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Electron-positron pair production in strong electric fields, i.e., the Sauter-Schwinger effect, is studied
using the real-time Dirac-Heisenberg-Wigner formalism. Hereby, the electric field is modeled to be a
homogeneous, single-pulse field with subcritical peak field strength. Momentum spectra are calculated for
four different polarizations—linear, elliptic, near-circular elliptic or circular—as well as a number of linear
frequency chirps. With details depending on the chosen polarization, the frequency chirps lead to strong
interference effects and thus quite substantial changes in the momentum spectra. The resulting produced
pairs’ number densities depend nonlinearly on the parameter characterizing the polarization and are very
sensitive to variations of the chirp parameter. For some of the investigated frequency chirps, this can
provide an enhancement of the number density by 3 to 4 orders of magnitude.
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I. INTRODUCTION

Electron-positron (eþe−) pair production in strong elec-
tric fields, also known as the Sauter-Schwinger effect, is a
long-standing theoretical prediction [1–3], which is, how-
ever, not yet experimentally verified; for a recent review,
see, e.g., [4]. The pair production rate is hereby exponen-
tially suppressed and proportional to expð−πEcr=EÞ as
long as the electric field is of the order of or smaller
than the critical field, Ecr ¼ m2

ec3=eℏ ≈ 1.3 × 1018 V=m.
The related laser intensity, e.g., I ¼ 4.3 × 1029 W=cm2, is
beyond current technological possibilities but the progress
in highintensity laser technology [5–7] might make exper-
imental tests possible in the next decade, especially in view
of such planned facilities as the ExtremeLight Infrastructure
(ELI), the Exawatt Center for Extreme Light Studies
(XCELS), and the Station of Extreme Light at the
Shanghai Coherent Light Source. On the other hand, the
already operating x-ray free electron laser (XFEL) at DESY
in Hamburg can in principle achieve near-critical field
strength as large as E ≈ 0.1Ecr; see, e.g., [8]. Triggered
by the technical design report of the XFEL, numerical

estimates of the achievable number densities and of the
resulting momentum spectra have been performed within
the quantum kinetic approach at the beginning of the
millenium [9,10], but many studies of the Sauter-
Schwinger effect based on a number of different theoretical
techniques have been undertaken in the last century and in
this one; for a guide to the literature, we refer to the recent
review [4].
Among the contributions from theorists towards an

experimental verification of nonperturbative ultra-strong-
field pair production, the dynamically assisted Sauter-
Schwinger effect [11] deserves special mention. It exploits
the idea that a combination of a low with a high frequency
laser pulse leads to eþe− pair production rates which are by
several orders of magnitude larger than the sum of the rates
for the two separate pulses. Herein we report on a study
which extends this idea by exploiting time-dependent
frequencies, i.e., frequency chirps. We focus on linear
chirps but allow then for different types of polarization. For
simplicity, we study pair production in a single-pulse field
with a Gaussian envelope:

EðtÞ¼ E0ffiffiffiffiffiffiffiffiffiffiffiffi
1þδ2

p exp

�
−

t2

2τ2

�0B@
cosðbt2þωtþϕÞ
δsinðbt2þωtþϕÞ

0

1
CA; ð1Þ

where E0=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ2

p
is the amplitude of the electric field, τ

denotes the pulse duration and ω the oscillation frequency
at t ¼ 0. For completeness, we kept the carrier phase ϕ
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(which is known to have a significant effect on the
momentum spectra of the produced pair [12,13]) in this
expression, however, it will be set to zero in the following.
Note that the above purely time-dependent electric fields
(1) could be considered as the dipole approximation of the
standing wave formed by two counterpropagating laser
beams with different polarizations. The main interest in this
study is the dependence on the chirp parameter b. Note that
a nonvanishing b can be interpreted as a time-dependent
effective frequency, ωeff ¼ ωþ bt. The effect of the chirp
parameter b on the time dependence of the electric field is
displayed in Fig. 1. The parameter δ with −1 ≤ δ ≤ 1
describes the ellipticity of the electric field, δ ¼ 0 corre-
sponds to linear and δ ¼ 1 to circular polarization.
For the study presented here, the Dirac-Heisenberg-

