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Several theories of beyond-the-standard-model physics predict light scalars that couple to fermions. By
extending classical electrodynamics to include an electron-scalar coupling, we calculate the nonlinear
Thomson scattering of light scalars in the collision of an electron with a monochromatic electromagnetic
background. In doing so, we identify the classical electron-scalar current, which allows for straightforward
inclusion of the process in laser-plasma particle-in-cell simulations. Scattering of pseudoscalar particles is
found to vanish in the classical (or, equivalently, the low-lightfront-momentum) limit. When electrons
copropagate with the laser pulse, we demonstrate that coherence effects in the production of light scalar
particles can greatly enhance the signal for sub-eV scalars. When the electron beams counterpropagate
with the laser pulses, we demonstrate that experiments can probe larger scalar masses due to the larger
momentum transfer in the collisions. We then discuss a possible lab-based experimental setup to detect this
scalar signal which is similar to light-shining-through-the-wall experiments. Using existing experimental
facilities as benchmarks, we calculate projected exclusion bounds on the couplings of light scalars in such
experiments.
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I. INTRODUCTION

There are many candidates for light beyond-the-
standard-model particles, some of which can couple
directly to spin-1=2 fermions and can, therefore, be emitted
in electron-laser interactions. One such candidate is the
axion, a spin-0 pseudoscalar particle predicted by the
Peccei-Quinn solution to the strong CP problem [1].
However, other light candidates include scalar particles,
dark photons [2], or even millicharged particles [3].
Collectively, these particles are referred to as axionlike
particles (ALPs). Many experimental searches for ALPs
have already been performed both using lab-based and
astrophysical sources (see [4,5] for recent reviews).
In this paper, we build on previous works [6,7], in which

we studied ALP production in laser-electron interactions, to
detail how the coherent emission of scalar ALPs from
electron bunches in laser interactions could allow one to
obtain a competitive bound on the coupling of scalar ALPs
to electrons and photons. We focus on scalar rather than
pseudoscalar ALPs because, as we show in this paper, the

latter have a suppressed production rate in the low-energy,
coherent, limit. Scalar-ALPs arise in many beyond-the-
standard-model scenarios, e.g., pseudo-Goldstone bosons
of spontaneously broken global symmetries, or as dilaton
fields from the spontaneous breaking of scale symmetry.
Massive scalars also occur in cosmological contexts, for
example from quintessence fields [8] or the inflaton [9].
The coupling of scalar ALPs to the photon is already

constrained by fifth-force experiments [10], since the
scalar-photon coupling induces a coupling between the
scalar and the proton that mediates a long-range spin-
independent non-Newtonian force. (The prospect of using
intense laser pulses to probe photon-ALP coupling has also
been explored in the literature [11].) The bounds obtained
from fifth-force experiments are typically much stronger
than those from lab-based experiments such as Light-
Shining-through-Wall (LSW) setups (see [12] for a review
on LSW experiments). However as discussed in [10], the
fifth-force bounds can be much weaker when one considers
effects that modify the form factor coupling the scalar to the
photon. The same argument suggests that bounds from
astrophysical sources, such as CAST [13,14], could also be
much weaker than those quoted when mechanisms are at
play that reduce the rate of ALP production either as a
whole or in a particular energy range [15–18]. A major
motivation for these works was the apparent signal at the
PVLAS experiment [19], which contradicted existing
bounds using astrophysical sources and has since vanished
[20]. However, given the existence of scenarios in which
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bounds from fifth-force experiments and astrophysical
experiments can be evaded, the need for lab-based searches
for light ALPs is apparent. Therefore, in this paper, we
propose a new mechanism through which the coupling
between scalar ALPs and the electron can be probed to high
accuracy in a lab-based environment. We consider the
probing of scalar ALPs with masses up to Oð100Þ eV.
The experimental setup that we propose will consist of

an electron bunch, which we can treat as a plasma, colliding
with a laser pulse. When simulating interactions between
plasmas and intense laser backgrounds, one typically splits
processes into two groups: incoherent, single (dressed)
particle processes which occur at wavelengths much
smaller than the electron spacings in the bunch, and
coherent processes which proceed at lower energies with
wavelengths of the order of the electron spacings in the
bunch. If a process is coherent over the entire bunch i.e., the
wavelength of the emitted particle is longer than the bunch
length, then the rate scales with the number of electrons in
the bunch squared. These processes are simulated using
traditional particle-in-cell (PIC) simulation techniques [21].
Due to the large possible enhancement in the yield of
coherent processes and the impact that can bring to ALP
searches, in the current paper, we focus on the calculation
of scalar emission from an electron in the low-lightfront-
momentum (classical) regime. We take a “light” scalar to
refer to one with a mass much less than the electron mass.
The paper begins in Sec. II with a discussion on the

classical calculation of scalar emission from an electron
bunch in a continuous-wave laser (monochromatic electro-
magnetic background), and we comment on the inclusion
of such processes in PIC code simulations. In Sec. III, the
classical result is compared to the classical limit (equiva-
lently: small incoming lightfrontmomentum) of the fullQED
calculation of the process. In Sec. IV, we investigate coherent
emission of ALPs from an electron bunch interacting with a
laser. In Sec. V we discuss the experimental prospects for
scalar ALP production and in Sec. VI derive and present
exclusion plots for the result of such an experiment. In
Sec. VII we conclude and in the Appendix we add a note
explaining the suppression in the low-energy limit of
pseudoscalar production.

