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In this work, the intermeson interactions of double-beauty B B, BB*, and B*B* systems have been
studied with heavy meson chiral effective field theory. The effective potentials are calculated with
Weinberg’s scheme up to one-loop level. At the leading order, four-body contact interactions and one-pion
exchange contributions are considered. In addition to two-pion exchange diagrams, we include the one-
loop chiral corrections to contact terms and one-pion exchange diagrams at the next-to-leading order. The
behaviors of effective potentials, both in momentum space and coordinate space, are investigated and
discussed extensively. We notice the contact terms play important roles in determining the characteristics of
the total potentials. Only the potentials in 7(J”) = 0(17) BB* and B*B* systems are attractive, and the

corresponding binding energies in these two channels are solved to be AEgp: ~ —12.6:9'22‘9 MeV and

AEg 5 ~—23.85)%2 MeV, respectively. The masses of 0(17) BB* and B* B* states lie above the threshold
of their electromagnetic decay modes BBy and BByy, and thus they can be reconstructed via
electromagnetic interactions. Our calculation not only provides some useful information to explore exotic
doubly bottomed molecular states for future experiments, but also is helpful for the extrapolations of Lattice

QCD simulations.

DOI: 10.1103/PhysRevD.99.036007

I. INTRODUCTION

Hunting for exotic multiquark states beyond the conven-
tional meson and baryon configurations is a long-standing
problem of QCD [1-3]. After the pioneering exotic
state X(3872) was discovered in 2003 by the Belle
Collaboration [4], a new perspective of hadronic physics
was opened, and plenty of exotic hadrons called XY Z states
were observed at experiments [5,6]. Lots of experimental
and theoretical efforts have been made to understand the
nature of these states, but they still seem very elusive.

Most of these states cannot be assigned into the
framework of conventional quark model. For example, if
we treat X (3872) as the y..(2P) charmonium, the mass of it
would be about 78 MeV lower than the prediction of
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relativized quark model [7]. Furthermore, the isospin
violation process X(3872) — J/yp with the substantial
decay width makes the situation more complicated and
mysterious. Thus, various pictures and explanations were
put forward to probe the inner structure of X(3872), such as
molecular model [8-13], tetraquark state [14,15], tradi-
tional axial vector charmonium [16,17], Lattice QCD
simulation [18,19], and other theoretical schemes [20]
(for a review, see Ref. [5]). Among them, the shallowly
bound molecular picture, i.e., the deuteronlike configura-
tion, is the most popular one, because the mass of X(3872)
is very close to the threshold of D°D*. Like study the
interaction of proton and neutron is a sine qua non for
understanding the characteristics of deuteron and nuclear
force, if we want to comprehensively understand the nature
of X(3872) and other resonances in XYZ family, to
research the strong interactions between heavy mesons
would be an ineluctable key issue.

Unlike a plethora of XYZ states have been observed in
charmonium energy region [5,6,21], only two Z, states
were reported in bottomonium spectrum [22]. There is also
no unanimous conclusion on what the Z,(10610) and
Z,(10650) really are [5], but one promising interpretation
about the two charged bottomoniumlike states is molecular

Published by the American Physical Society


https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.99.036007&domain=pdf&date_stamp=2019-02-12
https://doi.org/10.1103/PhysRevD.99.036007
https://doi.org/10.1103/PhysRevD.99.036007
https://doi.org/10.1103/PhysRevD.99.036007
https://doi.org/10.1103/PhysRevD.99.036007
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

BO WANG, ZHAN-WEI LIU, and XIANG LIU

PHYS. REV. D 99, 036007 (2019)

conjecture which are composed of BB* and B*B*, respec-
tively [23—27]. Stimulated by the continuously experimen-
tal observations of novelly hidden heavy flavor exotic states
over the past decade, the interactions between heavy
meson-heavy antimeson systems have been intensively
investigated. For example, before Z,(10610) was observed
in 2011, Liu et al. had predicted a loosely bound S-wave
BB* molecular state in the framework of one boson
exchange (OBE) model [12], and later, the BB* and
B*B* systems were again studied with OBE model [24—
26,28,29]. In Ref. [30], the pion-mediated interaction
associated with coupled-channel effect is exploited to study
the BB* and B*B* systems. And some other related works
such as QCD sum rule [31], Bethe-Salpeter approach [32],
coupled-channel model [33], and so on.

As mentioned above, up to now, the observed exotic states
are mainly composed of QQ¢qg or QQqqq (where Q denotes
b or ¢ quark, and ¢ stands for u or d quark) [5]. Whereas,
nowadays, the exotic clusters with double charm or bottom
still conceal themselves from the field of our view.
Fortunately, LHCb Collaboration reported the observation
of doubly charmed baryon E/" very recently [34], which
triggered many discussions on whether the stable QQg g
tetraquark states can exist in nature. For instance, in Ref. [35],
Karliner et al. predicted a doubly bottomed tetraquark bbii d
with J¥ = 11 at 10389 & 12 MeV, which lies far below the
B~ B* and electromagnetic decay B~ By thresholds. Eichten
et al. also found the double-beauty state with constituent
quarks bbii d is stable against strong interactions [36]. Based
on the quark-diquark symmetry and the input of the mass of
=17, Ref. [37] indicated the existence of a stable double-
bottom tetraquark state in / = O channel.

Actually, the exploration on the existence of stable
QQg g tetraquark states is always an intriguing topic.
Many meaningful works, including the quark model
potential, QCD sum rule, color-magnetic interaction, and
Lattice QCD, have been utilized to study bbitd systems.
Dating back to 1985, in the framework of the nonrelativistic
potential model, Ref. [38] found the state with quark
contents bbiid to be bound. Later, Barnes et al. [39]
investigated B B, BB*, and B* B* intermeson interactions in
the quark model potential, and after solving two-meson
Schrodinger equations, they found that the 7/ =0 BB*
([bq][bg]) channel is attractive (for other related works, see
Refs. [40—44]). In Refs. [45-52], the potential between the
two B mesons as a function of two static b quark distance is
calculated in quenched Lattice QCD (for a review, see
Ref. [53]), and especially in Refs. [50-52], the binding
energy region of the bbii d system is evaluated to be 20—
200 MeV, which is compatible with phenomenological
models predictions [35,36].

Inspired by the observation of doubly charmed baryon
=1 [34] and many theoretical works as mentioned before,
in this work we use chiral effective field theory (yEFT) to
study the physically allowed B B®)([bg][bg]) (see

TABLE 1. The physically allowed B B, BB*, and B*B* states
[39], where I, and S, designates the total isospin and total spin
of two B mesons, respectively. Due to the constraints of
symmetry, the quantum numbers of B B and B*B* systems must
satisfy the selection rule L + S, + [,; + 2i = Evennumber,
where L is the orbital angular momentum between two B mesons,
and i denotes the isospin of one B meson, which is 1/2.

Total isospin Total spin
System Lot Sior =0 St =1 Stor =2
BB 1 Even L
0 Odd L
BB* 1 All L
0 All L
B*B* 1 Even L Odd L Even L
0 Odd L Even L Odd L

Table 1), i.e., BB, BB*, and B*B* intermeson interactions,
to see in which channel the potential is attractive and to
search for the possible bound states.

yEFT has been widely employed to study the inter-
actions of nucleon-nucleon (N-N) and meson-meson
(M-M) systems with flying colours. For the successful
application of yEFT in N-N systems, one can see some
important works in Refs. [54-57] and the references
therein, or see Ref. [58] for an introduction to yEFT.
Here, we give a short review about the use of yEFT in M-M
systems, mainly focus on heavy meson sectors. In
Ref. [10], AlFiky et al. proposed an approach with
respecting the heavy quark symmetry and chiral symmetry
to deal with X(3872) as a molecular state of D°D*.
Similarly, there are also an abundance of investigations
on DD*(BB*) systems with yEFT, concerning the molecu-
lar assumptions of X(3872) and two Z, states [59-69]
(or see Refs. [5,6] for a review). In addition to utilizing
yEFT to study heavy meson-heavy antimeson systems,
applying yEFT to heavy meson-heavy meson systems
(such as D®DH, DHBH and BHBH®) is also an
interesting topic. In our two previous works, first in
Ref. [70], we gave a tentative usage of yEFT in BB
system, and obtained the strong interaction potentials in
momentum space. Then in Ref. [71], we calculated S-wave
DD* potential at one-loop level, noticed in the 0(17)
channel it is attractive, and obtained a bound state with the
binding energy AEpp: = —15.6’:113_'; MeV. We also notice
that in Ref. [72], both open charm and bottom states
(D®B™) are studied with heavy meson chiral effective
field theory (HMyEFT).

Based on Refs. [70,71], we naturally extend our study to
B® B™) systems, and for these kinds of states their typical
quark configuration is [»g|[bg]. To inquire whether there
exist such heavy flavor molecular states with double
bottom or not, in our work we consider the S-wave
(L =0) interactions of different B*)B™*) systems.
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According to the selection rule listed in Table I, the 1(J?)
numbers for the physically allowed states are: 1(0") for
BB;1(1%)and 0(17) for BB*; 1(0"), 1(2*), and 0(17) for
B*B*. In order to get the interaction potentials for these
different channels in coordinate space, we first calculate the
amplitudes in momentum space with SU(2) HMyEFT up
to one-loop level, where the amplitudes include the con-
tributions from four-body contact interaction (FBCI), one-
loop corrections to four-body contact interaction, one-pion
exchange (OPE) contributions, one-loop corrections to one-
pion exchange parts, and two-pion exchange (TPE) con-
tributions. After subtracting the two-particle reducible
(2PR) contributions in some typical Feynman diagrams,
we make the Fourier transformation on the potentials in
momentum space, and thus the potentials in coordinate
space can be obtained. Finally, by solving the nonpertur-
bative equations such as Schrodinger equation, Lippmann-
Schwinger equation, and so on (in this paper, the
Schrodinger equation is solved numerically), one cannot
only recover the 2PR contributions, but also get the binding
energy AFE in the attractive channels. In this way, we can

predict the possible molecular states in B*)B™) systems
and make a comparison with other phenomenological
models [39,73].