Wigner (DHW) formalism adapted to pair production
[14,15] is used. This choice is motivated due to its
efficiency for calculations involving circularly or ellipti-
cally polarized electric background fields; see, e.g., [16,17],
in which pair production in rotating circularly polarized
electric fields has been investigated, or [18] for elliptically
polarized fields. Without chirp the influence of the field
ellipticity on pair production effects has been studied for
various scenarios, we refer the interested reader to [26] for
plane-wave fields and Ref. [27] for time-dependent electric
fields, respectively.
At this point a remark with respect to the chosen

polarizations for this study is in order. On the experimental
side, due to limitations in instruments, it is much harder
to produce a perfect circularly polarized field than an

elliptically polarized and/or linearly polarized field. For
low-intensity laser fields, a polarization of up to �0.93 has
been achieved experimentally [19]. Due to this, we include
calculations for a near-circular elliptic polarization, i.e.,
for δ ¼ 0.9.
In addition, we note that high-intensity laser pulses are

also obtained through the chirped laser pulse amplification
technique [20]. Therefore the study of pair production in
fields with frequency chirps is well-motivated even besides
the here found amplification similar to the one of the
dynamically assisted Sauter-Schwinger effect.
Throughout this paper natural units ℏ ¼ c ¼ 1 are used.

Furthermore, three of the five parameters characterizing the
electric field stay fixed:

E0 ¼ 0.1
ffiffiffi
2

p
Ecr ω ¼ 0.6m τ ¼ 10=m; ð2Þ

where m is the electron mass. By introducing the Keldysh
adiabaticity parameter γ ¼ mω=jeEj, whereω and E are the
frequency and strength of the electric field, respectively, the
Schwinger (tunneling) and the multi-photon pair produc-
tion can be identified by γ ≪ 1 and γ ≫ 1, respectively
[21]. Thus, for the given parameters in Eq. (2), the Keldysh
parameter is γ ¼ 4.25

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ2

p
for each polarization with-

out chirp. For nonvanishing chirps, the effective Keldysh
parameter at a given time is calculated by replacing ω with
ωeffðtÞ ¼ ωþ bt. For the chirp parameter b, we investigate
several cases in the interval 0 ≤ b ≤ 0.06 m2, and for the
polarization four different values of δ are chosen. We are
aware that the pulse length is hardly sufficient to provide a
clean multi-photon signal, and that a value of b ¼ 0.06 m2

is already too large to be classified as a “normal chirp”,
however, the goal of the present exploratory study is a
qualitative understanding of the influence of chirps on the
produced number densities of pairs and the related
momenta spectra for different polarizations, and to this
end the chosen parameter sets are very suitable.
This paper is organized as follows: In Sec. II, we

introduce briefly the DHW formalism to make the presen-
tation reasonably self-contained. In Sec. III, we present our
numerical results for the number densities for different
chirp parameters and different polarizations. In Sec. IV, we
summarize briefly for four polarizations how generic
properties of the momentum spectra change for an increas-
ing chirp parameter. In Sec. V, we reanalyze the spectra
within a semiclassical treatment and discuss in how far the
momentum spectra can be qualitatively understood. In the
last section, we present our conclusions.

II. THEORETICAL DESCRIPTION:
THE DHW FORMALISM

The here presented study employs the DHW formalism
which is a relativistic phase-space approach. It has been
further developed for the case of Sauter-Schwinger pair
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FIG. 1. The time dependence of the electric field EðtÞ in units of
the critical field for the linearly polarized (δ ¼ 0) case.
The chosen parameters are E0 ¼ 0.1

ffiffiffi
2

p
Ecr, ω ¼ 0.6m, and

τ ¼ 10=m where m is the electron mass. The blue dotted line
shows the electric field without a chirp, b ¼ 0. The purple dashed
line displays the field with a chirp parameter b ¼ 0.005 m2, the
dark yellow-green solid line for the chirp parameter b ¼ 0.06m2.
These two values have been chosen for the chirp parameter
because they present a typical “normal chirp” and a kind of
maximally large chirp b ¼ ω=τ, respectively.
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production in Refs. [14,15]. Within this method the
electron is treated as a quantum field but the laser pulse
is approximated by its mean-field which is justified by the
magnitude of the used electric field.
To make this paper self-contained we briefly review the

formalism. To this end we start from the gauge-invariant
density operator of the system,

Ĉαβðr; sÞ ¼ UðA; r; sÞ½ψ̄ βðr − s=2Þ;ψαðrþ s=2Þ�; ð3Þ

in terms of the electron’s spinor-valued Dirac field ψαðxÞ,
and r denotes the center-of-mass and s the relative
coordinate. The Wilson line factor

