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We consider a supersymmetric model that uses partial compositeness to explain the fermion mass
hierarchy and predict the sfermion mass spectrum. The Higgs and third-generation matter superfields are
elementary, while the first two matter generations are composite. Linear mixing between elementary
superfields and supersymmetric operators with large anomalous dimensions is responsible for simulta-
neously generating the fermion and sfermion mass hierarchies. After supersymmetry is broken by the
strong dynamics, partial compositeness causes the first- and second-generation sfermions to be split from
the much lighter gauginos and third-generation sfermions. This occurs even though the tree-level soft
masses of the elementary fields are subject to large radiative corrections from the composite sector, which
we calculate in the gravitational dual theory using the AdS=CFT correspondence. The sfermion mass
scale is constrained by the observed 125 GeV Higgs boson, leading to stop masses and gauginos around
10–100 TeV and the first two generation sfermion masses around 100–1000 TeV. This gives rise to a
splitlike supersymmetric model that explains the fermion mass hierarchy while simultaneously predicting
an inverted sfermion mass spectrum consistent with LHC and flavor constraints. Finally, the lightest
supersymmetric particle is a gravitino in the keV to TeV range, which can play the role of dark matter.
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I. INTRODUCTION

The Higgs boson discovery at the LHC [1–3] has led to
new constraints on the parameter space of supersymmetric
models. In particular, the explanation of the 125 GeVHiggs
boson requires stop masses (or A-terms) which are large,
≳1 TeV, causing a significant increase in the tuning of
supersymmetric models. In addition, in order to ameliorate
the supersymmetric flavor problem without any additional
structure, the first- and second-generation sfermions are
required to have masses in the 100–1000 TeV range.
Satisfying these two requirements leads to a version of
split supersymmetry [4,5] dubbed minisplit [6,7] which
explains the 125 GeV Higgs boson while simultaneously
maintaining the successful features of supersymmetric
models such as gauge coupling unification and a dark
matter candidate. Of course, this comes at the price of a
meso-tuning, which may be a sign that we live in a
multiverse [5], or instead could possibly be explained by
a relaxion mechanism [8,9].

A knowledge of the sfermion mass spectrum has
important implications for collider and flavor experiments
seeking to discover supersymmetry. In split supersymmet-
ric models, the supersymmetry-breaking scale occurs near
the PeV scale, with sfermion masses in the range 10–
1000 TeV. Even though this hierarchy of sfermion masses
seems unrelated to the fermion mass hierarchy, it begs the
question as to whether these two hierarchies could in fact be
explained by the same mechanism. For example, a novel
way to account for the fermion mass hierarchy is the idea of
partial compositeness [10]. New strong dynamics is respon-
sible for operators with large anomalous dimensions that
linearly mix with elementary fermions. Assuming the
Higgs boson is elementary, a large Yukawa coupling then
arises for mostly elementary fermion mass eigenstates,
while mostly composite fermion mass eigenstates have a
correspondingly smaller Yukawa coupling. The hierarchy
of Yukawa couplings is therefore explained by a set of
operators with large, order-one anomalous dimensions.
If one now further assumes that the strong dynamics is

responsible for breaking supersymmetry, then an interesting
correlation between fermion and sfermion masses results
from partial compositeness. Supersymmetric operators that
linearly mix with elementary fermions can now communi-
cate supersymmetry breaking to the elementary sector. In this
way, composite sfermions obtain large supersymmetry
breaking masses, while elementary sfermions obtain hier-
archically smaller softmasses. The fermionmass hierarchy is
therefore inversely related to the sfermion mass hierarchy:
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light (elementary) stops correspond to heavy (elementary)
top quarks, while heavy (composite) selectrons are related to
the light (composite) electron. Together with the fact that
gauginos andHiggsinos are predominantly elementary—and
therefore lighter than the composite sfermions—a “split”
supersymmetric spectrum arises where the fermion mass
hierarchy is naturally explained. It is the anomalous dimen-
sions of the corresponding supersymmetric operators that
simultaneously controls the fermion and sfermion masses.
This contrasts with an alternative approach that radiatively
generates fermion masses from a sfermion anarchy [11].
A four-dimensional (4D), holographic description of

partial compositeness for the fermion mass hierarchy
was previously considered in Refs. [12,13]. In this paper,
we generalize this description to the supersymmetric case,
using results from Ref. [14]. Assuming that electroweak
symmetry is broken in the elementary sector (with an
elementary Higgs boson), we consider the linear mixing of
elementary superfields with supersymmetric operators in
the 4D dual gauge theory. This mixing is responsible not
only for the fermion mass hierarchy but also for the
transmission of the (dynamical) supersymmetry breaking
in the composite sector to the elementary sector. This leads
to relations that determine the fermion and sfermion mass
hierarchy in terms of the anomalous dimensions of super-
symmetric operators. These type of theories are similar to
single-sector models of supersymmetry breaking which
were originally proposed in Refs. [15,16] and further
studied in Refs. [17–21]. A shortened version of this work
summarizing the main results can be found in Ref. [22].
The nonperturbative nature of the strong dynamics only

