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The spontaneous baryogenesis scenario explains how a baryon asymmetry can develop while baryon
violating interactions are still in thermal equilibrium. However, generation of the chemical potential from
the derivative coupling is dubious since the chemical potential may not appear after the Legendre
transformation. The geometric phase (Pancharatnam-Berry phase) results from the geometrical properties
of the parameter space of the Hamiltonian, which is calculated from the Berry connection. In this paper,
using the formalism of the Berry phase, we show that the chemical potential defined by the Berry
connection is consistent with the Legendre transformation. The framework of the Berry phase is useful in
explaining the mathematical background of the spontaneous baryogenesis and also in calculating the
asymmetry of the nonthermal particle production in time-dependent backgrounds. Using the formalism, we
show that the mechanism can be extended to more complex situations.
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I. INTRODUCTION

Quantum mechanics is distinguishable from the classical
counterpart by the phase factor, which explains many
characteristic phenomena of the quantum theory. Among
those, the Aharonov-Bohm(AB) effect [1] illuminates the
importance of the geometric phase in quantum mechanics.
It explains why an interference pattern can appear even
though a magnetic field is confined in a solenoid and put
away from the orbit. The phase originating from the
geometry is called the Pancharatnam-Berry phase or the
Berry phase in short [2,3]. Suppose that the normalized
state jψðtÞi ∈ H obeys the Schrödinger equation [4],

iℏ
d
dt

jψðtÞi ¼ HðtÞjψðtÞi; ð1Þ
where jψðτÞi ¼ eiϕjψð0Þi for an interval ½0; τ�. If we define
jψ̃ðtÞi ¼ e−ifðtÞjψðtÞi such that fðτÞ − fð0Þ ¼ ϕ, we find
jψ̃ðtÞi ¼ jψ̃ð0Þi, but the Schrödinger equation for the new
field becomes

iℏ
d
dt

jψ̃ðtÞi ¼ HðtÞjψ̃ðtÞi þ ℏ
df
dt

jψ̃ðtÞi; ð2Þ

where the last term gives the Berry connection. To
understand the nonadiabatic contribution from the state
mixing, consider a slowly varying HðtÞ with HðtÞjnðtÞi ¼
EnðtÞjnðtÞi and write

jψðtÞi ¼
X
n

anðtÞe−
i
ℏ

R
EndtjnðtÞi: ð3Þ

Then we have

ȧm ¼ −amhmj d
dt

jmi −
X
n≠m

an
hmjḢjni
En − Em

e−
i
ℏ

R
ðEm−EnÞdt;

ð4Þ
where the second term is negligible (by definition) in the
adiabatic limit, since the adiabatic limit is defined for the
evolution without transition between states. The phase
coming from the first term is the conventional Berry phase,
which may appear both in the adiabatic and the non-
adiabatic evolutions. If the phase appears from the state
mixing, it is called the nonadiabatic Berry phase. In
contrast to the conventional Berry phase, the nonadiabatic
Berry phase does not appear in the adiabatic limit. We hope
there is no confusion between the “Berry phase in a
nonadiabatic evolution” and “the nonadiabatic Berry
phase.” They have different origins.1
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As we explain later, the first term (the Berry connection)
gives the chemical potential when the spontaneous baryo-
genesis scenario is considered in the formalism of the Berry
phase. However, since the Berry connection vanishes in the
adiabatic limit (although its integral may not vanish in a
topological background), the evolution has to be non-
adiabatic in order to generate a sensible chemical potential.
When we consider the spontaneous baryogenesis scenario,
the second term (or the higher terms) gives the particle
production due to the time-dependent background.
To show our idea in a simple model, we start with the

Schrödinger equation for the state ψ t
0 ≡ ðK0; K̄0Þ, which is

written as2

i
d
dt

ψ0 ¼ Hψ0;�
H11 H12

H21 H21

�
¼
�
M Δ
Δ� M

�
: ð5Þ

Here, K0 and K̄0 represent the matter and the antimatter
states of a singlet, and Δ≡ jΔjeiθ. As far as the parameters
are both homogeneous in space and static in time, one can
always find the Hamiltonian with real Δ (θ ¼ 0), using
the rotation of the states. In that case, the effective theory
does not depend explicitly on θ, and the Hamiltonian is
given by3

HR ¼
�

M jΔj
jΔj M

�
: ð6Þ

The rotation (redefinition) of a field is commonly used in
removing phase factors in the theory. Here, such a “trivial”
transformation is being used in a time-dependent back-
ground. One may claim that this is a gauge transformation
without the gauge symmetry.
If θ is time dependent, one cannot neglect the time

dependence of the transformation matrix. The rotation can
be written using the unitary matrix Uθ, which we define

ψR ≡ U−1
θ ψ0;

Uθ ≡
�
eiθðtÞ=2 0

0 e−iθðtÞ=2

�
: ð7Þ

Then, the Schrödinger equation for the state ψR is
written as

i
d
dt

ψR ¼ ðHR − iU−1
θ U̇θÞψR: ð8Þ

The original (“trivial”) transformation is a global trans-
formation and gives nothing from the left-hand side. On the
other hand, since we have introduced the time dependence,
the transformation is a local transformation and gives the
additional contribution from the time derivative, which is
called the Berry connection.
Note that ψR is not the eigenstate of the Hamiltonian. In

this model, the eigenstate can be written as

ψE ¼ U−1
1 ψR ¼ U−1

1 U−1
θ ψ0; ð9Þ

where

U1 ≡ 1ffiffiffi
2

p
�

1 1

−1 1

�
: ð10Þ

The eigenstate ψE is the true eigenstate of the Hamiltonian
only when U−1

1 U−1
θ is not time dependent. Therefore, we

sometimes denote ψE with the double quotation marks
(“eigenstate”) in the time-dependent background.4

Formally, the equivalence class of state vectors or
“projective Hilbert space” is defined using an arbitrary
function U as fU−1ψ0g, and an equivalence class of
Hamiltonians is fU−1HU − iU−1ð∂tUÞg [4,6].5 These
are defining different representations of the identical
Schrödinger equation. Note that the Berry connection
depends on the choice of the state vector. Although
U−1HU ¼ H is true for the Abelian model, a non-
Abelian extension is possible, in which one has to con-
sider U−1HU ≠ H. In this case, the Hamiltonian is not
invariant under the transformation, but (therefore) it can be
used to remove the phase parameter of the Hamiltonian
during the time-dependent background.
The Berry phase is defined by the integral of the Berry

connection along the orbit. If the Berry phase is defined
for a cyclic process starting from t ¼ 0 and ends at
t ¼ T, the Hamiltonian at t ¼ 0 and t ¼ T must coincide.
Since the process considered in this paper is not a cyclic
process, the definition of the Berry connection can be
ambiguous. To avoid such ambiguity, we are always
choosing the state, which removes the time-dependent
phase in the Hamiltonian. In the above argument, instead
of considering the cyclic process, U has been chosen to
keep the phase parameter of HR unchanged along the
classical orbit. In this paper, we sometimes call this specific
transformation “the Berry transformation.” This is not a
common terminology since the Berry phase is usually
defined using the cyclic process. In this paper, the Berry
connection is defined using the transformation.

2Our discussion here is implicitly based on a kaon, where K0 is
a neutrally charged scalar meson. We consider the model since
the kaon is the simplest and the most familiar among particle
physicists. Note, however, that our baryogenesis scenarios are not
for the kaon production. The idea will be applied to more
complex scenarios.

3Here the capital “R” is for the real off-diagonal elements and
“E” is for the eigenstates.

4See also Appendix B.
5Here, R in UðRÞ represents arbitrary parameters.
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One will find that the mechanism is similar to the
spontaneous baryogenesis scenario [7–10], in which the
effective chemical potential is coming from the derivative
coupling of the Nambu-Goldstone boson, not from the
Berry connection. We will discuss the discrepancy in
Sec. IV. Here, we have at least three reasons to con-
sider the Berry phase in the spontaneous baryogenesis
scenario. The primary reason is the consistency between
the Lagrangian and the Hamiltonian formalisms. (See
Sec. IV.) Second, the formalism based on the Berry phase
is free from the spontaneous symmetry breaking. As we
will see in Sec. II, the origin of the chemical potential may
not be the Nambu-Goldstone boson. Therefore, there is a
hope that baryogenesis with the Berry phase is giving a
natural extension of the scenario, i.e, “not a spontaneous”
baryogenesis in which there is no Nambu-Goldstone boson
and the symmetry is explicitly violated. Third, using
the formalism based on the Berry phase, one can see the
mathematical structure of the model. In addition to the
conventional chemical potential, the nonadiabatic Berry
phase may appear.6

Normally, when one discusses the nonadiabatic effect
for the Berry phase, his (her) motivation would be to
calculate the Berry and the nonadiabatic Berry phases.
However, our present discussion is not for the calcu-
lation of the Berry phase in a cyclic process, but for
finding the sources of the asymmetry in time-dependent
backgrounds. We hope there is no misdirection in our
arguments.
In the next section, using simple setups, we are going

to discuss why the formalism of the Berry phase can be
used to understand the scenario of the spontaneous
baryogenesis. Then, we will consider some extension
of the scenario, to solve more complex situations.

II. EFFECTIVE CHEMICAL POTENTIAL AND
THE BERRY PHASE

In the early Universe, a field can be placed away from
its true minimum. Then the field starts to roll down on
the potential during the evolution of the Universe, and it
starts to oscillate around the minimum. Sometimes, the
trajectory of the oscillation is not a straight line passing
through the minimum, but an oval form, since a CP
violating interaction may introduce angular rotation of the
field [13]. One can also imagine that the symmetry
breaking occurs at a high energy scale and the effective
action is written using a quasi Nambu-Goldstone boson
(axion). These are the standard realization of the field
rotation.
Below, we are going to explain the basic idea using the

kaonlike model. From the Schrödinger equation (5), we
find for ψR

i
d
dt

ψR ¼ ðHR − iU−1
θ U̇θÞψR;

HR ¼
�

M jΔj
jΔj M

�
;

iU−1
θ U̇θ ¼

1

2

�
θ̇ 0

0 −θ̇

�
; ð11Þ

where μ≡ θ̇=2 can be regarded as an effective chemical
potential. Here we defined θ as Δ≡ jΔjeiθ. From these
equations, the relation between the effective chemical
potential and the Berry connection is very clear.
Above, we have calculated the Berry connection with

respect to ψR, but one will soon find that ψR is not the
eigenstate of the equation. Of course, a similar discussion
can be applied to the eigenstate, but the appearance of the
chemical potential is not obvious. Below, we will show
what happens if one chooses the eigenstate for the
discussion.
If θ does not depend on time, one can calculate the

eigenstate, which is given by

ψE ≡ ðψEðþÞ;ψEð−ÞÞt;

ψEð�Þ ≡
�
� eiθ=2ffiffiffi

2
p K0 þ e−iθ=2ffiffiffi

2
p K̄0

�
: ð12Þ

On the other hand, if θ is time dependent, one has to
introduce the Berry connection to the Schrödinger equa-
tion, which becomes

i
d
dt

ψE ¼ ðHE − iU−1U̇ÞψE;

HE ¼
�
M þ jΔj 0

0 M − jΔj

�
;

iU−1U̇ ¼ 1

2

�
0 θ̇

θ̇ 0

�
: ð13Þ

Obviously, the “eigenstate” ψE is no longer the true
eigenstate of the Schrödinger equation because of the
mixing caused by the Berry connection. Also, unlike the
calculation based on ψR, it seems difficult to understand
that the Berry connection works like an effective chemical
potential. This is the reason why we consider ψR instead of
using ψE.
In the past, the effective chemical potential has been

studied in particle cosmology in various ways. Spontaneous
baryogenesis scenario uses higher-dimensional operators
such as [7–10]

Oh ¼ −
∂μφ

M�
JμB; ð14Þ

6See Refs. [5,11,12], for example.
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where φ is a scalar field and JμB is the baryon current.
Similarly, one can calculate the effective chemical potential
using the effective Lagrangian for the Nambu-Goldstone
boson [14,15]. On the other hand, in our case, since the
Berry connection is defined for the parameter on the
classical orbit, the chemical potential has to be defined
for the parameter, not for the field. This point is crucial
when we consider the Legendre transformation. The under-
lying problem of the derivative coupling has been discussed
by Arbuzova et al. in Ref. [16] and by Dasgupta et al. in
Ref. [17]. We will discuss this issue in Sec. IV.
It is easy to show that the chemical potential in the

Hamiltonian can bias the particle number densities in the
thermal equilibrium. In that sense, the appearance of
the chemical potential in the Hamiltonian explains the
asymmetry in the thermal equilibrium.