II. NONLINEAR THOMSON SCATTERING
OF SCALARS IN A MONOCHROMATIC

BACKGROUND

The interaction of an electron and a scalar field, ϕ, in a
laser pulse background can be described using the follow-
ing Lagrangian density (unless otherwise stated, we have
set ℏ ¼ c ¼ 1)

L ¼ L0
ϕ þ L0

SFQED þ LI
ϕ þ LI

SFQED þ LI
ϕγγ; ð1Þ

where

L0
ϕ ¼ 1

2
½ð∂ϕÞ2 −m2

ϕϕ
2�

L0
SFQED ¼ ψ̄ ½ið∂ þ ieAlaserÞ −me�ψ − trF2=4 ð2Þ

are the free-field real scalar and dressed Strong-Field QED
(SFQED) parts, respectively, with the scalar being neutral
under electromagnetism. The interaction terms are

LI
ϕ ¼ −gϕeϕψ̄ψ

LI
SFQED ¼ −eψ̄=Aγψ

LI
ϕγγ ¼ −gϕγγϕF

μν
B FBμν ð3Þ

where e > 0 is the charge of a positron, gϕe the scalar-
electron coupling. The dimension-five interaction, LI

ϕγγ ,
will become relevant when discussing regeneration of the
scalars into photons in a magnetic field in the detection
region, discussed in Sec. V. We have made the split
F → Flaser þ FB þ Fγ , into (i) a (classical) laser field (to
generate scalars) and (ii) a (classical) magnetic field (to
regenerate photons) and iii) a (quantum) radiated field,
respectively (the classical-quantum split is standard in
SFQED—for reviews, see [22]). (Labels on the vector
potential, A, reflect the corresponding field.) In the scenario
we envisage, the generation and regeneration regions are
distinct so that Fμν

B Fρσ
laser ¼ 0. The laser in the generation

region is assumed to have many cycles, and so we will
calculate scalar production in an infinitely-extended mono-
chromatic background, from which we will define an
average rate per cycle to approximate the yield of scalars
in a finite laser pulse. In SFQED, the interaction between
the laser background and the electron is included exactly by
solving for the particle dynamics in a plane-wave electro-
magnetic (EM) background of phase, φ ¼ ϰ · x, and wave
vector ϰ satisfying ϰ · ϰ ¼ 0. In the quantum theory, this
amounts to using the Volkov solution to the Dirac equation
[23] whereas in the classical theory, this means solving the
Lorentz equation [24].
Two useful parameters for quantifying the size and

nature of SFQED processes in plane waves are the classical
nonlinearity parameter, ξ, and the quantum nonlinearity
parameter, χ. The classical nonlinearity parameter can be
written as [25] ξ2 ¼ e2hp · TðφÞ · piφ=m2

eðϰ · pÞ2, where T
is the laser pulse stress-energy tensor, p the electron
momenta and h·iφ an average over field phase. ξ is then
equal to the work done by the laser pulse on an electron
over the electron’s Compton wavelength, divided by the
energy of a photon and hence quantifies the average
number of photons from the laser background that interact
with a single electron. Our analysis will take into account
arbitrary values of ξ, but we expect any likely first laser-
plasma-ALP experiment will take place at ξ ≪ 1, that is,
where interaction between the electron and the laser can be
assumed to be perturbative. The quantum nonlinearity
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parameter for a particle of momentum p can be written as
χp ¼ ξηp in a plane wave, where ηp ¼ ϰ · p=m2

e. It is so
called because χp ∝ ℏ and hence disappears in the classical
limit of ℏ → 0, unlike ξ, which is a classical parameter
and remains in this limit. In this work, we will use the
lighfront momentum variables ηp, ηk (which are also ∝ ℏ),
to quantify the size of quantum effects, where k is the scalar
momentum and ηk the scalar lightfront variable. [We will
typically take ξ ¼ Oð0.1Þ…Oð10Þ].
As mentioned in the introduction, one of our interests

lies in the coherent emission of scalar particles. For this to
happen over an entire electron bunch, the scalar wavelength
should be much longer than the bunch length [26] and in
this respect, we are interested in the limit ηk → 0. As the
magnitude of χk is limited by χp in the Compton case, the
coherence effects are important in the limit ηp → 0. This
corresponds to neglecting electron recoil from scalar
emission and hence is synonymous with the classical limit.
We wish to calculate the process e� → e� þ ϕ, where e�

indicates an electron “dressed” in the laser pulse back-
ground, in the classical (low-lightfront-momentum) regime.
Due to the smallness of the electron-scalar coupling, it is
clear that the more probable process is that of nonlinear
Compton scattering, e� → e� þ γ. However, we can neglect
the instantaneous effect this has on the electron trajectory
(i.e., radiation reaction), if we assume αξχ ≪ 1 and χ ≪ 1

[27,28], where α ¼ e2=4π. The effect of classical radiation
reaction will accumulate as the duration the electron spends
in the laser pulse increases, and so we must also fulfill
αηpξ

2Φ ≪ 1, whereΦ is the phase duration of the pulse, to
assume the exit lightfront momentum of the electron is the
same as the initial value [29]. Then from the Lagrangian
Eq. (1), in the generation region (where FB ¼ 0), we find

ð□þm2
ϕÞϕ ¼ −gϕeψ̄ψ

□Aμ
γ ¼ eψ̄γμψ

½ið=∂ þ ie=AlaserÞ −me�ψ ¼ 0

ψ̄ ½−ið=∂ − ie=AlaserÞ −me� ¼ 0; ð4Þ

where we have assumed the Lorentz gauge: ∂ · A ¼ 0. Let
ψ ¼ ψ ð0Þ þ eψ ð1Þ þ � � � be a perturbative ansatz in the
electron-photon coupling, and let gϕe ≪ jej, then these
equations can be decoupled to give

ð□þm2
ϕÞϕ ¼ jð0Þ; jð0Þ ¼ −gϕeψ̄ ð0Þψ ð0Þ; ð5Þ

where ψ ð0Þ solves the two Dirac equations in Eq. (4) exactly
in whatever plane wave potential is chosen to describe the
laser pulse.
We can make an approximate correspondence between

the quantum scalar current jð0Þ and a classical scalar current
j, by appealing to the classical definition of current, which
is proportional to the number density of electrons, n.