allows the sfermion mass spectrum to be qualitatively
determined. To obtain a more detailed sfermion spectrum
that is consistent with a 125 GeV Higgs boson, we use the
anti-de Sitter/conformal field theory (AdS=CFT) corre-
spondence to model the strong dynamics associated with
partial compositeness in a slice of five-dimensional anti-de
Sitter space (AdS5) [23]. The supersymmetric Higgs sector
is localized on the UV brane, while supersymmetry break-
ing is confined to the IR brane. The supersymmetric matter
fields are bulk fields with the top quark (light fermions)
localized near the UV (IR) brane. In the dual, five-dimen-
sional (5D) gravity description, the overlap of fermion
profiles [24] with the UV-localized Higgs fields mimics the
partial compositeness and explains the fermion mass
hierarchy [25]. The Standard Model Yukawa couplings
are used to constrain the bulk fermion profiles, which then
determine the soft masses at the IR scale. Both the Higgs-
sector soft masses and the soft trilinear scalar couplings
arise at loop order, due to radiative corrections from the
bulk that transmit the breaking of supersymmetry.
Renormalization group evolution is then used to run the
soft masses down to the electroweak scale and obtain the
125 GeV Higgs mass. Using this procedure, we analyze
two benchmark scenarios: one for the case that the gaugino

masses arise from a singlet spurion and the other in a
nonsinglet spurion case. We find that the observed Higgs
mass naturally accommodates sparticle spectra that hier-
archically suppress the masses of the stops and the other
third-generation sfermions below the mass scale of the
first- and second-generation sfermions. In particular, if the
masses of the first- and second-generation sfermions are
restricted to be above 100 TeV to additionally suppress
flavor-changing neutral currents that arise in supersym-
metric models, the stop masses lie in the range 20–100 TeV,
while the masses of the lightest stau and neutralino may be
as low as 10 TeV. Previous attempts to explain the sfermion
mass hierarchy in a slice of AdS5 before the Higgs mass
was known were considered in Refs. [17,18]. The results
obtained in this paper are the first predictions for the
sfermion mass spectrum from partial compositeness that
are compatible with a 125 GeV Higgs boson. Additionally,
we include for the first time the full one-loop radiative
corrections to the bulk scalar soft masses squared, the Higgs-
sector soft terms, and the soft trilinear scalar couplings. For
stops and other UV-localized sfermions, these corrections
provide the dominant soft mass contributions, and accord-
ingly have important phenomenological consequences. For
the Higgs sector, they control the breaking of electroweak
symmetry.
A schematic diagram of a possible mass spectrum in the

partially composite supersymmetric model is depicted in
Fig. 1. It assumes an elementary Higgs sector interacting
with an elementary top quark sector (UV localized). The
first- and second-generation fermions are composites (IR
localized) of a strongly coupled sector that is also respon-
sible for dynamically breaking supersymmetry. The strong
dynamics therefore leads to a sfermion mass spectrum
that is inversely related to the fermion mass spectrum.
Furthermore, the graviton supermultiplet is elementary,
and, since it couples gravitationally, the gravitino receives

FIG. 1. Schematic diagram depicting a possible particle spec-
trum of the partially composite supersymmetric model. The left
(right) column depicts the fermions (bosons). The sfermion mass
hierarchy is inversely related to the fermion mass hierarchy and
the LSP is the gravitino.
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a small supersymmetry-breaking contribution, becoming
the lightest supersymmetric particle (LSP) with a mass
≳1 keV. This differs from other split-supersymmetry
models where the gravitino is usually the heaviest super-
partner. Finally, even though the first two generations of
matter are composite, gauge coupling unification still
occurs at approximately 1016 GeV, as in the usual super-
symmetric standard model [assuming any underlying
strong dynamics is SU(5) symmetric]. It should also be
noted that the elementary matter is present at the grand
unified theory (GUT) scale with order-one Yukawa cou-
plings. This helps one to avoid the tension that occurs from
Yukawa coupling unification in usual grand unification
scenarios, where the lighter first two fermion genera-
tions are elementary (do not mix with a composite sector),
and consequently have tiny Yukawa couplings at the
GUT scale.
The rest of this paper is summarized as follows: In

Sec. II, we review the idea of partial compositeness in the
context of the fermion mass hierarchy. This is then
generalized to a supersymmetric model when supersym-
metry is assumed to be broken by the strong dynamics. This
gives rise to a sfermion mass hierarchy that inverts the
fermion mass ordering. We then construct the gravitational
dual of this model in a slice of AdS5 in Sec. III. The soft
masses resulting from supersymmetry breaking on the IR
brane are calculated, including one-loop radiative correc-
tions from the bulk theory to the sfermions and Higgs
fields. In Sec. IV, we develop the parameter space available
in the 5D model and estimate the constraints arising
on this space from various phenomenological and
theoretical requirements. We select two representative
benchmark scenarios and perform a full numerical analysis.
We conclude by presenting the resulting spectra. In
Appendix A, we write down the partially composite theory
below the confinement scale in terms of component fields,
and then determine the mass eigenstates resulting from the
mixing of the elementary and composite sectors. Next, in
Appendix B, we summarize the zero-mode profiles for
fields in the bulk of a slice of AdS5, including their
deformations due to the presence of supersymmetry break-
ing on the IR brane. Finally, in Appendix C, we derive the
one-loop radiative corrections to scalar soft masses
squared, the Higgs soft b-term, and the soft trilinear scalar
couplings arising in the 5D theory after supersymmetry is
broken on the IR brane.