A. The Berry transformation in the Lagrangian

Before moving forward, it will be useful to show
explicitly the relation between the chemical potential and
the Berry phase in the Lagrangian. We start with the
Hamiltonian

H ¼ H0 − μJ0; ð15Þ

where J0 is the net number of particles. Here we consider
H0 as a simple Hamiltonian given by a complex scalar χ
and its conjugate momentum π� ≡ ∂L=∂χ̇ as

H0 ¼
Z

d3xðπ�π þ χ�ω2χ þ VðχÞÞ ð16Þ

where ω2 ≡ −∇2 þm2 and V is a potential. On the other
hand, since J0 is Uð1Þ Noether charge, this is derived from
the original Lagrangian as

J0 ¼
Z

d3x i

�
χ�

∂L
∂χ̇� −

∂L
∂χ̇ χ

�

¼
Z

d3x iðχ�π − π�χÞ: ð17Þ

Using Eqs. (16), (17) and the Heisenberg equation

iχ̇ ¼ ½χ; H�
¼ iðπ þ iμχÞ; ð18Þ

one can derive the original Lagrangian as

Z
d3xL ¼

Z
d3xðπ�χ̇ þ χ̇�πÞ −H

¼
Z

d3xðjχ̇ − iμχj2 − χ�ω2χ − VðχÞÞ: ð19Þ

Therefore, the representation of the chemical potential in
the Lagrangian is similar to a gauge field A0.

7

Note that the replacement χ̇ → χ̇ − iμχ is equivalent to

χ → χ̃ ≡ χe−iθðtÞ; θðtÞ≡
Z

t
dt0μðt0Þ: ð21Þ

Applying this replacement to Eq. (19), the Lagrangian
becomes

L ¼ j∂χ̃j2 −m2jχ̃j2 − Vðχ̃eiθÞ: ð22Þ

This Lagrangian does not have the effective chemical
potential, but some interaction (e.g, V ∼ χn þ H:c:) could
not be invariant under this replacement. If the Lagrangian
contains such interaction, the eiθðtÞ dependence will remain.
Note that in Eq. (11), we obtained the chemical potential
using the unitary matrix Uθ, which is defined to remove
the complex phases in the Hamiltonian. In this sense, the
inverse process [from Eq. (22) to Eq. (19)] is equivalent to
the procedure from Eq. (5) to Eq. (11). In this respect, the
phase θðtÞ used above can be regarded as the Berry phase,
and also the chemical potential

μ ¼ i½e−iθ�−1 · ∂t½e−iθ� ð23Þ

can be regarded as the Berry connection associated with the
transformation in Eq. (21).

B. Particle production with a
time-dependent background

As a useful toy model, we first consider a time-
dependent background for a complex scalar field and
calculate the perturbative particle production, then examine
the sources of the asymmetry.
We start with a complex scalar field χ with the time-

dependent mass [18]

Lint ¼ FðtÞχ�χ: ð24Þ

We take FðtÞ → 0 in the past and expand

χ ¼
Z

d3p
2ωð2πÞ3 ½ake

−iωt þ b†−ke
þiωt�eik·x: ð25Þ

At later times, we define

7Equation (19) is also represented as

L ¼ j∂χj2 − ðm2 − μ2Þjχj2 − V þ μJ0; ð20Þ
where the original mass m2 is replaced by m2 − μ2. Such
modification does not appear for the fermions.
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χ ¼
Z

d3p
2ωð2πÞ3 ½akfkðtÞ þ b†−kg

�
kðtÞ�eik·x; ð26Þ

which gives the equation of motion

½∂2
t þ k2 þm2�fkðtÞ ¼ −FðtÞfkðtÞ: ð27Þ

Expanding fk ¼ f0k þ f1k and gk ¼ g0k þ g1k for f0k ¼ e−iωt

and g0k ¼ e−iωt, we find

½∂2
t þ k2 þm2�f1k ¼ −FðtÞe−iωt: ð28Þ

The conventional Green’s function method gives

f1k ¼
Z

dω0

2π

F̃ðω0 − ωÞ
ω02 − ω2

e−iω
0t; ð29Þ

where ω0 is coming from the time derivative of f1kðtÞ and
the Fourier transformations are defined as

F̃ðωÞ≡
Z

dtFðtÞeiωt

F̃�ðωÞ≡
Z

dtFðtÞ�eiωt: ð30Þ

The pole at ω0 ¼ −ω introduces eþiωt in f1k, which gives

fk ¼ αf
k e

−iωt þ βf�k eiωt; ð31Þ

where

βfk ¼ i
F̃ð2ωÞ�
2ω

: ð32Þ

Considering the Bogoliubov transformation, one will find
that the particle and the antiparticle numbers are given by

Nk ¼ jβfk j2
N̄k ¼ jβgkj2; ð33Þ

which explains why particles are produced in the time-
dependent background. Obviously, in this case the source
of the asymmetry is

���� F̃ð−2ωÞ�2ω

����2 ≠
���� F̃ð−2ωÞ2ω

����2; ð34Þ

which shows that the above model does not generate the
asymmetry.
To introduce the bias, we introduce

Lint ¼ GðtÞχχ þ GðtÞ�χ�χ�: ð35Þ

Using the method given in Ref. [18], one can calculate the
number densities from the amplitudes

A ¼ hk1; k2ji
Z

d4xGðtÞχχj0i

¼ ið2πÞ3δ3ðk1 þ k2Þ
Z

dtGðtÞeiðω1þω2Þ

¼ ið2πÞ3δ3ðk1 þ k2ÞG̃ðω1 þ ω2Þ ð36Þ

Ā ¼ hk1; k2ji
Z

d4xGðtÞ�χ�χ�j0i

¼ ið2πÞ3δ3ðk1 þ k2ÞG̃�ðω1 þ ω2Þ; ð37Þ

which gives

n ¼
Z

d3k
ð2πÞ3

jG̃ð2ωÞj2
4ω

n̄ ¼
Z

d3k
ð2πÞ3

jG̃ð2ωÞ�j2
4ω

: ð38Þ

In this case, n − n̄ ≠ 0 is possible. More specifically, the
model discussed in Ref. [18] generates the interference
between terms. This is possible when multiple sources are
introduced in GðtÞ. The simplest example in this direction
is given by Eq. (54), which will be discussed in Sec. III.
Let us see the origin of the asymmetry in the light of the

chemical potential and the Berry connection, not in terms of
the interference between terms. To find the origin of the
asymmetry, consider a constant (or a slowly varying)
chemical potential to define

GðtÞ ¼ Greiμt; ð39Þ

where GrðtÞ is real. Then, from the amplitudes, we find

A ¼ ið2πÞ3δ3ðk1 þ k2Þ
Z

dtGrðtÞeiðω1þω2þμÞ

¼ ið2πÞ3δ3ðk1 þ k2ÞG̃rðω1 þ ω2 þ μÞ ð40Þ

Ā ¼ ið2πÞ3δ3ðk1 þ k2ÞG̃rðω1 þ ω2 − μÞ: ð41Þ

In this case, the source of the asymmetry is

���� G̃rð2ωþ μÞ
2ω

����2 ≠
���� G̃rð2ω − μÞ

2ω

����2; ð42Þ

which is realized by μ ≠ 0.
Note that in the above case the nonadiabatic Berry phase

may also appear since the particle production in the above
argument is due to the nonadiabatic transition between
states. The phase may not be important in the perturbative
calculation discussed above, but it could be important in
the nonperturbative limit [5]. In this paper, as a hint to
understanding the topic, we will show an interesting
example in which the perturbative expansion does not
show the asymmetry while the nonperturbative calculation
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shows the asymmetry in the time-dependent background.
(See Sec. III A and III E.) This topic has to be studied in
more detail using resurgent methods [19,20].
Normally, the Berry phase is not defined specifically for

the spontaneous violation of a symmetry. A naive expect-
ation is that the formalism based on the Berry phase may be
used in wider circumstances than the Nambu-Goldstone
effective action. To show how it works, we consider the
simplest extension in the following, to show that neither the
spontaneous symmetry breaking nor the derivative cou-
pling is needed for generating the effective chemical
potential. The model will be used also for the nonequili-
brium particle production in Sec. III.8

C. A small extension from the simple rotation

We consider a simple example given by

Δ ¼ Λþ geiθ̂φ; ð43Þ

where φ is a “real” scalar field and Λ, g are real constant
parameters. θ̂ defines the direction of the motion. Here, we
consider a case with eiθ̂ ¼ i for simplicity. Note that there is
no Uð1Þ symmetry in this model, and the real field φ does
not have a phase. However, if one defines

Δ≡ jΔjeiθ; ð44Þ

one can recover the argument of the Berry connection. The
chemical potential is calculated as

μ ¼ θ̇ ¼ d
dt

arctan
gφ
Λ

¼ gφ̇Λ
Λ2 þ g2φ2

: ð45Þ

Figure 1 shows the straight motion with ΔðtÞ ¼ Λþ igφðtÞ
(in the left), which is compared with the rotational
oscillation with ΔðtÞ ¼ jΔjeiθðtÞ (in the right). Note that
we are not using φ in the derivative coupling.

