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The spontaneous baryogenesis scenario explains how a baryon asymmetry can develop while baryon
violating interactions are still in thermal equilibrium. However, generation of the chemical potential from
the derivative coupling is dubious since the chemical potential may not appear after the Legendre
transformation. The geometric phase (Pancharatnam-Berry phase) results from the geometrical properties
of the parameter space of the Hamiltonian, which is calculated from the Berry connection. In this paper,
using the formalism of the Berry phase, we show that the chemical potential defined by the Berry
connection is consistent with the Legendre transformation. The framework of the Berry phase is useful in
explaining the mathematical background of the spontaneous baryogenesis and also in calculating the
asymmetry of the nonthermal particle production in time-dependent backgrounds. Using the formalism, we
show that the mechanism can be extended to more complex situations.
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I. INTRODUCTION

Quantum mechanics is distinguishable from the classical
counterpart by the phase factor, which explains many
characteristic phenomena of the quantum theory. Among
those, the Aharonov-Bohm(AB) effect [1] illuminates the
importance of the geometric phase in quantum mechanics.
It explains why an interference pattern can appear even
though a magnetic field is confined in a solenoid and put
away from the orbit. The phase originating from the
geometry is called the Pancharatnam-Berry phase or the
Berry phase in short [2,3]. Suppose that the normalized
state |y(t)) € H obeys the Schrddinger equation [4],

in Sy (0) = Hly (1), (1

where |y(7)) = e |w(0)) for an interval [0, 7]. If we define

(1)) = ey () such that f(z) — £(0) = ¢, we find
[77(2)) = |@(0)), but the Schrodinger equation for the new
field becomes

in () = HOlw (o) + 1 1y
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where the last term gives the Berry connection. To
understand the nonadiabatic contribution from the state
mixing, consider a slowly varying H(z) with H(¢)|n(z)) =
E,(t)|n(t)) and write

(D) = S an (et B n(n)). (3)

Then we have

. d (m|H|n) _i (& -
am = _am<m| E |m> - Za” 4E “E e "f<E’" E”MI’
n#Em n m

4)

where the second term is negligible (by definition) in the
adiabatic limit, since the adiabatic limit is defined for the
evolution without transition between states. The phase
coming from the first term is the conventional Berry phase,
which may appear both in the adiabatic and the non-
adiabatic evolutions. If the phase appears from the state
mixing, it is called the nonadiabatic Berry phase. In
contrast to the conventional Berry phase, the nonadiabatic
Berry phase does not appear in the adiabatic limit. We hope
there is no confusion between the “Berry phase in a
nonadiabatic evolution” and “the nonadiabatic Berry
phase.” They have different origins.1

'See also Ref. [5].

Published by the American Physical Society


https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.99.036005&domain=pdf&date_stamp=2019-02-11
https://doi.org/10.1103/PhysRevD.99.036005
https://doi.org/10.1103/PhysRevD.99.036005
https://doi.org/10.1103/PhysRevD.99.036005
https://doi.org/10.1103/PhysRevD.99.036005
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

SEISHI ENOMOTO and TOMOHIRO MATSUDA

PHYS. REV. D 99, 036005 (2019)

As we explain later, the first term (the Berry connection)
gives the chemical potential when the spontaneous baryo-
genesis scenario is considered in the formalism of the Berry
phase. However, since the Berry connection vanishes in the
adiabatic limit (although its integral may not vanish in a
topological background), the evolution has to be non-
adiabatic in order to generate a sensible chemical potential.
When we consider the spontaneous baryogenesis scenario,
the second term (or the higher terms) gives the particle
production due to the time-dependent background.

To show our idea in a simple model, we start with the
Schrédingzer equation for the state y{), = (K°, K°), which is
written as

d

i —wo = Hy,,

ldtlllo Yo
<H11 H12>:<M A> )
H,, H, A M)

Here, K° and K° represent the matter and the antimatter
states of a singlet, and A = |A|e®. As far as the parameters
are both homogeneous in space and static in time, one can
always find the Hamiltonian with real A (6 = 0), using
the rotation of the states. In that case, the effective theory
does not depend explicitly on 6, and the Hamiltonian is

given by’
M |A
HR = < | |> (6)
Al M

The rotation (redefinition) of a field is commonly used in
removing phase factors in the theory. Here, such a “trivial”
transformation is being used in a time-dependent back-
ground. One may claim that this is a gauge transformation
without the gauge symmetry.

If 6 is time dependent, one cannot neglect the time
dependence of the transformation matrix. The rotation can
be written using the unitary matrix Uy, which we define

l//R = Uﬁ_]l//O?

ei@(t)/Z 0
U, E( 0 e—ia(t)/2>' (7)

Then, the Schrodinger equation for the state wX is
written as

?Our discussion here is implicitly based on a kaon, where K is
a neutrally charged scalar meson. We consider the model since
the kaon is the simplest and the most familiar among particle
physicists. Note, however, that our baryogenesis scenarios are not
for the kaon production. The idea will be applied to more
complex scenarios.

Here the capital “R” is for the real off-diagonal elements and
“E” is for the eigenstates.

.d R
Sy = (HF = iU Ug)y*. (®)

The original (“trivial”) transformation is a global trans-
formation and gives nothing from the left-hand side. On the
other hand, since we have introduced the time dependence,
the transformation is a local transformation and gives the
additional contribution from the time derivative, which is
called the Berry connection.

Note that ¥ is not the eigenstate of the Hamiltonian. In
this model, the eigenstate can be written as

wE = UTly® = UT' Uy, 9)

where

N R

The eigenstate y* is the true eigenstate of the Hamiltonian
only when UT!'Up" is not time dependent. Therefore, we
sometimes denote w with the double quotation marks
(“eigenstate”) in the time-dependent background.4

Formally, the equivalence class of state vectors or
“projective Hilbert space” is defined using an arbitrary
function U as {U 'y}, and an equivalence class of
Hamiltonians is {U~'HU —iU~'(8,U)} [4.6].° These
are defining different representations of the identical
Schrodinger equation. Note that the Berry connection
depends on the choice of the state vector. Although
U'HU = H is true for the Abelian model, a non-
Abelian extension is possible, in which one has to con-
sider U"'HU # H. In this case, the Hamiltonian is not
invariant under the transformation, but (therefore) it can be
used to remove the phase parameter of the Hamiltonian
during the time-dependent background.

The Berry phase is defined by the integral of the Berry
connection along the orbit. If the Berry phase is defined
for a cyclic process starting from =0 and ends at
t = T, the Hamiltonian at t = 0 and f = T must coincide.
Since the process considered in this paper is not a cyclic
process, the definition of the Berry connection can be
ambiguous. To avoid such ambiguity, we are always
choosing the state, which removes the time-dependent
phase in the Hamiltonian. In the above argument, instead
of considering the cyclic process, U has been chosen to
keep the phase parameter of H® unchanged along the
classical orbit. In this paper, we sometimes call this specific
transformation “the Berry transformation.” This is not a
common terminology since the Berry phase is usually
defined using the cyclic process. In this paper, the Berry
connection is defined using the transformation.

‘See also Appendix B.
Here, R in U (R) represents arbitrary parameters.
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One will find that the mechanism is similar to the
spontaneous baryogenesis scenario [7-10], in which the
effective chemical potential is coming from the derivative
coupling of the Nambu-Goldstone boson, not from the
Berry connection. We will discuss the discrepancy in
Sec. IV. Here, we have at least three reasons to con-
sider the Berry phase in the spontaneous baryogenesis
scenario. The primary reason is the consistency between
the Lagrangian and the Hamiltonian formalisms. (See
Sec. IV.) Second, the formalism based on the Berry phase
is free from the spontaneous symmetry breaking. As we
will see in Sec. I, the origin of the chemical potential may
not be the Nambu-Goldstone boson. Therefore, there is a
hope that baryogenesis with the Berry phase is giving a
natural extension of the scenario, i.e, “not a spontaneous”
baryogenesis in which there is no Nambu-Goldstone boson
and the symmetry is explicitly violated. Third, using
the formalism based on the Berry phase, one can see the
mathematical structure of the model. In addition to the
conventional chemical potential, the nonadiabatic Berry
phase may appeaur.6

Normally, when one discusses the nonadiabatic effect
for the Berry phase, his (her) motivation would be to
calculate the Berry and the nonadiabatic Berry phases.
However, our present discussion is not for the calcu-
lation of the Berry phase in a cyclic process, but for
finding the sources of the asymmetry in time-dependent
backgrounds. We hope there is no misdirection in our
arguments.

In the next section, using simple setups, we are going
to discuss why the formalism of the Berry phase can be
used to understand the scenario of the spontaneous
baryogenesis. Then, we will consider some extension
of the scenario, to solve more complex situations.

II. EFFECTIVE CHEMICAL POTENTIAL AND
THE BERRY PHASE

In the early Universe, a field can be placed away from
its true minimum. Then the field starts to roll down on
the potential during the evolution of the Universe, and it
starts to oscillate around the minimum. Sometimes, the
trajectory of the oscillation is not a straight line passing
through the minimum, but an oval form, since a CP
violating interaction may introduce angular rotation of the
field [13]. One can also imagine that the symmetry
breaking occurs at a high energy scale and the effective
action is written using a quasi Nambu-Goldstone boson
(axion). These are the standard realization of the field
rotation.

Below, we are going to explain the basic idea using the
kaonlike model. From the Schrodinger equation (5), we
find for yR

%See Refs. [5,11,12], for example.

.d N
it = (H = iU Up)y™,

HR:<M |A|)
N s

. 1/60 0
iU;lU(,_§<O —9'>’ (11)

where u = 0/2 can be regarded as an effective chemical
potential. Here we defined 6 as A = |A|e”. From these
equations, the relation between the effective chemical
potential and the Berry connection is very clear.