We can do this in a Lorentz-invariant way by making
the substitution

jð0Þ ¼ −gϕeψ̄ ð0Þψ ð0Þ → j ¼ −2gϕen: ð6Þ

and using an analogy with the four-current for a point-size
classical electron [30]:

jðx0μÞ ¼ −gϕe
Z

dt δð4Þ½x0μ − xμðtÞ�; ð7Þ

where t is the proper time [31]. When we later integrate this
current over d4x to acquire the emitted scalar field, we
acquire a Lorentz scalar. The extra factor 2 in Eq. (6) comes
from the fact that:

htr ψ̄ψispin ¼ ð2meÞ2; ð8Þ

where h·ispin refers to an average over initial electron spins.
The factor 2 in Eq. (6), therefore, takes into account the
spin-sum of standard QED which has no meaning in the
classical calculation.
The identification in Eq. (6) will not be a good

approximation for all parameters. If we consider what
gauge-invariant scalars we can make that depend upon the
background field, then we see that, for a plane wave, since
the field invariants F ¼ −trF2=4 and G ¼ −trF · F̃=4
vanish (where F is the Faraday tensor and F̃ its dual),
from the remaining objects in the system—the wave vector,
ϰμ and pμ—we can only make two nonvanishing scalars.
As already mentioned, we take these to be ξ and η, with ξ
being classical and η ∝ ℏ being quantum in nature.
Therefore, all total probabilities in the QED calculation
can be written P ¼ Pðξ; ηÞ, and we expect a good approxi-
mation to be achieved by a classical analysis when
P ≈ Pðξ; 0Þ. The small η corresponds to the low-energy
limit and so we see here the connection between low
energies and classical physics, where we expect Eq. (6) to
be a good approximation.
Having made the identification in Eq. (6), we now

proceed to solve the classical version of Eq. (5) using

ϕðx0Þ ¼
Z

Dðx0 − xÞjðxÞd4x; ð9Þ

with ð□þm2ÞDðx0 − xÞ ¼ δð4Þðx0 − xÞ. To demonstrate
our results, we calculate the ALP spectrum produced in
the case of a circularly polarized monochromatic back-
ground [7]:

aμ ¼ mξðεμ cosφþ βμ sinφÞ; ð10Þ

where ε · β ¼ ε · ϰ ¼ β · ϰ ¼ 0, ε · ε ¼ β · β ¼ −1 and
a ¼ eA is the scaled vector potential. The yield of scalars,
Nϕ, from a classical source is equal to [32]
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Nϕ ¼
Z

d3k
ð2πÞ3

1

2k0
j|̃ðkÞj2; ð11Þ

where |̃ðkÞ ¼ R d4x eik·xjðxÞ is the Fourier-transformed
current. Using the classical scalar four-current given in
Eq. (7), the electron’s position in a plane wave can be
solved for exactly [24]:

xμðφÞ
me

¼
Z

φ

−∞

pμ
in − aμðϕÞ
ϰ · pin

þ ϰμ
�
−a2ðϕÞ þ 2pin · aðϕÞ

2ðpin · ϰÞ2
�
dϕ

ð12Þ

where pin is the electron’s asymptotic momentum, before it
meets the laser pulse. The calculation proceeds in a very
similar manner to the quantum case [7], and we arrive at a
rate Re→ϕ ¼Ps≥sϕ

0

Re→ϕ
s

Re→ϕ
s ¼ g2ϕe

4πηp

Z
tþs

t−s

dt J2sðzsÞ

zs ¼
ξ

ηp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2sηpt − ð1þ ξ2Þt2 − δ2

q
; ð13Þ

where Js is the sth-order Bessel function of the first kind,
δ ¼ mϕ=me, and t ¼ ηk=ηp is the lightfront fraction, where

t�s ¼ sηp
1þ ξ2

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

δ2ð1þ ξ2Þ
s2η2p

s !
;

and the threshold harmonic is sϕ0 ¼ ⌈ðδ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2

p
Þ=ηp⌉,

(⌈ · ⌉ denotes the ceiling function). The rate is the number
of scalars Nϕ per unit phase duration, Lφ, in which the
electron is in the electromagnetic wave. We take Lφ ¼ ϰ0τ
where τ is the duration of the wave. Expanding in ξ ≪ 1 we
find that the order-s harmonic scales as ξ2s; therefore, the
dominant contributions to the rate come from the s ¼ 1
contribution. Performing the expansion of Eq. (13) for
ξ ≪ 1 we find the differential rate is

dRe→ϕ

dt
≃

ξ2g2ϕe
16πη3p

ð2ηpt − t2 − δ2Þ ð14Þ

where t varies from t−1 to tþ1 , and the total rate becomes:

Re→ϕ ≃
ξ2g2ϕe
12π

�
1 −

δ2

η2p

�
3=2

: ð15Þ

A. Particle-in-cell (PIC) code implementation

Using the classical correspondence in Eq. (6) and
the scalar wave equation from Eq. (4), scalar emission
through nonlinear Thomson scattering can be included
straightforwardly in numerical particle-in-cell codes. This

simply requires using current methods for including stan-
dard low-energy nonlinear Thomson scattering from the
vector current density, jμ ¼ ψ̄γμψ , to be also applied to
including the scalar current density j ¼ ψ̄ψ. It is important
to note that the PIC codes only model radiation that can be
resolved by the grid used in the numerical modeling. For
higher-energy emission, the results of these calculations
break down and, as we will show, one must use the full
QED result from Eq. (16).
PIC codes are useful for capturing effects such as the

coherent emission due to the presence of densely populated
electron bunches. However in Sec. IV we will demonstrate
how these effects can also be included analytically.

III. COMPARISON WITH QED RESULT

The QED result for this process, as calculated in [7] can
be written as Re→ϕ

QED ¼Ps≥sQ
0
Re→ϕ

s;QED, where

Re→ϕ
s;QED ¼ g2ϕe

16πηp

Z
uþs

u−s

du
ð1þ uÞ2

�
ð4 − δ2ÞJ2sðzQs Þ

þ ξ2u2

2ð1þ uÞ ½J
2
sþ1ðzQs Þ þ J2s−1ðzQs Þ − 2J2sðzQs Þ�

�
;

