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In the standard model the (Brout-Englert-)Higgs quartic coupling becomes negative at high energies
rendering our current electroweak vacuum metastable, but with an instability timescale much longer than
the age of the current universe. During cosmological inflation, unless there is a nonminimal coupling to
gravity, the Higgs field is pushed away from the origin of its potential due to quantum fluctuations. It is
therefore a mystery how we have remained in our current vacuum if we went through such a period of
inflation. In this work we study the effect of top quarks created gravitationally during inflation and their
effect upon the Higgs potential using only general relativity with minimal couplings and Standard Model
particle physics. We show how the evolution of the Higgs field during inflation is modified coming to the
conclusion that this effect is non-negligible for scales of inflation close to or larger than the stability scale
but small for scales where the Higgs is stable. Also, we briefly discuss the effect of other fermions to the
Higgs instability.

DOI: 10.1103/PhysRevD.99.036012

I. INTRODUCTION

The measurement of the actual Higgs and the top quark
masses at the LHC and other colliders [1–3] leads to an
interesting effect when one calculates their renormalization
group running in that the quartic Higgs self-interaction
coupling λ becomes negative above around 1010 GeV
[4–7]. This high energy scale cannot be probed at current
colliders but is much smaller than the Planck mass and is in
a region where all the couplings remain perturbative, so
there is no reason not to take this extrapolation seriously.
Taking the central observed values for the Higgs mass (mh),
the top quark mass (mt), and the strong coupling constant
(αs) from [8], a calculation [6] of the running of λ and yt is
shown in Fig. 1.
The implication of this is clear: in the absence of physics

beyond the Standard Model affecting the running of
the coupling constants, our current electroweak vacuum
favors a metastable solution over an absolute stable vacuum
[9–14]. Fortunately when one calculates the lifetime for
tunneling into the true vacuum above 1010 GeV, one
typically obtains numbers which are many orders of
magnitude larger than the age of the universe [5], although

it is still a subject of active research where new physics
could modify the lifetime [15–20]. One might expect
therefore that this unusual behavior of the running at high
scales is little more than a curiosity; however, this situation
changes when one considers the early universe.
For several decades the leading hypothesis for the

earliest stages of the evolution of the universe has contained
a period of cosmological inflation where the scale factor
expanded exponentially, solving many cosmological prob-
lems and explaining the origins of astrophysical structure
formation across many orders of magnitude in physical
scale [21–23]. While inflation has its own fine-tuning
problems (see attempts to address and recast some of these
here [24]), there are not many compelling alternatives to
inflation which have a simpler or even equally simple
mathematical consistency.
Fluctuations in the Higgs field during inflation lead to

stochastic growth in its expectation value which could push
it to the region of instability at around 1010 GeV [25].1 The
universe would then seemingly be overwhelmed by an
anti–de Sitter (AdS) region which would subsequently
collapse, allowing no possibility of us being here today
[4,13,28–30]. Because of this, there appears to be tight
constraints upon the absolute scale of the expansion rate H
during inflation in order to evade instability. This corre-
sponds in a one-to-one fashion upon the magnitude of
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1It is usual to set the renormalization scale μ to the expectation
value of the Higgs h when one considers effective potentials
where the effects of loops are included as logarithmic corrections
[26,27].
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primordial gravitational waves which might be generated
during inflation [31–33], which is parametrized by the
tensor to scalar ratio rT .
What we propose in this paper is to take into account for

the first time the gravitational particle production of
fermions during inflation, in particular the top quark which
has the strongest interaction with the Higgs field. The
energy density of fermions produced during inflation grows
proportional to their mass [34], and since top quarks have a
Yukawa coupling yt of order unity, their mass is given by
the Higgs vacuum expectation value (VEV) mt ∼ yt · h.
The interaction term in the Lagrangian of the SM for the
case of the Higgs and the top fermions is