UðA; r; sÞ ¼ exp

�
ies

Z
1=2

−1=2
dξAðrþ ξsÞ

�
ð4Þ

renders the density operator gauge-invariant. Note that this
factor depends on the elementary charge e and the back-
ground gauge field A. The background field is treated in
mean-field (Hartree) approximation, i.e.,

FμνðxÞ ≈ hF̂μνðxÞi; ð5Þ

and, because in a given Lorentz frame and gauge the
background gauge field Aðx; tÞ is a fixed c-number valued
function, no path ordering is needed. The covariant Wigner
operator,

Ŵαβðr; pÞ ¼
1

2

Z
d4seipsĈαβðr; sÞ; ð6Þ

thus includes the electron’s quantum fluctuations but not
the one of the electric field.
The simplification introduced by the mean-field approxi-

mation for the electromagnetic field becomes apparent when
one considers the vacuum expectation value of the covariant
Wigner operator to obtain the covariant Wigner function

Wðr; pÞ ¼ hΦjŴðr; pÞjΦi: ð7Þ

In the equation of motion of this correlation function, the
electromagnetic field factors out:

hΦjFμνĈjΦi ¼ FμνhΦjĈjΦi: ð8Þ
This in turn allows to terminate the in general infinite
hierarchy of correlation functions.
As the Wigner function is a Dirac-matrix valued quantity

it can be decomposed into 16 covariant Wigner coefficients

W ¼ 1

4
ð1Sþ iγ5Pþ γμVμ þ γμγ5Aμ þ σμνTμνÞ: ð9Þ

Hereby, the related spin and parity properties are made
evident by the notation. As the modeling of the electric field

already indicates we work in a definite frame.
Correspondingly, one can project on equal times which
yields the equal-time Wigner function

wðx;p; tÞ ¼
Z

dp0

2π
Wðr; pÞ ð10Þ

and by an analogous decomposition to Eq. (9) the corre-
sponding equal-time Wigner coefficients s;p; v0;x;y;z etc.
As the equations of motions for the Wigner coeffecients

are quite lengthy we refrain from repeating the respective
formula here. Their explicit form as well as detailed
derivations can be found in [15,22]. A decisive advantage
of employing Wigner coefficients is given by the relation
of swith the mass, of v0 with the charge, and of v⃗ as current
density in the case without electric field [14,15].
Correspondingly, one chooses vacuum initial conditions
as starting values. The nonvanishing values are

svac ¼
−2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p ; vi;vac ¼
−2piffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p : ð11Þ

In general, the equations of motions for the Wigner
coefficients are integro-differential equations. Their numeri-
cal solution is due to the challenging nonlocal nature of the
respective pseudodifferential operators; see, e.g., [15,
22–24]. For the homogeneous electric field (1) studied here,
these equations can be reduced to ordinary differential
equations [16]. To this end, we note first that, at most, ten
out of the sixteen Wigner coefficients are nonvanishing:

w ¼ ðs; vi;ai; tiÞ; ti ≔ t0i − ti0: ð12Þ

Second, the kinetic momentum p is related to the canonical
momentum q via

pðtÞ ¼ q − eAðtÞ ð13Þ

and is, thus, time dependent. In a next step, one expresses the
scalar Wigner coefficient by the one-particle distribution
function fðq; tÞ. The latter is related to the phase-space
energy density,

ε ¼ msþ pivi; ð14Þ

via

fðq; tÞ ¼ 1

2Ωðq; tÞ ðε − εvacÞ: ð15Þ

Hereby, Ωðq; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2ðtÞ þm2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ðq − eAðtÞÞ2

p
is the electron’s (positron’s) energy.
In addition, it is helpful to define an auxiliary three-

dimensional vector vðq; tÞ:
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viðq; tÞ ≔ viðpðtÞ; tÞ − ð1 − fðq; tÞÞvi;vacðpðtÞ; tÞ: ð16Þ

The one-particle momentum distribution function fðq; tÞ
can then be obtained by solving the following ten ordinary
differential equations for fðq; tÞ and the nine auxiliary
quantities viðq; tÞ;aiðq; tÞ≔ aiðq; tÞ and tiðq; tÞ ≔ tiðq; tÞ:

_f ¼ e
2Ω

E · v;

_v ¼ 2

Ω3
ððeE · pÞp− eΩ2EÞðf − 1Þ− ðeE · vÞp

Ω2

− 2p× a− 2mt; _a¼ −2p× v; _t¼ 2

m
½m2v− ðp · vÞp�;