ð16Þ
where

ðzQs Þ2 ¼
�

2sξffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2

p �
2 u
us

�
1 −

u
us

�
−
δ2ξ2ð1þ uÞ

η2p
; ð17Þ

and u ¼ ηk=ηq with ηq ¼ ηp − ηk and us ¼ 2sηp=ð1þ ξ2Þ
with integration bounds u�s :

u�s ¼ 2sηp − δ2

2ð1þ ξ2Þ

"
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4ð1þ ξ2Þδ2
ð2sηp − δ2Þ2

s #
ð18Þ

and the threshold harmonic in the quantum case is
sQ0 ¼ ⌈ð2δ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2

p
þ δ2Þ=2ηp⌉. This is the same threshold

limit found in the classical case up to corrections of the
order Oðδ2Þ. The classical limit should correspond to the
limit ℏ → 0. Here we show how, when one takes this limit,
we recover our classical expression. At this point we
temporarily reinstate ℏ and c in the following paragraph.
The first thing to note about the QED calculation is the

appearance of ηq, which is the energy parameter of the
electron after it has emitted a light scalar. This parameter is
absent in the classical description because there, radiation is
not quantized, and therefore there is no recoil and the
electron’s energy parameter remains as ηp during radiation
of the EM field, which is continuous and not discrete. We
are interested in light scalars with masses much less than
the electron mass, and here it is useful to consider the
massless limit. In this case, the scalar energy parameter
ηk ¼ ℏ2ϰ · k=mc2, is a power of ℏ higher than the electron
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energy parameter ηp ¼ ℏϰ · p=mc2. Therefore, in the
classical limit ηq → ηp and so u → t. Second, we note
that u ∝ ℏ and du=ηp ∝ ℏ0dt, and so taking the limit of
ℏ → 0 of Eq. (16) gives

lim
ℏ→0

Re→ϕ
s;QED ¼ g2ϕe

4πηp

Z
tþs

t−s

dt J2sðzsÞ: ð19Þ

Equation (19) is exactly the classical rate in Eq. (13), which
we arrived at using the ansatz Eqs. (6) and (7). It is
noteworthy that the mass term ℏ2k · k ¼ m2

ϕc
4 coefficient

of the Bessel function disappears in the ℏ → 0 limit, but the
mass-term in the argument of Bessel function remains. This
behavior has also been observed by Erber and Latal [33],
when they studied the correspondence between the quan-
tum and classical results for radiation processes in a
medium, where a nonzero index of refraction has a similar
effect on the photon dynamics as a mass term does for the
scalar field, and can be seen by integrating Eq. (11) in ω0 in
[34] for the classical limit of nonlinear Compton scattering
in a non-null transverse plane-wave EM background. At
this point we reset ℏ ¼ c ¼ 1.
The accuracy of the classical limit can be ascertained by

plotting the spectrum of emission of a single scalar by a
single electron, which corresponds to comparing the
integrands in Eqs. (13) and (16). We distinguish the
perturbative (ξ ≪ 1) and all-order (ξ≪1) cases for low
and high-energy electron seeds, in Fig. 1. It can be seen that
in general for higher seed electron energy, the classical
spectrum tends to predict a higher energy emitted per
harmonic than the QED result (as in the comparison of
nonlinear Thomson scattering to nonlinear Compton scat-
tered photons [27]) and that at higher ξ, the discrepancy is
larger. For the electron recoil from scalar emission to be
negligible, and hence the classical limit to be a good
approximation, the quantum nonlinearity parameter of the
scalar: χk ¼ ηkξ, must satisfy χk ≪ 1. This agrees with the
comparison made in Fig. 1.
In addition to comparing classical and quantum rates, we

give a demonstration of the effect of the finite mass of the
scalar. In Fig. 2, the value of the scalar mass is increased to
show a “channel-closing” phenomenon. We define δ�s such
that:

δ ¼ δ�s ⇒ uþs ¼ u−s :

In other words, if δ > δ�s , the kinematic conditions required
to emit the sth harmonic are forbidden. For the classical
limit, this has a straightforward expression δ�s ¼ sη�p, where
η�p ¼ ηp=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2

p
is the energy parameter for an electron

with an effective mass m� ¼ m
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2

p
. Keeping ηp and ξ

fixed, and considering different scalar masses, it can then
be seen that if the scalar is massive enough, lower
harmonics are suppressed. In Fig. 2, we choose parameters

FIG. 1. Here we compare the classical (dashed) and quantum
(solid) spectra for scalar emission for a head-on collision of
electron and laser-background, withmϕ ¼ 1 meV, ϰ0 ¼ 1.55 eV
and for illustrative purposes, we set gϕe ¼ 1. In the first row, the
harmonics s ¼ 1, 2, 3 are shown and in the second row: s ¼ 50,
100, 150, 200. (In comparison, tail-on collisions have
ηp ≤ ϰ0p0=m2 ≈ 3 × 10−6.)

FIG. 2. The classical (dashed) and quantum (solid) spectra for a
head-on collision of the laser background with ξ ¼ 10, ϰ0 ¼
1.55 eV and an initial electron of energy of p0 ¼ 1.6 MeV
(≈2 × 10−5). For these parameters, δ�1 ¼ 1 eV. As the scalar mass
is increased, the first and second harmonics are seen to disappear
(each plot has the same axis scale).
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such that δ�1 ¼ 1 eV. At low electron energy, this effect is
independent of whether the classical or quantum descrip-
tion is used.

IV. COHERENT EMISSION

Coherent emission of radiation by electrons in a bunch of
length l is ensured for wavelengths λ ≫ l, as there is no
appreciable change in the phase of radiation emission over
the bunch [26]. Decades ago, the FIREFLY experiment at
the Stanford Linear Acceleration Center demonstrated that
wavelengths even as short as 5 μm were emitted coherently
from a 600 μm long electron bunch [26]. We can see this by
considering the following scalar current for a bunch of Ne
electrons:

jðx0Þ ¼ gϕe
XNe

i¼1

Z
dt δð4Þðx0μ − xμðtÞ − rμi Þ: ð20Þ

The path xμðtÞ denotes the centre of mass motion for the
electron bunch and rμi is the displacement of each electron
from xμðtÞ. (In other words, the path of the ith electron is
xμi ðtÞ ¼ xμðtÞ þ rμi ). Taking the square of the Fourier
transform we have

j|̃ðkÞj2¼
����X

Ne

i¼1

eik·ri
����2j|̃1eðkÞj2¼FðNe;k;rÞj|̃1eðkÞj2 ð21Þ

where |̃1eðkÞ is the Fourier transform of the one-electron
current and the bunch effects are described by