This paper is organized as follows. After the introduc-
tion, we show the effective Lagrangians used in this work
and the Weinberg’s formalism in Sec. II. The calculations
of effective potentials and the analyses are represented in
Sec. 111, the contributions of the low-energy constants at the
next-to-leading order are estimated in Sec. IV, the results
are summarized in Sec. V, and some needful formulas are
given in the Appendix.

II. EFFECTIVE LAGRANGIANS AND
WEINBERG’S FORMALISM

A. Effective Lagrangians

In the framework of HMyEFT, the scattering ampli-
tudes can be expanded order by order with a small
parameter € = g/A,, where ¢ is either the momentum
of Goldstone bosons or the residual momentum of heavy
mesons, and A, represents either the chiral breaking scale
or the mass of a heavy meson. Except for BB, the
scattering amplitudes of both BB* and B*B* channels
at leading order O(e°) have the contributions from FBCI
and OPE, which are described by the leading effective
Lagrangians in Eq. (1) [10,61,70] and Eq. (2) [74-76],
respectively,

|

L) = D Tr[Hy, H|Tr[Hy* H] + D, Tr[Hy,ys H|Tr[Hy'ys H]
+E,Tr[Hy, = H|Tt[Hy"t,H]
+EbTr[H}’ﬂJ/sTaH]TT[HV”VSTaH], (1)

where D,, D,, E,, and E, are four independent low-

energy constants (LECs), which are determined later. z¢
represents the Pauli matrix,

Ly, = —((iv- 0H)H) + (Hv-TH) + g(HyysH)
1 _
-3 A(Ho""Ho,,), (2)
where v = (1, 6) is the four-velocity of heavy mesons, and

H denotes the degenerated B and B* doublet in heavy
quark limit, which can be expressed as

1+7, . )
H = ——=(P,y" +iPys),
) 1
=Py = iy ir L
P=(B",BY), P; = (B*,B%). (4)

The last term in Eq. (2) accounts for the mass shift of B
and B*, which will not vanish in chiral limit, and A is the
mass difference of (B,B*) doublet. The tensor o** is
defined as i[y,,y,]/2. Besides, the chiral connection I,
and axial vector current u, are illustrated as follows,

L=3.0d  w=318.08. O

where & = exp(i¢p/2f). f is the pion decay constant, and
the triplet pion field ¢ is defined as

z +
o= )
T

As indicated in Ref. [70], other forms of FBCI at the
leading order with different Lorentz structures are not
independent, such as Tr[Hy,HHy,H|, Tr[HH|Tr[HH|, and
Tr[Ho,, H|Tt[Ho* H], which can be expressed as the linear
combinations of the terms involved in Eq. (1). Some terms
like Tr[HysH)Tr[HysH) and Tr[Hyst* H)Tr|Hyst,H] van-
ish in heavy quark limit.

At the next-to-leading order, i.e., O(e?), the scattering
amplitudes can be decomposed into four parts, one-loop
corrections to FBCI and OPE, TPE, and the tree diagrams
governed by O(e?) Lagrangians. In our calculations, we
introduce the O(e?) FBCI Lagrangians to renormalize the
O(€?) loop diagrams, which read [70,71]

2h - : - .
L5 = DiTe[Hy, H)Te[Hy" H|Tx () + DY Te(Hy,ysH|Te[Hy'ysHTr(r..)
+ ENTr[Hy,«*H|Tx[Hy 7, HTr(y ) + EFTe[Hy,ystH|Tr[Hy yst, H]Tr(y . ), (6)
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E = {D” Tr[(v DH)y,(v- DH)|Tt[Hy*H] + D2, Tx[(v - DH)y,H|Tr[(v - DH)y"H|
sTr((v- DH)y, H|Tr[Hy* (v - DH)| 4+ D2, Tr[((v - D)*H )y, H|Tr[Hy*H|
DZI Tr[(v - DH)y,ys(v - DH)|Tr[Hy'ysH] + - - - + E" Tr[(v - DH)y, (v - DH)|Tr[Hy t H] + - -

+ E}, Tr[(v- DH)y,yst*(v - DH)|Tr[Hytyst, H] +

-} +Hec., (7)

LED = (DITr[(D"H)y, s (D*H)|Tr[Hy,ysH) + DITe[(D*H)y,ys HITe[(D* H)y,ysH)
+ DiTr[(D*H)y,ysH|Tr[Hy,ys(D*H)) + DiTr[(D*D"H )y, ysH|Tt[Hy,ysH]

+ E{Tr[(D*H)y,yst*(D*H)| Tr[Hy,yst,H] +

where
B 1
Xt =Xt — ETTD&],

The large amounts of LECs appeared in Egs. (6)—(8) contain
both the finite and infinite parts, and the infinite parts can be
used to cancel the divergences of the loop diagrams at O(€?).
Nevertheless, the finite parts cannot be fitted due to the lack
of enough data right now, and thus we neglect the contri-
butions from O(e?) tree diagrams that governed by the
Lagrangians in Eqgs. (6)—(8) in our computations for the
moment. However, an estimation of the errors caused by
the O(e?) tree graphs is presented in Sec. IV.

B. Weinberg’s formalism

Before formally carrying out our calculations, we give a
brief introduction to Weinberg’s power counting scheme
[77,78] since it is the core of the theoretical calculations in
this work.

We take the two-nucleon scattering process as an
example. Considering the one-loop Feynman diagrams
displayed in Fig. 1, in the nonrelativistic limit, the scatter-
ing amplitude of Fig. 1(a) is proportional to

/ d°r¢ 1 (10)
i .
(27)P (= + ie) (€ + ie)(£* — m2 + ie)
Inspecting the above loop integral, we can find that the

integration over ¢, is ill defined because it has poles above
and below the real axis at £, = F-ie (which is always called

l+q

(E,.p) (E,.~P)

(a) (b)

FIG. 1. Two types of 2PR Feynman diagrams of N-N scatter-
ing, which will also appear in this work.

~}+He., ..., (8)

L =EyE L &E y=mk )

as pinch singularity [56,78]). This problem can be cured by
including the kinetic energy of the nucleon in the leading
terms but not treating it as a perturbation. Then the pole
positions of the two nucleons’ propagators will be shifted to

= +(E—F2)2My) + i,

where & = p?/2M , and My is the mass of the nucleon. As
is pointed out by Weinberg [77,78], after the £, integration
being performed with residue theorem the contribution
from the pole of nucleon is enhanced by a large factor
My/|p|, and this strong enhancement explicitly breaks the
naive power counting with which the ¢ integral should
have been of O(1/|p|).

With the formalism given in Ref. [78], we concentrate on
the effective potential (i.e., the irreducible graphs) but do
not directly calculate the scattering amplitudes. Namely,
removing the 2PR part contributions that originate from
intermediate on-shell nucleon states (“infrared enhance-
ment”), the irreducible diagrams that make up the effective
potential can then be calculated perturbatively. The 2PR
part will be automatically recovered when the effective
potential (or kernel) is inserted into the Schrodinger
equation (or Lippmann-Schwinger equation).

We will encounter the same problem as discussed above
when studying the interactions of two B mesons with
HMyEFT. We follow the ideas in studying the N-N system
[78]; i.e., we calculate the effective potentials of two B
mesons first. One can find more details of calculations in
Appendix A.

IIL. EFFECTIVE POTENTIALS
OF B®B*) SYSTEMS

A. BB system

The BB system has been studied in Ref. [70] with
HMyEFT, but in Ref. [70] the four LECs were unevaluated
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and only the TPE contributions in momentum space were
shown, and thus the behavior of the total potential is still
ambiguous. Therefore, in this part, we revisit this system
and give a more intuitional form of the potential in
coordinate space to see whether a bound state can exist
in B B system.

From Table I, one can see that only 1(0") BB state
survives under S-wave interaction, which corresponds to
the B~ (p,)B (p>) » B~ (p3)B~(p4) elastic scattering
process. At the leading order O(e”), OPE is excluded
and the amplitude only receive contribution from the FBCI,
by expanding the Lagrangian in Eq. (1), one can easily get

VWS —8(D, + E,). (11)

At O(¢€?), the amplitudes receive both the one-loop
diagrams for FBCI corrections and TPE diagrams which
are illustrated in Figs. 2 and 3, respectively. The amplitudes
correspond to the diagrams in Fig. 2 are listed in
Egs. (12)—(16),

W = e (D= )T} (e -8, E-8). (12
e = e (D= )T} e -8 E-8). (13
Y = O L (D= 1)k} (e £~ . E =), (19
P = 0 L (D= )Tk} (e - 8.E-8). (19

g d
a1 = Cas 7 {(D - 1)& 32} (Mg, %) meens  (16)

(z,)

(81_1) (g].z) (h|.|) (hl‘z)

FIG.2. One-loop corrections to the contact vertex at O(e?). The

thin solid, thick solid, and dashed lines represent B meson, B*
meson, and pion, respectively.

T

() (T, (B (R.)

FIG. 3. Two pion exchange diagrams at O(e?). There is one
football diagram (F'; ;), two triangle diagrams (7’| ; and T, ,), one
box diagram (B, ;), and one crossed diagram (R; ;). Notations
same as in Fig. 2.

where the coefficients C* are flavor and LECs dependent,
their concrete values are

Chi =C%2=-4(3D,-D,—E,—5E}),
Chi = Cchiz :4(Db +Eb)’ Car = —6(Da —|—Ea)_ (17)

Various scalar functions 7 are defined in Appendix A 1,
m, is the mass of pion, D is the dimension where the loop
integral is performed and approaches 4 at last. £ represents
the residual energy of B and B* mesons, and is defined as
E = Egw — Mpe. {X}, denotes the finite part of X [70],

. 9 1. (00
{X}r_ll}ﬂ(X_LaLX)+16n23$<aDaLx)’ (18)

which is equivalent to make use of the modified minimal
subtraction (MS) scheme.