ð17Þ

where as usual the dot is a shorthand for the time derivative.
Together with the initial conditions fðq;−∞Þ ¼ 0,
vðq;−∞Þ ¼ aðq;−∞Þ ¼ tðq;−∞Þ ¼ 0, this set of

equations is a well-defined and numerically straightforward
solvable initial value problem.
The number density of created pairs is obtained by

integrating the distribution function fðq; tÞ over all
momenta at asymptotically late times t → þ∞:

n ¼ lim
t→þ∞

Z
d3q
ð2πÞ3 fðq; tÞ: ð18Þ

III. NUMERICAL RESULTS FOR
NUMBER DENSITIES

As already stated the carrier phase is chosen to be ϕ ¼ 0
leaving studies similar to the one presented here but with
nonvanishing carrier phase for future investigations.
Herein, we examine the main results for the number density
of the produced particles for several chirp parameters for
the different polarization.
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FIG. 2. The number density (in units of λ−3c ¼ m3) of created particles as a function of the field polarization δ for different chirp
parameters b. The other field parameters are the same as in Fig. 1.
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The number densities as a function of the polarization
parameter δ are shown in Fig. 2. They clearly display the
expected symmetry when mirroring δ → −δ. This then
implies that the case of linear polarization, δ ¼ 0, provides
an extremum in the number density. As one immediately
sees from Fig. 2, the maximum which is present at small
chirps becomes a minimum at larger values of b which then
turns into a maximum again for even larger b-values.
Additional extrema appear for very large values, b ≥ 0.04
m2. However, the more important effects are the following
two: First, with increasing chirp the relative variation in the
number density becomes much smaller. For vanishing
chirp, the ratio of the number density for linear polarization
to the one for circular polarization is more than a factor of
two. At b ¼ 0.06 m2 the largest number density deviates
from the smallest one (assumed at δ ≈�0.6) by less than
three per mille. Second, with increasing chirp the peak
number density increases significantly. This effect is most
pronounced when increasing from b ¼ 0.02 m2 to b ¼
0.03 m2 for which the number density increases by more
than a factor of ten for all polarizations.
When plotting the number densities as a function of the

chirp parameter b for the three different polarizations
δ ¼ 0, 0.5 and 1, one sees for relatively small chirp values
a symmetry under the reflection b → −b; see the upper
panel of Fig. 3. Also very clearly visible is the suppression
in the number densities when one goes from linear to
circular polarization. From the lower panel of Fig. 3, one
can infer the more or less exponential increase in number
density for increasing chirp as well as the fact that the
number densities for different polarization become degen-
erate for different polarizations. As the effective frequency
ωeff ¼ ωþ bt increases towards the end of the pulse, see
Fig. 1, a related increase in the production rate is expected.
Nevertheless, the size of the effect is surprisingly large. The
physical reason is that if a frequency chirp, as the one in
Eq. (1), is applied, the electric field contains components of
significantly higher frequencies as compared to the fre-
quency ω for the employed values of the chirp parameter b.
From the definition of the Keldysh adiabaticity parameter
γ ¼ mω

jeEj, one can see that for a fixed field strength E it only

depends on the field’s frequency. As for the applied
frequency chirp, the field’s effective frequency increases
with time the effective Keldysh parameter also increases
within the time of the pulse duration, and for most of the
chosen parameters it will thereby change from values
smaller than one to values much larger than one. As the
multiphoton pair production rate is substantially larger than
the Sauter-Schwinger one, the addition of a chirp leads to
the dominance of the higher frequency components of the
pulse in pair creation, and this is valid for each polarization.
Therefore, the resulting particle creation is the dominated
by “late-time” multiphoton processes due to the field’s
high-frequency components, and in the chirped electric
field the production rate is enhanced significantly due to the

increase of the effective frequency. Some corresponding
numbers are provided in Table I
Here, a technical remark is in order. For some large

values of the chirp parameter b, e.g., around b ¼ 0.05 m2,
some irregular changes of the numerical results for the
number densities for each polarization are observed. As
these have to be very likely attributed to instabilities of the
numerical procedure we are refraining from displaying
these exceptional points here. Nevertheless, this issue will
be clarified in future investigations.
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FIG. 3. The number density (in units of λ−3c ¼ m3) of created
particles as a function of the chirp parameters b for different
polarizations δ ¼ 0 (LP), δ ¼ 0.5 (EP), and δ ¼ 1 (CP), respec-
tively. The other field parameters are the same as in Fig. 1.