Linteraction ¼ yt
hffiffiffi
2

p ψ̄ψ : ð1:1Þ

So as the Higgs field is pushed to higher values, the mass
of the top quarks will increase and the production of
fermions will also increase, meaning that the contribution
from the fermions ψ̄ψ to the Higgs potential will also rise.
We aim to show that there are situations where this
contribution to the potential can change the probability
of ending in a catastrophic collapse during inflation.
The paper is organized as follows: Section II reviews the

instability of the electroweak vacuum during inflation.
Section III describes the particle production of massive
fermions in a de Sitter background and their subsequent
modification of the Higgs potential in the case of top
quarks. In Sec. IV we study the stability of the Higgs taking
in consideration this effect before discussing the results
in Sec. V.

II. THE INSTABILITY OF THE ELECTROWEAK
VACUUM DURING INFLATION

In this section we will review the normal arguments
which explain why a period of inflation is dangerous for

the stability of the electroweak vacuum given the fact that
the quartic coupling runs to negative values at high scales.
There is some discussion in the literature about the best

choice of the scale μ and its relationship with the Higgs
field expectation value h when working with the Higgs in
the early universe. It was recently proposed [29,30,35,36]
that when studying a quantum field in a curved spacetime
background, in order to cancel the logarithmic divergen-
ces that arise in the potential at one-loop order, the choice
of the scale μ is different from the choice that is usually
assumed for the same situation in a flat spacetime back-
ground where μ ≈ h is chosen [4]. In this work the results
do not depend strongly on these two different choices of
the scale but for definitiveness we choose to set the scale
of the running as

μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þH2

p
; ð2:1Þ

where h is the Higgs VEV and H ¼ _a=a is the Hubble
parameter, although we will include an extension to our
calculation to showcase the differences with the choice of
scale μ ¼ h.
What is more widely agreed on is that during inflation,

short wavelength fluctuations behave as classical noise
acting on the dynamics of the Higgs field on super-Hubble
scales and these fluctuations can be described using the
Langevin equation [25,37]

dh
dNe

¼ −
V 0ðhÞ
3H2

þ H
2π

ξ: ð2:2Þ

Using this equation we can study how the expectation
value of the Higgs field hh2i evolves with Ne—the number
of e-folds of inflation (dNe ¼ d ln a, where a is the scale
factor). The evolution is due to a combination of two
effects: the first is given by the classical equation of motion,
where V 0ðhÞ is the differentiation of the Higgs potential
with respect to the Higgs VEV, and the second is due to the
stochastic noise, where ξ is a Gaussian white noise with
zero mean and unit variance. The Langevin equation is only
valid for a light field V 00 ≪ H2. If the Higgs is initially at
the origin (h ¼ 0), the stochastic term dominates over
the classical term and on average the Higgs VEV after Ne
e-folds of inflation would be

hh2i ¼
�
H
2π

�
2

Ne ð2:3Þ

until the classical term becomes as large as the stochastic
term, which in the classical picture occurs after Ne¼1=

ffiffiffi
λ

p
,

and the Higgs would then acquire an equilibrium value
given by

hh2i ¼ 0.13
H2ffiffiffi
λ

p : ð2:4Þ

FIG. 1. Running of λ and yt for mt ¼ 173 GeV, αs ¼ 0.1181,
and mh ¼ 125.18 GeV.
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This is valid only if λ > 0 (and constant). In the case that λ
is not positive, then the Higgs VEV motion would be
unbounded. Note we are assuming here and throughout that
the Higgs field starts at the origin 60 e-folds before the end
of inflation. This assumption is somewhat important, but as
long as h starts somewhere belowH we expect very similar
results. If h starts with a very high value, then a different
kind of analysis would have to be performed.
Therefore, even if we only assume 60 e-folds of de Sitter