III. PARTICLE PRODUCTION DUE TO
THE BACKGROUND OSCILLATIONS

Our next topic is the nonequilibrium particle production
in a more realistic scenario. To compare our results with
the conventional spontaneous baryogenesis, we first review
the calculation given in Ref. [18]. They have considered the
Lagrangian density

L ¼ ∂μΦ�∂μΦ − VðΦ�ΦÞ þ iQ̄ðiγμ∂μ −mQÞQ
þ L̄ðiγμ∂μ −mLÞLþ ðgΦQ̄Lþ H:c:Þ; ð46Þ

which has the Uð1Þ symmetry corresponding to baryon
number

Φ → eiαΦ; Q → e−iαQ; L → L: ð47Þ

Defining hΦi ¼ feiθ=
ffiffiffi
2

p
, one obtains an effective

Lagrangian density

L ¼ f2

2
∂μθ∂μθ þ iQ̄ðiγμ∂μ −mQÞQþ L̄ðiγμ∂μ −mLÞL

þ
�
geiθffiffiffi
2

p fQ̄Lþ H:c:

�
: ð48Þ

θ in the above Lagrangian is the Nambu-Goldstone boson.
Considering the rotation

Q → e−iαQ; L → L; θ → θ þ α ð49Þ

and assigning α ¼ −θ, the Lagrangian gives9

L ¼ f2

2
∂μθ∂μθ þ iQ̄ðiγμ∂μ −mQÞQþ L̄ðiγμ∂μ −mLÞL

þ
�

gffiffiffi
2

p fQ̄Lþ H:c:

�
þ ∂μθJμ; ð50Þ

where Jμ ¼ Q̄γμQ.

FIG. 1. A straight motion with mR ¼ Λþ igφ is shown in the
left, and the rotational oscillation with mR ¼ jmRjeiθðtÞ is shown
in the right.

8The spontaneous baryogenesis can be discussed for (1) the
chemical potential in the thermal equilibrium and (2) the non-
perturbative particle creation caused by the time-dependent
background. The latter can be discussed for the thermal equi-
librium and may compensate the simple discussion based on the
chemical potential in the thermal background. However, in our
paper, we are considering the nonperturbative particle production
only when the thermal background is negligible. Therefore, we
are calling the latter process “nonequilibrium particle production”
and discriminate it from the former.

9In our formalisms of the Berry transformation, the assign-
ment is α ¼ −hθi. Therefore, the chemical potential is re-
placed by ∂μhθiJμ. The difference is crucial for the Legendre
transformation.
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In the above, we have followed Ref. [18] and rotated Q
to remove the phase. However, one will soon find that the
assignment of the rotation is not unique. Actually, if one
rotates the fields as

Q → eiα
0ðxÞQ; L → eiα

0ðxÞL; ð51Þ

the phases in the interaction remain the same. On the other
hand, one will find that

Ladd ¼ −∂μα
0 · ðQ̄γμQþ L̄γμLÞ ð52Þ

appears. This term is related to the (global) Uð1ÞBþL in the
original Lagrangian. Choosing ∂tα

0 ≠ 0, the chemical
potential appears for the net Bþ L number. Therefore, if
the task is just to remove the phase in the interaction, the
definition of the rotation (and of course the chemical
potential) has the ambiguity. This is not a surprise. If
one can use the relation ðnQ − n̄QÞ þ ðnL − n̄LÞ ¼ 0, one
can always rewrite the chemical potential as μðnQ − n̄QÞ →
μ
2
ðnQ − n̄QÞ − μ

2
ðnL − n̄LÞ, where μ is Q’s chemical poten-

tial. In the thermal equilibrium, the chemical potential has
to balance.
Besides the symmetry discussed above, the Lagrangian

is symmetric under the exchange fL ↔ Q;Φ ↔ Φ�g.
Assuming that the Berry transformation respects this
symmetry, the transformation has to be Q → eiθ=2Q and
L → e−iθ=2L without ambiguity.10

Using the calculation in Sec. II B, we can calculate the
asymmetries, which appear both for Q and L with the
opposite signs.
The above arguments seem to be suggesting that the

assignment Q → eiθ=2Q, L → e−iθ=2L is more natural. On
the other hand, if one assumes that the coefficients are
determined by the Uð1Þ symmetry given by Eq. (47), and
claims that the chemical potential is appearing form the
derivative coupling of the Nambu-Goldstone boson of the
broken symmetry, the assignment seems to be unique.
Now consider the particle production in the time-

dependent and nonequilibrium background. The produc-
tion can be biased by the oscillation given by

ΦðtÞ ¼ feiθðtÞ;

θðtÞ ¼ θie−Γt=2 cosmθt: ð53Þ

Expanding θ for small θ as

eiθðtÞ ¼ 1þ iθðtÞ − θðtÞ2=2; ð54Þ

one will find [18]

ΔnQ ≡ nQ − n̄Q ¼ g2

16π
mθf2θ3i : ð55Þ

Note, however, that the above expansion of eiθ already
ruins the original symmetry. Is the violation of the
symmetry crucial for the asymmetry? We will solve this
problem in Sec. III D using the formalism of the
Berry phase.

A. Small extension and the perturbative expansion

To check the validity of the above calculation in wider
circumstances, let us remove the condition

ΦðtÞ ¼ feiθðtÞ; ð56Þ

and consider the interaction replaced by

gΦðtÞ → Λþ gφðtÞ; ð57Þ

where Λ is real but g is a complex constant, and φðtÞ is a
time-dependent real scalar field. Later, we will discuss the
nonperturbative particle production, but in this section we
are confined to the perturbative expansion. As is shown in
Ref. [18], the average number density n of particle(or
antiparticle) pairs produced by the decay of a homogeneous
classical scalar field can be calculated as

ΔnQ ¼ 1

π2

Z
dωω2

����
Z

∞

−∞
dte2iωtðΛþ gφÞ

����2

−
1

π2

Z
dωω2

����
Z

∞

−∞
dte2iωtðΛþ g�φÞ

����2; ð58Þ

where 2ω ¼ p0
a þ p0

b is for the particle pair a and b.
Using g ¼ gR þ igI , one can expand ðΛþ gφÞ as

ðΛþ gφÞ ¼ Λþ igIφþ gRφ: ð59Þ

The cross term that may give a nonzero contribution to the
baryon asymmetry is

ΔnQ ¼ 2

π2

Z
dωω2½ifIf�R þ H:c:�;

fI ¼
Z

∞

−∞
dte2iωtgIφðtÞ

fR ¼
Z

∞

−∞
dte2iωtgRφðtÞ: ð60Þ

Here we assume that the oscillation starts at t ¼ 0 and φðtÞ
is given by

φðtÞ ¼ φie−Γt=2 cosmt; ð61Þ

where Γ and m are a decay rate and a mass of φ field. We
can calculate the integral, which is given by

10Remember that in our previous discussion, Uθ in Eq. (7) is
unique because the rotation is defined for the matter and the
antimatter.

BARYOGENESIS FROM THE BERRY PHASE PHYS. REV. D 99, 036005 (2019)

036005-7



fIðRÞ ¼
gIðRÞθi
4iω

�
−Γ=2þ im

−Γ=2þ imþ 2iω
þ −Γ=2 − im
−Γ=2 − imþ 2iω

�
:

ð62Þ

Since ½ifIf�R þ H:c� ¼ 0 is obvious in this case, the final
result becomes

ΔnQ ¼ 0; ð63Þ

which suggests that there is no asymmetry generation. We
already know that in the conventional baryogenesis sce-
nario one has to consider multiple (quantum) corrections to
generate the required interference. We can see that the same
thing is happening in this perturbative calculation. (On the
other hand, the same interaction can generate the asym-
metry in the nonperturbative limit. We will discuss this
issue in Sec. III E for the Majorana fermions.)

B. Higher terms for the perturbative expansion

To avoid the cancellation, or to introduce interference
between multiple contributions, one can introduce higher
terms. For instance, one can introduce

gΦðtÞ → Λþ g1φþ g2
φ2

M�
; ð64Þ

where both g1 and g2 are complex. Note that this is no
longer giving the approximation of the rotational oscilla-
tion. In the simplest case, mR can be written as

gΦðtÞ → Λþ iλ1φ −
λ2
2

φ2

M�
; ð65Þ

where λi is a real constant. Following the calculation in
Ref. [18], we find the asymmetry given by

nν − n̄ν ¼
1

16π
mΛ2

�
λ1λ2φ

3
i

Λ2M�

�

¼ λ1λ2
16π

mM2�

�
φi

M�

�
3

: ð66Þ

Although the above calculations are useful for understand-
ing the origin of the asymmetry, the model is a trivial
extension of Ref. [18]. The only difference is that the terms
are not approximating the rotation.
In the followings, we will consider the Dirac and the

Majorana fermions and examine the origin of the asym-
metry in the nonperturbative particle production.

C. The Dirac mass for the nonperturbative calculation

Usually, the Dirac mass is defined to be real since the
redefinition of the field can remove the phase. However, if
the Dirac mass is time dependent, the Berry connection

appears. Let us introduce the complex Dirac mass, which is
rotating withmDðtÞ≡MDeiθðtÞ. The phase can be removed
by defining the Berry transformation for the left and the
right-handed fermions. In the equation of motion, θ̇ ≠ 0
introduces asymmetry of the helicity for each (matter and
antimatter) state, but we will show that there is no
asymmetry in the total number densities. Since the asym-
metry is due to the violation of the time-reversal symmetry
by the background, our expectation is that the asymmetry is
due to the shifts of the “events” of the particle production.
To show that our expectation is correct, we start with a

simple example. Since the basic idea of the fermionic
preheating has already been discussed in ref. [21–24], we
are going to follow the notations of Ref. [24]. The new
ingredient of our calculation is the complex Dirac mass

mDðtÞ ¼ iΛþ gφðtÞ; ð67Þ

where g is real. Note that we are not considering a simple
circular rotation but a straight motion, whose orbit is
(slightly) shifted from the origin and introduces significant
θ̇ ≠ 0 when it passes near the origin. Considering the
decomposition

ψ ¼
Z

d3k
ð2πÞ3 e

−ik·x
X
s

½uskðtÞask þ vskðtÞbs†−k� ð68Þ

for the Dirac equation

ði=∂ −mDÞψ ¼ 0; ð69Þ

one will find

u̇� ¼ iku∓ ∓ imDu�; ð70Þ

which can be decoupled into

ü� þ ½ω2 � iṁD�u�; ð71Þ

where ωðtÞ2 ¼ k2 þ jmDj2. Let us consider the evolution
equation near the bottom, φðt�Þ ¼ 0. If we write

φðtÞ ≃ φ̇�ðt − t�Þ; ð72Þ

where φ̇� is a constant defined at t ¼ t�, the equation of
motion gives

ü� þ ½k2 þ jiΛþ gφ̇�ðt − t�Þj2 � igφ̇��u� ¼ 0: ð73Þ

Obviously, the above Dirac mass mDðtÞ does not introduce
a new parameter, which might distinguish u�.