Above, we have calculated the Berry connection with
respect to R, but one will soon find that y® is not the
eigenstate of the equation. Of course, a similar discussion
can be applied to the eigenstate, but the appearance of the
chemical potential is not obvious. Below, we will show
what happens if one chooses the eigenstate for the
discussion.

If @ does not depend on time, one can calculate the
eigenstate, which is given by

y =y y o)
02 o—i0/2 >

K'+——K°

NI (12)

On the other hand, if # is time dependent, one has to
introduce the Berry connection to the Schrodinger equa-
tion, which becomes

d

P E — HE_'U—IU E’
it = i v
HE:<M+|A| 0 )
0 M—|A|
. 1/0 6
iU\ == . . 13
2(9 O) (13)

Obviously, the ‘“eigenstate” w’ is no longer the true
eigenstate of the Schrodinger equation because of the
mixing caused by the Berry connection. Also, unlike the
calculation based on y®, it seems difficult to understand
that the Berry connection works like an effective chemical
potential. This is the reason why we consider y* instead of
using y*.

In the past, the effective chemical potential has been
studied in particle cosmology in various ways. Spontaneous
baryogenesis scenario uses higher-dimensional operators
such as [7-10]

_ O
Oh——M*J, (14)
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where ¢ is a scalar field and J% is the baryon current.
Similarly, one can calculate the effective chemical potential
using the effective Lagrangian for the Nambu-Goldstone
boson [14,15]. On the other hand, in our case, since the
Berry connection is defined for the parameter on the
classical orbit, the chemical potential has to be defined
for the parameter, not for the field. This point is crucial
when we consider the Legendre transformation. The under-
lying problem of the derivative coupling has been discussed
by Arbuzova et al. in Ref. [16] and by Dasgupta et al. in
Ref. [17]. We will discuss this issue in Sec. IV.

It is easy to show that the chemical potential in the
Hamiltonian can bias the particle number densities in the
thermal equilibrium. In that sense, the appearance of
the chemical potential in the Hamiltonian explains the
asymmetry in the thermal equilibrium.

A. The Berry transformation in the Lagrangian

Before moving forward, it will be useful to show
explicitly the relation between the chemical potential and
the Berry phase in the Lagrangian. We start with the
Hamiltonian

H:HO_)M‘]O? (15)
where JO is the net number of particles. Here we consider

H, as a simple Hamiltonian given by a complex scalar y
and its conjugate momentum z* = JL/dy as

Hy— / Pr(wn oty V) (16)

where @> = —V? 4+ m? and V is a potential. On the other
hand, since J° is U(1) Noether charge, this is derived from
the original Lagrangian as

#e f el b -5)

= /d3xi()(*ﬂ—7l'*)(). (17)
Using Egs. (16), (17) and the Heisenberg equation
iy = . H]
= (7 + iuy). (18)

one can derive the original Lagrangian as

/d3x£ = /d3x(7r*)g +y'7)—H

- /d3x(|)8 —iwl* —x' o’y =V(x). (19)

Therefore, the representation of the chemical potential in
the Lagrangian is similar to a gauge field A0.7
Note that the replacement y — y — iuy is equivalent to

x =7 =ye 00,

H(t)E/[dt’,u(t’). (21)

Applying this replacement to Eq. (19), the Lagrangian
becomes

L =07 = m?*[7* = V(ze”). (22)

This Lagrangian does not have the effective chemical
potential, but some interaction (e.g, V ~ y" + H.c.) could
not be invariant under this replacement. If the Lagrangian
contains such interaction, the ¢’’(") dependence will remain.
Note that in Eq. (11), we obtained the chemical potential
using the unitary matrix Uy, which is defined to remove
the complex phases in the Hamiltonian. In this sense, the
inverse process [from Eq. (22) to Eq. (19)] is equivalent to
the procedure from Eq. (5) to Eq. (11). In this respect, the
phase 6(¢) used above can be regarded as the Berry phase,
and also the chemical potential

p=ile™?]7 - 0,[e] (23)

can be regarded as the Berry connection associated with the
transformation in Eq. (21).

B. Particle production with a
time-dependent background

As a useful toy model, we first consider a time-
dependent background for a complex scalar field and
calculate the perturbative particle production, then examine
the sources of the asymmetry.

We start with a complex scalar field y with the time-
dependent mass [18]

L = F(0)x'x. (24)
We take F(¢) — O in the past and expand
d3p —iw. T iwt] ,ik-
)(:/W[ake t+b_ke+ t]ekx. (25)

At later times, we define

7Equation (19) is also represented as

L =0 = (m* =)y =V +pJ° (20)

where the original mass m? is replaced by m? — u? Such

modification does not appear for the fermions.

036005-4



BARYOGENESIS FROM THE BERRY PHASE

PHYS. REV. D 99, 036005 (2019)

1= [ S i)+ Bagi(0)e.  (26)

which gives the equation of motion
—F(0)fi(2). (27)

Expanding f; = f+ f} and g, = ¢ + g} for f) = e=™'
and ¢) = e7', we find

07 + K2 + m?|f (1) =

(07 + K2 + m?|f} = —F(t)e". (28)

The conventional Green’s function method gives

do' F(o' — .
fi= [ 20 (29)

2r @” —w

where @' is coming from the time derivative of f}(¢) and
the Fourier transformations are defined as

F(w) E/th(t)ei“”

F(w) = / dtF(t)* e (30)
The pole at @' = —w introduces e’ in f}, which gives
fi= a]{e—ia)t +ﬁ£*eiwt’ (31)
where
FQw)*
gl =i 32)

Considering the Bogoliubov transformation, one will find
that the particle and the antiparticle numbers are given by

= |B[?
= B, (33)

which explains why particles are produced in the time-
dependent background. Obviously, in this case the source
of the asymmetry is

F(=20)*?
20

, (34)

F(-2w)|?
2w

which shows that the above model does not generate the
asymmetry.
To introduce the bias, we introduce

Line = G(xx +G()' 1" (35)

Using the method given in Ref. [18], one can calculate the
number densities from the amplitudes

A= (kl,k2|i/d4xG(t);(;(O>
=i(27)*8(k, + k2)/de( 1e i(@)+m,)

=i(27)*8 (k| + k,)G (@, + »5) (36)

A= (kiokeli [ #5607 50)

= i(27)*3 (k, + k)G* (0 + @), (37)
which gives
&k |G(2a))|
(27)} 4w
_ &Ik |Gw)
"= / 2 4o (38)

In this case, n — i1 # 0 is possible. More specifically, the
model discussed in Ref. [18] generates the interference
between terms. This is possible when multiple sources are
introduced in G(z). The simplest example in this direction
is given by Eq. (54), which will be discussed in Sec. III.

Let us see the origin of the asymmetry in the light of the
chemical potential and the Berry connection, not in terms of
the interference between terms. To find the origin of the
asymmetry, consider a constant (or a slowly varying)
chemical potential to define

G(1) = G,e, (39)

where G,(¢) is real. Then, from the amplitudes, we find
A= i(27[)353(k1 4 kz)/le ( ) i(@)+wy+u)

=i(27)°8 (k, + kZ)Gr<0)1 +wy + 1) (40)

A=i27)38(k; + k)G, (0 + @, — ).  (41)

In this case, the source of the asymmetry is

2w

2 G20 —u)|?
;é‘ (2 H)
w

, (42)

which is realized by p # 0.

Note that in the above case the nonadiabatic Berry phase
may also appear since the particle production in the above
argument is due to the nonadiabatic transition between
states. The phase may not be important in the perturbative
calculation discussed above, but it could be important in
the nonperturbative limit [5]. In this paper, as a hint to
understanding the topic, we will show an interesting
example in which the perturbative expansion does not
show the asymmetry while the nonperturbative calculation

036005-5
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FIG. 1. A straight motion with mp = A + ige is shown in the
left, and the rotational oscillation with my = |mg|e®?) is shown
in the right.

shows the asymmetry in the time-dependent background.
(See Sec. Il A and I E.) This topic has to be studied in
more detail using resurgent methods [19,20].

Normally, the Berry phase is not defined specifically for
the spontaneous violation of a symmetry. A naive expect-
ation is that the formalism based on the Berry phase may be
used in wider circumstances than the Nambu-Goldstone
effective action. To show how it works, we consider the
simplest extension in the following, to show that neither the
spontaneous symmetry breaking nor the derivative cou-
pling is needed for generating the effective chemical
potential. The model will be used also for the nonequili-
brium particle production in Sec. II1.*

C. A small extension from the simple rotation

We consider a simple example given by
A=A+ gely, (43)

where ¢ is a “real” scalar field and A, g are real constant
parameters. 6 defines the direction of the motion. Here, we

consider a case with e = i for simplicity. Note that there is
no U(1) symmetry in this model, and the real field ¢ does
not have a phase. However, if one defines

A =|Ale?, (44)

one can recover the argument of the Berry connection. The
chemical potential is calculated as

The spontaneous baryogenesis can be discussed for (1) the
chemical potential in the thermal equilibrium and (2) the non-
perturbative particle creation caused by the time-dependent
background. The latter can be discussed for the thermal equi-
librium and may compensate the simple discussion based on the
chemical potential in the thermal background. However, in our
paper, we are considering the nonperturbative particle production
only when the thermal background is negligible. Therefore, we
are calling the latter process “nonequilibrium particle production”
and discriminate it from the former.

. d 9@
U dtarcanA

pA
:Azig_ogzqu' (45)
Figure 1 shows the straight motion with A(¢) = A + ige(¢)
(in the left), which is compared with the rotational
oscillation with A(7) = |Ale™") (in the right). Note that
we are not using ¢ in the derivative coupling.