II. PARTIAL COMPOSITENESS

A. The fermion mass hierarchy

We begin by briefly reviewing how partial composite-
ness explains the fermion mass hierarchy [12,13]. Consider
two sectors, an elementary sector with a Weyl fermion ψ
and a composite sector with a (charge-conjugate) fermion
operatorOc

ψ. The scaling dimension of the fermion operator

is written as 3
2
þ δ, where δ denotes the deviation from the

canonical scaling dimension. The Lagrangian at the UV
scale, ΛUV, is taken to have the form

Lψ ¼ iψ†σ̄μ∂μψ −
1

Λδ−1
UV

ðψOc
ψ þ H:c:Þ; ð1Þ

where the Minkowski metric ημν ¼ diagð−;þ;þ;þÞ and
an order-one UV coefficient has been assumed in the
second term. The mixing term in (1) means that after
confinement at an IR scale, ΛIR, the mass eigenstates are an
admixture of elementary and composite states. This is
analogous to γ-ρ mixing in QCD. To obtain analytic
estimates of this mixing, the strong dynamics is assumed
to be described by a large-N gauge theory, where N is the
number of colors. In the large-N limit, the two-point
function for a composite operator, O can be written as
hOðpÞOð−pÞi ¼Pna

2
n=ðp2 þm2

nÞ to leading order in 1
N,

where an ¼ h0jOjni ∝
ffiffiffi
N

p
4π is the matrix element for O to

create the nth state from the vacuum and mn is the mass of
that state [26].
Applying these results to fermions, we consider a simple

three-state system containing an elementary Weyl fermion
ψ , together with a lowest-lying composite Dirac fermion

ðψ ð1Þ;ψcð1ÞÞ, with mass, mð1Þ
ψ ¼ gð1Þψ ΛIR, where gð1Þψ is an

order-one coupling. Note that having a composite Dirac
fermion follows from assuming that the strong dynamics
does not break any Standard Model gauge symmetries. The
Lagrangian at the scale ΛIR is given by

Lψ ¼ iψ†σ̄μ∂μψþ iψ†ð1Þσ̄μ∂μψ
ð1Þ þ iψ†cð1Þσ̄μ∂μψ

cð1Þ

−εψΛIRðψψcð1Þ þH:c:Þ−mð1Þ
ψ ðψ ð1Þψcð1Þ þH:c:Þ: ð2Þ

The dimensionless coupling εψ is defined at the IR scale
to be

εψ ≡ ε̃ψðΛIRÞ
ffiffiffiffi
N

p

4π
¼ 1ffiffiffiffiffiffi

Zψ

p �
ΛIR

ΛUV

�
δ−1

ffiffiffiffi
N

p

4π

≃
1ffiffiffiffiffi
ζψ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δ − 1

ðΛIR
ΛUV

Þ2ð1−δÞ − 1

s
; ð3Þ

where the running parameter ε̃ψðμÞ satisfies μ
dε̃ψ
dμ ¼

ðδ − 1Þε̃ψ þ ζψ
N

16π2
ε̃3ψ , ζψ is an order-one constant due to

the (unknown) strong dynamics [12], and the coefficient
Zψ is the wavefunction renormalization of the elementary
fermion. In the final expression we have taken the large-N
approximation of Zψ .
The diagonalization of the Lagrangian (2) generates

fermionic admixtures of the elementary and composite
states [27]. In particular, the massless fermion eigenstate is
given by
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jψ0i ≃N ψ

�
jψi − εψ

gð1Þψ

jψ ð1Þi
�

≃N ψ

(
jψi − 1

gð1Þψ

1ffiffiffiffiffi
ζψ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δ − 1

ðΛIR
ΛUV

Þ2ð1−δÞ − 1

s
jψ ð1Þi

)
ð4Þ

where N ψ is a normalization constant. This expression
shows that for δ ≥ 1 the mass eigenstate is mostly elemen-
tary, while for 0 ≤ δ < 1 the state has a sizeable composite
admixture. These admixtures play a crucial role in deter-
mining mass hierarchies.
At the UV scale, the chiral elementary fermions ψL;R are

coupled to the elementary Higgs field H via the Yukawa
interaction λψLψRH, where λ is an order-one proto-Yukawa
coupling and the Higgs field is assumed to develop a vacuum
expectation value (VEV) hHi ¼ v=

ffiffiffi
2

p
. Diagonalizing the

fermion Lagrangian at the IR scale with the Higgs contri-
bution gives the fermion mass expression

mψ ≃
λffiffiffiffiffiffiffiffiffiffiffi

ZLZR
p vffiffiffi

2
p N 2

ψ

≃

8>><
>>:

λ
ζψ
ðδ − 1Þ 16π2N

vffiffi
2

p δ ≥ 1;

λ
ζψ
ð1 − δÞ 16π2N

vffiffi
2

p
�

ΛIR
ΛUV

�
2ð1−δÞ

0 ≤ δ < 1;
ð5Þ

where for simplicity we have assumed that δ≡ δL ¼ δR,

gð1Þψ ≡ gð1ÞψL ¼ gð1ÞψR , εψ ≡ εψL
¼ εψR

, and explicitly included
the normalization factor from (4). The wavefunction coef-
ficientsZL;R are approximated as in (3), and for0 ≤ δ < 1we

have assumed εψ ≲ gð1Þψ . Notice that when δ ≥ 1 there is no
power-law suppression in the Yukawa coupling since the
mass eigenstates are mostly elementary and have order-one
couplings to the elementary Higgs field. This, for instance,
would explain the Yukawa coupling of the top quark. This
contrastswith the case0 ≤ δ < 1, where themass eigenstates
have a sizeable composite admixture with a power-law
suppressed Yukawa interaction (due to the fact that the
proto-Yukawa coupling λ in the elementary sector is divided
by the largewavefunction renormalization factor,

ffiffiffiffiffiffiffiffiffiffiffi
ZLZR

p
, at

the IR scale). These states describe the remaining light
fermions in the StandardModel, where for each flavor i there
is a corresponding operator with anomalous dimension δi.
Therefore, the hierarchical Yukawa couplings result from
order-one anomalous dimensions of operators. In the super-
symmetric generalization, these anomalous dimensions also
determine the magnitude of the corresponding sfermion
masses.

B. Supersymmetric partial compositeness

1. Chiral supermultiplet

Next, we consider the supersymmetric generalization of
partial compositeness. Consider the elementary chiral

superfield Φ ¼ ϕþ ffiffiffi
2

p
θψ þ θθF, where ϕ is a complex

scalar field, ψ is a Weyl fermion, and F is an auxiliary field.
In addition, we introduce a supersymmetric chiral operator
O ¼ Oϕ þ

ffiffiffi
2

p
θOψ þ θθOF. The scaling dimension of the

scalar operator is dimOϕ ¼ 1þ δO, the scaling dimension
of the fermion operator is dimOψ ¼ 3

2
þ δO, and the scaling

dimension of the auxiliary operator is dimOF ¼ 2þ δO,
where δO ≥ 0 [14].
The supersymmetric Lagrangian contains separate

elementary and composite sectors, together with linear
mixing terms of the form ½ΦOc�F for each chiral superfield.
The superfield Lagrangian at the scale ΛUV is given by

LΦ ¼ ½Φ†Φ�D þ 1

Λδ−1
UV

ð½ΦOc�F þ H:c:Þ ð6Þ

where Oc is the charge-conjugate composite operator with
anomalous dimension δ and we have assumed an order-one
UV coefficient.1 The composite sector is assumed to
confine at the infrared scale ΛIR, and thus, for the
large-N strong dynamics, the two-point function hOOi is
again assumed to be a sum over one-particle states. The
Lagrangian at the IR scale can be written as

LΦ¼½Φ†Φ�Dþ½Φcð1Þ†Φcð1Þ�Dþ½Φð1Þ†Φð1Þ�D
þεΦΛIRð½ΦΦcð1Þ�FþH:c:Þþmð1Þ

Φ ð½Φð1ÞΦcð1Þ�FþH:c:Þ;
ð7Þ

where Φð1Þ (Φcð1Þ) is the lowest-lying composite chiral

superfield corresponding to O (Oc) and mð1Þ
Φ ¼ gð1ÞΦ ΛIR is

the lowest-lying resonance mass, with gð1ÞΦ an order-one
coupling. Note that we have neglected heavier resonances
and higher-order terms in (7). The Lagrangian contains
mixing terms between the elementary superfield Φ and the
lowest-lying composite superfield Φcð1Þ. The dimension-
less constant εΦ is defined at the IR scale to be

εΦ ≡ ε̃ΦðΛIRÞ
ffiffiffiffi
N

p

4π
¼ 1ffiffiffiffiffiffi

ZΦ
p

�
ΛIR

ΛUV

�
δ−1

ffiffiffiffi
N

p

4π

≃

8>><
>>:

ffiffiffiffiffiffi
δ−1

p ffiffiffiffi
ζΦ

p
�

ΛIR
ΛUV

�
δ−1

δ > 1ffiffiffiffiffiffi
1−δ

p ffiffiffiffi
ζΦ

p 0 ≤ δ < 1;
ð8Þ

where ε̃Φ satisfies μ dε̃Φ
dμ ¼ ðδ − 1Þε̃Φ þ ζΦ

N
16π2

ε̃3Φ, with ζΦ
an order-one constant. Note that the supersymmetric
nonrenormalization theorem guarantees that εΦ only
depends on the wavefunction renormalization, unlike the