The amplitudes of the diagrams F'; 1, T, T12, B4, and
R, ; in Fig. 3 are illustrated in Egs. (19)—(23), respectively,

PP — _# {@(TE +4T5 +4T5) +4T5}(m. q).
(19)
Yhi = —29—;4{(D = Dlgo(T3; +2T%)) +273]
— g (T +3T5 +27%)
= 23%(T 5+ T5)} (e € = A.q). (20)
Yo — _29_; {(D=D)]qo(T5 +2T5) +2T7%]
—qoq*(J1; +3T5, +2T%)
= 23%(T 5+ T5)} (e € = AL q). 1)
:
pin = = L0178 - PR+

x (I8 +T%) + T8+ (3)?
X (szz+2J§’2—|—jf3)},(mm8—A,€—A,q),

(22)
5q* o
= =G0 = )T - PO+ )T + T8)
+ I8+ (@) (T5 +2T5 + T},
X (mg;, E—AE—-A, q). (23)

Here, we need to stress that in the rigorous heavy quark
limit; i.e., when the mass difference A = 0, the amplitudes
induced by the diagrams h , h; 5, and By ; in Figs. 2 and 3
would approach to infinity. Thus, in order to get the correct
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potential, we employ Weinberg’s formalism to subtract the
2PR contributions that stem from the double poles of the
two intermediate heavy vector mesons. The contributions
from the B* meson poles are enhanced in the 1/Mp
expansion and repeat the results of the iterated OPE
diagrams, and thus we only need to consider the contri-
bution from pion poles. The related details are shown in
Appendixes A 2 and A 3.

The effective potential V can be derived from the 2PI
amplitude Y,p; by the relation

V= —%yzﬂ, (24)
where the factor —1/4 comes from OBE model [28,73],
which originates from Breit approximation.

The parameters used in the calculations are A = 0.045,
m, = 0.139, f =0.092 GeV, g=0.52 [79-81], and the
renormalization scale 41 = 4xzf. For simplicity, as in the
OBE model [12], the transferred energy ¢, and residual
energy £ of heavy mesons are both set to be zero.

By calculating Eqgs. (12)—(16), we obtain the result of
one-loop corrections to FBCI,

VIBC — 4(—0.18D,, + 0.1E, — 0.08E,).  (25)
We can see the contribution of D, vanishes, while D, and
E, emerge at O(e?). In addition, the result in Eq. (25) is
about one order of magnitude smaller than that of Eq. (11),
which manifests the convergence of chiral correction is
very good.

Because the FBCI and one-loop corrections to FBCI
describe the short distance interactions, and they are
independent of the transferred momentum |g|. Thus, the
|g| dependent part can only come from TPE. The result of
TPE in momentum space is displayed in Fig. 4(a). We can
see that the potential is negative when || is varied from 0 to
300 MeV, which indicates the TPE part supplies the

-1.5 T T T T T

—O(e?) 2-7

2F 1
4‘,\
>
o
O 25F 1
=
S

3F -

(a)
35 . . . . .
0 0.05 0.1 0.15 0.2 0.25 0.3
lq] (GeV)
FIG. 4.

attractive potential, and this potential would be deeper if
|g| becomes larger.

Because the potential in coordinate space can give more
intuitive information, we make the Fourier transformation
on the potential in momentum space in the following way:

d*q

V(r)z/(2”)3 e TV (q) F(q). (26)

We should note that, because the potential V(q) is
expanded as the power series of the transferred momentum
g in yEFT, we need to regularize V(q) to suppress the
contributions from high momentum to avoid the ultraviolet
divergence of the integral, which is the manifestation of
the fact that yEFT is valid only for ¢ < A,. Different
approaches in Refs. [82-96] were developed to regularize/
renormalize V(q) nonperturbatively. In this work, as in
Refs. [71,97-99], we adopt a simple Gauss regulator
F(q) = exp(—q*"/A®"), and we set n=2 as in
Ref. [99]. The value of the cutoff parameter A is commonly
below the mass of p meson in the N-N case [100], so we use
a moderate value A = 0.7 GeV as adopted in Ref. [71] to
give predictions.

If we want to get the numerical results of the effective
potential in coordinate space, we have to know the concrete
values of the four LECs [see Eq. (1)]. The values of the
LECs have been determined in Ref. [71] by exploiting the
resonance saturation model [101-103], which read (all in
units of GeV~2),

D, = —6.62+0.15,
E, = —5.74 £ 0.45,

D, =0+ 1.96,

E,=0=£1.89. (27)

With the preparations above, the effective potential of
1(0") B B system in coordinate space is given in Fig. 4(b).
From the figure, we can read that although the TPE
potential is attractive, the contribution from FBCI is

0.15 : ; , v v ' '
. ---0(€?) 2-1
S o O(")+0(€?) Contact
01k —Total E
o E
)
S
=
hS
(b)
-0.1 L L L 1 L L L
0 2 4 6 8 10 12 14 16

r (GeV™!)

(a) Represents the TPE potential of 1(0*) B B system in momentum space. The potentials in coordinate space are shown in (b),

where the dot-dashed line describes the TPE potential, the dotted line denotes the sum of FBCI potentials at O(¢”) and O(e?), and the

solid line stands for the total potential.
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X5 (H,,)

FIG. 5. The diagrams for BB* system at O(c), where X,
depicts the contact interaction, and H,; is OPE diagram.
Notations same as in Fig. 2.

dominantly repulsive, and thus the total potential is
undoubtedly repulsive. This result indicates that it is
impossible to find a bound state solution in 1(0") BB
system, which is in coincidence with the calculations of
Lattice QCD [50].

B. BB* system

For the S-wave BB* system, there are two different
isospin states, i.e., 1(17) and 0(17) BB* states. At the
leading order, both FBCI and OPE diagrams contribute to
the scattering amplitudes, which are illustrated in Fig. 5, at
the next-to-leading order, the amplitude is composed of
one-loop corrections to FBCI and OPE diagrams, and TPE
diagrams, which are shown in Figs. 6-8, respectively.

(€,,) (823)

(hz.l ) (hz_z)

(h,5)

(g 2.4)

(M)

According to the effective Lagrangians given in Egs. (1)
and (2), we can easily get the amplitudes of the elastic
scattering process B(p,)B*(p,) = B(p3)B*(p,) from the
diagrams H,,; and X, in Fig. 5,

V2 =8(=Dy + Dy~ Ey + Ey)er-€i). (28)

2 e . 6*
Vi = —]“ZQ(‘J qf)_(zl% ), (29)

where the subscript I denotes the isospin of the channel, ¢
is the transferred momentum carried by pion, €, and €}
designate the polarization vectors of initial B* and final B*,
respectively. In this section, we only give the amplitudes of
I =1 channel, and the amplitudes of / = 0 channel are
shown in Appendix B.

For the amplitudes of the one-loop corrections to FBCI
of BB* system in Fig. 6, similar to B B case, we also write
them out in the following,

2
Yo = o J’% (€2 €){ T} (e E.6),  (30)

2
22 = (e) - ) {C2 TG} (e, € = A E- D), (31)

(825) (846) (847)

(z,,) (2,,)

(z,3)

FIG. 6. One-loop corrections to the FBCI of BB* system at O(e?), which include the corrections to the BB*BB* contact vertex
(g2.1 ~ hy4), and wave function renormalizations of external legs (2, ~ z,3). Notations same as in Fig. 2.

(C26)

(62,7) (02.8)

(69) (¢210) (€)

FIG. 7. One-loop corrections to the OPE diagram of BB* system at O(e?), which include the renormalizations of pion line (p,.,),
BB*m vertex (cy ~ Cag, Ca10 ~ Ca211), and external legs (c,7 ~ ¢, ). Notations same as in Fig. 2.
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(£) (T, (L) (5) (B,

FIG. 8.

2 = Co 2<e2 TS} (e E+8.E-8), (32)

yqz4 _ gmi(e ){j } ( EE— A) (33)
7 2 €4 225 /Mg,

Cg,7_(€2 T (me E+ A E+ D), (34)

2
(= Ch“JT(€2 N Th), (me E+AE—-A),  (35)

?2 1=0, (36)

2

z * 0 a
Vi = (2 %(6‘2 . 64){5 jzz} (mm x)|x—>€’ (37)

2

2.2 a a
=L {5 76} mnoles 69
2
. g . 9 4
= L e ){ (D= D LT | ()
(39)
where the values of C* are
Cgll — 4(3Da - Db - Ea - SEb),
¢#2 =2[D(3D, — D, — E, — 5E,)
-2(D, - D, - 3E, — 5E,)),
C!}z,3 - —8(Dh + Eb)& C,(]24 8(Dh - 3Eh)9
C»1 =8(D, + E,), Chi = 2(D,— Dy + E, — Ep),
1
C71 = 12(Da -D,+E, - Eb)’ C22 = (%3 = ECZz.l’
(40)

and the amplitudes of diagrams ¢, 5, g6, /123, and h, 4 can
be obtained by the following relations,

925 __ Y923 926 . Y924
I=1 — Y I=1° I=1 — Y I=1»
haz oo hay _ yyhao
=1 — Y I=1° =1 — YI=1" (41)

(B,,) (B,3) (R,) (R,,) (R,)

Two-pion exchange diagrams of BB* system at O(e?). Notations same as in Fig. 2.