III. PARTICLE PRODUCTION DUE TO
THE BACKGROUND OSCILLATIONS

Our next topic is the nonequilibrium particle production
in a more realistic scenario. To compare our results with
the conventional spontaneous baryogenesis, we first review
the calculation given in Ref. [18]. They have considered the
Lagrangian density

L= 0,00 D — V(O'®) + iQ(ir"D, — my) 0
+ Z(iy"('?” —my)L + (9®QL + H.c.), (46)

which has the U(1) symmetry corresponding to baryon
number

D > D, 0 — eQ, L—L. (47)

Defining (®) = fe'”/+/2, one obtains an effective
Lagrangian density

f2
2

+ (ge\/; fOL + Hc> (48)

0 in the above Lagrangian is the Nambu-Goldstone boson.
Considering the rotation

L 9,000 +iQ(iy*9d, —mgy)Q + L(iy*0, — my )L

Q — e 2Q, L— L, 0—>0+a (49)

and assigning @ = —6, the Lagrangian gives9

2
L= %@98"6’ +iQ(iy*d, — mg)Q + L(iy*9d, — my)L

n (%fQL + H.c.) +0,00, (50)

where J# = Qy"Q.

°In our formalisms of the Berry transformation, the assign-
ment is a = —(0). Therefore, the chemical potential is re-
placed by 0,(0)J*. The difference is crucial for the Legendre
transformation.
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In the above, we have followed Ref. [18] and rotated O
to remove the phase. However, one will soon find that the
assignment of the rotation is not unique. Actually, if one
rotates the fields as

Q - eia/<X)Q7 L g eia/<X)L7 (51)
the phases in the interaction remain the same. On the other
hand, one will find that

Loga = -0, - (0r*Q + Ly*L) (52)

appears. This term is related to the (global) U(1)p, ; in the
original Lagrangian. Choosing 0,a’ # 0, the chemical
potential appears for the net B + L number. Therefore, if
the task is just to remove the phase in the interaction, the
definition of the rotation (and of course the chemical
potential) has the ambiguity. This is not a surprise. If
one can use the relation (ny —fip) + (n, —1,) = 0, one
can always rewrite the chemical potential as u(ny — 71p) —
5(ng —ng) =5 (ny, —ny), where pu is Q’s chemical poten-
tial. In the thermal equilibrium, the chemical potential has
to balance.

Besides the symmetry discussed above, the Lagrangian
is symmetric under the exchange {L <> Q,® « ®*}.
Assuming that the Berry transformation respects this
symmetry, the transformation has to be Q — ¢/>Q and
L — e~%/2] without ambiguity."

Using the calculation in Sec. I B, we can calculate the
asymmetries, which appear both for Q and L with the
opposite signs.

The above arguments seem to be suggesting that the
assignment Q — e/2Q, L — ¢~%/?L is more natural. On
the other hand, if one assumes that the coefficients are
determined by the U(1) symmetry given by Eq. (47), and
claims that the chemical potential is appearing form the
derivative coupling of the Nambu-Goldstone boson of the
broken symmetry, the assignment seems to be unique.

Now consider the particle production in the time-
dependent and nonequilibrium background. The produc-
tion can be biased by the oscillation given by

O(1) = fe'dl),
0(t) = 0,e7""/? cos myt. (53)

Expanding 6 for small € as
e =14 i6(1) — 6(1)?/2, (54)

one will find [18]

"®Remember that in our previous discussion, Uy in Eq. (7) is
unique because the rotation is defined for the matter and the
antimatter.

2

Ang=ny—ig = 196—”m9 1203, (55)
Note, however, that the above expansion of e already
ruins the original symmetry. Is the violation of the
symmetry crucial for the asymmetry? We will solve this
problem in Sec. HID using the formalism of the
Berry phase.

A. Small extension and the perturbative expansion

To check the validity of the above calculation in wider
circumstances, let us remove the condition

®(1) = fel), (56)
and consider the interaction replaced by
9®(1) = A+ go(1). (57)

where A is real but g is a complex constant, and ¢(7) is a
time-dependent real scalar field. Later, we will discuss the
nonperturbative particle production, but in this section we
are confined to the perturbative expansion. As is shown in
Ref. [18], the average number density n of particle(or
antiparticle) pairs produced by the decay of a homogeneous
classical scalar field can be calculated as

1 oo )
Any = —2/da)a)2 / dte*™ ™ (A + gop)
7 -0

1
—— | dow?
ﬂz/wa)

where 2w = p% + pY is for the particle pair a and b.
Using g = gg + ig;, one can expand (A + g¢) as

2

2

. (58)

/ dteZi“”(A + g*(p)
—o0

(A+g9) = A+ igip + gro. (59)

The cross term that may give a nonzero contribution to the
baryon asymmetry is

2 o
Ang :P/dwwz[lfIfR—f—H.c.],

fr= / dre*™ g(t)

[Se]

fr= / ™ At grep(1). (60)

[Se]

Here we assume that the oscillation starts at # = 0 and ¢(¢)
is given by

@(t) = p;e™/? cos mt, (61)
where I and m are a decay rate and a mass of ¢ field. We
can calculate the integral, which is given by
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7 -I'/2 —im
IR~ "4iw |-T/2+ im + 2iw

—I/2—im+2iw|
(62)

Since [if;fx + H.c] = 0 is obvious in this case, the final
result becomes

Ang =0, (63)

which suggests that there is no asymmetry generation. We
already know that in the conventional baryogenesis sce-
nario one has to consider multiple (quantum) corrections to
generate the required interference. We can see that the same
thing is happening in this perturbative calculation. (On the
other hand, the same interaction can generate the asym-
metry in the nonperturbative limit. We will discuss this
issue in Sec. Il E for the Majorana fermions.)

B. Higher terms for the perturbative expansion

To avoid the cancellation, or to introduce interference
between multiple contributions, one can introduce higher
terms. For instance, one can introduce

2
@
9o(1) > A+ 919+ 97 (64)
where both g, and g, are complex. Note that this is no

longer giving the approximation of the rotational oscilla-
tion. In the simplest case, mp can be written as

(1) > A+ iA b @’ (65)
- i -
g oM,

where 4; is a real constant. Following the calculation in
Ref. [18], we find the asymmetry given by

1 MA@}
N Y R i
S T (AZM*>

Aidy o Pi 3
=—mM .
16z (M*) (66)

Although the above calculations are useful for understand-
ing the origin of the asymmetry, the model is a trivial
extension of Ref. [18]. The only difference is that the terms
are not approximating the rotation.

In the followings, we will consider the Dirac and the
Majorana fermions and examine the origin of the asym-
metry in the nonperturbative particle production.

C. The Dirac mass for the nonperturbative calculation

Usually, the Dirac mass is defined to be real since the
redefinition of the field can remove the phase. However, if
the Dirac mass is time dependent, the Berry connection

appears. Let us introduce the complex Dirac mass, which is
rotating with m () = M e The phase can be removed
by defining the Berry transformation for the left and the
right-handed fermions. In the equation of motion, & # 0
introduces asymmetry of the helicity for each (matter and
antimatter) state, but we will show that there is no
asymmetry in the total number densities. Since the asym-
metry is due to the violation of the time-reversal symmetry
by the background, our expectation is that the asymmetry is
due to the shifts of the “events” of the particle production.
To show that our expectation is correct, we start with a
simple example. Since the basic idea of the fermionic
preheating has already been discussed in ref. [21-24], we
are going to follow the notations of Ref. [24]. The new
ingredient of our calculation is the complex Dirac mass

mp(t) = iA+ go(1), (67)

where g is real. Note that we are not considering a simple
circular rotation but a straight motion, whose orbit is
(slightly) shifted from the origin and introduces significant
0 # 0 when it passes near the origin. Considering the
decomposition

&Pk i
Vv = / (27[)3 e—tk-xZ[uli(t)alsc + vls(([)b_u (68)

s

for the Dirac equation
(i = mp)w =0, (69)
one will find
iy = ikus F impuy, (70)
which can be decoupled into
ity + [@* £ impluy, (71)

where w(t)? = k?> + |mp|?. Let us consider the evolution
equation near the bottom, ¢(z,) = 0. If we write

(p(l) = QO*(I - t*)’ (72)

where ¢, is a constant defined at ¢t = ¢,, the equation of
motion gives

iy + [K2+ |ih+ g, (t —1.)> £ igp.Juy = 0. (73)

Obviously, the above Dirac mass m(t) does not introduce
a new parameter, which might distinguish ui.” Therefore,
the above simplest extension does not introduce asymmetry
during the particle production. This result reminds us of the

"The sign in front of igp, does not change the number
densities.
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perturbative production considered in the model of Q
and L.

To introduce the asymmetry, we consider the higher
term, which is given by

2
. L@
mp(t) = 1A+91€0+192ﬁ» (74)
where A, g, g, are taken to be real. Then the equation of
motion gives

.9 2
iy + [kz + [iN+ g1, (2 —1,) + igzllq/)l (t—1t,)?
(p2
+ (l'gl(fﬂ* - 292ﬁ(t - f*)ﬂ uy =0. (75)

Note that the asymmetry appears in the real part in the
bracket. Introducing new parameters,

) A
AE¢2<9%+292M >
. 92
B=¢* 2=

and disregarding (¢ — ¢,)* near t = t,, one can rewrite the
equation as

iy + K>+ A2 +A(t—1,) F2B(t—t,) tigip,Jur = 0.
(77)

Defining 7. = ¢, = B/A and
0l =k>+ AN =B*/A+A(t—-1.)>>0, (78)
we have
iy + @2 £igp,Jus = 0. (79)

Now the calculation of the number densities is straightfor-
ward; the above equation is almost identical to the standard
equation [24], except for the helicity-dependent @, # w_.
The split of #, into f. (¢, >, > t_) means that the
production of u_ begins earlier than u,. This is due to
the modification of the real part in the bracket in Eq. (75).
Although the nonadiabatic areas are partially overlapping,
as is shown in Fig. 2, it is possible to expect that the
(earlier) production of u_ is so significant that it reduces ¢
before the (later) production of u, . In this case, one has to
define @(t), ~@.(t—1t.) for each u.. In the most
significant case, where one can assume that almost all
the states in the Fermi sphere are occupied, (|¢, | < |¢_])
determines the asymmetry of the maximum |k| of each
Fermi sphere.