11 Therefore,
the above simplest extension does not introduce asymmetry
during the particle production. This result reminds us of the

11The sign in front of igφ̇� does not change the number
densities.
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perturbative production considered in the model of Q
and L.
To introduce the asymmetry, we consider the higher

term, which is given by

mDðtÞ ¼ iΛþ g1φþ ig2
φ2

M�
; ð74Þ

where Λ, g1, g2 are taken to be real. Then the equation of
motion gives

ü� þ
�
k2 þ

����iΛþ g1φ̇�ðt − t�Þ þ ig2
φ̇2

M�
ðt − t�Þ2

����2

�
�
ig1φ̇� − 2g2

φ̇2

M�
ðt − t�Þ

��
u� ¼ 0: ð75Þ

Note that the asymmetry appears in the real part in the
bracket. Introducing new parameters,

A≡ φ̇2

�
g21 þ 2g2

Λ
M�

�

B≡ φ̇2

�
g2
M�

�
; ð76Þ

and disregarding ðt − t�Þ4 near t ¼ t�, one can rewrite the
equation as

ü� þ ½k2 þ Λ2 þ Aðt − t�Þ2 ∓ 2Bðt − t�Þ � ig1φ̇��u� ¼ 0:

ð77Þ

Defining t� ≡ t� � B=A and

ω2
� ≡ k2 þ Λ2 − B2=Aþ Aðt − t�Þ2 > 0; ð78Þ

we have

ü� þ ½ω2
� � igφ̇��u� ¼ 0: ð79Þ

Now the calculation of the number densities is straightfor-
ward; the above equation is almost identical to the standard
equation [24], except for the helicity-dependent ωþ ≠ ω−.
The split of t� into t� (tþ > t� > t−) means that the
production of u− begins earlier than uþ. This is due to
the modification of the real part in the bracket in Eq. (75).
Although the nonadiabatic areas are partially overlapping,
as is shown in Fig. 2, it is possible to expect that the
(earlier) production of u− is so significant that it reduces φ̇
before the (later) production of uþ. In this case, one has to
define φðtÞ� ≃ φ̇�ðt − t�Þ for each u�. In the most
significant case, where one can assume that almost all
the states in the Fermi sphere are occupied, (jφ̇þj < jφ̇−j)
determines the asymmetry of the maximum jkj of each
Fermi sphere.
For the antimatter state, the decoupled equation (71) has

ṁ�
D instead of ṁD. Therefore, we find t� ≡ t� ∓ B=A for

the antimatter, which is opposite to the matter, and gives
n� ¼ n̄∓. In total, there is no asymmetry because nþ þ
n̄þ ¼ n− þ n̄− is always satisfied, even though nþ ≠ n−
and n̄þ ≠ n̄− are possible in this case.
To conclude the particle production due to the Dirac

mass, there is no total asymmetry even if the higher terms
are introduced. The asymmetry of the helicity appears for
each (matter and antimatter) state because the event of the
particle production splits. Similarly, the matter-antimatter
asymmetry appears for each helicity state. However, these
partial asymmetries do not cause generation of the total
asymmetry.
To avoid the cancellation of the asymmetries, which has

been seen for the Dirac mass, we will consider the Majorana
fermion in the followings. Note that unlike the Dirac
fermion, decoupling of the equations is not well-defined
at the massless point. First, we consider the rotational
oscillation and compare the perturbative and the nonpertur-
bative particle production. Then we examine the nonrota-
tional motion. We will show that unlike the previous models
the asymmetry can be generated without introducing the
higher terms.

D. Majorana fermion for the rotational oscillation

In this section, we consider simple oscillation of θ for the
Majorana fermion mass. Using Ψt

R ≡ ðψR;ψc
LÞ, one can

write the Majorana mass term as

FIG. 2. Particle creation area (nonadiabatic area) for mD ¼
iΛþ gφðtÞ is shown in the middle. In both sides, matter and

antimatter creation for mR ¼ iΛþ g1φþ ig2
φ2

M�
is shown. In the

left, s ¼ −1 creation starts earlier than s ¼ þ1, while in the right,
s ¼ þ1 creation starts earlier than s ¼ −1.
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Lm ¼ Ψ̄R

�
0 mR

m�
R 0

�
ΨR; ð80Þ

where we consider mRðtÞ ¼ MReiθðtÞ. Remember that in
Sec. III B, we have calculated the asymmetry using the
expansion eiθ ¼ 1þ iθ þ � � �. However, the problem is that
the expansion is obviously violating the original symmetry
of the rotation. To solve this problem, we calculated
the asymmetry generation using the Berry transformation.
The calculational details are shown in Appendix A. The
calculation uses the Yang-Feldman formalism and the
Berry transformation. Thanks to the Berry transformation,
we do not have to use the expansion eiθðtÞ ¼ ½1þ iθ −
θ2=2þ � � ��. Our result shows that the asymmetry appears
from the third order of the perturbative expansion. Taking
the limit mθ ≫ jmξj ≫ Γ, our result gives the previous
calculation, which is given by

nν − n̄ν ∼
1

4π
jmRj2mθθ

3
i ; ð81Þ

where θi is an initial phase of the mass. This result is similar
to (55) if one regards jmRj as gf, which is a mixing mass
term between Q and L in (50). Note that our calculation
takes into the poles shifted by Γ.
To understand more about the sources of the asym-

metry, we will consider the nonperturbative effect (tunnel-
ing) using another schematic calculation. We use the
Lagrangian given by

L ¼ ψ̄Riσ̄μ∂μψR þ ðmRψ̄
c
LψR þm�

Rψ̄Rψ
c
LÞ: ð82Þ

The equation of motion is

ði∂t − iσ · ∂ÞψR ¼ −m�
Rψ

c
L: ð83Þ

We expand

ðψRÞα ¼
Z

d3k
ð2πÞ3 e

ik·x
X
s¼�

ðeskÞα

× ½uskðx0Þask þ svskðx0Þas†−k�; ð84Þ

where esk is the eigenstate of the helicity operator, which
gives

−kiσ̄iesk ¼ sjkjσ̄0esk: ðs ¼ �Þ ð85Þ

Substituting this expansion into the equation of motion,
we find

ði∂t þ sjkjÞusk ¼ sm�
Rv

s
k;

ði∂t þ sjkjÞvs�k ¼ −sm�
Ru

s�
k : ð86Þ

Unlike the Dirac fermions, the coefficients of the mixing
terms (in the right-hand side) are depending on time.

Therefore, to decouple the equations, one has to remove
the time dependence. After removing the time dependence
using the Berry transformation, one will find the chemical
potential and the constant Majorana mass. The equations
can be solved by using the conventional decoupling.12

Here, we are not going to decouple the equations.
This equation can be written as

i
d
dt

Ψ ¼ HΨ;�
H11 H12

H21 H21

�
¼
� −sjkj sm�

RðtÞ
smRðtÞ sjkj

�
; ð87Þ

where Ψt ≡ ðvsk; uskÞ. For the simple rotational oscillation,
we consider

mRðtÞ ¼ MReiθðtÞ; θðtÞ ¼ θ0 cosmθt: ð88Þ

After the Berry transformation, we find

i
d
dt

ψR ¼ ĤRψR;

ĤR ¼
�−sjkj þ θ0mθ

2
sinmθt sMR

sMR sjkj − θ0mθ
2

sinmθt

�
:

ð89Þ

The above equation reminds us of the Landau-Zener
tunneling [26]. Following Ref. [26], we can define

�
ϵ1 ϵ12

ϵ21 ϵ2

�

¼
�−sjkj þ θ0mθ

2
sinmθt sMR

sMR sjkj − θ0mθ
2

sinmθt

�
; ð90Þ

which is shown in Fig. 3 together with the original Landau-
Zener tunneling. The probability of the translation at each
crossing point is given by

PsðiÞ
k ≃ e−πp

sðiÞ
k ;

psðiÞ
k ≡ M2

R��� θsðiÞ0
m2

θ
2

cosmθt
sðiÞ
k

��� ; ð91Þ

where tsðiÞk for the ith event is defined by

12One can find similar calculation in Ref. [25], where the
decoupling has been used. The crucial difference is in the origin
of the chemical potential. Ref. [25] uses the derivative coupling
for the chemical potential, while in the present model it comes
from the Berry connection.
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−sjkj þ θsðiÞ0 mθ

2
sinmθt

sðiÞ
k ¼ 0: ð92Þ

Substituting Eq. (92) into Eq. (91), we find

psðiÞ
k ≡ 2M2

R

m2
θθ

sðiÞ
0

�
1 −

4jkj2
m2

θðθsðiÞ0 Þ2
�−1=2

; ð93Þ

where jkj < θsðiÞ0 mθ=2 is required for the tunneling. Using
the conventional Bogoliubov transformation, the total
number density can be calculated as

nsk ≃
X
i

PsðiÞ
k ; ð94Þ

where particles are assumed to decay before the next
particle production. One can verify that the above result
is consistent with Ref. [24,25], in which the Landau-Zener
tunneling has not been used for the calculation. Since mθ is
the mass of θ appearing in mR ¼ MReiθ, the limit MR ≪
mθ is unlikely in this model. Note also that the equation
becomes singular in the limit MR → 0 (See Ref. [26]).
Let us temporarily assume that the amplitude θ0 is

constant within a cycle. Then, one can see that the same
particle creation is occurring for each helicity state, but they
do not happen simultaneously. From Fig. 3, one can see that
the particle creation is delayed for the helicity state s ¼ −1,
and the delay is just a half of the oscillation time.
When the amplitude decreases with time, the delay is

approximately given by Δt ≃ π
mθ
. Then, if the amplitude

behaves like ∝ e−Γt, the amplitude θsðiÞ0 defined for the ith
event can be expressed as

θ−ðiÞ0 ≃ e−ΓΔtθþðiÞ
0 : ð95Þ

In this case, the origin of the asymmetry is θ−ðiÞ0 ≠ θþðiÞ
0 ,

which directly biases psðiÞ
k in Eq. (93). Therefore, we can

clearly understand that the time-dependent amplitude is the
source of the asymmetry in this case.
From Eq. (93), one can see that psðiÞ

k can be approxi-

mated as a constant within jkj < kðiÞMax ≡ θsðiÞ0 mθ=2. If one

assumes psðiÞ
k ∼ 1 within jkj < kMax, the asymmetry

becomes

nðiÞþ − nðiÞ− ∝ ðkðiÞMaxÞ2
dkðiÞMax

dθþ0
dθþ0

∼m2
θΓðθþðiÞ

0 Þ3; ð96Þ

where we expanded

θ−ðiÞ0 ≃
�
1 −

πΓ
mθ

�
θþðiÞ
0 : ð97Þ

Here, we assumed that Γ ∝ mθ and ΓΔt ≃ πΓ
mθ

≪ 1.

E. Majorana fermions for the simplest extension

Instead of considering the rotational motion, we are
going to introduce the Majorana mass given by

mRðtÞ ¼ iΛþ gφðtÞ; ð98Þ

where (just for simplicity) both Λ and g are taken to be real.
Previously, we have seen that the above extension (without
higher terms) does not generate the asymmetry for the
perturbative calculation.
In this section, using the nonperturbative calculation, we

will show that the above extension can generate the
asymmetry. We consider significant particle production,
which is realized when the oscillation starts with
jΛ=gφj ≪ 1. Again, we use the Lagrangian given by
Eq. (82). To decouple the equation of motion (86) for
ṁR ≠ 0, we rewrite the equation as13

ðm�
RÞ−1ði∂t þ sjkjÞusk ¼ svsk; ð99Þ

and obtain

FIG. 3. The top figure shows the original Landau-Zener
tunneling. Equation (90) for s ¼ � is shown in the bottom.
There is the shift of the oscillation due to the sign of the helicity.