FðNe;k;rÞ¼Neþ2
XNe−1

i¼1

XNe

j¼iþ1

cos ½k ·ðri−rjÞ�: ð22Þ

When the k · ðri − rjÞ factor is, or is close to, zero or a
multiple of π, the effect of coherence on the production rate
can be very large. In an experimental setup, it is feasible to
engineer the electron bunch and laser parameters such that
k · ðri − rjÞ is close to zero. In Eq. (22), we see that if
cos ½k · ðri − rjÞ� → 1, F → N2

e, if cos ½k · ðri − rjÞ� → 0,
F → Ne, but a random phase is approximated by using
alternating signs with cos ½k · ðri − rjÞ� → ð−1Þi−j, F →
Ne mod 2, representing destructive interference.
We will consider collimated bunches of electrons propa-

gating in the z-direction such that rμ ¼ ð0; 0; 0; rzÞμ, and,
therefore, k · ri ¼ −ðkþ þ k−Þrzi=2 [35]. To model an
electron bunch we will take Ne ∼ 109–1010 electrons and
choose their phases randomly from a Gaussian distribution
with a standard deviation, l. The term rzi measures the
distance of the ith electron from the centre of the bunch.
We define the coherence factor C ¼ F=Ne, and with the

electrons distributed just in the z direction we have
k · ðri − rjÞ ¼ −kzðrzi − rzjÞ. Choosing rzi and rzj from

a Gaussian distribution with a standard deviation equal to l
results in the coherence factor being well approximated by
the function C� ¼ 1þ Nee−σ

2� where σ� ¼ kzl. Therefore,
coherence effects are important when σ� ≪

ffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðNeÞ

p
. In

Fig. 3, we plot the size of the coherence effects as a function
of the bunch length for various values of kz. (C� is still a
very good approximation to the coherence factor when the
electron bunch has a momentum spread of 10%.)
Including the coherence effects leads to a modification in

the yield presented in Eq. (11),

Nϕ¼
Z

d3k
ð2πÞ3

1

2k0
ð1þNee−σ

2�ðkÞÞj|̃1eðkÞj2; ð23Þ

where we recall that |̃1eðkÞ is the Fourier transform of the
one-electron current. The differential distribution d3Nϕ=dk3

will then have a coherence enhancement towards the lower
end of the spectrum.
The coherence properties are explicitly dependent on the

polar angle at which the scalar is emitted, where kz ¼
jk⃗j cos θ with θ being the polar angle with the positive
z axis. So it is instructive to use spherical polar coordinates
rather than lightfront coordinates to study the coherence
effects, and this is also useful when considering an
experimental setup to detect these scalar particles. Using
spherical polar coordinates the classical result for the total
rate can be written as

Re→ϕ ¼ g2ϕe
ð2πÞ3

1

ðκ0Þ2
Ne

2

X∞
s¼1

X2
n¼1

Z
djk⃗jdθdϕ jk⃗j2

k0
sin θ

×
δðjk⃗j − jk⃗jnÞ
jw0

0ðjk⃗jnÞj
ð1þ Nee−l

2jk⃗j2cos2θÞJ2sðzsÞ; ð24Þ

where n ∈ f1; 2g tracks the two solutions for jk⃗j in
applying the global momentum-conserving delta-function
and

FIG. 3. The coherence changes as one varies the bunch length
of a Gaussian-shaped bunch of 105 electrons, where j|̃ðkÞj2 ¼
CNej|̃1eðkÞj2. The empty circles are the numbers generated from
the random Gaussian distribution, and the solid lines are given by
the approximating function C�.
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w0ðjk⃗jÞ ¼
1

ϰ · p

�
p · kþ ðmeξÞ2

2

ϰ · k
ϰ · p

�
; ð25Þ

with k0¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk⃗j2þm2

ϕ

q
, k1¼ jk⃗jsinθcosϕ, k2¼jk⃗jsinθsinϕ,

and k3 ¼ jk⃗j cos θ. The solutions for jk⃗ji are obtained by
solving w0 − s ¼ 0 and we can write the argument of the
Bessel function as

z2 ¼
�
ξ

ηp

�
2
�
2ηks − δ2 −

�
ηk
ηp

�
2

ð1þ ξ2Þ
	

ð26Þ

with ηk ¼ ϰ · k=m2
e ¼ ϰ0ðk0 − jk⃗j cos θÞ=m2

e. The rate
depends explicitly on both the polar angle θ and the
azimuthal angle ϕ, with the latter dependence arising from
evaluating the delta-function (jk⃗jn depends on ϕ in general).
However when ϵ · p ¼ β · p ¼ 0 the rate becomes indepen-
dent of the azimuthal angle. We will parametrize the
incoming electron momenta with p0¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp⃗j2þm2

e

p
, p1 ¼

jp⃗jsinθp cosϕp, p2¼jp⃗jsinθpsinϕp, and p3¼ jp⃗jcosθp.
The azimuthal dependency of the differential rate is trivially
related to the azimuthal angle of the incoming electrons, so
we will set ϕp ¼ 0 to simplify interpretation of our results
and hence describe the incoming electrons by their polar
angle θp and their gamma factor γ2p ¼ 1þ jp⃗j2=m2

e.
We will start with the case that ϵ · p ¼ β · p ¼ 0 and the

electrons and laser beam are co-propagating i.e., “tail-on”
(θp ¼ 0), where there is no azimuthal dependency. In
Fig. 4, we show how the total rate and the emitted scalar
momentum depends on the polar angle of the emitted
scalar. We see that for small values of γp the coherence
effects are focused at emission angles θ ∼ π=2. This is
because at θ ¼ π=2 the coherence effects are maximized by
a minimization of σ� ∼ cos2 θ. A physical way of thinking
of this is that the “transverse” bunch length is much smaller
than the “longitudinal” beam length, so coherence effects
are most pronounced when scalars are emitted transver-
sally. At larger values of γp the peak at which coherence
effects are focused is shifted towards smaller values
of θ due to the well-known narrowing of the relativistic
θ ∼ 1=γp emission cone [30]. So one sees how the
coherence enhancement at right angles to the collision
axis and the relativistic enhancement at small angles,
combine to give a peak which moves from being
perpendicular to the collision axis to being more along
it, the more relativistic the incoming electrons are. The
coherence effects are sustained at θ > π=2 and suppressed
at θ < π=2. This can be understood from looking at the
lower plot in Fig. 4 where we see that at θ > π=2 the values
of jk⃗j are smaller and thus σ� is smaller.
In Fig. 5, we have essentially the same information as in

Fig. 4 except with the electrons counter-propagating or
“head-on” to the laser beam, i.e., θp ¼ π. Here we see that
the coherence effects are completely lost for electron

FIG. 4. In the upper plot, we have the total rate as a function of
the polar angle of the emitted scalar particles, and in the lower
plot we have the emitted scalar momentum as a function of the
polar angle. We have assumed that θp ¼ 0 such that the electrons
and the colliding photons are co-propagating, and that the s ¼ 1

contribution dominates. We have also taken gϕe ¼ 1, Ne ¼ 109,
ϰ0 ¼ 2.33 eV, l ¼ 1 μm, mϕ ¼ 1 meV, and ξ ¼ 0.1 in this
calculation.