For the antimatter state, the decoupled equation (71) has
nivy, instead of ri1p. Therefore, we find 7. =, F B/A for

With higher With higher

matter Without higher anti-matter

&  Particle creation area (s = +1)

%  Particle creation area (s = —1)

FIG. 2. Particle creation area (nonadiabatic area) for mp =
iA + go(t) is shown in the middle. In both sides, matter and
antimatter creation for my = iA + g1 + ig, A“f,—z is shown. In the

left, s = —1 creation starts earlier than s = +1, while in the right,
s = +1 creation starts earlier than s = —1.

the antimatter, which is opposite to the matter, and gives
ny = ii. In total, there is no asymmetry because n, +
n, =n_+4n_ is always satisfied, even though n, # n_
and 7, # ii_ are possible in this case.

To conclude the particle production due to the Dirac
mass, there is no total asymmetry even if the higher terms
are introduced. The asymmetry of the helicity appears for
each (matter and antimatter) state because the event of the
particle production splits. Similarly, the matter-antimatter
asymmetry appears for each helicity state. However, these
partial asymmetries do not cause generation of the total
asymmetry.

To avoid the cancellation of the asymmetries, which has
been seen for the Dirac mass, we will consider the Majorana
fermion in the followings. Note that unlike the Dirac
fermion, decoupling of the equations is not well-defined
at the massless point. First, we consider the rotational
oscillation and compare the perturbative and the nonpertur-
bative particle production. Then we examine the nonrota-
tional motion. We will show that unlike the previous models
the asymmetry can be generated without introducing the
higher terms.

D. Majorana fermion for the rotational oscillation

In this section, we consider simple oscillation of  for the
Majorana fermion mass. Using W% = (wg,w$), one can
write the Majorana mass term as
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_ 0 mpe
L, =Yg < >LPR’ (80)

*
my 0

where we consider mg(t) = Mge®"). Remember that in
Sec. III B, we have calculated the asymmetry using the
expansion e =14 i@+ ---. However, the problem is that
the expansion is obviously violating the original symmetry
of the rotation. To solve this problem, we calculated
the asymmetry generation using the Berry transformation.
The calculational details are shown in Appendix A. The
calculation uses the Yang-Feldman formalism and the
Berry transformation. Thanks to the Berry transformation,
we do not have to use the expansion e() = [I + if —
6?/2 + - - -]. Our result shows that the asymmetry appears
from the third order of the perturbative expansion. Taking
the limit mgy > |m| > T, our result gives the previous
calculation, which is given by

1
nv_ﬁyN_|mR|2m99?7 (81)
47

where 6, is an initial phase of the mass. This result is similar
to (55) if one regards |mg| as gf, which is a mixing mass
term between Q and L in (50). Note that our calculation
takes into the poles shifted by I

To understand more about the sources of the asym-
metry, we will consider the nonperturbative effect (tunnel-
ing) using another schematic calculation. We use the
Lagrangian given by

L = gic"dupg + (mpwiyg +mpyrws).  (82)

The equation of motion is

(0, — ic - D)yg = —miws. (83)
We expand
d3k ik-x s
(WR)a _/(2”)361( A:Zi(e}()a
x [uy (20)ag + svp(x0)aZ],  (84)

where e} is the eigenstate of the helicity operator, which
gives

—kigiel = s|k|a%;. (s ==) (85)

Substituting this expansion into the equation of motion,
we find

(10, + slkl)uy = smi.

(i0, + slk|) vy = —smpu;’. (86)

Unlike the Dirac fermions, the coefficients of the mixing
terms (in the right-hand side) are depending on time.

Therefore, to decouple the equations, one has to remove
the time dependence. After removing the time dependence
using the Berry transformation, one will find the chemical
potential and the constant Majorana mass. The equations
can be solved by using the conventional decoupling.12
Here, we are not going to decouple the equations.

This equation can be written as

d
Ly — gy,
Yt

H, H —slk|  smp(t
( i 12>:< k| R())’ (87)
Hy  Hy smg(1)  s|k|
where W' = (v}, u;). For the simple rotational oscillation,
we consider

mp(t) = Mge®", 0(t) = Oycosmyt.  (88)

After the Berry transformation, we find

d

. R IR, R
1— =H ,
dtw

. < —sk| + 22" sin myt sMpy )
H" = .
sMy s|k| — 220 sin myt

2
(89)

The above equation reminds us of the Landau-Zener
tunneling [26]. Following Ref. [26], we can define

<€1 €12>
€1 €
( —sk| + 22" sin myt
sM g

sMg

s|k| — %2 sin m,gt)

which is shown in Fig. 3 together with the original Landau-
Zener tunneling. The probability of the translation at each
crossing point is given by

P = 1)
5 COS Myl

where t,sc(i) for the ith event is defined by

2One can find similar calculation in Ref. [25], where the
decoupling has been used. The crucial difference is in the origin
of the chemical potential. Ref. [25] uses the derivative coupling
for the chemical potential, while in the present model it comes
from the Berry connection.
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/I_k+mw I k| — Gamesinmat

FIG. 3. The top figure shows the original Landau-Zener

tunneling. Equation (90) for s = &+ is shown in the bottom.

There is the shift of the oscillation due to the sign of the helicity.

0, m, 0)
2 . .

the picture, we can find the relation t;@ ~ t;(') + mly which is

The tunneling occurs when —s|k| + sinmgty” = 0. From

exact when the amplitude does not change with time.

5(i) |
—slke| + 220 sin mys? = 0. (92)

Substituting Eq. (92) into Eq. (91), we find

() 2M3 Ak 12
pk() 2 sl(?i> <1 T | s|(i) 2> ’ (93)
myty my(6y)

where |k| < 68<i)m9 /2 is required for the tunneling. Using
the conventional Bogoliubov transformation, the total
number density can be calculated as

ny =~ ZP‘;U) , (94)

where particles are assumed to decay before the next
particle production. One can verify that the above result
is consistent with Ref. [24,25], in which the Landau-Zener
tunneling has not been used for the calculation. Since my is
the mass of @ appearing in mz = Mge™, the limit My <
my is unlikely in this model. Note also that the equation
becomes singular in the limit Mz — 0 (See Ref. [26]).

Let us temporarily assume that the amplitude 6, is
constant within a cycle. Then, one can see that the same
particle creation is occurring for each helicity state, but they
do not happen simultaneously. From Fig. 3, one can see that
the particle creation is delayed for the helicity state s = —1,
and the delay is just a half of the oscillation time.

When the amplitude decreases with time, the delay is
approximately given by At:mlg. Then, if the amplitude

behaves like « e~'?, the amplitude Hg(i) defined for the ith
event can be expressed as

0, = e T2, (95)

In this case, the origin of the asymmetry is 6, @ # 93 (i),
which directly biases p,i(i) in Eq. (93). Therefore, we can
clearly understand that the time-dependent amplitude is the
source of the asymmetry in this case.

From Eq. (93), one can see that p) " can be approxi-
mated as a constant within |k| < kl(\j[)ax = Qé(l)mg/ 2. If one

assumes p,i(i) ~1 within |k| < ky the asymmetry
becomes

(i)
(@) _ (1) (k(l) )2 dkMax do-
n n o (Kpjax
+ M dgar 0
~mir(6; "), (96)
where we expanded
e T ;
o ~ (1= ). 97
0= (1-2)0; ©7)

Here, we assumed that I' « my and 'At ~ 371; < 1.

E. Majorana fermions for the simplest extension

Instead of considering the rotational motion, we are
going to introduce the Majorana mass given by

mg(t) = iN + go(t), (98)

where (just for simplicity) both A and g are taken to be real.
Previously, we have seen that the above extension (without
higher terms) does not generate the asymmetry for the
perturbative calculation.

In this section, using the nonperturbative calculation, we
will show that the above extension can generate the
asymmetry. We consider significant particle production,
which is realized when the oscillation starts with
|A/gp| < 1. Again, we use the Lagrangian given by
Eq. (82). To decouple the equation of motion (86) for
mg # 0, we rewrite the equation as’?