The tunneling occurs when −sjkj þ θsðiÞ
0

mθ

2
sinmθt

sðiÞ
k ¼ 0. From

the picture, we can find the relation tþðiÞ
k ≃ t−ðiÞk þ π

mθ
, which is

exact when the amplitude does not change with time.

13This manipulation is not possible in the standard calculation
of preheating, since mR is usually assumed to be a real parameter
and the particle production is considered aroundmR ≃ 0. Ref. [27]
considers a model with a time-dependent chemical potential
(from the derivative coupling) and a time-dependent (real)
Majorana mass. Their first equations coincide with our equations
after using the Berry transformation. However, because of the
(possible) appearance of mR ¼ 0, their secondary equations do
not coincide with our calculation.
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ð−i∂t þ sjkjÞ½ðm�
RÞ−1ði∂t þ sjkjÞusk�

¼
�∂2

t þ jkj2
m�

R
þ i

ṁ�
R

m�2
R
ði∂t þ sjkjÞ

�
usk

¼ −mRusk: ð100Þ

Therefore, one obtains the decoupled equation�
∂2
t −

ṁ�
R

m�
R
∂t þ jkj2 þ isjkj ṁ

�
R

m�
R

�
usk ¼ −jmRj2usk: ð101Þ

Substituting

usk ¼ e

R ṁ�
R

2m�
R
dt
Us

k; ð102Þ

we find

Üs
k þ

� ˙�
ṁ�

R

m�
R

�
−
1

4

�
ṁ�

R

m�
R

�
2

þ jkj2 þ jmRj2 þ isjkj ṁ
�
R

m�
R

�
U

¼ 0: ð103Þ

From this equation, one can immediately understand that
the asymmetric particle production is possible in this case.
If we define v≡ gϕ̇ðt�Þ, gφðtÞ ¼ vðt − t�Þ near the bottom
of the oscillation, we have

ṁ�
R

m�
R
≃

v
iΛ

;
˙�

ṁ�
R

m�
R

�
≃
v2

Λ2
ð104Þ

Then, for t� ¼ 0, we can write the equation as

Üs
k þ

�
5

4

v2

Λ2
þ jkj2 þ Λ2 þ v2t2 þ sjkj

�
v
Λ

��
U ¼ 0:

ð105Þ

Defining

jk̂sj≡ jkj þ s
2

v
Λ
; ð106Þ

we obtain

Üs
k þ ½jk̂sj2 þm2

effðtÞ�U ¼ 0; ð107Þ

where

m2
effðtÞ≡ v2

Λ2
þ Λ2 þ v2t2: ð108Þ

Therefore, when Λ2 ≪ v, particle production is not sig-
nificant near the bottom. The simplest assumption, which
justifies the significant particle production, is Λ ∼ v1=2. The
equation is almost the same as the conventional preheating,
except for the helicity-dependent jk̂sj2. We can conclude

that the asymmetry is due to the split of jk̂sj2. During the
particle production, it shifts the radius of the Fermi sphere
of each helicity state.
Unlike the perturbative expansion discussed in

Sec. III A, our nonperturbative calculation gives the asym-
metry. Basically, the perturbative expansions and the
nonperturbative effects (such as the tunnelings) will give
different contributions. These are expected to be unified in
the resurgence theory [19,20]. Since the basic equations are
written in ordinary differential equations (ODEs), one can
use the resurgence of ODEs, which has already been
solved in the mathematical side. The task is to identify
the origin of the asymmetry in the framework of the
resurgence. Note that iΛ → −iΛ flips the asymmetry and
there is a singularity at Λ ¼ 0. The relation will be revealed
in our next paper.

F. Comment on a more ambitious approach: Multifield
extension and the Cabibbo-Kobayashi-Maskawa

matrix

In the above models, the source of the phase is designed
to be very simple. The phase in the off-diagonal element
determines the Berry phase, and there is the obvious
correspondence between them. We have also seen that a
simple extension of the scenario (i.e, Δ ¼ Λþ igφ) can
be used to generate the effective chemical potential. In
this case, there is no obvious correspondence between the
Berry phase and the phases of the “fundamental” param-
eters Λ, g, and φ. However, generation of the effective
chemical potential is very clear in the light of the Berry
transformation.
In the above models, all phases in the Hamiltonian can be

removed by the field rotation, which we called “the Berry
transformation.” Now our question is very simple. “What
happens if the fields are multiplied and the Berry trans-
formation has to be given by a complex function of the
original parameters?”
One can examine the above idea in the three-

family fermion model. One can introduce the flavor index
i ¼ 1, 2, 3 and write

L ¼ iQ̄iðiγμ∂μ −mij
QÞQj þ L̄iðiγμ∂μ −mij

LÞLj

þ ðfijQ̄iLj þ H:c:Þ; ð109Þ

where mQ, mL can be diagonalized by unitary trans-
formations where Q̂i ¼ ðU†

QÞijQj; L̂i ¼ ðU†
LÞijLj. Then

the interaction is written as

Lint ¼ ððU†
QfULÞij ¯̂QiL̂j þ H:c:Þ: ð110Þ

Now the CP phase appearing in the matrix Vij ≡
ðU†

QfULÞij is quite similar to the famous Cabibbo-
Kobayashi-Maskawa matrix in the standard model. Unlike
the naive 2 × 2 matrix models, we have considered
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previously, the phases in Vij are not simply determined by
the complex phases of the original parameters of the
Lagrangian. (To avoid confusions, note that we have
considered only the single flavor for the Q-L model.
2 × 2 matrix was considered for the kaonlike models
and the Majorana fermions, but the matrix was for the
matter and the antimatter, not for the flavor.) The phases in
Vij are given by the functions of all the original parameters.
Therefore, even if the time-dependent motion does not
accompany any rotation of the original complex parameter,
the motion may introduce time-dependent phases in Vij,
which can eventually introduce the chemical potential in
the Hamiltonian through the Berry connection. Note that
usually the phases in Vij are removed by the field rotations
and only a CP phase (Kobayashi-Maskawa CP phase)
remains.
The minimal multifield extension that realizes the above

idea is given by a complex scalar field couples to a real
scalar field. Consider the following Lagrangian;

L ¼ j∂μϕj2 −m2
ϕjϕj2 þ

1

2
ð∂μηÞ2 −

1

2
m2

ηη
2

−
1

2
ðϵϕ2 þ H:c:Þ − ðgϕþ H:c:Þη; ð111Þ

where ϕ is a complex scalar and η is a real scalar. Here, ϵ, g
are complex coupling constants. Note that in this case the
complex phases of ϵ and g are not removed simultaneously
by the field rotation. Therefore, at least one complex phase
will remain “after” the field rotation. The equations of
motion are given by

Ψ̈R þ Ω2ΨR ¼ 0; ð112Þ

where

ΨR ≡
0
B@

ϕ

ϕ†

η

1
CA; Ω2 ≡

0
B@

ω2
ϕ ϵR g�

ϵR ω2
ϕ g

g g� ω2
η

1
CA: ð113Þ

Here, ϵR is set real but g is still a complex parameter. Note
that we have already used the field rotation of ϕ to have ϵR.
To diagonalize the matrix using a unitary matrixU, one has
to calculate eigenvectors of the matrix Ω2. Because Ω2 has
a complex element, the unitary matrix must also have
complex elements. Here, the key idea is that the unitary
matrix can be decomposed using (real) rotation and
complex matrices [28], which are sometimes denoted
as U12, U13, U23 and Uθi . Since the particle production
occurs for the eigenstates, one has to consider ΨE, which
is given by the transformation usingU12, U13, U23 and Uθi .
In Ref. [29], we have shown that the “eigenstates”
are preserving matter-antimatter asymmetry but they are
mixed by the Berry connection. In this case, the phases
in the Berry transformation are functions of ωϕ; ϵR;ωη

and g. Therefore, in this model, one can expect that a time-
dependent ωϕ can generate matter-antimatter asymmetry,
since it may change the phase parameter as θ̇i ¼
ω̇ϕð∂θi=∂ωϕÞ. Note that ωϕ itself does not have a phase,
which is similar to the simple extension discussed in
Sec. II C. The analytic relation between the chemical
potential and ω̇ϕ has a very lengthy form, since it uses
the eigenvectors of the 3 × 3 matrix Ω2. In Ref. [29], we
showed a numerical calculation to show that the matter-
antimatter asymmetry is generated in this model. Viewing
with the “eigenstates”(ΨE), the Berry connection causes
mixing between “eigenstates” accompanied by the CP
phase, which is time dependent, to generate the interference
between states.

IV. THE BERRY PHASE AND THE
LEGENDRE TRANSFORMATION

The chemical potential may cause a problem in the
Legendre transformation if it is explained by the derivative
coupling of a field in motion. The reason is very simple. If
the chemical potential is introduced using the derivative of
the field ϕ, the Lagrangian density acquires the term

Lc ¼ ð∂μϕÞJμϕ; ð114Þ

which shifts the conjugate momentum given by

π ¼ ∂L
∂ϕ̇ : ð115Þ

Since the corresponding part of the Hamiltonian density is

Hc ¼ πϕ̇ − Lc; ð116Þ

the chemical potential disappears from the Hamiltonian.
The problem has been discussed in Ref. [16,17].
In this section, we are going to show a more transparent

consistency relation between the Berry connection and the
Legendre transformation. It is easy to see that the chemical
potential defined using the Berry connection appears in the
Hamiltonian (after the Legendre transformation) in the
expected form. Note also that the Berry transformation and
the Legendre transformation obviously commute. We start
with the Lagrangian [16]:

L ¼ gμν∂μΦ�∂νΦ − VðΦ�ΦÞ þ Q̄ðiγμ∂μ −mQÞQ
þ L̄ðiγμ∂μ −mLÞLþ LintðΦ; Q; LÞ

Lint ¼
ffiffiffi
2

p

m2
X

Φ
f
ðL̄γμQÞðQ̄cγμQÞ þ H:c: ð117Þ

Let us consider the Berry transformation. We define

QE ≡U−1Q; ð118Þ
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where the Berry transformation is defined by UðαÞ ¼
e−iα=3 with an arbitrary parameter α. Inserting UU−1 ¼ 1
in front of Q, one will find

L ¼ gμν∂μΦ�∂νΦ − VðΦ�ΦÞ
þ Q̄Eðiγμ∂μ −mQÞQE þ L̄ðiγμ∂μ −mLÞL
þ LintðΦ; QE; LÞ þ Lchem

Lint ¼
ffiffiffi
2

p

m2
X

Φe−iα

f
ðL̄γμQEÞðQ̄c

EγμQEÞ þ H:c;

Lchem ¼ ð∂μαÞJμ: ð119Þ

where Jμ ¼ ð1=3ÞQ̄EγμQE is the baryon current. Consider
the classical rotational motion of the fieldΦ≡ feiθ. On the
orbit of the rotational motion, the phase of Φe−iα ¼
feiðθ−αÞ in Lint can be fixed by choosing the arbitrary
parameter α. When the parameter α is chosen to make the
phase constant on the orbit, α has to be changing along the
orbit. In this case, one can see that the classical rotational
motion of the field Φ introduces the effective chemical
potential, which is nothing but the Berry connection.
Using the Legendre transformation, one can calculate the