1A kinetic mixing between the elementary and composite
sectors of the form Λ−δO

UV ½Φ†Oþ H:c:�D has been omitted in our
minimal setup.
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nonsupersymmetric case, where the vertex renormalization
piece in (3) was neglected.
Just as for the fermions in Sec. II A, the mixing terms in

the Lagrangian (7) cause the scalar mass eigenstates to be
admixtures of elementary and composite states. The details
of this mixing are given in Appendix A. Using the result
(A4) and (8), the massless scalar eigenstate ϕ0 is given by

jϕ0i ≃N Φ

(
jϕi − 1

gð1ÞΦ
ffiffiffiffiffiffi
ζΦ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δ − 1

ðΛIR
ΛUV

Þ2ð1−δÞ − 1

s
jϕð1Þi

)
; ð9Þ

where ϕ is an elementary scalar, ϕð1Þ is the lowest-lying
composite scalar, and N Φ is a normalization constant.
Similarly to the fermion case (4), the massless scalar
eigenstates are mostly elementary for δ > 1, whereas for
0 ≤ δ < 1 they are an admixture of elementary and
composite states. In fact, supersymmetry guarantees that
the admixtures for both the fermion and scalar field in the
chiral multiplet are the same.

2. Vector supermultiplet

Next, we consider the supersymmetric generalization of
partial compositeness for gauge fields. For simplicity, we
consider the case of an Abelian U(1) gauge field, and
assume our discussion can be generalized to non-Abelian
gauge fields. In the nonsupersymmetric case, the source
field Aμ mixes with the conserved U(1) current Jμ and

induces a kinetic mixing of the form FμνFð1Þ
μν [27,28], where

Fð1Þ
μν is the field strength of the lowest-lying composite field,

Að1Þ
μ . To supersymmetrize this coupling we introduce

the vector superfield, V ¼ θ†σ̄μθAμ þ θ†θ†θλþ θθθ†λ†þ
1
2
θθθ†θ†D, with field strength superfield Wα ¼ λαþ

θαDþ i
2
ðσμσ̄νθÞαFμν þ iθθðσμ∂μλ

†Þα. The conserved cur-
rent Jμ can be embedded into a linear supermultiplet J ,
which satisfies the condition D2J ¼ D†2J ¼ 0 and guar-
antees current conservation [29].
The supersymmetric Lagrangian at the UV scale is

given by

LV ¼
�
1

4
½WαWα�F þ H:c:

�
þ 2ε̃V ½VJ �D; ð10Þ

where ε̃V is the mixing parameter. Since ½VJ �D can be
transformed into a kinetic term such as ½WαWα�F þ H:c:,
whereW is the field-strength superfield operator associated
with a composite vector superfield operator V, we omit
such a term in the Lagrangian.
After confinement, the IR Lagrangian for the source V,

together with the lowest-lying composite vector Vð1Þ, field-
strength superfield Wð1Þ

α , and chiral adjoint superfield Φð1Þ
V ,

can be written as

LV ¼
�
1

4
½WαWα�F þ 1

4
½Wð1ÞαWð1Þ

α �F þ H:c:

�

þ Λ2
IR

��
εVV þ gð1ÞV Vð1Þ þΦð1Þ

V þΦð1Þ†
Vffiffiffi

2
p

ΛIR

�
2
�
D

; ð11Þ

where gð1ÞV is the composite vector coupling, and the

dimensionless constant, εV ≡ ε̃VðΛIRÞ
ffiffiffi
N

p
4π parametrizes

the mixing at the IR scale. The running parameter ε̃VðμÞ
satisfies μ dε̃V

dμ ¼ ζV
N

16π2
ε̃3V , with ζV an order-one constant

that comes from the (unknown) strong dynamics. This
immediately leads to the solution

ε̃VðΛIRÞ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
ε̃2V
þ ζVN

8π2
logðΛUV

ΛIR
Þ

q ≃
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ζV logðΛUV
ΛIR

Þ
q 4πffiffiffiffi

N
p ; ð12Þ

where we have taken the large-N limit in the last term.
The Lagrangian (11) can be diagonalized to obtain the

mass eigenstates (the details are given in Appendix A).
Using (A15), the massless gauge boson eigenstate is found
to be

jAμ0i ≃N V

8<
:jAμi −

1

gð1ÞV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ζV logðΛUV

ΛIR
Þ

q jAð1Þ
μ i
9=
;; ð13Þ

where N V is the normalization constant and Að1Þ
μ is the

lowest-lying composite gauge boson. Assuming a large
hierarchy (ΛUV ≫ ΛIR) and order-one values for the
couplings, this expression shows that the massless eigen-
state is mostly elementary, but with a sizeable composite
admixture. The corresponding gauge coupling for this
massless state is given in (A20).
The gaugino part of the Lagrangian (11) is similarly

given in Appendix A, where it is shown to be a special case
(δ ¼ 1) of the fermion Lagrangian (2). After diagonalizing
the mass terms (see Appendix A), the massless gaugino
eigenstate becomes

jλ0i ≃N V

8<
:jλi − 1

gð1ÞV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ζV logðΛUV

ΛIR
Þ

q jλð1Þi
9=
;; ð14Þ

where we have used (A24) and λð1Þ represents the lowest-
lying composite gaugino. By supersymmetry, the overall
normalization constant, N V , and composite admixture are
the same as in (13).