(mi) ™' (10, + slk|)uy = sv;. (99)

and obtain

This manipulation is not possible in the standard calculation
of preheating, since mp is usually assumed to be a real parameter
and the particle production is considered around mp ~ 0. Ref. [27]
considers a model with a time-dependent chemical potential
(from the derivative coupling) and a time-dependent (real)
Majorana mass. Their first equations coincide with our equations
after using the Berry transformation. However, because of the
(possible) appearance of mp = 0, their secondary equations do
not coincide with our calculation.
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(=i0, + Slkl)[(m}E)‘l(i8 + slkf)ug]

o7 + |k|2
- [ - olkD)
My
= —mgu. (100)
Therefore, one obtains the decoupled equation
08 =250, P -+ 5kl 2, = <l (101)
g g
Substituting
ﬁ
up = o7, (102)
we find
Ot | (22) = 3 (22 e g+ st 22|
mpy 4 \mjy mpy
=0. (103)

From this equation, one can immediately understand that
the asymmetric particle production is possible in this case.
If we define v = g¢(t,), gp(t) = v(t — t.) near the bottom
of the oscillation, we have

. - 2
i v (ﬂ) v

x T . ’ * - 2
my iA mpy A

Then, for 7, = 0, we can write the equation as

(104)

50
Ui + 2+|k|2+A2+vt2+s|k|< )}U:O.

4A
(105)
Defining
o sV
= k| +=—, 106
fol = el + 5 (106)
we obtain
Ui + |k + m(n]U =0, (107)
where
2
m2(t) = ot A+ 077 (108)

Therefore, when A? < v, particle production is not sig-
nificant near the bottom. The simplest assumption, which
justifies the significant particle production, is A ~ v'/2. The
equation is almost the same as the conventional preheating,
except for the helicity-dependent |k°|2. We can conclude

that the asymmetry is due to the split of |k*|%. During the
particle production, it shifts the radius of the Fermi sphere
of each helicity state.

Unlike the perturbative expansion discussed in
Sec. III A, our nonperturbative calculation gives the asym-
metry. Basically, the perturbative expansions and the
nonperturbative effects (such as the tunnelings) will give
different contributions. These are expected to be unified in
the resurgence theory [19,20]. Since the basic equations are
written in ordinary differential equations (ODEs), one can
use the resurgence of ODEs, which has already been
solved in the mathematical side. The task is to identify
the origin of the asymmetry in the framework of the
resurgence. Note that iA — —iA flips the asymmetry and
there is a singularity at A = 0. The relation will be revealed
in our next paper.

F. Comment on a more ambitious approach: Multifield
extension and the Cabibbo-Kobayashi-Maskawa
matrix

In the above models, the source of the phase is designed
to be very simple. The phase in the off-diagonal element
determines the Berry phase, and there is the obvious
correspondence between them. We have also seen that a
simple extension of the scenario (i.e, A = A + igp) can
be used to generate the effective chemical potential. In
this case, there is no obvious correspondence between the
Berry phase and the phases of the “fundamental” param-
eters A, g, and . However, generation of the effective
chemical potential is very clear in the light of the Berry
transformation.

In the above models, all phases in the Hamiltonian can be
removed by the field rotation, which we called “the Berry
transformation.” Now our question is very simple. “What
happens if the fields are multiplied and the Berry trans-
formation has to be given by a complex function of the
original parameters?”’

One can examine the above idea in the three-
family fermion model. One can introduce the flavor index
i=1, 2,3 and write

=iQ,(iy* d, —m) )Qj—i—L(ly”a —m} )L

+ (fYQ;L; +H.c.), (109)

where mg, m; can be diagonalized by unitary trans-

. At i
formations where Q; = (U,)"Q;,L; = (U)"L;. Then
the interaction is written as

Liw = (ULFUL) 0L + He.). (110)

Now the CP phase appearing in the matrix V¥ =
(UTQ fU.)Y is quite similar to the famous Cabibbo-
Kobayashi-Maskawa matrix in the standard model. Unlike
the naive 2 x2 matrix models, we have considered
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previously, the phases in V/ are not simply determined by
the complex phases of the original parameters of the
Lagrangian. (To avoid confusions, note that we have
considered only the single flavor for the Q-L model.
2 x 2 matrix was considered for the kaonlike models
and the Majorana fermions, but the matrix was for the
matter and the antimatter, not for the flavor.) The phases in
ViJ are given by the functions of all the original parameters.
Therefore, even if the time-dependent motion does not
accompany any rotation of the original complex parameter,
the motion may introduce time-dependent phases in V¥,
which can eventually introduce the chemical potential in
the Hamiltonian through the Berry connection. Note that
usually the phases in V¥/ are removed by the field rotations
and only a CP phase (Kobayashi-Maskawa CP phase)
remains.

The minimal multifield extension that realizes the above
idea is given by a complex scalar field couples to a real
scalar field. Consider the following Lagrangian;

1 1
L= |au¢|2 - mi&|¢‘2 + 5(6;4’1)2 - Em%”z

—%(€¢2+H.C.) — (9¢ +H.c)n, (111)
where ¢ is a complex scalar and # is a real scalar. Here, €, g
are complex coupling constants. Note that in this case the
complex phases of € and g are not removed simultaneously
by the field rotation. Therefore, at least one complex phase
will remain “after” the field rotation. The equations of
motion are given by

PR L QPR =0, (112)
where
¢ oy e g
YR=1 ¢ |, Q= | e a)i g (113)
n 9 g o

Here, ¢ is set real but g is still a complex parameter. Note
that we have already used the field rotation of ¢ to have ey.
To diagonalize the matrix using a unitary matrix U, one has
to calculate eigenvectors of the matrix Q?. Because Q has
a complex element, the unitary matrix must also have
complex elements. Here, the key idea is that the unitary
matrix can be decomposed using (real) rotation and
complex matrices [28], which are sometimes denoted
as Ujy, Uj3, Uy and Uy,. Since the particle production
occurs for the eigenstates, one has to consider YE which
is given by the transformation using U,, U3, U3 and Uy,.
In Ref. [29], we have shown that the ‘“eigenstates”
are preserving matter-antimatter asymmetry but they are
mixed by the Berry connection. In this case, the phases

in the Berry transformation are functions of Wy, €, W

and g. Therefore, in this model, one can expect that a time-
dependent w, can generate matter-antimatter asymmetry,

since it may change the phase parameter as 6; =
@,4(00;/0w,). Note that ,, itself does not have a phase,
which is similar to the simple extension discussed in
Sec. IIC. The analytic relation between the chemical
potential and @, has a very lengthy form, since it uses
the eigenvectors of the 3 x 3 matrix Q. In Ref. [29], we
showed a numerical calculation to show that the matter-
antimatter asymmetry is generated in this model. Viewing
with the “eigenstates”(WF), the Berry connection causes
mixing between ‘“‘eigenstates” accompanied by the CP
phase, which is time dependent, to generate the interference
between states.

IV. THE BERRY PHASE AND THE
LEGENDRE TRANSFORMATION

The chemical potential may cause a problem in the
Legendre transformation if it is explained by the derivative
coupling of a field in motion. The reason is very simple. If
the chemical potential is introduced using the derivative of
the field ¢, the Lagrangian density acquires the term

L. = (8,4(/))]2, (114)
which shifts the conjugate momentum given by
oL
¢

Since the corresponding part of the Hamiltonian density is

H, = np — L., (116)
the chemical potential disappears from the Hamiltonian.
The problem has been discussed in Ref. [16,17].

In this section, we are going to show a more transparent
consistency relation between the Berry connection and the
Legendre transformation. It is easy to see that the chemical
potential defined using the Berry connection appears in the
Hamiltonian (after the Legendre transformation) in the
expected form. Note also that the Berry transformation and
the Legendre transformation obviously commute. We start
with the Lagrangian [16]:

L= gv0,00,® - V(O*D) + 0(iy"d, — mgy)Q
+ l—,(l)/”a” - mL)L + Eint(cD’ Q7 L)

_vae,

ﬁint - m_g(f (L}/ﬂQ)(QCYﬂQ) +H.c. (117)

Let us consider the Berry transformation. We define

Qr=U"0, (118)
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where the Berry transformation is defined by U(a) =
=1

e~/3 with an arbitrary parameter a. Inserting UU ™!
in front of Q, one will find
L = g"d,0"0,® - V(&' D)
+ QE(i}’”aﬂ —mp)Qf + Z(i7”8,4 —my)L
+ ‘Cint(q)’ QE’ L) + ‘Cchem
V2®e i . .
ﬁint =5 (LyﬂQE)(QLEYyQE) +H.c,

my f

Lehem = (aﬂa)ﬂ‘. (119)

where J, = (1/ S)QE}/MQ £ is the baryon current. Consider
the classical rotational motion of the field ® = fe’?. On the
orbit of the rotational motion, the phase of ®e~* =
fe'®=@ in £, can be fixed by choosing the arbitrary
parameter . When the parameter « is chosen to make the
phase constant on the orbit, a has to be changing along the
orbit. In this case, one can see that the classical rotational
motion of the field @ introduces the effective chemical
potential, which is nothing but the Berry connection.

Using the Legendre transformation, one can calculate the
Hamiltonian of the system. Since the Berry transformation
is nothing but inserting “1 = UU~"" in front of the field, as
we have explained above, the Legendre transformation and
the Berry transformation must commute. In the above
example, it is obvious that the same chemical potential
appears in the Hamiltonian. On the other hand, if one
identifies the “parameter” a with the Nambu-Goldstone
“field”, these manipulations (Legendre transformation and
the Berry transformation) do not commute.

As is already discussed in Sec. III, the phase in £;;,; can
be fixed by defining the Berry transformations as

Qp = eB3Q, Lp= e =9ap, (120)

and adjusting the parameter a to cancel the phase in £;,. In
light of the Berry phase, there seems to be no obvious
reason that one has to choose a priori the specific
value s = 1.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we examined the spontaneous baryogenesis
scenario using the framework of the Berry phase. In this
approach, the chemical potential is not the derivative
coupling of the Nambu-Goldstone boson but the Berry
connection defined for the “Berry transformation”. In this
paper, the “Berry transformation” is defined specifically for
the transformation, which removes the phase in the
Hamiltonian during the evolution.

The merit of this approach is the obvious consistency
between the Hamiltonian and the Lagrangian formalisms.
The Berry transformation commutes with the Legendre

transformation, and the chemical potential in the thermal
equilibrium is obvious in this approach.