TABLE I. Numerical results for the number densities (in units
of λ−3c ¼ m3) for some selected chirp (in units of m2) and
polarization parameters.

n b¼ 0 b¼ 0.02 b¼ 0.04 b¼ 0.06

δ¼ 0 1.200×10−7 1.486×10−6 1.426×10−4 0.8679×10−3

δ¼ 0.5 0.880×10−7 1.470×10−6 1.424×10−4 0.8656×10−3

δ¼ 0.9 0.728×10−7 1.434×10−6 1.406×10−4 0.8665×10−3

δ¼ 1 0.724×10−7 1.426×10−6 1.403×10−4 0.8673×10−3
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IV. MOMENTUM SPECTRA

In this section, we will report on results for the momenta
spectra (MS) of the produced particles for several chirp
parameters each for the cases of (i) linear polarization
(δ ¼ 0), (ii) elliptical polarization (δ ¼ 0.5), (iii) near-
circular elliptical polarization (δ ¼ 0.9), and (iv) circular
polarization (δ ¼ 1).

A. Momentum spectra for linear polarization δ= 0

First of all, we note that in the case of linear polarization
the electric field is oriented only along the x axis, and the
momentum spectra possess correspondingly a rotational
symmetry around the qx axis. For the linear polarized
(δ ¼ 0) pulse, the momentum spectra in qx and qy for
qz ¼ 0 are plotted in Fig. 4. For vanishing chirp, b ¼ 0, the
results agree with the ones of a previous investigation [25].
For nonvanishing chirp parameters, the main result is,
besides the expected lower symmetry of the spectra, the
appearance of strong interference effects leading to several
maxima and minima of the pair production rate as a
function of momenta.
As can be seen in the upper panel of Fig. 4, small chirp

parameters lead to small variations in the spectrum: There
is a slight enhancement in the height of the peak, a small
shift towards positive qx, and a broadening as well as the
loss of one of the reflection symmetries of the peak.

For larger frequency chirps, b ≥ 0.02m2, the momentum
spectra display some remarkable structures as can be seen
from the lower row in Fig. 4. For b ¼ 0.02m2, the spectrum
possesses two peaks at negative and positive qx, respec-
tively. For b ¼ 0.03m2, the main peak is located at negative
qx. For b ¼ 0.04m2, the peak goes back to positive
momenta, and at b ¼ 0.06m2 again to negative momenta.
In the latter case, strong interference effects are visible; note
especially the ringlike structure. These quantum interfer-
ences in between the amplitudes describing pair creation
relate to different cycles in the electric field. As pair
creation is a non-Markovian process the accumulated
phases depend on the complete earlier history, and there-
fore small changes in the field parameters in general change
the relative phases of the amplitudes significantly. We will
return to this point within the context of a semiclassical
analysis in the discussion of Fig. 10 in Sec. V.
In all the cases shown in Fig. 4, the spectra are symmetric

with respect to reflection of qy. (NB: For nonvanishing qz
the spectra would be symmetric with respect to a rotation
around the qx axis.) Therefore, the effects of chirps can be
understood in more detail by plotting the number density
for qy ¼ qz ¼ 0 as a function of qx. In the left panel of
Fig. 5(a), one sees that for vanishing chirp the peak is
located at qx ¼ 0. As b increases, the peak is very slightly
shifted to positive qx. For b ¼ 0.02m2, one sees now not
only the two prominent maxima but also additional but less

FIG. 4. Momentum spectra of produced eþe− pairs for linear polarization (δ ¼ 0) at qz ¼ 0 in the ðqx; qyÞ-plane. The other field
parameters are given in Eq. (2). Upper row: from left to right the values of the small chirp parameters are b ¼ 0, 0.002m2, 0.003m2 and
0.005m2, respectively. Lower row: from left to right the values of the large chirp parameters are b ¼ 0.02m2, 0.03m2, 0.04m2 and
0.06m2, respectively.
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pronounced ones. At b ¼ 0.06m2 the momentum spectrum
displays quite complicated interference patterns but note
also the change in the height of the peaks, enhanced from
2.94 × 10−5 (b ¼ 0) to 3.7 × 10−2 (b ¼ 0.06m2).
As we will argue in Sec. V the effects of the frequency

chirp on the spectra can be explained by a semiclassical
analysis based on the WKB approximation. As the related

effective potential changes with the frequency chirp the
numerically observed drastic effects are plausible.