FIG. 5. In the upper plot, we have the total rate as a function of
the polar angle of the emitted scalar particles, and in the lower
plot we have the emitted scalar momentum as a function of the
polar angle. We have assumed that θp ¼ π such that the electrons
and the colliding photons are counter-propagating, and that the
s ¼ 1 contribution dominates. In this plot, we also have gϕe ¼ 1,
Ne ¼ 109, ϰ0 ¼ 2.33 eV, l ¼ 1 μm, mϕ ¼ 1 meV, and ξ ¼ 0.1.
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bunches with large γp factors, this being due to the fact that
the emitted scalars have much larger momenta than in the
tail-on case and thus σ� is larger and the coherence effects
more suppressed. In addition to this, the coherence effects
for the electron bunches with lower γp are localized at
θ ∼ π=2, again this is because this is the only parameter
range at which σ� is small. It is worth noting that our
assumption of a collimated electron bunch is important
here. If we had a sizeable bunch width, then σ� would have
an appreciable dependence on the azimuthal angle, and the
enhancements at θ ∼ π=2 would be smoothed out.
It is important to note that in this analysis we have

neglected electron-electron interactions. We first justify this
with reference to recent laser-electron collision experi-
ments, which demonstrate how that electrons can be
accelerated from gas jets into bunches of length ∼10 μm
and overlapped with the laser focus in the collision point
[36,37]. Second, it can be shown that the force on the
electrons due to the laser field is much stronger than the
Coulomb repulsion between electrons in the bunches we
have considered here, and neglecting this extra force is in
line with other approximations we have made, such as
neglecting radiation reaction [38].
To detect the scalar particles emitted in these laser-

electron interactions it is beneficial to have the majority of
the emission in a small solid angle, such as along the
collision axis, i.e., at θ ≃ 0 or θ ≃ π. The experimental
setups that most easily result in this scenario are those
involving electron bunches with large γp. We consider two
scenarios:

(i) tail-on collision: with γp ≳ 30 approximately all of
the scalars are emitted in the 0 ≤ θ ≲ 0.1 region, and
coherence effects can drastically increase angu-
lar rates.

(ii) head-on collision: with γp ≳ 300 approximately all
of the scalars are emitted in the 3.1≲ θ ≤ π region,
however coherence effects are negligible for all
scalar masses in this case.

Focusing on these two scenarios we will use the yields
derived in terms of the lightfront momentum in Sec. II
and III, with the inclusion of the coherence effects in
Sec. IV. We can estimate the energy of the scalar particles
from the ηk distribution assuming θ ≃ 0 or π,

Eϕ ≃
m2

e

ϰ0
ηk
2

�
1þ

�
ϰ0δ

meηk

�
2
�
: ð27Þ

V. EXPERIMENTAL PROSPECTS FOR SCALAR
ALP PRODUCTION AND DETECTION

Several high power laser facilities now have the capabil-
ity to produce intense laser pulses with ξ of the order of 0.1
to 1 at a repetition rate of 1 Hz, such as VEGA [39],
BELLA [40], Draco [41] and the upcoming ELI-Beamlines

laser facility [42]. Through collisions with fixed targets
these pulses can be used to produce high energy [OðGeVÞ]
electron bunches with Ne ∼ 109 and l ¼ Oð10Þ μm [43].
In this section, we propose an outline for the first lab-

based experiment to probe the product of couplings
gϕegϕγγ. The setup we envisage is similar to that of
LSW setups, but where in a generation region, an electron
beam collides with a laser pulse to produce massive scalars,
and in a regeneration region, which is shielded from the
background produced in the generation region by a wall,
massive scalars are converted into photons in the presence
of a static magnetic field, which are measured in this low-
noise region. Many experiments already use similar tech-
niques to search for light scalar and pseudoscalar particles
in lab-based environments, e.g., the ALPS experiment [44]
(and its upcoming successor [44], as well as other planned
experiments such as STAX [45]). The CAST experiment
uses the same detection technique to search for axions
produced in the Sun [13].
In the generation region, laser pulses from the facilities

mentioned above can be split such that one pulse collides
with a fixed target producing a bunch of electrons, while the
other pulse collides with the bunch of electrons. This allows
the two setups: “tail-on” and “head-on,” to be realized.
Some experimental considerations should be mentioned

when considering the collision of an electron beam with a
highly focused intense laser pulse. First of all, there is a
possibility that the transverse excursion of the electrons will
be larger than the laser pulse width and they may escape the
pulse. We can estimate the maximum transverse excursion
jx⊥maxj by integrating the electron’s momentum in a plane
wave [given in Eq. (12)], and by making the assumption
γ ≫ 1, we find

jx⊥maxj
λ

≈

8>><
>>:

ξ

4πγ
“head-on” setup

γξ

π
“tail-on” setup:

ð28Þ

Typical recent intense laser-electron collision experiments
[37] achieve ξ ¼ 1.9 by focussing the laser down to
minimum waist width of w0 ¼ 40λ. Therefore, one could
equivalently consider achieving ξ ¼ 0.1 at the same facili-
ties whilst only having to focus the laser down to
w0 ¼ 760λ. From this, we can conclude that, for the
“head-on” setup jx⊥maxj=w0 ≪ 1. For the “tail-on” setup,
one should be a little more cautious. If γ is too large, then
the electrons will escape the laser pulse. However, we have
seen that coherence effects are larger, the smaller γ is, we
will find later, that the effect of coherence on the projected
exclusion bounds are best, will smaller γ more attractive for
experiment. For example, if we pick γ ¼ 200, and ξ ¼ 0.1,
then we also have the case that jx⊥maxj=w0 ≪ 1. A second
issue is that Poynting stability (jitter) and lag can make it
challenging to overlap the electron and laser beams.
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However, for the production of scalars, the intensity of the
laser pulse is not a critical parameter, and this can be
reduced such as to assist an optimal collision. Moreover,
from the discussion of the electron transverse excursion,
w0 ¼ 760λ for a 1.55 eV laser, corresponds to a minimum
laser pulse width of approximately 0.6 mm, which is
much wider than in typical intense laser-electron collision
experiments.
In the regeneration region, we envisage a strong magnetic

field (strengthB) extending over some lengthL, in which the
massive scalars decay to a photon through the coupling
described in the introduction,LI