Then, using the Berry transformation as a useful tool for
the calculation, we examined the asymmetry generation
during the particle production in time-dependent back-
grounds. In the framework of the Berry phase, the chemical
potential is given by the Berry connection associated with
the conventional Berry phase. The conventional Berry
phase may appear both in the adiabatic and in the non-
adiabatic evolutions. On the other hand, the particle
production in the time-dependent background is caused
by the transition between states. In the framework of the
Berry phase, this can introduce the nonadiabatic Berry
phase, which appears only in the nonadiabatic evolution
and vanishes in the adiabatic limit. In this paper, we
compared the perturbative and the nonperturbative calcu-
lations. Our speculation is that the asymmetry in the
nonperturbative particle production can be explained by
the resurgence theory [19,20].

Besides the discrepancy between the perturbative and the
nonperturbative calculations, we also examined the effect
of the expansion e = [l +if—6%/2+ ---], which is
explicitly violating the original symmetry. In our calcu-
lation, the Berry transformation is very useful since it
enabled us to calculate the asymmetry without using the
above expansion.

For the rotational oscillation of the time-dependent
Majorana mass term, we calculated the nonperturbative
particle production using the Landau-Zener tunneling. In
this case, the nonperturbative calculation is explicitly
defined for the tunneling process and the source of the
asymmetry is the split of the tunneling.

The model can also be extended to multifield models, in
which the Berry phases are complex functions of the
original parameters. Although the parameter dependence
of the CP phase becomes very complicated compared with
the original spontaneous baryogenesis scenario, theoreti-
cally one can decompose the unitary matrix in the simpler
form to find that U(,i # 0 is the source of the matter-
antimatter asymmetry.

From the results, we found that the Berry phase and the
Berry connection are giving a natural framework of the
spontaneous baryogenesis scenario. The asymmetry of
perturbative and nonperturbative particle production will
be understood in the resurgence theory. Although in this
paper we have considered only a time-dependent param-
eter, one can also consider a “space”-dependent parameter
as the source of the Berry connection, which may appear on
topological defects such as walls and strings.
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APPENDIX A: NET NUMBER FOR
MAJORANA FERMION

In this section, we derive the formula (81) which is the
net number density induced by the varying phase of the
mass. At first we start with the following Lagrangian:

— %fz(ae) 7m0f292 + 5”0"8 &

) |me|e® g > |’71e,f|e_"9(’)5€T (A1)
where 6 = 6(r) is a real c-number field, £ is a two-
component spinor field, and f is a constant. Next, we
remove the phase of the mass by taking & = ¢%/2£. Then

the Lagrangian becomes to

1 1 .
L =2 1(00) = S mif*0° + £t D, &

1 1 1 _
=5 Imeléede =5 melépey + 50,0 Eo'ep. (A2)
Although the phase in the mass term disappears, note that
there appears the additional term associated with 9,0 which
corresponds to a part of the chemical potential. From this

Lagrangian, the equations of motion are given by

1

0= ig"0,&p = |m|f +50,0- 58, (A3)
1

0= iaﬂaﬂsz = |m|ég — Eaﬂe ) 0—”52 (A4)

0= f20%0+ %@(526”55) +fmgo  (AS)

Instead of using (AS5), we use an approximated equation

0+T0+m20=0 (A6)
where I is a decay rate of 0. (A3) and (A4) are equivalent.

Using these equations of motion, we will calculate the
number density with Yang-Feldman formalism where the
operator field is represented by an asymptotic filed and
Green function.

1. Yang-Feldman equation

The formal solution called as Yang-Feldman equation for
Egs. (A3) and (A4) are given by

()= (g)
/d“ Gi&(ilf( ;)).

2

5" (y)
A7
0L (y) ) A7

where £ is an asymptotic field which is defined at x° = £
and satisfies
| m| glnl

0= i5*d,&n (A8)

0 =ic"0,& mT

— |mlég. (A9)

Since £y is same to a free field, we can expand it to

in X d k i X e’ Es x
@09 = [ G L AE) (a1
B () = up()ay, + se7 vy (:0)at, (A1)

where e} is an eigenvector for helicity state which is
defined by

—kigle} = s|k|5%e;. (s =) (A12)

In this paper we choose a representation satisfying (A12) as

1 sk3
W =\/5 (1 +57 Al
e =3 (1475 (a13)
N sk
(ek)o = se™y 5 (1 |k|) (A14)
) kl 'k2
ek = L . (AIS)
(k1)2 + (k2)2
Then the eigenvector satisfies following relations:
e}'5%) = ejoe) =8, (A16)
(e ) = —se7iPx (5% )%, (A17)
s 1 k'
(e)elei)a = 5 ( + ha) (no sum fors) (A18)
ST\ a 1 ~0 Ski . aa
(ex)* ()" = G ma’ (no sum fors) (Al9)

In Eq. (All), aj (as_Tk) is an annihilation (a creation)
operator satisfying

{a},al} = (27)%6(k - K'),

and uy, v} are time-dependent parts of wave functions
whose solutions for zero particle state is given by

1 k .
= 3 (1)

(others) =0,  (A20)

(A21)
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1 k
v (x0) = 5 <1 + i'o—k> etiox (A22)
= \/|k[? + |mg|?. (A23)

Moreover, in (A7),

G = i(0(x0 —y°) — O(r" —)?))
({ B0 g, Enly >}>
{E (), ()} {en (x). én ()}
dk

= i(0(x" —y0) — 9(¢" - e’k (x-y)

st
ey st €x
S(% >Fi(x0)FL <y°>( ia)
s k €x c

(A24)

where

(A25)

N Sk
o= (M T
k— s us* ’
k k

is a (retarded) Green function'* from y° = 7 to x°. Using a
notation

1 -9
G, —G;}.ze( )( 0—0>’
then we can obtain a perturbative solution of (A7) as
5E(x)> < n(x) ) L <§E(y)>
= - [ d*yG, N
<e:2<x> £ (x) f &)
2()
= [dy[1+G ( E >
/ MG Ly
= /d4y (54()6 - y) - ny

+ / d4szZGZ),+...> ( ég((yy ))>, (A27)

2. Net number density

(A26)

The number density operator for each helicity can be
shown as

“In (A24), O-function means not a field, but a step function.

&k s|k sk . ~
iR :/<2”)3 {(1 -~ (Lk|>:fj:§ + (1 + |k|>”*_k33jk

_% (seTiPRES By + -se™ix Eijifk)}

where Z§ is a Fourier transformed operator of &g(x)
defined by

Pk~ o m
&g = /erf<~k

(A29)

Note that the representation of (A28) is corresponding
to [(kinetic energy) — (vacuumenergy)|/ (1 particle energy).

The net number density of the Majorana fermion can be
defined by the difference of helicity. Using (A28) and
(A29), the net number density by the field operator & is
given by

(A30)

a'c(1.3)] 10

:l/dg’xd?’y—d k eik'(x_Y)
1% (2r)3

30 aexs(G00 )0

l\)l>—‘

where we used a notation

(A32)

Substituting (A27) into the above result, then one can
evaluate the net number density perturbatively in order of
the Green function as
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1 &Pk — (&1 VIS §4 (v — w) — §*(x — ~
nnetz—/d33€d3y( ) ik (x /d4zd4 (Ist) = —([Gl,,)"Sid*(y = w) = 6*(x = 2)Si Gy, (A37)

. 2nd) = ([G G],.)TS,8*
<L ol a1 + ) sl + G (nd) = (G G5 Uy

() w (A38)
E
X |0 WO=y0— A33) ~ o~ o~ ~ ~
( mT( )) > i ( (3rd) = _([GGG}xz)TSkéét(y - W) - ([G G]xz)TSkGyw
3 - (ze)TSk[G G] w _54(X_Z)Sk[ééé} we
1 d*xd’y Ak e®(x=y) a’4za’4w1 (o|w! ' '
% (27)3 2V (A39)
x [(0th) + (1st) + (2nd) + (3rd) + - - -]¥,,[0),0_y0_, In the following, we will show that the contributions
A34 from the zeroth, the first and the second order vanishes and
(A34) the leading contribution appears from the third order.
where
a. Oth order
gy = £(2) (A35) At the zeroth order, we just consider with (A36) in
- int (Z) (A34). Then
E
(0th) = &*(x — 2)S,5*(y — w), (A36) (Met)otn (A40)

1 3.3 I’k ik-(x—y i

Bk ey el ) <v;*(z))

S .
/ (2m) < Z (1) ( _ef(T&o) k( —5%; ) \ui* (1)
s|k| ||

&Pk 1= o v (1
/ . Z i l‘) § k k 1:*( )

(27)° Clmel skl )\ g ()

[

Wy

dSk S|k| |m5| S 8% |m§| S, 8% S|k| s
/ 7 [( CARES o viug —w—ku‘kv‘k + 1+a)—k lui*| = 0. (A41)

b. 1st order
The first order of (A34) with (A37) can be calculated as

1 Ak 1 .
(nnet)lst :V/d3Xd3y (2”)3/d425[—€’k (X y)<0|\PjCSkG)’ZlPZ|O>
sT=0

: /% ) dtéiﬂ);%(”i(” ) (* )P RO (TN )
x (e" —50ei§> <Zi§;;> + (H.c.)]
- /% [‘ /,i:dt/%é(t’>¥%( v (1) u;‘;(t))s<l__j _l%i»%)

x F3T () - (=1)- <Z’;E;;) + (H.c.)]. (A42)

XO=y0—; + (HC)}
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Note that one can show

_ slk] ||
(ve(t) (1)) - wk Fi(t)=(0 0),
_ |me] —-1-= s|k|
Wy Wy

thus
(nnet)lst =0.
Especially, the fact (A43) indicates

(O/%1S,G,. x -+ |0) =0

(A43)

(A44)

(A45)

and its Hermite conjugate is also same. In order to obtain nonzero terms, we need additional Green function between

¥l and ;.