expansion, on average the value of the Higgs VEV is going
to be close to the energy scale of inflation (h ≈H) and the
running of the Higgs self-interaction λðμÞ ≈ λðHÞ. If the
energy scale of inflation is high enough, then the Higgs
field would move into the unstable region; in particular, for
60 e-folds, the scale of inflation should be about 1 order of
magnitude smaller than the scale at the maximum of the
potential [4,13,28].
From the nondetection of CMB polarization associated

with primordial gravitational waves (rT < 0.12) [38] we
can set an upper bound on the energy scale of inflation
H < 1013 GeV, and since the instability scale is around
μ ¼ 1010 GeV [4], we will focus on this energy inter-
val H ¼ 109–1013 GeV.
There are many possible alternative solutions to this

problem of combining inflation with the standard model.
However, unlike what we are proposing here, they all
invoke new physics: the most obvious and well studied are
a simple coupling between the Higgs field and the inflaton
[28,39–41] and a nonminimal coupling between the Higgs
field and the Ricci curvature [35,36,42,43] or both at the
same time [44]. See also [45] for the effect of the Gibbons-
Hawking radiation during inflation on this problem or
around an evaporating black hole in [46].
Having explained the problem and shown that for

inflation with H > 109 GeV the electroweak vacuum can
be unstable, we now move on to consider the gravitational
production of fermions and how they might change this
situation.

III. MASSIVE FERMION PRODUCTION

In this section we consider how fermions, in our case top
quarks, can be produced gravitationally and what effect
they will have upon the Higgs potential. There are two
general properties for the production of fermions that can
be deduced independently of the details of the problem:
First, fermions are conformally invariant, meaning that in
the massless limit there is a conformal transformation from
any Friedmann-Robertson-Walker metric to Minkowski
and therefore no particles are produced. Second, particle
creation is exponentially suppressed for the case of heavy
fermions (m ≫ H) and large momenta. Both of these
properties will be shown throughout the section. Here
we follow closely the work of [34].
It is now widely agreed that the fact that the definition of

vacuum for a field in a curved spacetime background is not

unique leads to the production of particles [47–49]. In
particular here we study a fermionic field that has been
expanded in a helicity basis, ψ ¼ P

i aiUi þ bþi Vi, with
i ¼ k, r and

Uk⃗;rðη; x⃗Þ ¼
eik⃗·x⃗

ð2πaÞ3=2
� uAðk; ηÞhk̂;r
ruBðk; ηÞhk̂;r

�
; ð3:1Þ

where k⃗ is the momentum, r ¼ �1 is the helicity, hk̂;r is the
helicity 2-spinor, and uA, uB are the temporal parts of the
field as a function of the conformal time adη ¼ dt that
solves the Dirac equation [34],

i∂η

�
uAðk; ηÞ
uBðk; ηÞ

�
¼

�
aðηÞm k

k −aðηÞm

��
uAðk; ηÞ
uBðk; ηÞ

�
:

ð3:2Þ

Since the choice of the orthonormal basis is not
unique, we could define a different basis fŨi; Ṽig, where
ψ ¼ P

i aiUi þ bþi Vi ¼
P

i ãi Ũiþb̃þi Ṽi.
The vacuum state is defined by aijvaci ¼ bijvaci ¼ 0,

so in the tilde basis, the number of particles measured over
the initial (no-tilde) vacuum state is

hvacjãþi ãijvaci ¼
X
j

jβijj2; ð3:3Þ

where the relation between the two vacuum states is linear
and parametrized by the Bogoliubov coefficients (αk⃗, βk⃗):
Ũk⃗ ¼ αk⃗Uk⃗ þ βk⃗V−⃗k.
Defining the initial basis with the index “in” and the tilde

basis in which we measure the number of particles of the
initial vacuum state as “out,” one obtains the following
relation:

jβkj ¼ juoutA ðk; ηÞuinB ðk; ηÞ − uoutB ðk; ηÞuinA ðk; ηÞj: ð3:4Þ

The out is set to be the instantaneous vacuum state (zeroth
order in adiabatic expansion), and it can be obtained by
using the Wentzel-Kramers-Brillouin (WKB) approxima-
tion,