The amplitudes of one-loop corrections to OPE diagram
(Fig. 7) are illustrated as follows,

P21 — _g_2 (q : 62)(q ) ej)
I=1 f2 q2 _ m]2[

Z(my), (42)

2 - € €
e —f—ﬂ%m}( D @)

y02.3 _ _94 (C] : 62)(q : 62)

== Fw{ng}r(’nﬂ’ E+AE-A),
(44)
4 .
;2:.41 _ 29_][4(q C;Z)_(q 64) {j 2}r(mﬂ,g’g _ A), (45)
ey _ 39" (q-€2)(q-€}) 9 4
ViZi :4f4 qzz_m]z; : (D—l)a 2 r(mﬂ’x)|x—>£—A’

(46)

C 394(Q'€2)(Q'€*) 0 a
12:'81:4f4 qz_m%4 a2 r(mﬂ’x)|x—>€+A’ (47)

oy 39 (g e)g-€) [0,
Vi =g o TR (el (48)

2 =Y =0, (49)

where X(m,,) = [m2/(24x°f?)] In(m2/2?) [58], the ampli-
tudes of diagrams ¢ 5, ¢ 5, and ¢, g can be obtained by the
relations

;2:'21 = ;zz'lw ;isl = ;2:‘31, ;2:'61 = C“ (50)

Here we list the amplitudes of the diagrams F, | ~ B, 3 in
Fig. 8. The amplitudes of the diagrams R, ; ~ R, 3 can be
related to the ones of B, ~ B,3, respectively. For con-
ciseness, the terms that involve g, have been omitted since

qo 1s set to be zero in our calculations. One can find the
unabridged forms in Ref. [71].

Vi = fl (e- )T} (meg).  (51)
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2

Vit = lle )Th+ (g @)la- 6)(Th + TR} (me £+ 8.). (52)
Vi :%{(52 ) 2TL — P Th + T (- €)(q-€)(Th + T} (me. £.9), (53)
i = L2 (D= DT - F(Th + T} men = 8.0), (54
Vi = %{(ez FUD +5)(Th + Th) = (T +2T% + %) + Th] +2(D + 1)7%]
~(g-e)(q- D +3)(T5 + Th) - P(T% +2T% + Th) + Th(m. E~A.Eq).  (55)

4
p Zf?{(ereﬁ)[(DJr DT8 =@ (T5 + TH) + (- e)(q-e)[(D+3)(T5 + Th) + T5

- (T +2T5 + T8} (me, E+ A E-A.q), (56)
4
Vi — f? {[(e2- €)@ + (q-e2)(q- €I TE Y}, (me &= AE, q). (57)

When ¢y =0, the amplitude structures of diagrams
R, | ~ R, 5 resemble the ones of B, | ~ B, 3, correspond-
ingly. Hence we can get the amplitudes of diagrams R, | ~
R, 3 by multiplying the proper coefficients to the ampli-
tudes of diagrams B,; ~ B, 3, and substituting the loop
integral 78 with 7% accordingly. One can readily verify
the following correlations,

Ryt _ =B Ryy _ coBa
f RN Y | 121 = Szl g8
R B

Yi2i = =5Yi2g- gt (58)

In order to get the numerical results, some procedures are
the same as we calculate the B B system; i.e., Eq. (24)
should be used, and the 2PR part in diagrams £, i, h, 3, and
B,, must be subtracted with the aid of Weinberg’s
formalism. However, some additional steps still needed,
such as the pion decay constant f its bare value 0.086 GeV
[71] should be adopted. Since we only consider the S-wave
interaction, the terms (¢, - €}) and (g - €;)(q - €}) appeared
in above equations should be replaced by [28,71,73]

e =1 (g-elg-e) =57 (59)

We first list the results of one-loop corrections to FBCI in
I =1 and I = 0 channel, respectively.

VIIBC _ 4(0.086D;, — 0.086E, —0.21E,) (e, - €,
VEBC — 4(~0.21D, 4+ 0.63E, +0.79E,) (5 -€;).  (60)

By comparing with Egs. (28) and (B1), the results again
show the convergence of chiral correction is very good.

The effective potentials of 1(1%) and 0(1) BB* systems
in momentum space and coordinate space are shown in
Figs. 9 and 10, respectively.

From Figs. 9(a) and 10(a), we can see that the O(e°)
OPE potential is attractive for both /=1 and 71 =0
channels, and the O(e’) OPE potential in I = 0 channel
is more attractive than that of / = 1 channel. The O(€?)
potential generated by one-loop corrections to OPE dia-
gram is very small compared with the O(e°) OPE potential,
which demonstrates that the convergence of chiral correc-
tions to OPE diagram is also good. The behavior of TPE
potential is totally different between these two channels. In
I =1 channel, TPE potential is attractive and it intends to
be more attractive when |g| becomes larger. In 1 =0
channel, TPE potential is repulsive, and would be more
repulsive when |g| becomes larger.

Because the OPE and TPE potentials are all attractive in
I =1 channel, the total potential of / =1 channel is
attractive without the doubt. Although OPE provides an
attractive potential in / = 0 channel, the TPE potential is
repulsive and the absolute value of TPE potential is larger
than OPE potential, which gives rise to a repulsive total
potential in / = 0 channel.

Although the sum of OPE and TPE potentials of / = 1
channel in momentum space is attractive, we still cannot
conclude that there may exist a bound state in [ =1
channel, because the contribution from the contact
term is independent on ||, and not included in Figs. 9(a)
and 10(a). The results in Figs. 9(b) and 10(b) are very
interesting, because the inclusion of the contributions from
FBCI totally reversed the sign of the results in momentum
space. Although both the OPE and TPE potentials are
attractive in / = 1 channel, the FBCI potential is largely
repulsive, and thus the total potential of / = 1 channel in
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1 T T T T T

V() (GeV7?)

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3
4l (GeV)

FIG. 9.

0.14 T T T T T T T

(a) Represents the OPE and TPE potentials of 1(17) BB* system in momentum space, where the dashed line denotes the OPE

potential at O(€”), the dotted line is the OPE potential at O(e?), the dot-dashed line describes the TPE potential, and the sum of these
three parts are depicted by the solid line. (b) shows the potentials in coordinate space, where the dashed line stands for the sum of OPE
potentials at O(e®) and O(e?), and other basic notations are the same as in Fig. 4.

15 :
- =0() 1-7
------- O(é?) 1-m
10— (52) 2-7 -—______.:
—Total | =TT
>
o
S
IS " ]
= S~o
5 3 T = =~ - - -
(@)
-10 : w ‘ ‘ ‘
0 0.05 0.1 0.15 0.2 0.25 0.3

4l (GeV)

0.15 T T

~SO@)+0(@) 1
01 F= ---0(e?) 2-7
. S~ e 0O(e")+0(e?) Contact
~,
. —Total
0.05F RN ]
i .
=
01F ]
........ (b)
0.15 ! ‘ ‘ s w w ‘
0 2 4 6 8 10 12 14 16

r (GeV™!)

FIG. 10. The OPE and TPE potentials of 0(17) BB* system in momentum space (a) and the effective potentials in coordinate space (b).

Notations same as in Fig. 9.

coordinate space is repulsive. For the / = 0 channel, we
notice that much of potential generated from FBCI is
canceled by the one of TPE approximately, and thus the
residual part of FBCI potential plus the contribution from
OPE play very important role, since both of them are
attractive and thus the total potential is also attractive.
Moreover, we find a bound state in the 0(1") BB* system
by solving the Schrodinger equation numerically. We
obtain the binding energy is AEgp: =~ —12.61“1922'9 MeV,
and the corresponding root-mean-square radius is
1.01“8"; fm. Analogously, the OBE model [73], quark model
potential [39], and Lattice QCD [52] all demonstrated that
0(1") BB* system can form the molecular state. Our results
are qualitatively consistent.

There are some other remarks on Fig. 10(b). One can
notice that there exists a subtle cancellation between TPE
and FBCI potentials in Fig. 10(b), and this phenomenon
makes OPE alone be enough to bind B and B*. Although
TPE is model independent, the LECs involved in the FBCI

potential are determined with resonance saturation model,
thus the cancellation in Fig. 10(b) is model dependent more
or less. However, this result should be reasonable. BB*
interactions could be related to those of BB* if we ignore
the annihilation effect in BB* channel at very short distance
[104]. The authors in Refs. [61,62,105] investigated DD*
and BB* systems with yEFT extensively. They noticed that
O(€®) contact-range interactions are crucial, and the
inclusion of OPE only gives rise to minor modifications
of the numerical results. As we have seen in Fig. 10(b), this
is indeed the case; i.e., the attractive potential provided by
the FBCl is stronger than that of OPE. The consistency tells
us that the values of the LECs we adopted in this work are
reasonable, and the predictions given with the moderate
cutoff value A = 0.7 GeV are reliable. In the following, we
talk about the A dependence of the total potentials.

We also need to stress that in Eq. (26), we introduce a
Gauss regulator F(q) to regularize the potential V(q), and
the function F(q) contains a cutoff parameter A. In theory,
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0.02 T T T T T T T
0
- -A=06 GeV
-0.02 —=A =07 GeV | ]
= —A=m,
3
= 004 1
=
s
-0.06 ]
-0.08 1
0T 2 4 6 8 10 12 14 16
r (Gev1)
FIG. 11. The dependence of the total potentials for the 0(17)

BB* system on cutoff parameter A, where three different results
with A = 0.6, 0.7, and 0.77 GeV are illustrated.

the binding energy should be independent of the regulari-
zation schemes adopted in Eq. (26), the scale dependence
in Eq. (26) can be compensated by that of LECs. However,
in practical calculations, it is difficult to remove the
influences of A on observable. Therefore, we investigate
the dependence of the total potentials for the 0(1") BB*

X3 (H;,)

FIG. 12. The diagrams for B*B* system at O(¢”). Notations
same as in Fig. 2.

(85,) (853)

(h3_3) (h3_4) (h3.5)

FIG. 13.

(ps1) (¢51) (¢5,) (¢33)

(¢54)

system on cutoff parameter A, and the results are illustrated
in Fig. 11. We can read that the binding in the short range
would be deeper when the value of A is increased, but
the results are not very sensitive to A. By solving the
Schrodinger function, we find when A = 600, 700, and
770 MeV (m,), the corresponding binding energies are
AEgp ~—8.1, —12.6, and —15.6 MeV, respectively. The
result indicates that our predictions obtained at A =
700 MeV are stable; i.e., there exists a bound state in
0(1%) BB* system when the cutoff is near by m,,.