Hamiltonian of the system. Since the Berry transformation
is nothing but inserting “1 ¼ UU−1” in front of the field, as
we have explained above, the Legendre transformation and
the Berry transformation must commute. In the above
example, it is obvious that the same chemical potential
appears in the Hamiltonian. On the other hand, if one
identifies the “parameter” α with the Nambu-Goldstone
“field”, these manipulations (Legendre transformation and
the Berry transformation) do not commute.
As is already discussed in Sec. III, the phase in Lint can

be fixed by defining the Berry transformations as

QE ≡ eisα=3Q; LE ≡ e−ið1−sÞαL ð120Þ

and adjusting the parameter α to cancel the phase in Lint. In
light of the Berry phase, there seems to be no obvious
reason that one has to choose a priori the specific
value s ¼ 1.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we examined the spontaneous baryogenesis
scenario using the framework of the Berry phase. In this
approach, the chemical potential is not the derivative
coupling of the Nambu-Goldstone boson but the Berry
connection defined for the “Berry transformation”. In this
paper, the “Berry transformation” is defined specifically for
the transformation, which removes the phase in the
Hamiltonian during the evolution.
The merit of this approach is the obvious consistency

between the Hamiltonian and the Lagrangian formalisms.
The Berry transformation commutes with the Legendre

transformation, and the chemical potential in the thermal
equilibrium is obvious in this approach.
Then, using the Berry transformation as a useful tool for

the calculation, we examined the asymmetry generation
during the particle production in time-dependent back-
grounds. In the framework of the Berry phase, the chemical
potential is given by the Berry connection associated with
the conventional Berry phase. The conventional Berry
phase may appear both in the adiabatic and in the non-
adiabatic evolutions. On the other hand, the particle
production in the time-dependent background is caused
by the transition between states. In the framework of the
Berry phase, this can introduce the nonadiabatic Berry
phase, which appears only in the nonadiabatic evolution
and vanishes in the adiabatic limit. In this paper, we
compared the perturbative and the nonperturbative calcu-
lations. Our speculation is that the asymmetry in the
nonperturbative particle production can be explained by
the resurgence theory [19,20].
Besides the discrepancy between the perturbative and the

nonperturbative calculations, we also examined the effect
of the expansion eiθ ¼ ½1þ iθ − θ2=2þ � � ��, which is
explicitly violating the original symmetry. In our calcu-
lation, the Berry transformation is very useful since it
enabled us to calculate the asymmetry without using the
above expansion.
For the rotational oscillation of the time-dependent

Majorana mass term, we calculated the nonperturbative
particle production using the Landau-Zener tunneling. In
this case, the nonperturbative calculation is explicitly
defined for the tunneling process and the source of the
asymmetry is the split of the tunneling.
The model can also be extended to multifield models, in

which the Berry phases are complex functions of the
original parameters. Although the parameter dependence
of the CP phase becomes very complicated compared with
the original spontaneous baryogenesis scenario, theoreti-
cally one can decompose the unitary matrix in the simpler
form to find that U̇θi ≠ 0 is the source of the matter-
antimatter asymmetry.
From the results, we found that the Berry phase and the

Berry connection are giving a natural framework of the
spontaneous baryogenesis scenario. The asymmetry of
perturbative and nonperturbative particle production will
be understood in the resurgence theory. Although in this
paper we have considered only a time-dependent param-
eter, one can also consider a “space”-dependent parameter
as the source of the Berry connection, which may appear on
topological defects such as walls and strings.
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APPENDIX A: NET NUMBER FOR
MAJORANA FERMION

In this section, we derive the formula (81) which is the
net number density induced by the varying phase of the
mass. At first we start with the following Lagrangian:

L ¼ 1

2
f2ð∂θÞ2 − 1

2
m2

θf
2θ2 þ ξ†iσ̄μ∂μξ

−
1

2
jmξjeiθðtÞξξ −

1

2
jmξje−iθðtÞξ†ξ† ðA1Þ

where θ ¼ θðtÞ is a real c-number field, ξ is a two-
component spinor field, and f is a constant. Next, we
remove the phase of the mass by taking ξE ≡ eiθ=2ξ. Then
the Lagrangian becomes to

L ¼ 1

2
f2ð∂θÞ2 − 1

2
m2

θf
2θ2 þ ξ†Eiσ̄

μ∂μξE

−
1

2
jmξjξEξE −

1

2
jmξjξ†Eξ†E þ 1

2
∂μθ · ξ

†
Eσ̄

μξE: ðA2Þ

Although the phase in the mass term disappears, note that
there appears the additional term associated with ∂μθ which
corresponds to a part of the chemical potential. From this
Lagrangian, the equations of motion are given by

0 ¼ iσ̄μ∂μξE − jmjξ†E þ 1

2
∂μθ · σ̄μξE ðA3Þ

0 ¼ iσμ∂μξ
†
E − jmjξE −

1

2
∂μθ · σμξ

†
E ðA4Þ

0 ¼ f2∂2θ þ 1

2
∂μðξ†Eσ̄μξEÞ þ f2m2

θθ ðA5Þ

Instead of using (A5), we use an approximated equation

θ̈ þ Γθ̇ þm2
θθ ¼ 0 ðA6Þ

where Γ is a decay rate of θ. (A3) and (A4) are equivalent.
Using these equations of motion, we will calculate the

number density with Yang-Feldman formalism where the
operator field is represented by an asymptotic filed and
Green function.

1. Yang-Feldman equation

The formal solution called as Yang-Feldman equation for
Eqs. (A3) and (A4) are given by

�
ξEðxÞ
ξ†EðxÞ

�
¼
�

ξinE ðxÞ
ξin†E ðxÞ

�

−
Z

d4yGin
xy

�− 1
2
θ̇ðy0Þ · σ̄0ξEðyÞ

1
2
θ̇ðy0Þ · σ0ξ†EðyÞ

�
ðA7Þ

where ξinE is an asymptotic field which is defined at x0 ¼ tin

and satisfies

0 ¼ iσ̄μ∂μξ
in
E − jmjξin†E ; ðA8Þ

0 ¼ iσμ∂μξ
in†
E − jmjξinE : ðA9Þ

Since ξinE is same to a free field, we can expand it to

ðξinE ÞαðxÞ ¼
Z

d3k
ð2πÞ3 e

ik·x
X
s¼�

ðeskÞαξ̃skðx0Þ ðA10Þ

ξ̃skðx0Þ≡ uskðx0Þask þ se−iρkvs�k ðx0Þas†−k ðA11Þ

where esk is an eigenvector for helicity state which is
defined by

−kiσ̄iesk ¼ sjkjσ̄0esk: ðs ¼ �Þ ðA12Þ

In this paper we choose a representation satisfying (A12) as

ðeskÞ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

�
1þ sk3

jkj
�s
; ðA13Þ

ðeskÞ2 ¼ seiρk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

�
1 −

sk3

jkj
�s
; ðA14Þ

eiρk ≡ k1 þ ik2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk1Þ2 þ ðk2Þ2

p : ðA15Þ

Then the eigenvector satisfies following relations:

es†k σ̄
0erk ¼ eskσ

0er†k ¼ δsr; ðA16Þ

ðes†−kÞα̇ ¼ −se−iρkðσ̄0eskÞα̇; ðA17Þ

ðeskÞαðes†k Þα̇ ¼
1

2

�
σ0 þ ski

jkj σ
i

�
αα̇

ðno sum for sÞ ðA18Þ

ðes†k Þα̇ðeskÞα ¼
1

2

�
σ̄0 þ ski

jkj σ̄
i

�
α̇α

ðno sum for sÞ ðA19Þ

In Eq. (A11), ask (as†−k) is an annihilation (a creation)
operator satisfying

fask; as
0†
k0 g ¼ ð2πÞ3δðk − k0Þ; ðothersÞ ¼ 0; ðA20Þ

and usk, v
s�
k are time-dependent parts of wave functions

whose solutions for zero particle state is given by

uskðx0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

�
1 −

sjkj
ωk

�s
e−iωkx0 ðA21Þ
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vs�k ðx0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

�
1þ sjkj

ωk

�s
eþiωkx0 ðA22Þ

ωk ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkj2 þ jmξj2

q
: ðA23Þ

Moreover, in (A7),

Gin
xy ≡ iðθðx0 − y0Þ − θðtin − y0ÞÞ

×

 
fξinE ðxÞ; ξin†E ðyÞg fξinE ðxÞ; ξinE ðyÞg
fξin†E ðxÞ; ξin†E ðyÞg fξin†E ðxÞ; ξinE ðyÞg

!

¼ iðθðx0 − y0Þ − θðtin − y0ÞÞ
Z

d3k
ð2πÞ3 e

ik·ðx−yÞ

×
X
s

�
esk

σ̄0esk

�
Fs
kðx0ÞFs†

k ðy0Þ
�
es†k

es†k σ̄
0

�
;

ðA24Þ

where

Fs
k ≡

�
usk −vs�k
vsk us�k

�
; ðA25Þ

is a (retarded) Green function14 from y0 ¼ tin to x0. Using a
notation

G̃xy ≡Gin
xy ·

1

2
θ̇ðy0Þ

�
−σ̄0

σ0

�
; ðA26Þ

then we can obtain a perturbative solution of (A7) as

�
ξEðxÞ
ξ†EðxÞ

�
¼
�

ξinE ðxÞ
ξin†E ðxÞ

�
−
Z

d4y G̃xy

�
ξEðyÞ
ξ†EðyÞ

�

¼
Z

d4y½1þ G̃�−1xy
�

ξinE ðyÞ
ξin†E ðyÞ

�

¼
Z

d4y

�
δ4ðx − yÞ − G̃xy

þ
Z

d4zG̃xzG̃zy þ � � �
��

ξinE ðyÞ
ξin†E ðyÞ

�
: ðA27Þ

2. Net number density

The number density operator for each helicity can be
shown as

n̂s ¼
Z

d3k
ð2πÞ3

��
1 −

sjkj
ωk

�
Ξ̃s†
k Ξ̃

s
k þ

�
1þ sjkj

ωk

�
Ξ̃s
−kΞ̃

s†
−k

−
jmj
ωk

ðseþiρkΞ̃s
−kΞ̃s

k þ ·se−iρk Ξ̃s†
k Ξ̃

s†
−kÞ
�

ðA28Þ

where Ξ̃s
k is a Fourier transformed operator of ξEðxÞ

defined by

ξE ¼
Z

d3k
ð2πÞ3

X
s

eskΞ̃
s
k: ðA29Þ

Note that the representation of (A28) is corresponding
to ½ðkinetic energyÞ−ðvacuumenergyÞ�=ð1particle energyÞ.
The net number density of the Majorana fermion can be

defined by the difference of helicity. Using (A28) and
(A29), the net number density by the field operator ξE is
given by

nnet ≡ nþ − n− ðA30Þ

¼ 1

V

Z
d3xd3y

d3k
ð2πÞ3 e

ik·ðx−yÞ

×
1

2
h0j
�
−ξ†Eðt;xÞ

�jkj
ωk

σ̄0 þ ki

jkj σ̄
i

�
ξEðt; yÞ

þ ξEðt;xÞ
�jkj
ωk

σ0 þ ki

jkj σ
i

�
ξ†Eðt; yÞ

−
jmξj
ωk

ξEðt;xÞ
ki

jkj σ
0σ̄iξEðt; yÞ

þ jmξj
ωk

ξ†Eðt;xÞ
ki

jkj σ̄
0σiξ†Eðt; yÞ

�
j0i

¼ 1

V

Z
d3xd3y

d3k
ð2πÞ3 e

ik·ðx−yÞ

×
1

2
h0jð ξ†Eðt;xÞ ξEðt;xÞ ÞSk

�
ξEðt; yÞ
ξ†Eðt; yÞ

�
j0i ðA31Þ

where we used a notation

Sk ≡
0
B@− jkj

ωk
σ̄0 − ki

jkj σ̄
i jmξj

ωk

ki
jkj σ̄

0σi

− jmξj
ωk

ki
jkj σ

0σ̄i jkj
ωk
σ0 þ ki

jkj σ
i

1
CA: ðA32Þ

Substituting (A27) into the above result, then one can
evaluate the net number density perturbatively in order of
the Green function as14In (A24), θ-function means not a field, but a step function.
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nnet ¼
1