¢. 2nd order

Taking into account (A45), the survival term in (A38) is only the second term (ze)'i'SkGyZ. Thus the second order

of (A34) is

(o = [ PPy 55
S Lo fotmm o )5,
x( ~5'e; " )F 1)F} (1 (ef(' ef(fg‘))Sk(ei 5oei>Fi(t)Fi-}-(t2)<
(% ) (i)

/d3k / dt1/ d;zl (1, 9(;2)2;<vi(t1) “i(t1)>Fi(f1)

1 — skl [me|

cFi-s| o mwEi ()
k M 1 n M k k\*2 M}i*(tz)

Wy Wy

lPZz |0> O*l

Y2

/ d2yd s (0[O (G J15,G

/‘P" / dtl/ dn, 10(1) )Y 5 <yk(z1) u;(t1)>F;(z,)s<2 0>-F;T(t2)(z

3
= /%/{ dfl/ dfzzg(t1)9(fz)zs-ui(tl)vi(tl)-ui*(tz)vi*(tz) =0.

[m
Therefore, the second order also cannot affect the asymmetry.

d. 3rd order

Sk

k

e

k

(t2)
(12)

)

(A46)

Taking into account (A45), the survival terms in (A39) are ([GG}XZ)TS G- Thus the contribution to the net number from

yw:*

the third order is
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1 &k .
(nnet)3rd = V/ d3Xd3y (27[) /d4Z1d4Z2d4Z3§<0|[ ik-(x— y)lP;rl [zel]}SkG)zszzz;P + (H C. )”O>

= |- fran [ [ o33 (e ui<r1>)<eiT

=0
-6 e;
x< h

, Jro >(e o

€, o
ST =0

ex —e, 0
>< ( LG .
€3

k €k

-~ ;‘j5°>

ey . —e}'5"
(% e )rOF ) )
(o2 €k ey

J(* o) (i) + 0]
3{ /dtl/dtz/ dty — 9(:1 )(1,)0 (g)Zé(Uk(n) u;(z1)>Fi(t1)-s(2 0)

x F3 (1 ( - )F‘ t)) F‘T(t3)<vls‘*(t3>> —I—(Hc)}

)

{ [ dtl/ dtz/ dt3—9(t1 )(,)0 (’*)ZS 20 (1)) 5 (1)

X (= (g () P = 103 (£2) ) - 2u (3) v (13) +2u (02) v} (£2) - (| (83) P = v (1) %)) + (H-C-)]

Pk k . . .
/ / i / dt / ity g 0()0(1)0(1)2 ' " 5' 2ot (g2t — g2t 4 (H.c.)
tll]

In order to evaluate the time integral, we choose " = 0 and

assume the initial and final condition of 8(z) as

o) = 0, 0(t - o) =0, (A48)

O(t") = O(t > ) = 0. (A49)

Then each time integral with (A6) gives

t . o 1
/ ro(f)etr o = ———————
0 4wy — my+ 2iw I
x [2iw 0(t)e* @ + m3(0(t)e* " —,)],
(A50)

4
my

® ArO* (1) et2iol —
| O

02
mf} + la)kF) P

(A51)

/oo dro(1)o(r) et = m3(icwy, — F) 3
0 2(2160k — F) (a)% — mc9 + la)kl") i

(A52)

Applying these formulae to (A47), finally we can
obtain

(A47)
[
k|| [me]* 1
= mSreo?
(nnet>3rd / (27[) w; (1)% 2
y 1
(4wt — m3)? + 4wiT?
1 Tw? —m3 +T'?
« k 0
(0} —m3)? +0ll? o) +T17
1
~ o Imefmof. (AS3)

where we used an assumption mg > |[mg| > T and the
narrow width approximation

1 /4
5(w* — m3).
(w* —mj)* + mgl“2 mgl’ (@ = my)

(A54)

Thus the nonzero term of the mean net number appears at
the third order.

APPENDIX B: BIAS IN THE EIGENSTATES

The asymmetry can be seen as the biased mixing in the
eigenstates. In this section, we are going to review basic
strategies in this direction.

1. Quantum corrections

It would be useful to remember how the bias appears
from the loop corrections. Although many fields are
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required for the quantum correction, which is not explicitly
discussed in this paper, the correction is symbolically given
by a Hermite matrix I', which modifies the Hamiltonian
as H— H—iI'. As the result, the correction to the
Hamiltonian is anti-Hermite (~iI"), where I" is given by

(Ta)" Ty
Note that the correction (iI") is (1) anti-Hermite, and (2) the
imaginary part of the off-diagonal elements (J[I",]) are
important for the bias. The real part of ', may appear at the
tree level, but it does not cause the matter-antimatter
asymmetry. To see the matter-antimatter asymmetry (bias)

in the eigenstates, it is useful to calculate eigenvectors of
the matrix given by

H,, Hp M A—ily
(7 . (B2)
H 21 H 21 A — lrz M
Here the diagonal element I'; is absorbed into M for
simplicity. For this model, the eigenvectors are written as

(B1)

(B3)

r 1
:l: ) )
< \/1—|—|r\2 \/1+|1’2)

A=iT,
N
|r| # 1. This parameter is commonly used to measure
the CP violation in a kaon. The biases are the same for
both eigenstates, which suggests that these eigenstates
are generating the same bias. This is the crucial differ-
ence from the chemical potential. The eigenvalues are
M+ /(A —iT,)(A—il}). Note that the above argu-
ments are based on the system with the kaon, where many
other fields are implicitly assumed to generate the quantum
correction.

where r =

The eigenvectors are biased when

2. The chemical potential (in the limit of s ~ 0)

Similar bias can be introduced by the chemical potential.
Of course, the statistical bias is obvious in the thermal
background (as far as the chemical potential appears in the
Hamiltonian), but the thermal equilibrium is not considered
here. Here, the particle production is assumed to be
nonthermal, and the decay of the particle is assumed to
be much slower than the mixings. Initially, the chemical
potential is supposed to be a constant (i.e, the Berry
connection gives a Hermite and time-independent contri-
bution). More simply, one may think that the particle
production proceeds with the pure eigenstates. Later in
Sec. III, we will consider the opposite case, in which the
particle production cannot be explained by the eigenstates.

At the beginning of this section, we have explained that
0 # 0 can introduce the correction, which becomes

i%wR = (H* =ya)y*,
HE ( M IA)
Al M)
u 0
ro- <0 —ﬂ)'

Unlike the quantum correction discussed above, the geo-
metric correction caused by 0 +0 is (1) Hermite, and
(2) diagonal elements determine the bias. Here we are
comparing i[" with .

To see the matter-antimatter asymmetry (bias) in the
eigenstates, it is useful to calculate eigenvectors of the
matrix given by

(Hn H12)_<M+ﬂ A >
Hy  Hy A M—p

Choosing a parameter p = u/|A|, the eigenvalues are
written as M + |A]\/1 + p?, and their eigenvectors are

given by
(i\/mip, \/\/@:Fp). (B6)

One can see that the matter-antimatter bias is appearing in
the eigenstates, but there are significant differences from
the quantum corrections.

(B4)

(BS)

3. Majorana fermions

The above arguments for the matter-antimatter bias can
be applied to the Majorana fermions. In the past, the one-
loop correction for the wave function mixing of singlet
(Majorana) neutrinos has been calculated in Ref. [30-32].
We are not reviewing the calculation here, but the result is
quite similar to the kaon quantum correction we have
mentioned above. For the quantum correction, the bias
in the eigenstates appears in the same manner as the
bosonic field.

Let us consider the bias caused by the chemical potential.
Our calculation for the chemical potential can be applied
straightforwardly to the Majorana fermion. We introduce
the Majorana mass given by

Ly = (mpyLwr + mpyrw), (B7)
where mp is the Majorana mass for the singlet Right-
handed Fermion. Note that in our notation, (y)¢ = y§ and
(w1)¢ = y$%. Using W% = (wg, w$), one can write

— 0 mpe
‘Cm - lPR( )lPR

B8
myp 0 (B8)

For a static and homogeneous background, the eigenstates
are wi = yg £ w§, which satisfies the Majorana condition
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(wh)¢ = +ykh. On the other hand, if the Majorana mass
is given by mp = |mg|e?®), the Berry connection, which
gives the effective chemical potential, introduces mixing
between the eigenstates, and thus the “eigenstates” w4 are
no longer the true eigenstates. Now the situation is the same
as the bosonic scenario. One can choose my = |mg|e®") to
find the chemical potential 4 = € in the matrix,

Em:lilR( # mR)TR.

. (B9)
mg  —H

On the other hand, if one considers the “eigenstates” of the
mass matrix, one will find

_ m 0
Em:‘PE<| x| )‘PE (B10)
0 —[mg|
and the Berry connection
o1 ]
iU"'U == . ) B11
wro=3(, 7 (B11)

Since we are choosing WX for the calculation, the

eigenvalues of the matrix are written as =+|mg|\/1 + p2,
where we defined p = u/|mg|, and their eigenvectors are

given by
(p£/1+p%1),

which is biased when p # 0. In this case, however, the bias
in the eigenstates may cancel with each other. This
cancellation is exact when (1) sz = 0 and (2) the production
and the decay rates are indistinguishable. (Note that bosons
are distinguishable when M # 0 and A # 0.) On the other
hand, since the mixing rates of the CP-even and CP-odd
states are different, one can expect that the decay rates of
these eigenstates could be different in a phenomenological
situation."” Moreover, these “eigenstates” are not the true
eigenstates when g # 0.