Bound 0(1") BB* means this state is stable against
strong interactions, it cannot decay into its components due
to the constraints of phase space. However, we notice that
the mass of this state lies above the threshold of electro-
magnetic decay mode B B y; thus, it can be constructed via
electromagnetic interactions at experiments.

C. B*B* system

Like the BB system, the quantum numbers of B*B*
system must be constrained by the selection rules given in
Table I. With S wave, the physically allowed B*B* states
are 1(07), 1(2%) and 0(1"), respectively. The diagrams at
the O(e°) are displayed in Fig. 12, and the diagrams at
O(e?) are illustrated in Figs. 13-15.

For the scattering process B*(p,)B*(p,) —
B*(p3)B*(p4), we first list the amplitudes of the diagrams
in Fig. 12 (we only give the amplitudes of / = 1 channel in
this section, and the amplitudes of / = 0 channel can be
found in Appendix C),

(g 3.4) (h:;,]) (h3,2)

(hye) (z3,) (z3,)

One-loop corrections to the FBCI of B*B* system at O(e?). Notations same as in Fig. 2.

(¢55) (¢36) (¢37) (¢35)

FIG. 14. One-loop corrections to the OPE diagram of B*B* system at O(e?). Notations same as in Fig. 2.
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(£,) (T (T:,)

FIG. 15.

Vi =8[(D,— Dy + E, — Ep)(e) + &)

+2(Dy + Ej)es3], (61)
2 %k

Hj g g(q9€lv€2’€3’€4)

=1 = sz 7 —m (62)

where we define

er=(e1-€3)(e2-€3), ey = (€1-€3)(€2-€3),
e3=(e1-€)(€5 - €}), e5=(q-€3)(q-e)(er-€),
&=(q-e)q-ei)er-e3). e§=0(q-€3)(q-€})(ei-€),
& =(q-e1)(q-&)(e-€), (63)
and

—&3) + (65 —&5) + (¢ — &3).
(64)

g(qv €1, €, €§’ ez) = 52 (82

The amplitudes of the diagrams in Fig. 13 are given as

93.1 _92

T—1 *fz [CT (&1 +&2) +

+Ces{ T}, (me E.6). (65)

932 __ I
=1 _f2

[C2(ey + &) {T5,},(mg E+AEHA),  (66)

2
yna = ]% [C93 (e 4 £ —263) [ {T %}, (. EE+ ), (67)

o _ G oh
y;’ 1:f2

5 = L (e (Th) (n £+ AE+A), (69)

[CP (61 +2) +Ch &3 { Thy }, (mg £.E),  (68)

Vs =0, (70)

i 7o . d
) :f2 [C7' (&1 + &) +C5'e }{ajgz} (M, )| x2es
(71)

(B, (B,

(B,;) (R;.) (R;,) (R;3)

Two-pion exchange diagrams of B*B* system at O(e?). Notations same as in Fig. 2.

2

9 31 9 4
; ]:F[ (€1+€2>+CZ 8’;]{%‘722} (mmx)|x—>5+A’

(72)
where the forms of the coefficients C* are
CP' =—4(1D,—5D, +3E,—9E,),
C3' =8(D,—3D,+5E,+E}),
C!]s,z :_4(3Da_Db_Ea_5Eb)’ 0933 = (Db_3Eh)

CP' ==2(Dy =Dy + E,—Ep),
Cy' =4(D,+Dy+E,+E,),

C2=4(Dy+Ey), C7'=-24(D,—D,+E,—E,),
C3'=—48(D,+E,), Cp2=

,CT 1 , ng.z — %C;] .

(73)

The amplitudes of diagrams g¢; 4, /13 4, 135, and /3 ¢ can be
obtained by the relations

934 __ Y933 yh34 yh3.1

=1 — JI=1I" =1
hys _ iz e _ a3
I=1 — Y I=1° =1 — I=1" (74)

The amplitudes of the diagrams in Fig. 14 are shown as
follows,

yﬂ N R g g(Q’€1’627€§7€4)
b f2 q2 _mﬂ

Z(mg),  (75)

29° G(q. €1, €, €5, €})

Cz] —
Vie 3f4 qz—m

{T6}(mz),  (76)

C32 g g(q 61’62763764)
= 2f4 qZ_m”

{T5}(me. E+AE). (77)

€33 _ g g(q 61’62,53,64)
I=1 2f4 qz m,,

Y

{5} (me. E+AE). (78)

gt G(q. €1, €. €5, €;)

034 —_J
y 2f4 q2_mﬂ

{jzz} (m,, &,E), (79)
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SR em

39" G(q. €1, €, 65, ¢€;) [ O
2= 2 a L212 (mﬂ’x)|x—>5+A’

(80)

Vit = Vit =0. (82)

The amplitudes of the TPE diagrams in Fig. 15 read,

o =20 9@ 066 {a : } ()] 1
Sart g -ml ox 2 [ e Vi = _Fgl{jg}r<mmq)’ (83)
(81)
|
T 92
2= F{[eil + 281‘12 + 8?](~7£4 + «73T3) - 4€1s73T4}r(m7z»5’ q), (84)
T 92
Vi = —174{[8‘1‘ +eN)( T3+ T5) + 2605}, (me, £+ A, q), (85)
4
g - a - c - a a a
yfill = _m{[“?l‘ﬁ + 81‘12 + 5?‘]2 + 51}('-752 + 2j§2 + ‘-753) - [851612 + 6¢f + 6*’3217 —& = 53 - 53](j§1 + ‘-752)
- [81‘72 +ef + 8? — &) gl + [6€) + &, + 83]jf1 + &5 gl + egjfz},(m,,,g, £.q), (86)
4
3.2 g C a a
Vi = —m{%(jlz}z +2T5 + Th) + [ef + ] + e + 5 + )(T5 + Th) + [er + &2 + &3] T4
+ 6137(*751 + jgl) + 83‘752 r(mm g + A9€ + A’ q)? (87)

4
Vi = = e 8+ @+ 265](TH + 275 o Th) + 2561 = Sef + 26, + 265 + 264 + 264 + 241(T + Thy

+ [—e§ — &b + &5 + 5] TE, + [-8e; + 2e5 + 23] T8}, (my, E,E+ A, q).

For succinctness, we also define

e =(q-e)(q-€)(er-€;). & =(q-€)(q €;)(e -€3),

ei =(q-€)(q-€)(q-€)(q€),
es=(q-€)(q-€)(q €)(q-€). (89)
Analogous to the BB* case [see Eq. (58)], the unlisted

amplitudes of the diagrams R3; ~ R;3 can be achieved by
the following relations,

Ry 3.1 Riy B3
B o .

R B

21 =5V TBL TR (90)

To obtain the numerical results, some terms like (¢;-€;)x
(ex-er), (€i-€;)(q - €)(q - €)and (g-€;)(q-€;)(q-€x)(q-€))
(where ¢;, - - -, ¢; denotes either the polarization vector of
initial state or final state) appeared in Egs. (61)—(88) must
be reexpressed as a constant or a function of g. Resembling
the OBE model [13], under S-wave interactions, the values
of the term (¢; - €;) (e - €;) have been given in Table II. For
the terms containing ¢, one can make the following
substitutions,

(88)

Ziz(ei'ej)(ek'el)v

W] =

(€; - €j)(¢1 €r)(q - €)= —

?14(61"6]')(61{'61)- (o1)

O —

(q-€)(q-€;)(q-e)q-e) =

The 2PR contributions in diagrams /5 |, h; 4 and B3 ; must
be removed, and other parameters are the same as we
calculating the BB* system.

The resulting potentials of / = 1 and I = 0 B*B* system
are depicted in Figs. 16-18, respectively.

For the 1(07) B*B* system, from Fig. 16 we can see that
the OPE potential is repulsive and the TPE potential is
slightly attractive, but the contribution from FBCI is

TABLE II. The values of the products of polarization vectors
under S-wave interactions [13]. For example, in our calculations,
the term (e; - €;)(¢} - €;) should be replaced by 3, 0, and 0 if the
total spin Sy, equals to 0, 1, and 2, respectively.

Terms St =0 S = 1 St =2
(e1-€)(€5 - €}) 3 0 0
() -€3)(ex-€}) 1 1 1
(e1-€3)(e2 - €5) 1 —1 1
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FIG. 16. The OPE and TPE potentials of 1(0*) B*B* system in momentum space (a) and the effective potentials in coordinate space

(b). Notations same as in Fig. 9.

V(@) (GeV?)
V(r) (GeV)
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0.25 0.3

0.15 02
lg] (GeV)

FIG. 17. The OPE and TPE potentials of 1(2+) B*B* system in momentum space (a) and the effective potentials in coordinate space

(b). Notations same as in Fig. 9.

We show the effective potential of 1(2) B*B* system in
Fig. 17. The behavior of TPE potential is similar to the
1(0") case. The line-shape of OPE potential is totally
reversed, that is, the OPE potential is shallowly attractive

repulsive and largely dominant, which generates a fully
repulsive potential for the 1(0%) B*B* system. Thus, no
bound state can be found in the 1(0") B*B* channel in our

calculations.
15 ‘ | | | ‘
o e A
: <
= : A
= 0 - |
- o . >
--0() 1-m ~< X A
sH{--0() Ln A
-0 2x| T TT=e—al_ NS A
B (a) (b)
-10 L 1 ! | 1 -0.2 . ‘ | | | | |
0 0.05 0.1 0.15 0.2 0.25 o 0 : 4 | | 10 | | |
|7 (GeV) -

FIG. 18. The OPE and TPE potentials of 0(1*) B*B* system in momentum space (a) and the effective potentials in coordinate space

(b). Notations same as in Fig. 9.
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FIG. 19.

for 1(2+) B*B* system. Like the 1(0") case, the potential
resulted from FBCI is also repulsive and dominant. Thus,
the total potential of 1(2%) B*B* system is also repulsive.
So we can conclude that no bound state of B*B* can exist in
I =1 channel.

