2
c−1Þ 0 0 0 0

N2
c

2ðN2
c−1Þ 0 N2

c

4ðN2
c−1Þ

N2
c

4ðN2
c−1Þ

N2
c

4ðN2
c−1Þ 0 0 0 0

N2
c

2ðN2
c−1Þ 0 N2

c

4ðN2
c−1Þ

N2
c

4ðN2
c−1Þ

N2
c

4ðN2
c−1Þ 0 0 0 0

TABLE IV. Color factors for the process gq → γq. For the process gq̄ → γq̄, the f-type color factors are the same, while the d-ones
have an overall minus sign. Notation is the same as in Table I.

D CU CðfÞ
I CðfÞ

Fd
CIncðfÞ CðdÞ

I CðdÞ
Fd

CIncðdÞ

1
2Nc

− 1
4Nc

1
4Nc

− 1
4Nc

1
4Nc

1
4Nc

1
4Nc
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does not interact with the remnant of the polarized nucleon,

Cðf=dÞ
Fc

¼ 0.
Finally, we point out that our gluonic pole strengths,

defined as

Cðf=dÞ
G ≡ Cðf=dÞ

I þ Cðf=dÞ
Fd

CU
; ðB2Þ

are in full agreement with the ones given in Table B.4 of
Ref. [48] for gq → γq, namely

CðfÞ
G ¼ 0 CðdÞ

G ¼ 1: ðB3Þ

Notice that the results in Ref. [48] have been derived
adopting a different method, i.e., by looking at the full
gauge link structure and taking the derivative of the
gauge link.
For completeness, the hard functions for the quark

induced subprocesses, calculated in Ref. [21], are presented
below:

HInc
qg→γq ¼ −HInc

q̄g→γq̄ ¼ −
N2

c − 1

N2
c

�
−
t̂
ŝ
−
ŝ
t̂

�
;

HInc
qq̄→γg ¼ −HInc

q̄q→γg ¼
1

N2
c

�
t̂
û
þ û

t̂

�
: ðB4Þ
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