�
uAðk; ηÞ
uBðk; ηÞ

�WKB

¼ αk

0
B@

ffiffiffiffiffiffiffiffiffiffi
wþam
2w

q
ffiffiffiffiffiffiffiffiffi
w−am
2w

p
1
CAe−i

R
η wðηÞdη

þ βk

0
B@

ffiffiffiffiffiffiffiffiffi
w−am
2w

p
−

ffiffiffiffiffiffiffiffiffiffi
wþam
2w

q
1
CAei

R
η wðηÞdη; ð3:5Þ

where w2 ¼ k2 þm2a2 and due to the normalization of
the modes, jαkj2 þ jβkj2 ¼ 1. A vacuum state is defined as
α ¼ 1 and β ¼ 0. This is a solution to (3.2) in a Minkowski
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spacetime where the scale factor is constant and there is no
particle production, which is why it is called the instanta-
neous vacuum, because as the scale factor changes with
time, this vacuum would measure a different number of
particles.
The in state is the Bunch-Davies vacuum state for a

perfect de Sitter background solution to (3.2), with aðηÞ ¼
−1=Hη [50],

�
uAðk; ηÞ
uBðk; ηÞ

�in

¼
ffiffiffiffiffiffiffiffiffi
π

4
kη

r 0
B@ eþπm

2HHð1Þ
1
2
−imH

ð−kηÞ

e−
πm
2HHð1Þ

1
2
þimH

ð−kηÞ

1
CA: ð3:6Þ

In the limit a → 0 (η → −∞) agrees with the WKB
solution (3.5) at that time; therefore at the beginning there
are no particles since both states coincide with α ¼ 1
and β ¼ 0.
In order to not create extra particles from the sudden

measurement of particles in the instantaneous vacuum (3.5),
we introduce a smooth exit from inflation into Minkowski
spacetime such that HηðηÞ ¼ Hð1 − tanhððη − ηiÞ=η0ÞÞ=2,
where ηi is the time at which inflation ends,H is the value of
the Hubble parameter during inflation, and η0 is the speed of
the transition. Then (3.6) is the solution to (3.2) for η ≪ ηi
and (3.5) is the solution at η ≫ ηi where we can unequivo-
cally define the number of particles created during the de
Sitter period of expansion of the universe.
The speed of the transition is set to η0 ¼ 1=H, the natural

scale for inflation. In the low limit mass, m=H ≪ 1, the
calculation is unaffected by the speed of the transition. But
for masses m=H ≥ 1 if the transition is faster, η0 ≪ 1=H,
then more particles would be created because of the sudden
change in the scale factor, and if η0 ≫ 1=H, the transition
happens too slow and heavy fermions would be diluted
leading to a smaller number of particles being produced.
For a more exhaustive study of the effect of the speed of the
transition we refer the reader to the work done for the case
of scalar fields in [51].
The production of heavy fermions, m≳H, is exponen-

tially suppressed by their mass ð1þ e2πm=HÞ−1 but for
the case of light fermions, jβkj2 ¼ 1=2 is constant up to
k=a ¼ m as shown in Fig. 2.
The quantity we are interested in is the expectation value

of an initial vacuum state for the product hψ̄ψi, and using
(3.5) this takes the form

hψ̄ψi ¼
Z

d3kp
2π3

m
wp

jβkj2; ð3:7Þ

where the subscript p stands for physical quantities, so
kp ¼ k=a; wp ¼ w=a. Also the piece in the product coming
from the initial vacuum and an oscillatory term has been
discarded, as it has been done as well in [52,53]; in the

literature this is called normal ordering or renormalization
of the product.
In this way we can obtain the expectation value for a

massive fermion during inflation as a function of its mass as
shown in Fig. 3,

hψ̄ψi ¼ H3
m
H

2

π2
0.063ðmHÞ1.22
e4.92

m
H þ 1

: ð3:8Þ

A. Addition to the Higgs potential

The full Lagrangian that determines the dynamics of the
Higgs field is

LHiggs×& top¼
1

2
∂μh∂μh−

λ

4
h4−3yt

hffiffiffi
2

p ψ̄ψþ3iψ̄γaeμa∇μψ ;