At last, we analyze the potential of O(1") B*B* system
shown in Fig. 18. In rigorous heavy quark limit, B and B*
mesons would be totally degenerate, so the potential
of BB* and B*B* systems should be similar if they carry
the same quantum number. By comparing Figs. 18 and 10,
we can see that the potentials of 0(1") BB* and 0(17) B*B*
indeed have the same behaviors. The OPE and TPE
potentials are attractive and repulsive for the 0(17) B*B*
system, respectively, and the FBCI supplies a dominantly
attractive potential, so the total potential is also attractive.
By solving the schrodinger equation, we find a bound
state in O(17) B*B* channel with the binding energy
AEg g :—23.85116"; MeV, and the corresponding root-
mean-square radius is 0.817073 fm.

We get the mass of 0(17) B*B* system also being above
the threshold of B B yy. Therefore, it is detectable through
electromagnetic interactions. In addition, we could resort to
its weak decay modes as well, such as J /wB*K°, with J /y
and B* being fully reconstructible from J/y — £7¢~
and B* — Dz,

D. The results in strict heavy quark limit

It is also very interesting to study the behaviors of
effective potentials in strict heavy quark limit. As is
discussed below Eq. (23), if A =0, the diagrams h,; ~
h, 4 and B, | ~ B, 5 in Figs. 6 and 8 would contribute to the
2PR parts of the BB* scattering amplitudes. Similarly, for
B*B* interactions, the diagrams h3 | ~ h3 ¢ and B3 | ~ B33
in Figs. 13 and 15 also contain both 2PR and 2PI
contributions. In order to get the potentials, the contribu-
tions from the 2PR parts must be eliminated by using
Weinberg’s formalism (see Appendix A 3 for more details).

.. —Total

V(r) (GeV)

-0.15F i

(b)

02 L L L L L L L N

r (GeVl)

The effective potentials of 0(1%) BB* (a) and B*B* (b) systems in strict heavy quark limit. Notations same as in Fig. 9.

Under heavy quark limit, we find the main features of the
potentials in different channels remain unchanged, so for
simplicity, we only give the results of two representative
states, i.e., 0(17) BB* and B*B*. The corresponding results
are plotted in Fig. 19. Comparing the potentials with and
without A = 0 for 0(17) BB* and B*B* systems, we can
find the corresponding potentials are only marginally
shifted, this phenomenon indicates the heavy quark sym-
metry holds well for B mesons. Additionally, the effect
caused by A only happens at O(¢e?), and our calculations
shown before have given the convergence of chiral cor-
rections is very good. Furthermore, the mass difference of
B and B* lies far below the mass of pion m_,; thus, the
influence of A is largely suppressed. However, for D and
D* systems, the mass shift A > m_, one can expect more
explicit effects of A in DD* and D*D* systems.

B and B* would degenerate in heavy quark limit, so we
anticipate the appearances of the potentials in BB* and
B*B* systems should be identical if they have the same
quantum number. This is vividly reflected from Fig. 19(a)
and 19(b). We can see that the model independent parts,
namely, OPE and TPE potentials are exactly the same for
the two systems. For the model-dependent parts, i.e.,
contact interactions, at O(e°) the contributions for BB*
and B* B* are equal, and the only difference comes from the
loop corrections. Because at O(e?), different contact
structures with various combinations of LECs are involved
into the loop diagrams.

At last, we list the binding energies and root-mean-
square radii of 0(1") BB* and B*B* systems in the heavy
quark limit, respectively.

AEpp ~—18.07193 MeV,
AEp g ~—=3237131 MeV,

rpp ~0.8770% fm,
rg-p ~0.7310 5 fm.
The result is in agreement with the patterns shown by cc

and bb spectra; i.e., the binding would be deeper when the
mass of the components is increased.
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IV. ESTIMATION OF THE O(e?) LECs
CONTRIBUTIONS

In Sec. III, we discard the contributions of O(e?) LECs
since no enough data are available now to fit all of them. In
this section, we pick these LECs up to see the influences on
our numerical results. For this purpose, two different
strategies are put to use. Although the estimations are
rough and we are not trying to provide the very accurate
LECs, they still can tell us some useful information about
the reliability of the obtained results and how much the
errors from the uncertainty of LECs at O(¢?) are.

A. Strategy A

We first adopt the nonanalytic dominance approximation
to give an estimation of LECs contributions [106,107], This
approximation is based on the fact that the scattering matrix
can be decomposed into analytic and nonanalytic part in
chiral perturbation theory. The nonanalytic contributions
can only be obtained from loop diagrams. However, the
analytic terms can originate from both tree and loop graphs,
and they are the polynomials of the expanding parameter e.
The analytic terms from loop diagrams can be absorbed by
the LECs at the same order. Therefore, we can use the
nonanalytic contributions to discuss the convergence of
potentials since the O(e?) LECs cannot be fixed now.

In the nonanalytic dominance approximation, we assume
there is a large cancellation between the analytic terms of
loop diagrams and the finite parts of O(e*) LECs in
Egs. (6)—(8). With this approximation, we redo the calcu-
lation and give the binding energies of 0(1") BB* and B*B*
with A = 0.7 GeV in the third column of Table III. The
result given with the nonanalytic dominance approximation
shows chiral expansion works well. However, one also
needs to note that, in this strategy, we perhaps under-
estimate the effects of O(e?) LECs.

B. Strategy B

The O(€?) scattering amplitudes of 0(17) BB* and B* B*
generated from the Lagrangians in Eq. (6) can be written as

VB = 32m3 =D} — D} +3(El + E}))(ex - €5). (92)

TABLEIIL. The binding energies of 0(1*) BB* and B* B* states
obtained with different strategies in units of MeV. “No O(e?)
LECs” represents the results obtained without considering the
contributions from the finite part of O(e?) contact terms in
Egs. (6)—(8).

Binding energy No O(e?) LECs  Strategy A Strategy B
AEgp —12.6775%, 104552 —15.97},
AEg -23.81)63 =20.1505  —28.20)8¢

VEE = 30m2(Dl + D~ 3(EL + ER)|(e; — &), (93)
By dimensional analysis, we can naively get

£,

D, » Ea
E NF,
V4

DhN& _o ~_
a 7 a 2
A){ A)(

hN
AZ’ Db
X

E" (94)

where A, ~ 1 GeV.

Expanding the Lagrangians in Egs. (7) and (8), we notice
the contributions from these two equations will be propor-
tional to £ and k? (where £ is the residual energy, and k is
the residual momentum), respectively. In our calculations,
the incoming and outgoing heavy mesons are on-shell, so
we can assume the contributions of O(e?) tree diagrams
mainly come from the ones governed by Eq. (6).

With the relations in Eq. (94) and the values given in
Eq. (27), we can roughly estimate the numerical values of
D!, ... El to examine the influence of the LECs at O(€?).
The corresponding results are listed in the last column of
Table III.

In Table II1, the difference between the results of “Strategy
A” (or “Strategy B”) and “No O(e?) LECs” can be regraded
as an evaluation of the errors resulted from the uncertainty of
LECs at O(e?). Although the two strategies used above are
crude, the results in Table III show that the contributions of
O(€?) LECs should be small. Neglecting the O(e?) tree
diagrams is safe within the allowable range of errors at the
early stage of the study. These LECs at O(e?) would be
determined in a complete analysis in future when more
experimental data are available.

V. SUMMARY

In summary, we have systematically investigated the
intermeson interactions of double-beauty B B, BB*, and
B*B* systems with HMyEFT. In addition to the O(e°)
FBCI and OPE diagrams, we also include the O(e?) TPE
diagrams and one-loop corrections to FBCI and OPE
diagrams. The effective potentials are calculated with
Weinberg’s formalism [77,78]; i.e., we do not calculate
the scattering matrix directly since the 2PR contributions
will spoil the correct power counting, and instead, we only
take into account the 2PI parts of Feynman diagrams to
derive the effective potentials. Moreover, with the aid of
simple Gauss cutoff, we make the Fourier transformation to
obtain the effective potentials with more visualized form in
coordinate space, and then by iterating the potentials into
Schrodinger equation, we not only can look for the bound
state solutions but also can recover the 2PR contributions
that we subtract before.

We only consider the S-wave B*)B*) systems in this
work, and thus based on the selection rules in Table I, the
physically allowed states are: 1(0%) BB; 1(17) and 0(17)
BB*; 1(0%), 1(2%), and 0(1") B*B*. The potentials of
these six channels with different /(J¥) quantum numbers
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are studied and discussed in detail. We find the conver-
gences of chiral corrections are all very good in these six
channels, and the FBCI, which depicts the short-range
interaction, plays the crucial role in determining the
behaviors of the total potentials.

For 1(0") B B and B*B* systems, the total potentials are
both repulsive, and thus we conclude that no bound states
can exist in these two channels. The same situation also
holds for the 1(17) BB* and 1(2%) B*B* systems.

While for the 0(17) BB* and B* B* systems, our results are
very interesting because the total potentials of these two
channels are both attractive. By solving the Schrodinger
equation, we find two bound states in these two channels with
the corresponding binding energy AEgz ~—12.6172 MeV
and AEpp ~ —23.8316;53 MeV, respectively. We predict
their masses to be

mpp ~ 1059141702 MeV,  mp-p- ~10625.57193 MeV.
Our result can qualitatively confirm the conclusions drawn
by the OBE model [73], quark model potential [39], and
Lattice QCD [52].

It will be an intriguing topic to search for the exotic
double-beauty molecular states in 0(1") channels exper-
imentally. These two molecular candidates cannot directly
decompose into their components due to the constraints of
phase space. However, the B* meson can decay into By via
electromagnetic interaction. We find the masses of 0(1")
BB* and B*B* states both lie above the thresholds for

|

decaying into BBy and B Byy, and thus they are recon-
structible in their electromagnetic decay modes.

Our results and the above typical decay modes provide
important information to future search in experiments.
Additionally, the analytical chiral structures of the effective
potentials between B mesons are very useful for the
extrapolations of the B meson pair interactions in Lattice
QCD calculations.
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APPENDIX A: LOOP INTEGRAL

1. Definitions of 7 functions

The various J functions that appeared in the amplitudes
of the previous sections are defined in the following, and
they can be obtained by calculating the loop integrals in D
dimensions.