(B12)

The most useful example in this direction is the kaon.

One can introduce the Dirac mass mjp to extend the
model. Temporarily, we assume that |mg| is constant but my

is given by mp=|mgle? . Using Wy = (y.y5.wg. i),
one can write

0 0 mp O
0 0 0 mp

L,=" ¥,. (B13
0 mp 0 0 my 0 ( )
Then, we find the chemical potential,
u 0 mp 0
_ 0o - 0 m
L, =W H Plwr (B14)
mp 0 H [mp|
0 mp |mgl —u

where Wy = Uy¥, and Uy = diag(e, e el e=iht). If
the Dirac mass is absent (mp = 0), one will recover the
simplest scenario

0 0 O 0
_.10 0 O 0
L, =R yE  (B15)
0 0 pu [mg
0 0 [mg| -u

where Uy is Uy = diag(0, 0, e, e=i#1),
If |mg| is not constant but varies with time, the

eigenstates can be written as

YE = 'R = UT'U; 'Y, = U1,  (B16)
where not only Uy but also U; could be time dependent.
Then for the “eigenstate” WZ, the nonadiabatic Berry phase
gives the contribution

iU™'U = iU7"(U,;'Up)U, +iUT'U,,  (B17)
which causes mixing between eigenstates.

Note that the above arguments are not valid when the
chemical potential is changing fast.

[1] Y. Aharonov and D. Bohm, Significance of electromagnetic
potentials in the quantum theory, Phys. Rev. 115, 485
(1959).

[2] M. V. Berry, Quantal phase factors accompanying adiabatic
changes, Proc. R. Soc. A 392, 45 (1984).

[3] S. Pancharatnam, Generalized theory of interference, and its
applications, Proc. Indian Acad. Sci. A 44, 247 (1956).

[4] Y. Aharonov and J. Anandan, Phase Change During a
Cyclic Quantum Evolution, Phys. Rev. Lett. 58, 1593
(1987).

036005-21


https://doi.org/10.1103/PhysRev.115.485
https://doi.org/10.1103/PhysRev.115.485
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1007/BF03046050
https://doi.org/10.1103/PhysRevLett.58.1593
https://doi.org/10.1103/PhysRevLett.58.1593

SEISHI ENOMOTO and TOMOHIRO MATSUDA

PHYS. REV. D 99, 036005 (2019)

[5] Y. Kayanuma, Role of phase coherence in the transition
dynamics of a periodically driven two-level system, Phys.
Rev. A 50, 843 (1994).

[6] J. Samuel and R. Bhandari, General Setting for Berry’s
Phase, Phys. Rev. Lett. 60, 2339 (1988).

[71 A.G. Cohen and D.B. Kaplan, Thermodynamic genera-
tion of the Baryon asymmetry, Phys. Lett. B 199, 251
(1987).

[8] A.G. Cohen and D. B. Kaplan, Spontaneous baryogenesis,
Nucl. Phys. B308, 913 (1988).

[9] M. Dine, P. Huet, R. L. Singleton, Jr., and L. Susskind,
Creating the baryon asymmetry at the electroweak phase
transition, Phys. Lett. B 257, 351 (1991).

[10] A.G. Cohen, D. B. Kaplan, and A. E. Nelson, Baryogenesis
at the weak phase transition, Nucl. Phys. B349, 727 (1991).

[11] M. J. Moore and G. E. Stedman, Adiabatic and nonadiabatic
Berry phases for two-level atoms, Phys. Rev. A 45, 513
(1992).

[12] T. Oka and H. Aoki, Dielectric breakdown in a Mott
insulator: Many-body Schwinger-Landau-Zener mechanism
studied with a generalized Bethe Ansatz, Phys. Rev. B 81,
033103 (2010).

[13] L. Affleck and M. Dine, A new mechanism for baryogenesis,
Nucl. Phys. B249, 361 (1985).

[14] M. Dine, W. Fischler, and M. Srednicki, A simple solution
to the strong CP problem with a harmless axion, Phys. Lett.
104B, 199 (1981).

[15] A. Dolgov and K. Freese, Calculation of particle produc-
tion by Nambu Goldstone bosons with application to
inflation reheating and baryogenesis, Phys. Rev. D 51,
2693 (1995).

[16] E. V. Arbuzova, A. D. Dolgov, and V. A. Novikov, General
properties and kinetics of spontaneous baryogenesis, Phys.
Rev. D 94, 123501 (2016).

[17] A. Dasgupta, R.K. Jain, and R. Rangarajan, Effective
chemical potential in spontaneous baryogenesis, Phys.
Rev. D 98, 083527 (2018).

[18] A. Dolgov, K. Freese, R. Rangarajan, and M. Srednicki,
Baryogenesis during reheating in natural inflation and

comments on spontaneous baryogenesis, Phys. Rev. D
56, 6155 (1997).

[19] E. Delabaere and F. Pham, Resurgent methods in semi-
classical asymptotics, Ann. Inst. Henri Poincaré 71, 1
(1999).

[20] D. Dorigoni, An introduction to resurgence, trans-series and
Alien calculus, arXiv:1411.3585.

[21] P. B. Greene and L. Kofman, Preheating of fermions, Phys.
Lett. B 448, 6 (1999).

[22] D.J. H. Chung, E. W. Kolb, A. Riotto, and I.1. Tkachev,
Probing Planckian physics: Resonant production of particles
during inflation and features in the primordial power
spectrum, Phys. Rev. D 62, 043508 (2000).

[23] A.D. Dolgov and D. P. Kirilova, On particle creation by a
time dependent scalar field, Yad. Fiz. 51,273 (1990) [Sov. J.
Nucl. Phys. 51, 172 (1990)].

[24] M. Peloso and L. Sorbo, Preheating of massive fermions
after inflation: Analytical results, J. High Energy Phys. 05
(2000) 016.

[25] P. Adshead and E.I. Sfakianakis, Fermion production
during and after axion inflation, J. Cosmol. Astropart. Phys.
11 (2015) 021.

[26] C. Zener, Nonadiabatic crossing of energy levels, Proc. R.
Soc. A 137, 696 (1932).

[27] L. Pearce, L. Yang, A. Kusenko, and M. Peloso, Lepto-
genesis via neutrino production during Higgs condensate
relaxation, Phys. Rev. D 92, 023509 (2015).

[28] M. Kobayashi and T. Maskawa, CP violation in the
renormalizable theory of weak interaction, Prog. Theor.
Phys. 49, 652 (1973).

[29] S. Enomoto and T. Matsuda, Asymmetric preheating, Int. J.
Mod. Phys. A 33, 1850146 (2018).

[30] L. Covi, E. Roulet, and F. Vissani, CP violating decays in
leptogenesis scenarios, Phys. Lett. B 384, 169 (1996).

[31] M. Flanz, E. A. Paschos, U. Sarkar, and J. Weiss, Baryo-
genesis through mixing of heavy Majorana neutrinos, Phys.
Lett. B 389, 693 (1996).

[32] R. Rangarajan and H. Mishra, Leptogenesis with heavy
Majorana neutrinos revisited, Phys. Rev. D 61, 043509
(2000).

036005-22


https://doi.org/10.1103/PhysRevA.50.843
https://doi.org/10.1103/PhysRevA.50.843
https://doi.org/10.1103/PhysRevLett.60.2339
https://doi.org/10.1016/0370-2693(87)91369-4
https://doi.org/10.1016/0370-2693(87)91369-4
https://doi.org/10.1016/0550-3213(88)90134-4
https://doi.org/10.1016/0370-2693(91)91905-B
https://doi.org/10.1016/0550-3213(91)90395-E
https://doi.org/10.1103/PhysRevA.45.513
https://doi.org/10.1103/PhysRevA.45.513
https://doi.org/10.1103/PhysRevB.81.033103
https://doi.org/10.1103/PhysRevB.81.033103
https://doi.org/10.1016/0550-3213(85)90021-5
https://doi.org/10.1016/0370-2693(81)90590-6
https://doi.org/10.1016/0370-2693(81)90590-6
https://doi.org/10.1103/PhysRevD.51.2693
https://doi.org/10.1103/PhysRevD.51.2693
https://doi.org/10.1103/PhysRevD.94.123501
https://doi.org/10.1103/PhysRevD.94.123501
https://doi.org/10.1103/PhysRevD.98.083527
https://doi.org/10.1103/PhysRevD.98.083527
https://doi.org/10.1103/PhysRevD.56.6155
https://doi.org/10.1103/PhysRevD.56.6155
http://arXiv.org/abs/1411.3585
https://doi.org/10.1016/S0370-2693(99)00020-9
https://doi.org/10.1016/S0370-2693(99)00020-9
https://doi.org/10.1103/PhysRevD.62.043508
https://doi.org/10.1088/1126-6708/2000/05/016
https://doi.org/10.1088/1126-6708/2000/05/016
https://doi.org/10.1088/1475-7516/2015/11/021
https://doi.org/10.1088/1475-7516/2015/11/021
https://doi.org/10.1098/rspa.1932.0165
https://doi.org/10.1098/rspa.1932.0165
https://doi.org/10.1103/PhysRevD.92.023509
https://doi.org/10.1143/PTP.49.652
https://doi.org/10.1143/PTP.49.652
https://doi.org/10.1142/S0217751X18501464
https://doi.org/10.1142/S0217751X18501464
https://doi.org/10.1016/0370-2693(96)00817-9
https://doi.org/10.1016/S0370-2693(96)80011-6
https://doi.org/10.1016/S0370-2693(96)80011-6
https://doi.org/10.1103/PhysRevD.61.043509
https://doi.org/10.1103/PhysRevD.61.043509