3. Gravity supermultiplet

Next, we consider the supersymmetric generalization of
partial compositeness for gravity fields. In the nonsuper-
symmetric case the graviton hμν mixes with the conserved
energy-momentum tensor Tμν, inducing a kinetic mixing
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between the graviton and massive spin-2 resonances [27]
(which is completely analogous to graviton-f2 mixing in
QCD). In the supersymmetric extension, the graviton hμν
and gravitino ψμ can be embedded into the real super-
gravity field,

Hμ ¼−
1ffiffiffi
2

p ðθ†σ̄νθÞhμν− iθθθ†λ†μþ iθ†θ†θλμþ�� � ; ð15Þ

where we have assumed the gauge 1
2
ψμ ≡ λμ þ 1

3
σμσ̄

ρλρ
and only written the graviton and gravitino parts. The
conserved energy-momentum tensor Tμν can be embedded
into the supercurrent Θμ, which satisfies the condition
−iσ̄μDΘμ ¼ D†X, where X is an antichiral superfield, and
guarantees current conservation: ∂μTμν ¼ 0 [29]. The
supersymmetric Lagrangian at the UV scale is given by

LH ¼ 4

3
½HμEμ�D þ 2ε̃H

ΛUV
½HμΘμ�D; ð16Þ

where ε̃H is the mixing parameter and Eμ is the Einstein
superfield [30]. In an analogous fashion to the gauge boson
case, the IR Lagrangian after confinement can be written as

LH ¼ 4

3
½HμEμ�D þ 4

3
½Hð1Þ

μ Eð1Þμ�D
þ 2Λ2

IR½ðεHHμ þ gð1ÞH Hð1Þ
μ Þ2�D; ð17Þ

where εH ¼ ε̃HðΛIRÞ
ffiffiffi
N

p
4π and Hð1Þ

μ is a composite real super-
field with corresponding Einstein superfield Eð1Þμ. The
running parameter ε̃HðμÞ≡ ε̃Hffiffiffiffiffi

ZH
p μ

ΛUV
satisfies μ dε̃H

dμ ¼ ε̃Hþ
ζH

N
16π2

ε̃3H, with ζH an order-one constant that arises from the
(unknown) strong dynamics. The solution is then given by

ε̃HðΛIRÞ ¼
ΛIR

ΛUV

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
ε̃2H
þ ζHN

16π2

	
1 − ðΛIR

ΛUV
Þ2

r ≃

1ffiffiffiffiffiffi
ζH

p ΛIR

ΛUV

4πffiffiffiffi
N

p ;

ð18Þ

where, in the last term,we have taken the large-N limit. Since
the graviton couples to the energy-momentum tensor with
strength 1=MP (whereMP ¼ 2.4 × 1018 GeV is the reduced
Planck mass), we obtain the matching condition 1

MP
≡ εH

ΛIR
at

the IR scale, which leads to the relation

MP ≃
ffiffiffiffiffiffi
ζH

p
ΛUV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
ΛIR

ΛUV

�
2

s
≃

ffiffiffiffiffiffi
ζH

p
ΛUV: ð19Þ

The Lagrangian (17) contains mass mixing terms, and the
diagonalization details are given in Appendix A. Using
(A32), the massless graviton eigenstate is found to be

jhμν0i ≃N H

�
jhμνi −

1

gð1ÞH

ffiffiffiffiffiffi
ζH

p
ΛIR

ΛUV
jhð1Þμν i

�
: ð20Þ

Assuming ΛIR ≪ ΛUV, this shows that the massless eigen-
state is mostly elementary with a tiny composite admixture.
The gravitino part of the Lagrangian (17) is given in

Appendix A, where it is shown to be a special case (δ ¼ 2)
of the fermion Lagrangian (2). After diagonalizing the mass
terms (see Appendix A), the massless gravitino eigenstate
becomes

jψμ0i ≃N H

�
jψμi −

1

gð1ÞH

ffiffiffiffiffiffi
ζH

p
ΛIR

ΛUV
jψ ð1Þ

μ i
�
; ð21Þ

where we have used (A38) and ψ ð1Þ
μ represents the lowest-

lying composite gravitino. By supersymmetry, the
composite admixture is the same as in (20), and thus the
gravitino is again mostly elementary.

C. Supersymmetry breaking

Supersymmetry is assumed to be broken in the composite
sector by the strong dynamics and will be parametrized by a
composite spurion, chiral superfield, X ¼ θθF , where the
vacuum expectation value hF i≡ FX ≠ 0. In the large-N

limit, we have FX ∝
ffiffiffi
N

p
4π Λ2

IR [31].