V

Z
d3xd3y

d3k
ð2πÞ3 e

ik·ðx−yÞ
Z

d4zd4w

×
1

2
h0jðξin†E ðzÞξinE ðzÞÞð½1þ G̃�−1xz Þ†Sk½1þ G̃�−1yw

×
�

ξinE ðwÞ
ξin†E ðwÞ

�
j0ix0¼y0¼t ðA33Þ

¼ 1

V

Z
d3xd3y

d3k
ð2πÞ3 e

ik·ðx−yÞ
Z

d4zd4w
1

2
h0jΨ†

z

× ½ð0thÞ þ ð1stÞ þ ð2ndÞ þ ð3rdÞ þ � � ��Ψwj0ix0¼y0¼t

ðA34Þ

where

Ψz ≡
�

ξinE ðzÞ
ξin†E ðzÞ

�
; ðA35Þ

ð0thÞ≡ δ4ðx − zÞSkδ4ðy − wÞ; ðA36Þ

ð1stÞ≡ −ð½G̃�xzÞ†Skδ4ðy − wÞ − δ4ðx − zÞSkG̃yw ðA37Þ

ð2ndÞ≡ ð½G̃ G̃�xzÞ†Skδ4ðy − wÞ þ ðG̃xzÞ†SkG̃yw

þ δ4ðx − zÞSk½G̃ G̃�yw ðA38Þ

ð3rdÞ≡ −ð½G̃ G̃ G̃�xzÞ†Skδ4ðy − wÞ − ð½G̃ G̃�xzÞ†SkG̃yw

− ðG̃xzÞ†Sk½G̃ G̃�yw − δ4ðx − zÞSk½G̃ G̃ G̃�yw:
ðA39Þ

In the following, we will show that the contributions
from the zeroth, the first and the second order vanishes and
the leading contribution appears from the third order.

a. 0th order

At the zeroth order, we just consider with (A36) in
(A34). Then

ðnnetÞ0th ðA40Þ

¼ 1

V

Z
d3xd3y

d3k
ð2πÞ3 e

ik·ðx−yÞ ·
1

2
h0jΨ†

xSkΨyj0ix0¼y0¼t

¼
Z

d3k
ð2πÞ3

X
s

1

2
ð vskðtÞ uskðtÞ Þ

�
es†k

−es†k σ̄0

�
Sk

�
esk

−σ̄0esk

��
vs�k ðtÞ
us�k ðtÞ

�
:

¼
Z

d3k
ð2πÞ3

X
s

1

2

�
vskðtÞ uskðtÞ

�
s

 
1 − sjkj

ωk

jmξj
ωk

− jmξj
ωk

1þ sjkj
ωk

!�
vs�k ðtÞ
us�k ðtÞ

�

¼
Z

d3k
ð2πÞ3

X
s

s
2

��
1 −

sjkj
ωk

�
jvskj2 þ

jmξj
ωk

vsku
s�
k −

jmξj
ωk

uskv
s�
k þ

�
1þ sjkj

ωk

�
juskj2

�
¼ 0: ðA41Þ

b. 1st order

The first order of (A34) with (A37) can be calculated as

ðnnetÞ1st ¼
1

V

Z
d3xd3y

d3k
ð2πÞ3

Z
d4z

1

2
½−eik·ðx−yÞh0jΨ†

xSkG̃yzΨzj0ix0¼y0¼t þ ðH:c:Þ�

¼
Z

d3k
ð2πÞ3

�
−
Z

t

tin
dt0

i
2
θ̇ðt0Þ

X
s

1

2

�
vskðtÞ uskðtÞ

��
es†k

−es†k σ̄0

�
Sk

�
esk

σ̄0esk

�
Fs
kðtÞFs†

k ðt0Þ
�−es†k σ̄0

es†k

�

×

�
esk

−σ̄0esk

��
vs�k ðt0Þ
us�k ðt0Þ

�
þ ðH:c:Þ

�
:

¼
Z

d3k
ð2πÞ3

�
−
Z

t

tin
dt0

i
2
θ̇ðt0Þ

X
s

1

2
ð vskðtÞ uskðtÞ Þs

 
1 − sjkj

ωk

jmξj
ωk

− jmξj
ωk

−1 − sjkj
ωk

!
Fs
kðtÞ

× Fs†
k ðt0Þ · ð−1Þ ·

�
vs�k ðt0Þ
us�k ðt0Þ

�
þ ðH:c:Þ

�
: ðA42Þ
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Note that one can show

ð vskðtÞ uskðtÞ Þ

0
B@ 1 − sjkj

ωk

jmξj
ωk

− jmξj
ωk

−1 − sjkj
ωk

1
CAFs

kðtÞ ¼ ð 0 0 Þ; ðA43Þ

thus

ðnnetÞ1st ¼ 0: ðA44Þ

Especially, the fact (A43) indicates

h0jΨ†
xSkGyz × � � � j0i ¼ 0 ðA45Þ

and its Hermite conjugate is also same. In order to obtain nonzero terms, we need additional Green function between
Ψ†

x and Sk.

c. 2nd order

Taking into account (A45), the survival term in (A38) is only the second term ðG̃xzÞ†SkG̃yz. Thus the second order
of (A34) is

ðnnetÞ2nd ¼
1

V

Z
d3xd3y

d3k
ð2πÞ3

Z
d4z1d4z2

1

2
h0jeik·ðx−yÞΨ†

z1 ½G̃xz1 �†SkG̃yz2Ψz2 j0ix0¼y0¼t

¼
Z

d3k
ð2πÞ3

Z
t

tin
dt1

Z
t

tin
dt2

1

4
θ̇ðt1Þθ̇ðt2Þ

X
s

1

2

�
vskðt1Þ uskðt1Þ

��
es†k

−es†k σ̄0

�

×

�
−σ̄0esk

esk

�
Fs
kðt1ÞFs†

k ðtÞ
�
es†k

es†k σ̄
0

�
Sk

�
esk

σ̄0esk

�
Fs
kðtÞFs†

k ðt2Þ
�−es†k σ̄0

es†k

�

×

�
esk

−σ̄0esk

��
vs�k ðt2Þ
us�k ðt2Þ

�

¼
Z

d3k
ð2πÞ3

Z
t

tin
dt1

Z
t

tin
dt2

1

4
θ̇ðt1Þθ̇ðt2Þ

X
s

1

2

�
vskðt1Þ uskðt1Þ

�
Fs
kðt1Þ

× Fs†
k ðtÞ · s

0
B@ 1 − sjkj

ωk

jmξj
ωk

jmξj
ωk

1þ sjkj
ωk

1
CAFs

kðtÞFs†
k ðt2Þ

�
vs�k ðt2Þ
us�k ðt2Þ

�

¼
Z

d3k
ð2πÞ3

Z
t

tin
dt1

Z
t

tin
dt2

1

4
θ̇ðt1Þθ̇ðt2Þ

X
s

1

2

�
vskðt1Þ uskðt1Þ

�
Fs
kðt1Þs

�
2

0

�
· Fs†

k ðt2Þ
�
vs�k ðt2Þ
us�k ðt2Þ

�

¼
Z

d3k
ð2πÞ3

Z
t

tin
dt1

Z
t

tin
dt2

1

4
θ̇ðt1Þθ̇ðt2Þ

X
s

s · uskðt1Þvskðt1Þ · us�k ðt2Þvs�k ðt2Þ ¼ 0: ðA46Þ

Therefore, the second order also cannot affect the asymmetry.

d. 3rd order

Taking into account (A45), the survival terms in (A39) are ð½G̃G̃�xzÞ†SkG̃yw. Thus the contribution to the net number from
the third order is
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ðnnetÞ3rd ¼
1

V

Z
d3xd3y

d3k
ð2πÞ3

Z
d4z1d4z2d4z3

1

2
h0j½−eik·ðx−yÞΨ†

z1 ½Gxz1 �†SkGyz2Gz2z3Ψz3 þ ðH:c:Þ�j0i

¼
Z

d3k
ð2πÞ3

�
−
Z

t

tin
dt1

Z
t

tin
dt2

Z
t2

tin
dt3

i
8
θ̇ðt1Þθ̇ðt2Þθ̇ðt3Þ

X
s

1

2

�
vskðt1Þ uskðt1Þ

��
es†k

−es†k σ̄0

�

×

�
−σ̄0esk

esk

�
Fs
kðt1ÞFs†

k ðtÞ
�
es†k

es†k σ̄
0

�
Sk

�
esk

σ̄0esk

�
Fs
kðtÞFs†

k ðt2Þ
�−es†k σ̄0

es†k

�

×

�
esk

σ̄0esk

�
Fs
kðt2ÞFs†

k ðt3Þ
�−es†k σ̄0

es†k

��
esk

−σ̄0esk

��
vs�k ðt3Þ
us�k ðt3Þ

�
þ ðH:c:Þ

�

¼
Z

d3k
ð2πÞ3

�
−
Z

t

tin
dt1

Z
t

tin
dt2

Z
t2

tin
dt3

i
8
θ̇ðt1Þθ̇ðt2Þθ̇ðt3Þ

X
s

1

2

�
vskðt1Þ uskðt1Þ

�
Fs
kðt1Þ · s

�
2

0

�

× Fs†
k ðt2Þ

�−1
1

�
Fs
kðt2ÞFs†

k ðt3Þ
�
vs�k ðt3Þ
us�k ðt3Þ

�
þ ðH:c:Þ

�

¼
Z

d3k
ð2πÞ3

�
−
Z

t

tin
dt1

Z
t

tin
dt2

Z
t2

tin
dt3

i
8
θ̇ðt1Þθ̇ðt2Þθ̇ðt3Þ

X
s

s · 2uskðt1Þvskðt1Þ

× ð−ðjuskðt2Þj2 − jvskðt2Þj2Þ · 2us�k ðt3Þvs�k ðt3Þþ2us�k ðt2Þvs�k ðt2Þ · ðjuskðt3Þj2 − jvskðt3Þj2ÞÞ þ ðH:c:Þ
�

¼
Z

d3k
ð2πÞ3

Z
t

tin
dt1

Z
t

tin
dt2

Z
t2

tin
dt3

i
8
θ̇ðt1Þθ̇ðt2Þθ̇ðt3Þ2

jkj
ωk

jmξj2
ω2
k

e−2iωkt1ðeþ2iωkt2 − eþ2iωkt3Þ þ ðH:c:Þ ðA47Þ

In order to evaluate the time integral, we choose tin ¼ 0 and
assume the initial and final condition of θðtÞ as

θðtinÞ≡ θi; θðt → ∞Þ ¼ 0; ðA48Þ

θ̇ðtinÞ ¼ θ̇ðt → ∞Þ ¼ 0: ðA49Þ

Then each time integral with (A6) gives

Z
t

0

dt0θ̇ðt0Þeþ2iωt0 ¼ −
1

4ω2
k −m2

θ þ 2iωkΓ

× ½2iωkθ̇ðtÞe2iωt þm2
θðθðtÞe2iωt − θiÞ�;

ðA50Þ

Z
∞

0

dt0θ̇2ðt0Þeþ2iωt0 ¼ m4
θ

2ð2iωk − ΓÞðω2
k −m2

θ þ iωkΓÞ
θ2i ;

ðA51Þ

Z
∞

0

dt0θðt0Þθ̇ðt0Þeþ2iωt0 ¼ m2
θðiωk−ΓÞ

2ð2iωk−ΓÞðω2
k −m2

θ þ iωkΓÞ
θ2i :

ðA52Þ

Applying these formulae to (A47), finally we can
obtain

ðnnetÞ3rd ¼
Z

d3k
ð2πÞ3

jkj
ωk

jmξj2
ω2
k

1

2
ωkm6

θΓθ3i

×
1

ð4ω2
k −m2

θÞ2 þ 4ω2
kΓ2

×
1

ðω2
k −m2

θÞ2 þ ω2
kΓ2

7ω2
k −m2

θ þ Γ2

ω2
k þ Γ2

∼
1

4π
jmξj2mθθ

3
i ; ðA53Þ

where we used an assumption mθ ≫ jmξj ≫ Γ and the
narrow width approximation

1

ðω2 −m2
θÞ2 þm2

θΓ2
∼

π

mθΓ
δðω2 −m2

θÞ: ðA54Þ

Thus the nonzero term of the mean net number appears at
the third order.

APPENDIX B: BIAS IN THE EIGENSTATES

The asymmetry can be seen as the biased mixing in the
eigenstates. In this section, we are going to review basic
strategies in this direction.

1. Quantum corrections

It would be useful to remember how the bias appears
from the loop corrections. Although many fields are
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required for the quantum correction, which is not explicitly
discussed in this paper, the correction is symbolically given
by a Hermite matrix Γ, which modifies the Hamiltonian
as H → H − iΓ. As the result, the correction to the
Hamiltonian is anti-Hermite (∼iΓ), where Γ is given by

Γ ¼
� Γd ΓΔ

ðΓΔÞ� Γd

�
: ðB1Þ

Note that the correction (iΓ) is (1) anti-Hermite, and (2) the
imaginary part of the off-diagonal elements (ℑ½ΓΔ�Þ are
important for the bias. The real part of ΓΔ may appear at the
tree level, but it does not cause the matter-antimatter
asymmetry. To see the matter-antimatter asymmetry (bias)
in the eigenstates, it is useful to calculate eigenvectors of
the matrix given by

�
H11 H12

H21 H21

�
¼
�

M Δ − iΓΔ

Δ − iΓ�
Δ M

�
: ðB2Þ

Here the diagonal element Γd is absorbed into M for
simplicity. For this model, the eigenvectors are written as�

� rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jrj2

p ;
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jrj2
p �

; ðB3Þ

where r≡
ffiffiffiffiffiffiffiffiffiffiffiffi
Δ−iΓΔ
Δ�−iΓ�

Δ

q
. The eigenvectors are biased when

jrj ≠ 1. This parameter is commonly used to measure
the CP violation in a kaon. The biases are the same for
both eigenstates, which suggests that these eigenstates
are generating the same bias. This is the crucial differ-
ence from the chemical potential. The eigenvalues are
M � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðΔ − iΓΔÞðΔ − iΓ�

ΔÞ
p

. Note that the above argu-
ments are based on the system with the kaon, where many
other fields are implicitly assumed to generate the quantum
correction.

2. The chemical potential (in the limit of μ̇ ≃ 0)

Similar bias can be introduced by the chemical potential.
Of course, the statistical bias is obvious in the thermal
background (as far as the chemical potential appears in the
Hamiltonian), but the thermal equilibrium is not considered
here. Here, the particle production is assumed to be
nonthermal, and the decay of the particle is assumed to
be much slower than the mixings. Initially, the chemical
potential is supposed to be a constant (i.e, the Berry
connection gives a Hermite and time-independent contri-
bution). More simply, one may think that the particle
production proceeds with the pure eigenstates. Later in
Sec. III, we will consider the opposite case, in which the
particle production cannot be explained by the eigenstates.
At the beginning of this section, we have explained that

θ̇ ≠ 0 can introduce the correction, which becomes

i
d
dt

ψR ¼ ðHR − γGÞψR;

HR ¼
�

M jΔj
jΔj M

�
;

γG ¼
�
μ 0

0 −μ

�
: ðB4Þ

Unlike the quantum correction discussed above, the geo-
metric correction caused by θ̇ ≠ 0 is (1) Hermite, and
(2) diagonal elements determine the bias. Here we are
comparing iΓ with γG.
To see the matter-antimatter asymmetry (bias) in the

eigenstates, it is useful to calculate eigenvectors of the
matrix given by�

H11 H12

H21 H21

�
¼
�
M þ μ jΔj
jΔj M − μ

�
: ðB5Þ

Choosing a parameter p≡ μ=jΔj, the eigenvalues are
written as M � jΔj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

p
, and their eigenvectors are

given by

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

q
� p

r
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

q
∓ p

r �
: ðB6Þ

One can see that the matter-antimatter bias is appearing in
the eigenstates, but there are significant differences from
the quantum corrections.

3. Majorana fermions

The above arguments for the matter-antimatter bias can
be applied to the Majorana fermions. In the past, the one-
loop correction for the wave function mixing of singlet
(Majorana) neutrinos has been calculated in Ref. [30–32].
We are not reviewing the calculation here, but the result is
quite similar to the kaon quantum correction we have
mentioned above. For the quantum correction, the bias
in the eigenstates appears in the same manner as the
bosonic field.
Let us consider the bias caused by the chemical potential.

Our calculation for the chemical potential can be applied
straightforwardly to the Majorana fermion. We introduce
the Majorana mass given by

Lm ¼ ðmRψ̄
c
LψR þm�

Rψ̄Rψ
c
LÞ; ðB7Þ

where mR is the Majorana mass for the singlet Right-
handed Fermion. Note that in our notation, ðψRÞc ¼ ψc

L and
ðψLÞc ¼ ψc

R. Using Ψt
R ≡ ðψR;ψc

LÞ, one can write

Lm ¼ Ψ̄R

�
0 mR

m�
R 0

�
ΨR: ðB8Þ

For a static and homogeneous background, the eigenstates
are ψE

� ¼ ψR � ψc
L, which satisfies the Majorana condition
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ðψE
�Þc ¼ �ψE

�. On the other hand, if the Majorana mass
is given by mR ¼ jmRjeiθðtÞ, the Berry connection, which
gives the effective chemical potential, introduces mixing
between the eigenstates, and thus the “eigenstates” ψE

� are
no longer the true eigenstates. Now the situation is the same
as the bosonic scenario. One can choosemR ¼ jmRjeiθðtÞ to
find the chemical potential μ≡ θ̇ in the matrix,

Lm ¼ Ψ̄R

�
μ mR

m�
R −μ

�
ΨR: ðB9Þ

On the other hand, if one considers the “eigenstates” of the
mass matrix, one will find

Lm ¼ Ψ̄E

� jmRj 0

0 −jmRj

�
ΨE ðB10Þ

and the Berry connection

iU−1U̇ ¼ 1

2

�
θ̇

θ̇

�
: ðB11Þ

Since we are choosing ΨR for the calculation, the
eigenvalues of the matrix are written as �jmRj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

p
,

where we defined p≡ μ=jmRj, and their eigenvectors are
given by

ðp�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

q
; 1Þ; ðB12Þ

which is biased when p ≠ 0. In this case, however, the bias
in the eigenstates may cancel with each other. This
cancellation is exact when (1) μ̇ ¼ 0 and (2) the production
and the decay rates are indistinguishable. (Note that bosons
are distinguishable when M ≠ 0 and Δ ≠ 0.) On the other
hand, since the mixing rates of the CP-even and CP-odd
states are different, one can expect that the decay rates of
these eigenstates could be different in a phenomenological
situation.15 Moreover, these “eigenstates” are not the true
eigenstates when μ̇ ≠ 0.

One can introduce the Dirac mass mD to extend the
model. Temporarily, we assume that jmRj is constant butmR

is given by mR¼jmRjei2μt. Using Ψt
0≡ðψL;ψc

R;ψR;ψc
LÞ,

one can write

Lm ¼ Ψ̄0

0
BBB@

0 0 mD 0

0 0 0 mD

mD 0 0 mR

0 mD m�
R 0

1
CCCAΨ0: ðB13Þ

Then, we find the chemical potential,

Lm ¼ Ψ̄R

0
BBB@

μ 0 mD 0

0 −μ 0 mD

mD 0 μ jmRj
0 mD jmRj −μ

1
CCCAΨR; ðB14Þ

where ΨR ¼ UθΨ0 and Uθ ¼ diagðeiμt; e−iμt; eiμt; e−iμtÞ. If
the Dirac mass is absent (mD ¼ 0), one will recover the
simplest scenario

Lm ¼ Ψ̄R

0
BBB@

0 0 0 0

0 0 0 0

0 0 μ jmRj
0 0 jmRj −μ

1
CCCAΨR; ðB15Þ

where Uθ is Uθ ¼ diagð0; 0; eiμt; e−iμtÞ.
If jmRj is not constant but varies with time, the

eigenstates can be written as

ΨE ¼ U−1
1 ΨR ¼ U−1

1 U−1
θ Ψ0 ≡U−1Ψ0; ðB16Þ

where not only Uθ but also U1 could be time dependent.
Then for the “eigenstate” ΨE, the nonadiabatic Berry phase
gives the contribution

iU−1U̇ ¼ iU−1
1 ðU−1

θ U̇θÞU1 þ iU−1
1 U̇1; ðB17Þ

which causes mixing between eigenstates.
Note that the above arguments are not valid when the

chemical potential is changing fast.
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