B. Elliptical polarization δ= 0.5

As a next case, we consider the momentum spectra for an
elliptically polarized electric field, δ ¼ 0.5.; see Fig. 6. For
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FIG. 5. Momentum spectra of produced pairs for linear polarization (δ ¼ 0) at qy ¼ qz ¼ 0, cf. Fig. 4.

FIG. 6. Momentum spectra of produced eþe− pairs for elliptic polarization (δ ¼ 0.5) at qz ¼ 0 in the ðqx; qyÞ-plane. The other field
parameters are given in Eq. (2). Upper row: from left to right the values of the chirp parameters are b ¼ 0, 0.002m2, 0.003m2 and
0.005m2, respectively. Lower row: from left to right the values of the chirp parameters are b ¼ 0.02m2, 0.03m2, 0.04m2 and 0.06m2,
respectively.
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FIG. 7. Momentum spectra of produced eþe− pairs for near-circular elliptic polarization (δ ¼ 0.9) at qz ¼ 0 in the ðqx; qyÞ-plane. The
other field parameters are given in Eq. (2). Upper row: from left to right the values of the chirp parameters are b ¼ 0, 0.002m2, 0.003m2

and 0.006m2, respectively. Lower row: from left to right the values of the chirp parameters are b ¼ 0.01m2, 0.02m2, 0.03m2 and 0.06m2,
respectively.

FIG. 8. Momentum spectra of produced eþe− pairs for circular polarization (δ ¼ 1) at qz ¼ 0 in the ðqx; qyÞ-plane. The other field
parameters are given in Eq. (2). Upper row: from left to right the values of the chirp parameters are b ¼ 0, 0.002m2, 0.003m2 and
0.005m2, respectively. Lower row: from left to right the values of the chirp parameters are b ¼ 0.01m2, 0.02m2, 0.03m2 and 0.05m2,
respectively.
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b ¼ 0, however, there is still a reflection symmetry around
the qx axis, and this symmetry gets lost when b ≠ 0. For
small chirp parameters, the distortion of the spectrum is
again quite mild; see the upper panel of Fig. 6. Quite some
complicated reordering of the spectra take place for large
values of the chirp parameter, cf., the lower panel of Fig. 6.
In particular, the splitting into several extrema is very
similar to what happens in the linear polarized case.

C. Near-circular elliptic polarization δ= 0.9

For the near-circular elliptically polarized case we plot
the spectra in Fig. 7. For b ¼ 0 the main peak region is
ring-shaped. This can be understood from the fact that the
electric field changes its direction during the pair creation
process. Thus, the particles may be accelerated into differ-
ent directions depending on the field direction at the time of

production. These findings are very similar to the results of
the strong-field ionization of helium using an elliptically
polarized laser pulses [28] and the effects of electric field
polarizations on pair production from vacuum [18].
Otherwise, one sees also drastic effects of the chirp for

relatively small chirp parameters, and especially the ring

TABLE II. The peak values for the one-particle distribution
function at late times fðq;∞Þ. Note that these peaks occur at
different values of the momentum q; see the discussion above.

fðq;∞Þ at peak b ¼ 0 b ¼ 0.06 m2

δ ¼ 0 29.4 × 10−6 3.70 × 10−2

δ ¼ 0.5 9.65 × 10−6 3.56 × 10−2

δ ¼ 0.9 2.49 × 10−6 3.42 × 10−2

δ ¼ 1 2.36 × 10−6 3.41 × 10−2
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ffiffiffi
2

p
Ecr, ω ¼ 0.6m, and τ ¼ 10=m. From top left to bottom right

the values of chirp parameters are b ¼ 0, 0.005, 0.02, 0.06 m2, respectively, and momentum values are qx ¼ 0; 0;−0.25;−0.11 m,
respectively.

PAIR PRODUCTION IN DIFFERENTLY POLARIZED … PHYS. REV. D 99, 036003 (2019)

036003-9



form is distorted to a spiral one. For very large chirp
parameters, on the other hand, the spectrum shows in this
case less structure.
In contrast to the previously discussed linear polarization

in the case of the near-circular elliptic polarization, the
spectra lose their symmetry in both of qx and qy. The
patterns observed in Fig. 7 will become clearer when
discussing the case of perfect circular polarization.