1. Sfermion masses

Supersymmetry-breaking scalar masses are only gener-
ated for the composite sector fields, since there is no direct
coupling of the supersymmetry-breaking spurion to the
elementary fields. For instance, the massive chiral super-
field Φð1Þ directly couples to the supersymmetry breaking
in the composite sector via the following D-term:

ξ4
gð1Þ2Φ
Λ2
IR

½X†XΦð1Þ†Φð1Þ�D ¼ ξ4g
ð1Þ2
Φ

jFX j2
Λ2
IR

ϕð1Þ†ϕð1Þ; ð22Þ

where ξ4 is a dimensionless parameter, which for a large-N
gauge theory is proportional to 16π2

N [26]. This D-term
interaction gives a supersymmetry-breaking mass to the
composite scalar field ϕð1Þ. Given the scalar admixture (9),
the corresponding sfermion mass squared becomes

m̃2 ≃N 2
Φε

2
Φξ4

jFX j2
Λ2
IR

≃

8<
:

ðδ−1Þ
ζΦ

ðΛIR
ΛUV

Þ2ðδ−1Þξ4 jFX j2
Λ2
IR

δ ≥ 1;

ð1−δÞ
ζΦ

ξ4
jFX j2
Λ2
IR

0 ≤ δ< 1;

ð23Þ

where we have assumed εΦ ≲ gð1ÞΦ . Note that the sfermion
mass is power-law suppressed for δ > 1. This is because the
mass eigenstate is mostly elementary and therefore can

BUYUKDAG, GHERGHETTA, and MILLER PHYS. REV. D 99, 035046 (2019)

035046-6



only obtain a supersymmetry-breaking mass via mixing
with the composite sector. This contrasts with the case
0 ≤ δ < 1, where the mass eigenstate has a sizeable
composite admixture and therefore directly feels the
supersymmetry breaking from the composite sector without
any power-law suppression. In this way, a sfermion mass
hierarchy can be explained by anomalous dimensions of
supersymmetric operators.
Note, however, that as δ is increased beyond one, the

scalar mass squared becomes increasingly small, since the
scalar is becoming more elementary [using (9)]. Eventually,
radiative corrections are sufficiently large that they provide
the dominant contribution to the sfermion mass squared.
For instance, the sfermion-fermion-gaugino interaction
with a massive gaugino leads to the one-loop contribution

δm̃2 ≃
g2i

16π2
M2

λi
; ð24Þ

where gi (i ¼ 1, 2, 3) are the Standard Model Uð1ÞY ×
SUð2ÞL × SUð3Þ gauge couplings, respectively. Note that
this radiative correction is assumed to be finite. Therefore,
there is a maximum value of the anomalous dimension δ�,
beyond which the gaugino-mediated contribution (24)
dominates.

2. Gaugino masses

The spurion superfield X can also be used to generate
gaugino masses. Since the massless gaugino (14) contains a
λð1Þ admixture, supersymmetry breaking in the composite
sector is transmitted by the following interactions:

ξ3
2

gð1Þ2V

ΛIR
ð½XWαð1ÞWð1Þ

α �F þ H:c:Þ; ð25Þ

where ξ3 is proportional to 4πffiffiffi
N

p for a large-N gauge theory.

The supersymmetry-breaking interaction (25), adds the

Majorana mass term ξ3g
ð1Þ2
V

FX
2ΛIR

λð1Þλð1Þ þ H:c: to the gau-

gino mass terms in (A21). Note that there is no χð1Þ mass
term because the interaction ½XVð1Þ2�D is not gauge
invariant. Diagonalization of the mass matrix then leads
to a gaugino mass

Mλ ¼ N 2
Vε

2
Vξ3

FX

ΛIR
≃ g2ξ3

FX

ΛIR
; ð26Þ

where we have used the gauge coupling relation (A20) and
εV ≃ gsðΛIRÞ. The result (26) is consistent with simply
using (14) and the fact that the massless mode only has a
λð1Þ admixture. Notice that the gaugino mass is suppressed
by a logðΛUV=ΛIRÞ factor due to the fact that the elemen-
tary gaugino mixes with the composite sector via a
marginal coupling. This causes the gauginos to be

generically lighter than the heavy composite sfermions
with 0 ≤ δ < 1, leading to a “split” spectrum.
However when δ is greater than the critical value δ�, the

gaugino mass radiative correction (24) gives the dominant
contribution to the scalar masses. The critical value δ�

occurs when δm̃2 ≃ m̃2, and using (26) it takes the value

δ� ≃ 1þ
log
h
4π
gi
logðΛUV

ΛIR
Þ
i

logðΛUV
ΛIR

Þ ; ð27Þ

where we have included only the dominant gauge-coupling
contribution. Thus, for δ > δ�, the gaugino is heavier than
the corresponding sfermion mass by a factor of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αi=ð4πÞ

p
.

Note that when
ffiffiffiffiffiffiffi
FX

p
≫ ΛIR, the lightest gaugino

becomes a Dirac fermion with a mass

Mλ ≃ εVΛIR ≃
ΛIRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ζV logðΛUV
ΛIR

Þ
q : ð28Þ

This value parametrically matches the gaugino mass that
is found in a five-dimensional (5D) supersymmetric stan-
dard model where supersymmetry breaking arises from
“twisted” boundary conditions [17]. The Dirac limit can
also be seen in Fig. 2, which shows the elementary state
λ marrying the composite Weyl fermion χð1Þ as

ffiffiffiffiffiffiffi
FX

p
becomes larger, giving rise to a Dirac mass ∼gsðΛIRÞΛIR
that is smaller than the mass (A26) that applies whenffiffiffiffiffiffiffi
FX

p
≪ ΛIR.