,/le/I“‘D (1,12, 1°1F}
1

(27)P P —m?* + ie

, /dDm“-D (1,1, 108 1P 1)}
i
2r)? (v 1+ w+ie)(l> —m? + i)

= (T4 0"T 4.0

(1,12, 1208, 121P 17}

) le/14—D
l/ 27)P (v-l4+w+ie)[(+/=)v- [+ 6+ ie|(I> — m® + ie)

= {TV" o TN P TH 4 P T (gve) T+ 0P TP (m, o, 6),

./le/14—D {1’ la’ l"lﬂ, lalﬁly}
1
(27)P (2 —m? +ie)[(l + q)* — m* + ie]

{1110 1°Pr, 121P1 1}

={J5.9"

={J5,0,9T5, }(m), (A1)
avﬁjgl + gaﬂjgz’ (gv0)T%; + v"v/"v”jgz}(m, w), (A2)
(A3)

T+ P T (gva) TE + " g T (m. q).

(A4)

[ AP
’/ 2r)P (v 1+ o+ ie) (P —m? + ie)[(I + q)* — m® + ie]
={J0. ¢"T1 + 0T, 9P T + ¢4 Th + v T + (qVo) T, (9va) T + 4°4° a7 T + (V) Ty
+ (gv) T3y + (qVv?) T35 + v T, (gV9) T4y + (V@) T i + a*dP a7 ¢° T i + (gvv?) T oy + v 0P v v T i

+ (V)T + (V) TE + (qv o) Ths + (gvavo) The Hm, w. q),

(AS)
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{1,191 1P 17 1217 19}

le/14 D
l/ 27)P (v-l4+w+ie)[(+/=)v- 1+ 5+ ie] (> —m* +ie)[(l+ q)* — m® + ie]
= {75 . T" + v TR g TN+ g T + v TP+ (qvo) T5” (gva) T4 + ¢ Pt T53°

+ (¢ Vv)j%

where the representation XVYVZV --- denotes the sym-

metrized tensor structure of X?Y#Z" ...+ ... and can be
written as
gvv=q" +¢"v".  gva=gPq + g7’ + g7 q",

gvv = g7 + g P + gPoe,
Vo= g v+ g g P + g gl o,
gV v? = g v P + gPoru? + g P,
V9=l + g7 P + g7 ",
NC ="+ PP+ TP+ P9+ g
+4'q g,
gV v? = v00P g% + v P P 4 v PP 07 0P g7 4 1P gt
+ oot g,
PV =4"q P+ 4G ¢V 4+ P P+ q P,
gV v} = v v’ + g v P + P r*u v® + PP ?,
PVt =g PP+ PP + PP + g g v
+q°q" VP + q%qPvr°,
gVavo=gPvig? + g g0+ v g + gr g
+q G +q v g+ gV P+ g g
+q Vg7 + g 0+ P g + gP g

2. Calculations of [ functions

For the loop integral 7¢ and 7% defined in Egs. (A1) and
(A4), one can easily obtain their results with dimensional
regularization [108], such as

a1
jO(m):l/ 2r)P P—m?+ie
AP 1 D\ /1 1‘%_2 m?>  m?
“@np? UT2) ) T T e
(A7)
where

:1617[ [1314*;( 1_1n4ﬂ)] (A8)

Here, yr is the Euler-Mascheroni constant 0.5772157.

(g\/v)jR/B +(qvv? )JR/B +v* P or T

2V TN+ (Ve ) TR + 4 aP g P T
+(gvt) Ti” + v P P TP+ (Vo) TP + (V) TP + (qvod) TP + (9vave) TP Hm.w.6.q).

(A6)

For 7§, just one more step, i.e., Feynman parametriza-
tion, is needed,

- arpi-p 1
Tolm.q)=i T 21
(2m)P (IF=m*+ie)[(l+q)* —m* + ie]

/ / arips-p 1
- (27)P [(I+xq)*
where A = x(x — 1)g? + m?> — ie. Performing a shift of
integration variables [ — [ —xq so that there remain no

terms linear in / in the denominator, and repeating the same
step as in Eq. (A7), we can get

()

1 1 A

Next, we outline the deductions of 7§ [Eq. (A2)], which
serves as a starting point for more complicated loop
integrals, such as 7 ©. The calculations are slightly different
with the integrals containing only pion propagators. We
should use the following Feynman trick to combine the
denominators [58],

© n
o [ Tay—" All
AB" A Y (2yA + B (A1)

Setting A=v-Il+w+ie, B=1—-m>+ie, and n = 1,
we get

dPip+=P 1
=2 d .
8 l/ y/ )P (P 42yv- 1+ 2yw—m* + ie)?

The terms linear in / and y in above equation can be
eliminated via shifting the integration variables: (1) perform-
ing a shift /— [—ywv, and making use of v?> = 1, (2) shifting
the integration variable y — y + w. Finally, we obtain

le/14D 1
Ti= l/ y/ (2 =y? —m? + & + ie)?

(A12)

We should notice that the range of y integration now changes
to [—w, 00), and we split this range into two parts, [—w, 0)
and [0,00). The first part can be easily obtained with
dimensional regularization, which reads
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| AL A
4oL + — dy(1+In=),
W +8”2 » y( + n/12>

(A13)

where A = y? + m? — ?. For the second part, we first use /3
function to integrate out the y variables, then use dimen-
sional regularization to integrate out /, and thus the result
reads

1
—Vm? -

< (A14)

Finally, we can get the full form of 77§,

1 b
\70*4a)L+8 5 dy< —|—1n/12> m? —w?.

If one wants to obtain the results of J¢,,J%,.J%..-s
the shifts on integration variables / and y made above should
be kept in mind, because the integration variables that
appeared in the numerator also have to be shifted accordingly.
The calculations of J7 are very similar to J¢ as
illustrated above, and the concrete procedures are
(1) Using Feynman’s trick to combine the denominators
of two pions propagators, then shifting [ — [ — xq,
and making use of v-¢g = 0.
(2) Using Eq. (Al1) to combine the denominators of
heavy meson and the combined pion propagators.
(3) Then just repeating the subsequent procedures what
we have done for calculating 7¢.
At last, we list the expressions of the used 7 functions in
our calculations, and these functions are calculated numeri-
cally in this work.

(A15)
|
g — 20 (m? -0 )L+ Omd L A2, where & =2 4 m? - o2& = m? - o Al6
TS (m, @) =2w(m —3® +@ 5 n-3 y—f—T where A = y* + m* —w*,A =m* —w*.  (Al6)
] .
—|J J5%(m,6)] if w#6
jgz(m,a),é):{5 0[ 2(m, @) = J5(m. 8)] | ‘ (A17)
_ajzz (m’x)|x—>m(or5) if =26
q° 1 A _
TIh(m,q) = (m _6>L+32n / Aln}L dx, where A = x(x —1)g*> + m>. (A18)
T 1 1 0 A 1 1 12
jzl(m,a),q):2a)L+@ | dx 5 1+1n/1—2 dy+E | A% dx, (A19)
1 [
T (m, @, q) = o 2/ dx/ —dy—i—ﬁ x?A™12dx, (A20)
OX(HCO) e A b
Tt (m, o, q) +—/ / dy — 67 / ( +1In )dx—i—ﬁ xA™2dx,  (A21)
1
T5(m, 0, q) = —a)L—W dx/ (1+ln—>d ~T6r ), xA2dx (A22)
1
Th(m, 0, q) = —5 /dx/ —dy—— XAV 2dx (A23)
m - 0

2 /1 0x*(y + o) 1 1 A ® (1
T'(mw,q)==L—— d/ d / 1+1 dx — — 2A7124x,  (A24
Ta(m: @,q) =3 87:2A A YT e T )Y e )y X, (A24)

2
q 1 0] 1
Th(m w,q) = (mz—g—Za) )L_E dx/ y—f—a))( +1n/12)dy—F Al/zdx—i—ﬂ Aln/{—zdx

+a) ’
r = (- L—— Wt o)f
Tim.o.0) = (- m+3+8w) S o

1 A
xAln dx—l——/ 1/2+16

1 6712 A2

(A25)
1
XA~ 2dx

(A26)

3w ! A
7/(; (1 +ln/1—2)dx,
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22
Thimo.q) = 0w =% 207

2 1 1 0 1 1
sz(m,w,q)=§wL+@A dx/_wx2< +1n/12)dy+E i

»743(’" ®,q)

where A = y? + A, A = x(x — 1)¢* + m?> — .

Fnasa={%

3. Removing the 2PR contributions
from J" and J2 functions

We cannot directly calculate the full expressions of J"
and J% functions as defined in Egs. (A3) and (A6),
respectively, because they contain both 2PR and 2PI
contributions. The 2PR part will be recovered when the

52 [T (m, @, q) —
—mjzr‘(mv X, Q)|x—>w(or5)

: A3/2dx,

d Al d A27
322 )y “ L, n,lz STy 487; (A27)
x?A2dx, (A28)
|
/ dx —dy +1e= A2 dx, (A29)
- 0
Ti(m,8.q)] ifw#6
_ : (A30)
if w=20

effective potential is inserted into Schrédinger equation, and
thus this part has to be removed when we calculate the
potentials. In the following part, we illustrate how to subtract
the 2PR contributions by utilizing the Weinberg’s formalism
(one can find a more convenient approach in Ref. [109]), and
take the J5%, as an example.