ð3:9Þ

FIG. 2. Plot of jβkj2 as a function of k=aH for different masses.
If the fermions are light, the spectrum can be approximated as 1=2
up to k=a ¼ m; for the heavy fermions the spectrum is suppressed
as 1=ð1þ e2πm=HÞ.

FIG. 3. Plot of hψ̄ψiπ2
2H2m as a function of m=H. If the fermions

are light, hψ̄ψi ∝ m2.2 up to m=H ¼ 0.49, above which it is
exponentially suppressed.
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where the spin-1
2

covariant derivative with vierbein

dependent spin connection, ωαβ
μ , is defined as ∇μψ ¼

∂μψ þ 1
8
ωαβ
μ ½γα; γβ�ψ , eμa is the vierbein, and γα are the

standard Minkowski spacetime Dirac matrices. The mass
of the fermions is of course explicitly given by the Higgs
expectation value. This coupling through the Yukawa
coupling yt also leads to a term in the equation of motion
for h which is proportional to ψ̄ψ ; and therefore the
fermions change its dynamics, and the factor 3 comes
from the color charge of the quarks in the Standard Model
(as pointed out in [54]). The addition to the Higgs potential
coming from the production of fermions is [using the result
obtained in (3.8)]

VðhÞ ¼ Vh þ Vf ¼
λ

4
h4 þ 3yt

hffiffiffi
2

p ψ̄ψ

¼ λ

4
h4 þ 3H4

0.013ðyt jhjffiffi
2

p
H
Þ3.22

e4.92ðyt
jhjffiffi
2

p
H
Þ þ 1

. ð3:10Þ

The condensate created from the production of fermions
changes the Higgs potential, adding an extra term that
peaks at hpeak ¼ 0.96H=yt. At that value the potential has
the value

VðhpeakÞ
H4

¼ λ

4

0.84
y4t

þ 0.00037: ð3:11Þ

So the contribution from the fermions to the Higgs potential
can dominate if

yt > 4.8 · λ1=4: ð3:12Þ

As can be seen in Fig. 4, the height of the barrier is
increased and there is a visible shift in the scale of the
instability; however, later we will see that this has a
disappointingly small effect upon the overall probability
of becoming unstable. Note that the effect of the fermion
backreaction dominates the potential when the criterion
(3.12) is fulfilled, i.e., very close to the point where λ ∼ 0, at
that scale yt ∼ 0.5, so Vf peaks at h=H ∼ 2.
If we were to study another fermion with a different

Yukawa coupling to the standard model (SM) Higgs field,
assuming that inflation occurs at a low energy scale where
λ ∼ 0.1, we would need a Yukawa coupling bigger than
y > 2.7 in order for the fermions to dominate (after 60 e-
folds of fermion condensate production). So the bigger the
Yukawa coupling the bigger the effect, which is why we
have been focusing on the top quarks throughout this paper.
We note, however, that a fermion with a larger Yukawa
coupling would destabilize the vacuum at a much lower
value of the Higgs field.
The main difference in comparison with the calculation

in Sec. III is that the fermion mass is not a constant but now

depends on the Higgs VEV. The relevant term in (3.2) is
maðηÞ ¼ yt hffiffi

2
p aðηÞ which clearly varies as h changes. We

need to establish if assuming that the mass is constant is a
good approximation so as to trust our calculation. To do this
we need to compare the variation with time of the Higgs
field with that of the scale factor and ensure that h0