ϕγγ ¼ −gϕγγϕF
μν
B FBμν. Then,

in contrast to Eq. (4), the system of equations in the
regeneration region is

ð□þm2
ϕÞϕ ¼ −gϕγγtrF2

ð1þ 4gϕγγϕÞ□Aν ¼ −4gϕγγFμν∂μϕ: ð29Þ

Again, making a substitution F → FB þ Fγ , and a pertur-
bative ansatz in Fγ , we have, to lowest-order in gϕγγ:

ð□þm2
ϕÞϕ ¼ −gϕγγtrF2

γ ; ð30Þ

where□AB ¼ 0, □Aγ ¼ 0. The detection of photons in the
low-noise regeneration region is then the experimental
signal.
As a benchmark to evaluate the effectiveness of our

proposed setup, we will assume a laser pulse with ξ ¼ 0.1,
ϰ0 ¼ 2.33 eV, and a repetition rate of 1 Hz, collides with
an electron bunch of electrons with initial energies ranging
from MeV to tens of GeV. For the detection region, we
assume the same parameters as in the ALPS experiment: a
B ¼ 5 T magnet which extends over L ¼ 4.21 m and
photon detectors with a dark count rate of nb ¼ 10−4 s−1.
Adopting the benchmarks set out at the end of Sec. IV

we can assume that all the produced scalar particles enter
the regeneration region at approximately θ ¼ 0 or θ ¼ π. In
this case, the probability of the scalar particle decaying to a
photon in the magnetic field is:

Pϕ→γ ¼
�
2
gϕγγBEϕ

m2
ϕ

sin

�
m2

ϕL

4Eϕ

�	2
ð31Þ

where Eϕ is the energy of the scalars entering the detection
region [see e.g., Eq. (27)]. The probability of regeneration
extends to larger masses for larger scalar energies. For
Eϕ ≫ m2

ϕL=4, we have Pϕ→γ ≃ ðgϕγγBL=2Þ2 and the prob-
ability is enhanced by the extent and strength of the
magnetic field.

VI. EXCLUSION BOUNDS

For the benchmarks defined at the end of Sec. IV, we can
write the total number of photons, Nγ, converted from
scalars, per electron-laser-pulse collision as

Nγ ≃ NeLφ

Z
tþ
1

t−
1

dt
dRe→ϕ

dt
Pϕ→γ

¼ 4NeLφ

g2ϕγγB
2

m4
ϕ

Z
tþ
1

t−
1

dt
dRe→ϕ

dt
EϕðtÞ2sin2

�
m2

ϕL

4EϕðtÞ
�
:

ð32Þ

In the ξ ≪ 1 and m2
ϕL=4 ≪ Eϕ limit, neglecting coherence

effects, this simplifies to

Nγ ≃ Ne

ξ2Lφg2ϕγγg
2
ϕe

48π
ðBLÞ2

�
1 −

δ2

η2p

�
3=2

: ð33Þ

When coherence effects dominate we would find Nγ ∼ N2
e

rather than Nγ ∼ Ne. Outside the m2
ϕL ≪ Eϕ region Nγ

scales as m4
ϕ and, therefore, the bounds are less restrictive.

We assume that the laser pulses have duration
τ ¼ 100 fs, are of intensity parameter ξ ≃ 0.1, and are
produced at a rate of 1 Hz. We assume that each pulse
collides with a bunch of 1010 electrons of length l ¼ 10 μm
and that the experiment runs for a total of 100 hours. The
projected bounds from such an experiment with various
electron γp factors are shown in Fig. 6 for both tail-on and
head-on collisions. In deriving these projected bounds, we
have used the full expressions for the differential yield,
including coherence effects, and evaluated the expressions
numerically.
The first plot in Fig. 6 shows the projected exclusion

bounds for a tail-on collision, where we see that the
coherence effects are significant for all scalar masses,
and that a degradation effect scaling as m−4

ϕ begins at

FIG. 6. Projected exclusion bounds from the proposed exper-
imental setup with tail-on (top) and head-on (bottom) collisions
between the electron bunch and laser pulse with an ALPS I-like
detection region. The regions above the lines would be excluded,
and the coherence effects are only relevant for the tail-on
collisions.
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mϕ ∼ 0.1 meV. Increasing the γp factor of the incoming
electrons does not significantly affect the point at which
this degradation occurs, and in fact only suppresses the
coherence effects. In the second plot, we see the projected
exclusion bounds for a head-on collision, where the
coherence effects are entirely negligible. In this case,
however, the scale at which the m−4

ϕ degradation occurs
is significantly affected by the γp factor of the incoming
electrons. For γp ¼ 10 000 and 100 000 (electron energies
of ≃5 GeV and ≃50 GeV), the scale at which degradation
occurs is pushed to mϕ ≃ 10 eV and 100 eV, respectively.
Through the coupling of a scalar field to the electro-

magnetic field, a coupling between the scalar field and
nucleons is induced at one-loop order. The scalar-nucleon
coupling is severely constrained by both astrophysical and
lab-based fifth-force experiments [10]. The ALP-photon
coupling arises through a dimension-five operator in the
Lagrangian, and if one assumes that long-distance effects
occur at scales much larger than mϕ then the constraints
from fifth-force experiments imply that gϕγγðGeV−1Þ ≲
10−10 for mϕ ∼ 0.1 eV and gϕγγðGeV−1Þ ≲ 10−17 for
mϕ ∼ 10−6 eV. The CAST experiment also places a sim-
ilarly strong bound on the product of couplings
gϕegϕγγðGeV−1Þ ≲ 10−22 for mϕ ≲ 10−2 eV, and the deg-
radation of this bound for heavier masses scales as ∼m−4