I

!
/leﬂ4_D
i
(27)” (v- H—p —l—w—l—zs)( v- l—l—p

+5+ ie) (> — m?* + ie)[(1 + q)* — m® + ié]
(l - xq)*(l - xq)/

D 4D
/ dx/d 1A
(v- l—l— —i—w—f—ze)

where M? =x(x—1)¢> + m?, and we have used
v+ g = 0. The kinetic term (p* — ?)/2M,~ (M; is the mass
of heavy meson) is included in the denominators of heavy
mesons propagators for avoiding the pinch singularity
when @ = § = 0 (cf. discussions in Ref. [78]). In Eq. (A31),
the pion poles contribute, and there is also a contribution
from the double heavy meson poles. The contribution from
the latter one is enhanced in the 1/Mj expansion and
gives the result of the iterated O(e”) OPE diagram, which is
just the 2PR part that we need to eliminate. In other words,
only the contribution from the pion poles accounts for the
effective potential. The pion poles are located at

N=- P+ M2+ e, 5= P M2 —ie.
Picking out /% term in the second line of Eq. (A31) and
substituting it with g* (2 — I*)/D, then we can get the
scalar function J%, defined in Eq. (A6). Closing the [,
contour integral in the lower half-plane with the pole of

interest located at [y = V/I* + M? — g, the 2PI part of 7 B
can be easily obtained by using residue theorem and

(A31)

(~0- 1+ Bl 5+ ie) (B — M2+ ie)?

[

dimensional regularization in D — 1 dimensions, the cor-
responding result is written as

dD 1[/14D 1
[‘7212PI <4D>/ / 277:D1 |:12+M2_l

~8)3/2

(12 + ./\/l2 - 18)5/2:|

1 M?

In the following, we write out the used 2PI parts of 7"
and J f functions in these calculations:

(A32)

2

2
[T 23] p1 = mL+m<l+2ln/{>, (A33)

B 1 1 x2
[Tobm =55 ; e (A34)
1 1 1 M?
[T 51 ]opr = _EL _WA x<3 +21n7>dx, (A35)
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[T%)op = ~3 2/ M2 (A36)
1 q° 1 1 M?2
[;7431]21)1:5 <m2—€> L+WA M2 <2+31n/1—2> dx,
(A37)
1 1 A
(T lopr = 3 L+ 64 J, x? <3 + 2111/1—2) dx, (A38)

B 1 1oyt
[Ti5)op = g% de (A39)

APPENDIX B: THE AMPLITUDES
OF THE 0(1*) BB* STATE

The I = 0 amplitudes that come from Fig. 5 are
Vi2h = 8[=Dy = Dy +3(E, + Ep)l(ez€3).  (B)

34 (q- ez)(q €)
P -mE

The I = 0 amplitudes that come from Fig. 6 are
2
Vi = 1 G (o0 TR (e £.8). - (B3)
7
=0 = fz (€2 €){C?2T%},(m. €~ A E-A).  (B4)
Py =cm 7 (62 )T} (m €+ A E-A),  (BS)
724 =0, (B6)
2
921 = Co ]% (€2-€){TS}, (M E+ A E+ D), (BT)

2
y?25—6h°7<e2 T}, (e, E+AE—A),  (BS)

2
Vi = che ]’% (€2 €{ T}, (my, £.E~ D), (BY)

. 0
yez CQIF(Q.@;){&]&} (Mg, x) g’ (B10)
Z 2 a
yzz CZZZF(GZ .62){aj32}r(m”,x) x—>£+A’ (Bll)
- 2 . a .,
Vo, = Cm}%2 (62’64){(D - l)wjzz}r(m”’x)‘ﬁe—&
(B12)

where

C%1 =12(D,~D,+E,—E,),
C%22=6|D(D,—D,+E,—E,)+2(D,+E})],

C%s =12(D, +E,), €% =12(D,+E,),

Ch1 =6(D,+ D, —3E,—3E,), C"2=24(D,-3E,),
C21=12(D,+ D, -3E,-3E,),

1
C72 = (%23 = 5sz.l . (B13)

Note that the coefficients C* appeared here should not be
confused with those for the / = 1 channels.

The amplitudes of diagrams ¢, 5, ¢»¢, N23, and h, 4 can
be obtained by the relations

yqz 5 ygz 3
yhz 3 yhz i

92.6 92.4
YiZo = ViZo.
Vit = Vi

The I = 0 amplitudes that come from Fig. 7 are:

37 (g e)ae)

YR =-m A Eme. (L)
Vit :Fi(‘l q§2)—(Z1:4) (T}, (mg),  (BIS)
Vito = j]ﬂ(qq?)_M{J S}, (mg, E+AE=A),
(B16)
. 3¢* (g - . e
A == EENNUBEEEYNCTY)

b

yer 99 (q-ez)(q-eﬁ){(D—l)%

Y )

a
zz}r(mm@‘x_)g_ﬁ

(B18)

i = s A CDLD o )
(B19)
vy = DD g6} nen)] . (820
Vi =y =0. (B21)

The amplitudes of diagrams c,,, ¢y5, and ¢, can be

obtained by the relations
Co Co.

Vizo = Vios Vi

=YX VX = Vi
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The I = 0 amplitudes that come from Fig. 8 are

3
12 ==z (€2 ) {Th) (mr ), (B22)
Vizh f4 {(ez €)T 5+ (q-€2)(q- €4)(Th + TH)}(me. €+ ALq), (B23)
3¢ -
Vi = = ller RIL ~F(Th+ TR = (g ela- )T+ TR (me o). (B2Y
34 -
Vit = —794 {(e2-€)[(D = 1)TY = @*(Th + TR} (me € = A q), (B25)
9g* -
Vi — %{(62 )= U(D +5)(T5 + Th) = @ (T5 + 275 + Th) + T4 +2(D + 1) T3]
—(q-e)(q-e)(D+3)(T5 + Th) - @(T5 +2T% + T§) + Thlt(m. £ - A E.q).,  (B26)
94* -
Vo = %{(62 (D + DTG =G (TS5 +TH) + (g-e)(q-e)(D+3)(T5 + Th) + T,
=G (T5% +2T5% + TEN}(me €+ A€~ Aq), (B27)
9
iz = g {[(62 €1)q + (g €2)(q - €)] T3} (my €= AE, q). (B28)
When g, = 0, the amplitudes of the diagrams R, | ~ R, 3 &
can be obtained by the relations hﬂ = Ch ]T( =) ng}r(mﬂ" £.8), (C6)
R21 _ __ B71 Rzz_ 322
Viz y g Vi y Bt Vi —, (C7)
Vi = —yB” . (B29)
7 Yy = Chs ﬁ(s N E+AE). (C8
e e {Tht(m.. €+ A.E),  (C8)
APPENDIX C: THE AMPLITUDES 3 e o .,
OF THE 0(1*) B*B* STATE Vit =€ JTz( ){aj 22} (mg.x)] o (C9)

The I = 0 amplitudes that come from Fig. 12 are

Yy =4[D, + D, - 3(E, + E,))(e, —£2). (Cl)
3¢°G(q.€1. €, €5, €})
yfi'd:? R (€2)

q- —mg

The I = 0 amplitudes that come from Fig. 13 are

2

yg3=10 — (9% %(31 gz){jgz}r(mﬂ, E, 5)1 (C3)

2
932 C!]zz_( 52){jgz}r<mﬂ,5+A,g+A)’ <C4)
2 =0, (C5)

2

Zn 232 8 a
—es e —en{ L) ), (€10

where

C%1 =-12(3D,+D,+3E,+E)),
Cgﬂ — _12(Da _Db +Ea _Eb)?

Ch1=—-6(D,+D,-3E,-3E,), C'»=-24(D,-3E,),

1
€1 ==24(D, + Dy =3E,=3E,), C»2=2C>'. (Cll)

and the amplitudes of diagrams g; 4, 13 4, 135, and h5 4 can
be obtained by the relations
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?3'40 = ‘}Jfoa yh“ y;lS'b, s — _9_g4g(q’ €1, 62, 63761) ﬁ a
h h h h =0 gt q* —m? ox* %2 (12, x) XA
y ?i y]iZO’ y '3() y 3? s r
(C17)
The I = 0 amplitudes that come from Fig. 14 are ,
C 9g g<q’€l’€2’€§7€jl) a
6 _ _ I 7 7a
PP — 3_g2g(q’ €1, €, 6‘;, 62) Z(m ) (ClZ) y1=0 4f4 612 - mzzr Ox \722 r(mm X) =€’
=0 = "2 2 2 w)>
f q° —my (C18)
vy = - Al gy (), (1) Vit =Yith = (€19)
q _m/r
The I = 0 amplitudes that come from Fig. 15 are
C 3g g(q’€17€2’€3’€4)
Ve = [T} (e €+ A,6), 3
HOT g -m? . Vit = er{ T} (e ) (C20)
(C14)
LS| =2 b T T
. 3g* G(q. €1, 62,65, €}) ViZo 4{[51""251‘] +&7)(T24 + T33)
Vi =g g Rl {me €+ AE), S
_481j34}r(mﬂ’ E, C])» (CZI)
(C15)
T32 92 b T T T
) 3 €. €y, €L, Vizo=—a el +ell(Tou+T53) +261T 3, (me, E+A,q),
Vi = AL GG) 0y, s6). (c16) /
2f g’ —m; (C22)
|
9 - - a a
?i(l) = 4f4 {le1q* + e{q* + 2q* + €)(T% + 205 + Th) — [8e1G” + 6¢ + 66} — 5 — &5 — e31(T5 + T5)
—[e1g” +¢f "‘ €] — 5|75, + [6e) + &y + &3] TH + & T5 + 5T} (me E.€,q), (C23)
ity = 4f4 {83(~722 +2T5% + TH) + [ef +ef + &5 + &5 + &)(T5 + Th) + e + ey + &3] T,
+e(T8 + T5) + e Th ) (me £+ A E+ A, q), (C24)
9g* , -
Vizo = —%{[e G+ elq* +265)(T5 + 275 + Ti) + [-5¢] = Se] + 261§ + 265 + 265 + 265 + 268](T5) + Thh)
+ [ef — €] + &5 + 5)T5 4 [=8e1 + 26, + 23] T}, (mr E.E+ A, q), (C25)
1
Vi = Bt YR = —gyfié B gR YR = _§yfig)|ﬁ_>j,§_ (C206)
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