h ≪ a0
a ,

where 0 ≡ d
dη. We look at this assumption in more detail in

the Appendix. The variation with time of the Yukawa
coupling is not considered since it would come from its
running, but it should be close to zero since we are
assuming close to perfect de Sitter and μ ≈H. If we
assume that the renormalization scale μ is given by h
and not H, then the only difference will be a larger value
of yt during the first e-fold of inflation, but during that
time the top quarks are almost massless (h ≪ H) and then
their production negligible, so we do not expect the
calculation to be sensitive to this choice. The Higgs will
jump stochastically due to quantum fluctuations, and in one
e-fold the size of a single quantum jump is H=2π [55];
therefore,

dh
dNe

¼ H
2π

ð3:13Þ

and from the definition of the Hubble parameter a0 ¼ Ha2.
Then the assumption of having a constant mass in this

case is rewritten such that

h0

h
≪

a0

a
⇒

H
2π

≪ h; ð3:14Þ

and from (2.3) this is true after the first e-fold. Before that,
the Higgs VEV is close to zero, making the fermion almost
massless, and since the production of the fermions is

FIG. 4. Plot of V=H4 as a function of h=H for H ¼ 1010 GeV.
With the additional effect of the fermionic contribution to the
potential Vf, the total potential V ¼ Vh þ Vf has a barrier which
is 5 times higher.
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proportional to their mass, it is safe to neglect the
production from the time when the (3.14) does not hold.
We have shown in this section how the gravitationally

produced top quarks will contribute to the Higgs potential.
In the next section we will study how this might affect the
stability of the electroweak vacuum during inflation.

IV. STABILITY STUDY

The Higgs field during inflation is moving stochastically.
Even though the variance of the field is given by (2.3) or
(2.4), the probability distribution function extends to
infinity. Therefore there is a possibility of going over the
barrier and ending up in an anti–de Sitter region. Since this
is not the case in our current Hubble horizon, which is
composed of e3Ne causally independent regions, we need to
impose the condition that the probability of going over the
barrier is, at least, smaller than e3Ne because none of these
regions can be in an anti–de Sitter spacetime. We do not
study the evolution of the Higgs field after inflation and the
possibility that even if the Higgs goes over the barrier,
thermal effects can make it go back to the false vacuum. For
more details concerning this, the reader should consult [4].
First, we solved numerically the Langevin equation (2.2)

using the modified potential (3.10) and obtained the
probability that after 60 e-folds of inflation, the Higgs
field would have gone over the barrier, using both pre-
scriptions to determine the scale, μ2 ¼ h2 þH2 (Fig. 5) and
μ ¼ h (Fig. 6). To get reliable statistics we simulated 105

realizations. The way we determined if the Higgs goes over
the barrier is, after 60 e-folds, if V 0ðh60Þ < 0, it has gone
over the barrier and in the opposite case, it has not.
For the choice of scale μ2¼h2þH2 andH>1010.2 GeV,

the Higgs is always unstable (probability is always one).
This is because the value of λ is always negative and the
Higgs, independently of its VEV, ends up in an AdS
vacuum. Once the production of top quarks is taken into

account, the probability is smaller than one since even
though the value of λ is negative, there is still a barrier
generated by the top quarks preventing the Higgs from
ending in an AdS region.
Comparing both plots it can be seen that for the

prescription μ2 ¼ h2 þH2, one is more likely to end in
an AdS region for values of the Hubble parameter close to
1010 GeV than in the case where the scale is just given by
the Higgs VEV. It makes sense since in the former case
there is a minimum value for the scale μ ¼ H, and therefore
the value of λ is smaller and closer to zero, independently of
the Higgs VEV. In this case, the Higgs feels “less” the
potential and can acquire a larger VEV during 60 e-folds of
inflation. Also it can be seen that if the scale of inflation
is reduced, there is almost no difference adding the top
quarks to the potential—since the contribution from the
fermions is determined by the scale of inflation, the smaller
the scale, the smaller the effect. But for the cases where
it is important, the top quarks can reduce that probability
by up to 50% in the prescription μ2 ¼ h2 þH2 and 10%
for μ ¼ h.
The stability condition is that the probability P < e−3Ne.