ϕ

[14]. When the PVLAS experiment reported a signal
contradicting these bounds there were models proposed
which partially evaded these astrophysical and fifth-force
constraints by reducing the bounds by several orders of
magnitude [15–18]. Despite the fact that this result has
since vanished, the need for lab-based tests of light ALPs
coupled to photons and electrons is apparent.
The most recent results from lab-based experiments

imply a bound gϕγγðGeV−1Þ≲ 10−7 for mϕ ∼ 10−3 eV
and the degradation of this bound for heavier masses scales
as∼m−8

ϕ . These bounds from the ALPS I experiment are the
most sophisticated lab-based bounds available for light
scalar particles. Given the projected exclusion bounds
presented in Fig. 6, we conclude that the experimental
setup proposed in the current paper would provide an
excellent complementary set of lab-based bounds on the
parameter space of light scalar particles. The benefits here
are two-fold: from the tail-on collisions one is able to obtain
a high precision on the ALP-photon and ALP-electron
couplings at mϕ ≲ 10−4 eV, and from the head-on colli-
sions one is able to push the mass range over which these
experiments are sensitive to mϕ ≲ 100 eV. This could be
achieved, e.g., by using the 17.5 GeV electron beam from
the XFEL at DESY and combining it with an ALPS-style
dipole magnet. These results could be significantly
improved by better technology on the production side of
the experiment where the scalar particles are produced in
laser-electron collisions, i.e., through larger repetition rates,
denser electron bunches, or longer run times.

VII. CONCLUSION

We started by demonstrating the equivalence between
classical and quantum emission of scalar particles via
nonlinear Compton scattering in interactions between an
electron and an intense laser in the classical ℏ → 0 limit
(equivalently the disappearing lightfront momentum limit
ηp → 0), and detailed how these processes can be included
in PIC code simulations. (For a discussion on the pseudo-
scalar case, see Appendix.) We then looked at possible
coherence effects due to the dense population of the
electrons in the collision with the laser pulse. It is evident
that collisions in which the laser pulse collides with the
incoming electrons while traveling in the same direction
(i.e., θp ≃ 0, or “tail-on”) result in the largest coherence
effects, while “head-on” collisions (i.e., θp ≃ π) only result
in sizeable coherence effects for incoming electrons with
small γp factors. In experiments designed to produce and
detect exotic scalar particles in the lab, it is beneficial for
the scalar particles to be produced in a collimated “beam,”
i.e., θ ≃ 0 or π. We identified two scenarios in which this
occurs, one is tail-on collisions with γp ≳ 30, and the other
is head-on collisions with γp ≳ 300. An example exper-
imental setup was discussed that had the ability to produce
scalar particles through laser-electron interactions and
detected through the conversion of the scalar particle to
a photon in an external magnetic field. Assuming the same
detection technology present in the ALPS I experiment,
projected exclusion bounds on the product of the gϕe
and gϕγγ couplings were computed. In the tail-on collisions,
we have shown that bounds could be obtained on
gϕegϕγγðGeV−1Þ of the order 10−13 for scalar masses below
∼10−1 meV. These bounds are not competitive with the
bounds set by CAST or the fifth-force experiments, but as
explained in the text, those aremodel-dependent bounds that
may be evaded in certain theoretical models. In the head-on
collisions, we have shown that the degradation of the
exclusion bound on gϕegϕγγ can be push higher by increasing
the gamma factor of the electrons. This degradation point
could easily be pushed to 10–100 eV, much higher than in
CAST or the ALPs experiments. Beam dump experiments
also place experimental bounds on the size of the ALP-
electron coupling. In [46], bounds on the coupling of a
pseudo-scalar ALP to electrons was obtained from data
collected at previous flavor, reactor, and beam dump experi-
ments. These upper bounds are typically of the order
gϕe ≲ 10−4–10−3. A recent study has also analysed the
bounds on the ALP couplings that could be obtained from
the proposed LDMX experiment [47]. In [48], the results of
an LSW experiment performed with X-ray photons were
presented, providing bounds on the ALP-photon coupling
for masses up to ∼3 eV. Below mϕ ¼ Oð1Þ eV the bounds
are gϕγγ ≲ 10−3 GeV−1, and above this mass the bounds
decay exponentially with the bound at mϕ ¼ 3 eV being
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gϕγγ ≲ 0.1 GeV−1. A combination of these constraints with
the bounds on gϕe obtained at beam dump experiments gives
gϕγγgϕe ≲ 10−6 − 10−7 GeV−1 atmϕ ∼ 1 eV,which is of the
same order but weaker than the projected bounds displayed
in Fig. 6 of this paper. Also, the degradation point in the
projected exclusion bounds in this paper can be extended to
much larger ALP masses than those derived using the
combination of LSW and beam dump experiments. This
is because those combinations still rely on the production
of ALPs via photon conversion, whereas in the setup
described in this paper, it is replaced by nonlinear
Compton production.
Therefore, to conclude, the experimental setup suggested

could indeed probe interesting regions of parameter space
not yet studied in a completely lab-based environment, and
could provide very useful complementary bounds to those
obtained in other lab-based and astrophysical experiments.
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APPENDIX: PSEUDOSCALAR PRODUCTION
RATE IN THE CLASSICAL LIMIT

In addition to measuring massive scalars, there is
also much interest in measuring massive pseudoscalars
—particularly as a partial solution to the dark matter
question. Pseudoscalar creation from an electron in a laser
pulse was studied in [6,7], where it was found that in the
low-ηp limit, the rate was heavily suppressed. The
disappearance of the rate for pseudoscalar creation at
low seed-particle energies can be understood through
the classical limit. In the Weyl basis, the interaction
ϕψ̄γ5ψ ¼ ϕ½ψ̄LψL − ψ̄RψR�, and since classically, there is
no difference between left-handed and right-handed elec-
trons, it is consistent that the rate for pseudoscalar
creation should be identically zero. The QED pseudosca-
lar rate can be arrived at from the QED scalar rate
Eq. (16) by the replacement

4 − δ2 → −δ̃2;

where δ̃ ¼ mφ=m and mφ is the mass of the pseudoscalar.
Just as in the massive scalar case, this term must
disappear, and hence the ℏ → 0 limit is indeed identically
zero.
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