D. Circular polarization δ= 1

For the circularly polarized (δ ¼ 1) the spectra are shown
in Fig. 8. The b ¼ 0 spectrum, shown at the top and most
left, displays a ring-shaped maximum centered around the
origin. It exhibits the weak interference pattern or/and
oscillation between the hole and outer ring along negative
values of qy [16,18,25]. This might be interpreted within a

semiclassical analysis by means of an effective scattering
potential [29]; see the next section. The outer ring structure
results from multiphoton pair creation by absorbing four
(n ¼ 4) photons [16], and in the strong field limit its radius
can be determined by the energy conservation to be at jqj ¼
1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnωÞ2 − 4m2

p
where n is the number of photons

participating in the pair creation, cf. Ref. [30].
Again the spectra are very sensitive to chirps even for

relatively small chirp parameters. This includes the dis-
tortion of the ring structure, the appearance of spirals, and,
last but not least, a significant increase of the one-particle
distribution function. The characteristic shape of the spectra
could be helpful in an experimental identification of pair
production. For example, at b ¼ 0.03 m2, one clearly
identifies an Archimedian spiral which is going to start
from almost the central region slightly shifted to negative
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qx values. For very large chirp parameters, b ≥ 0.05m2, the
spiral structure is fading away, and the spectra become less
structured.
To summarize this section, we have obtained quite some

detailed information how the spectra of the produced pairs
change for a given polarization when frequency chirps from
relatively modest to quite large ones are considered. The
positions of the global extrema of the one-particle distri-
bution function, i.e., the peaks of the spectra display a quite
rich structure. Common to all the considered cases is the
strong increase in peak values for increasing chirp param-
eters which is easily understood from the effective fre-
quency, ωeff ¼ ωþ bt, of the field, respectively, by the
onset of multi-photon pair production. Contrary to the case
of a vanishing chirp parameter and thus of a constant
frequency ω ¼ 0.6m a sizable chirp parameter implies that
the electric field contains higher frequency components.

The “late-time” field resembles then an almost clean multi-
photon signal even for the considered short pulse duration,
and thus pair creation is dominated by multi-photon
mechanism. Some corresponding values are given in
Table II.

V. SEMICLASSICAL ANALYSIS

In this section, we will employ a semiclassical analysis to
obtain a qualitative explanation of the effects of chirps on
the spectrum. Hereby, we follow the WKBmethod outlined
in Ref. [31]. These authors considered a Sauter pulse, i.e., a
gauge potential AðtÞ ∝ tanhωt, for which the turning
points of the analogue semiclassical scattering potential
can be determined analytically by solving the condition

Ωðq; tpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ðq − eAðtpÞÞ2

q
¼ 0. In this case, a
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FIG. 11. Contour plots of jΩðq; tÞj2 in the complex t plane, showing the location of turning points where Ωðq; tÞ ¼ 0. These plots are
for the elliptic polarization δ ¼ 0.5. The other field parameters are E0 ¼ 0.1
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single complex-conjugated pair dominate, and the spectra
of the produced particles can be qualitatively explained (see
Fig. 3 in Ref. [31]). TheWKB result for the created number
of pairs of momentum q is hereby given by

Nq ≈ expð−2KÞ; K ¼
����
Z

t2

t1

Ωðq; tÞdt
����; ð19Þ

where t1 and t2 are dominant turning points closed to the
real t axis.
In the case of AðtÞ ∝ 1=ðωð1þ ω2t2ÞÞ, one obtains two

pairs of complex turning points which then explain inter-
ference effects [32]. The production rate was then estimated
to be a sum of two terms which takes the form

Nq ≈ e−2K1 þ e−2K2 � 2 cosð2αÞe−K1−K2 ; ð20Þ

where theþ and − signs refer to bosonic and fermionic pair
production, respectively. Hereby, the K1;2 are obvious
generalizations of the K above, and α represents the phase
accumulated between different pairs of turning points; for
details, see Ref. [32]. The interference term in Eq. (20) is
responsible for the oscillations in the spectra. As the integrals
K and K1;2, respectively, are almost linear in t, the dominant
contribution originates from the terms involving turning
points which are closest to the real t axis.
For the gauge potential of the electric field given in

Eq. (1), there exists an infinite number of complex turning
points which can be obtained only numerically. In addition,
as for nonvanishing chirp parameters, the momentum
spectra are due to the strong interference effects peaked
at quite different momenta. We follow here Ref. [29] and
select for each parameter set representative values for the
momenta to evaluate the turning points.