For 60 e-folds it is not possible to study it numerically since
the number of realizations that we would need is of the
order e3Ne. Instead we estimate the effect from the fermions
analytically.
As can be inferred from Figs. 5 and 6, the effect from

the top quarks for values of the scale of inflation H <
1010 GeV is very small, so we can treat this effect
perturbatively. Following the work in [13,36] for the study
of the Higgs instability without the top quarks, it was
shown that for values of H < hmax (hmax is the Higgs VEV
at the maximum of the potential), within 60 e-folds of
inflation, the Higgs acquires a constant variance, Eq. (2.4).
Since the time it takes to reach an equilibrium distribution
is given by Ne ¼ 1=

ffiffiffi
λ

p
and we are studying the situation

FIG. 5. Probability of going over the barrier after 60 e-folds for
a renomalization scale μ2 ¼ h2 þH2.

FIG. 6. Probability of going over the barrier after 60 e-folds for
a renomalization scale μ ¼ h.
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where H < hmax, λ is never so small that the time it would
take to reach the equilibrium distribution was longer than
60 e-folds. In this situation, the stochastic motion is
compensated with the gradient of the Higgs potential
and acquires an equilibrium distribution. Once an equilib-

rium has been reached Pðh > hmaxÞ ¼ e−
8π2

3H4Vmax , the sta-
bility condition is

8π2

3H4
Vmax > 3Ne; ð4:1Þ

where Vmax is the value of the Higgs potential at its
maximum.
The difference from previous studies is that we now

consider what is the effect of the top quarks, using (3.10)
evaluated at a scale μ ¼ hmax for both prescriptions, since
we are studying the cases whereH < hmax. The value of the
Higgs self-interaction λ close to hmax is estimated as in [4],
λ ¼ 0.08=ð4πÞ2. It is helpful to define x ¼ hmax=H, which
for the case of the Higgs without the addition of the top
quarks to the potential is xh ¼ 15.24 for 60 e-folds of
inflation. Giving us a bound on the scale of inflation to
make the electroweak vacuum stable, H < 8 × 108 GeV.
The effect of the fermions coupled to the Higgs is para-
metrized like

xhþf

xh
¼ 1 − α; ð4:2Þ

where there is a minus sign since this effect makes the
Higgs more stable. In general this can be generalized
to any quark with a Yukawa coupling to the Higgs.
The difference in the stability scale induced by this effect
is shown in Fig. 7. The value of the top Yukawa coupling
at the instability scale is 0.5 from Fig. 1, and therefore
αtop ∼ 10−13.

The maximum difference on the stability scale comes
from a Yukawa coupling of y ∼ 10−2, i.e., bottom quarks,
and that would be αbottom ∼ 10−6, still a small difference but
orders of magnitude larger that the effect from the top
quarks. The effect of the bottom quarks is larger than the
top because the scale of inflation is smaller than yðμ ¼
hmaxÞhmax since the effects of the fermions in the potential
peaks at hpeak, but in situations where H>yðμ¼hmaxÞhmax

the larger the Yukawa coupling, the larger the effect up
to hpeak ¼ hmax. Overall if there were to be a significant
change to the study of the electroweak vacuum, it would
come from the top quarks since, proportionally, they
modify the Higgs potential the most (see Figs. 5 and 6).
Although in a scenario where the scale of inflation is small
enough such that there is not a problem with the stability
of the Higgs, then the biggest effect would come from the
bottom quarks despite being a tiny effect.