40 20 0 20 40
30

20

10

0

10

20

30

Re(t) Re(t)

Re(t) Re(t)

Im
(t

)

Im
(t

)
Im

(t
)

40 20 0 20 40

30

20

10

0

10

20

30

40 20 0 20 40
15

10

5

0

5

10

15

Im
(t

)

40 20 0 20 40

10

5

0

5

10

FIG. 12. Contour plots of jΩðq; tÞj2 in the complex t plane, showing the location of turning points where Ωðq; tÞ ¼ 0. These plots are
for the circular polarization δ ¼ 1. The other field parameters are E0 ¼ 0.1

ffiffiffi
2

p
Ecr, ω ¼ 0.6m, and τ ¼ 10=m. From top left to bottom

right the values of the large chirp parameters are b ¼ 0, 0.005, 0.03, 0.05 m2, respectively, and momentum values (in units of m) are
ðqx ¼ 0; qy ¼ 0Þ; ðqx ¼ −0.5; qy ¼ 0Þ; ðqx ¼ −0.1; qy ¼ 0.1Þ; ðqx ¼ 0.1; qy ¼ 0.01Þ, respectively.

OLUGH, LI, XIE, and ALKOFER PHYS. REV. D 99, 036003 (2019)

036003-12



For the case of linear polarization, these turning points
are shown in Fig. 9. For b ¼ 0, there is an infinite tower of
turning point pairs, but only the closest ones to the real axis
contribute effectively. (From Fig. 5(a) one can infer the
weak interference patterns which relate to the exponentially
suppressed contributions of the other turning points.) As
the chirp parameters change, the corresponding dominating
pairs of turning points close to the real axis are for small
values of b altered mildly but for larger values very
strongly; see Fig. 9. Hereby, several pairs of turning points
possess a similar distance to the real axis, and therefore the
appearance of strong interference effects is understood.
From top panels of the Fig. 10 one can see that for b ¼
0.03m2 more turning point pairs appear in the complex t
plane for qx ¼ −0.24m as compared to qx ¼ 0.32m. On the
other hand, in the lower panels of Fig. 10 one can infer that
for b ¼ 0.04m2 more pairs of turning points exist for qx ¼
0.13m then for qx ¼ −0.4m. This provides a potential
explanation why more of the produced particles possess
negative (positive) momentum in qx-direction for b ¼
0.03m2 (b ¼ 0.04m2), see Fig. 4. For elliptic polarization
practically the same overall picture applies, see Fig. 11
with, however, some differences in the turning point
positions, especially for large values of b.
For circular polarization the turning points are depicted

in Fig. 12 for several values of chirp parameters. As we can
see, for b ¼ 0, one of the important difference from the
cases of linear polarization and elliptic polarization shown
in Fig. 9(a) is that now the dominant contribution comes from
the two central turning points because they are equally distant
from the real axis. The two turning point pairs explain the
(weak) interference effect observed for circular polarization
and b ¼ 0. Increasing now, the chirp parameter leads to quite
a distinctive pattern of turning points, as in the other two
polarizations, and explains thus the differences in response to
the chirp parameter for the circular versus linear or more
general polarization.

VI. SUMMARY AND CONCLUSIONS

Within the real-time DHW formalism, we studied the
effect of linear frequency chirps for four polarizations,

namely linear, elliptic, near-circular elliptic and circular
polarization. The main results for the number densities
and spectra of produced pairs can be summarized as
follows.
For an electric field with a linear polarization field, the

produced pairs’ spectra exhibit a shift and split of peaks as
well as strong interference effects as the chirp parameter
increases. The most complex pattern for increasing chirps
occurs, not unexpectedly, for an elliptic polarization. For
the near-circular elliptic and the circular polarization, the
ring form of the spectrum present at vanishing chirps is
distorted, spiral structures appear and eventually, for very
large chirp parameters, the peak is shifted to the central
region.
The most important finding, however, is the very strong

increase in number densities when the chirp parameter is
increased. For vanishing and small chirps, we have verified
the known differences in number densities for different
polarizations, with the largest number density achieved by a
linearly polarized field. Also, quite unexpectedly, this effect
goes away for larger chirps, and the number densities for
different polarizations become degenerate.
In this exploratory study, we restricted ourselves to a

quite large value of the electric field and a quite short
pulse duration. To verify or falsify a possible interpreta-
tion of the increase in the number of produced pairs in
terms of an onset of multiphoton pair production, a study
with much longer pulses would be necessary. Given the
steep increase in the produced number pair densities and
the related improved potential for an experimental obser-
vation, the effort of a study employing smaller values of
the electric field and much longer pulse times is certainly
justified.
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