V. DISCUSSION

With only Standard Model particle physics, the Higgs
field h seems to become unstable at renormalization scale
μ > 1010 GeV, and from the nondetection of primordial
tensor perturbations we know that during inflation
H < 1013 GeV. If inflation occurs with a value of H
within this range, there is generically a problem with the
stability of the Higgs field.
In this work we have shown how without the addition

of physics beyond the Standard Model the gravitational
production of quarks during inflation changes the Higgs
potential in such a way as to make it more stable.
Since the Higgs VEV gives the quarks their mass, if it

obtains a large value during inflation, the fermions become
relevant to the Higgs potential as shown in (3.10). This
contribution can be large enough to prevent the Higgs from
being pushed into the true vacuum during inflation in
borderline cases (Figs. 5 and 6).
It is also clear from the stability study (Sec. IV) that since

we have not added anything new to the SM and there are no
free parameters, there is no apparent possibility of improv-
ing these results. At the very least it is possible to extend the
stability of the Higgs a little bit (4.2).
Nevertheless we find this an interesting and noteworthy

effect. Possible future extensions of this work would be
looking at the effect of fermions beyond the standard model
to see if there is any way that they would change the
situation. In summary, in the Standard Model the Higgs
field seems to be unstable during inflation, but slightly less
unstable than before this effect is taken into account.
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APPENDIX: JUSTIFICATION OF THE
CONSTANT MASS APPROXIMATION

The calculation for the production of fermions in Sec. III
was done under the assumption that the mass, m, of the
fermions is constant; i.e., it does not change with time. Here
we aim to justify that this was a reasonable assumption. In
the case of the top quark, the mass is given by the Higgs
VEV as

m ¼ yt
hffiffiffi
2

p : ðA1Þ

Away of solving (3.2) is to obtain a second order ordinary
differential equation for uA and/or uB,

u00B þ uBðk2 − iðmaðηÞÞ0 þ ðmaðηÞÞ2ÞÞ ¼ 0: ðA2Þ

The frequency of this ODE is ω2 ¼ k2 − iðmaðηÞÞ0þ
ðmaðηÞÞ2Þ ¼ k2 − i

�
yt hffiffi

2
p aðηÞ

�0 þ
�
yt hffiffi

2
p aðηÞÞ2

�
.

Wewant to compare the frequency with a time dependent
value of hðηÞ,

ω2
1ðηÞ ¼ k2 − i

�
yt
hðηÞffiffiffi

2
p aðηÞ

�0
þ
�
yt
hðηÞffiffiffi

2
p aðηÞÞ2

�
ðA3Þ

with the expression where h is a constant,

ω2
2ðηÞ ¼ k2 − i

�
yt

hffiffiffi
2

p aðηÞ
�0

þ
�
yt

hffiffiffi
2

p aðηÞÞ2
�
: ðA4Þ

The way we compare them is

ω2
1ðηÞ0

ω2
2ðηÞ0

¼ 1þ e; ðA5Þ

where if the approximation of making the mass constant for
the case of the top quark is good, then e ≪ 1.
The variation of the Higgs VEV with time is h0 ¼aðηÞH2

2π .
After Ne ≈ 1.2 e-folds, e < 1 and it is a good approxima-
tion to consider the mass of the fermions constant. So we
can conclude that H

2π ≪ h let us assume that the mass is
constant in comparison with the variation of the scale
factor. Analytically this can be seen as

ω2
1ðηÞ ¼ k2 þ a2H2

�
y2t h2

2H2
− i

yt
2

ffiffiffi
2

p
π
− i

ythffiffiffi
2

p
H

�
; ðA6Þ

ω2
2ðηÞ ¼ k2 þ a2H2

�
y2t h2

2H2
− i

ythffiffiffi
2

p
H

�
: ðA7Þ

Knowing that yt < 1 if H
2π ≪ h, then ω1 ≈ ω2. We therefore

argue that for the vast majority of the e-folds of inflation,
the approximation we have taken is a good one, and for the
small period of inflation where the mass is very small, the
production of fermions is anyway negligible, as argued in
the main body of the article.
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