3. Gravitino masses

The supersymmetry breaking from the composite sector
gives rise to a positive vacuum energy. This contribution
can be cancelled by introducing a constant superpotential
W, which induces a mass term for the elementary gravitino

−
1

4

W
M2

P
ψρ½σμ; σ̄ρ�ψμ þ H:c: ð29Þ

0.01 0.10 1 10 100
0.001

0.010

0.100

1

10

F /

M
/

FIG. 2. Gaugino mass eigenvalues for gð1ÞV ¼ 2, εV ¼ 0.3, and
ξ3 ¼ 1 as a function of the supersymmetry-breaking order
parameter FX.
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At the IR scale, this term becomes

−
1

4ZH

W
M2

P
ψρ½σμ; σ̄ρ�ψμ þ H:c:

≃ −
1

4ζH ε̃
2
H

4πffiffiffiffi
N

p FXffiffiffi
3

p
MP

ψρ½σμ; σ̄ρ�ψμ þ H:c:; ð30Þ

where ZH is defined from ε̃HðΛIRÞ in Sec. II B 3 and in

the second equation, we have tuned jFX j2 N
16π2

≃ 3
jWj2
M2

P
so that

the cosmological constant vanishes. Note that this means the
elementary sector is supersymmetric AdS4, withMinkowski
space obtained after the “uplift” from the supersymmetry-
breaking composite sector. Diagonalization of the mass
matrix [given in (A36)] with the inclusion of (30) then leads
to a gravitino mass

m3=2 ≃ ξ3
FXffiffiffi
3

p
MP

; ð31Þ

where FX ≪ ΛIRMP,N H ≃ 1, and ξ3 ¼ 1
ζH ε̃

2
H

4πffiffiffi
N

p . The result

(31) is consistent with simply using (21) and the fact that
the massless mode is mostly elementary. Since ΛIR ≪ MP,

the gravitino is generically much lighter than the heavy
composite sfermions with 0 ≤ δ < 1. There is also a heavy

Dirac gravitino mostly comprised of ψ ð1Þ
μ and χð1Þμ with mass

∼ðgð1Þ2H þ ε2HÞ1=2ΛIR.
In the opposite limit FX ≫ ΛIRMP, one gravitino Weyl

state decouples, and the elementary state ψμ marries the

composite state ψ ð1Þ
μ [17] such that the lightest gravitino

then becomes a Dirac fermion with a mass m3=2 ≃ gð1ÞH ΛIR.
This is similar to what occurs for the gaugino, except that
since the mixing is very small, the Dirac limit is reached
much more slowly for the gravitino.

4. Higgs soft mass

There is no direct coupling of the supersymmetry-
breaking spurion to the elementary fields, and therefore
the Higgs soft mass can only be generated radiatively, via
loops of fields with a composite admixture. In particular,
gaugino and sfermion loops can transmit the supersym-
metry-breaking effects to the elementary sector.
The first type of sfermion contributions are due to

Yukawa interactions. These lead to the Higgs soft mass
squared

ðΔm2
HÞy ≃

y2δðΛIRÞ
16π2

m̃2 log

�
ΛIR

TeV

�

≃
λ2

16π2
N 2

Φ
Z2
Φ
m̃2 log

�
ΛIR

TeV

�

≃
16π2λ2

N2

N 4
Φ

ζ3Φ

�
δ − 1

1 − ðΛIR
ΛUV

Þ2ðδ−1Þ
�

3
�
ΛIR

ΛUV

�
2ðδ−1Þ

ξ4
jFX j2
Λ2
IR

log

�
ΛIR

TeV

�
; ð32Þ

where yδðΛIRÞ≡mψ=hHi is the Yukawa coupling from Sec. II A with δ ¼ δL ¼ δR chosen for simplicity, λ is the proto-
Yukawa coupling, N Φ is a normalization constant given in (A4), and ZΦ is defined in (8).
The second type of sfermion corrections are due to D-term gauge interactions and the mixing term V −Φð1Þ

V . Since the

scalar and the auxiliary field component of Φð1Þ
V mediates the supersymmetry breaking, the easiest way to estimate the

D-term contribution is to approximately solve for Φð1Þ
V in order to determine how the elementary D-term is coupled to

the composite sfermions. This procedure generates the following correction:

ðΔm2
HÞD ≃ YðHÞYðϕÞ g1ðΛIRÞ

8π2
εV

0
B@log

�
ΛIR

TeV

�
þ N 2

Φ

2ε2Φ

	
1þ m2

Φ1

Λ2
IR



1
CAm̃2

≃ YðHÞYðϕÞ g1ðΛIRÞ
8π2

εVN 2
Φ

0
B@logðΛIR

TeVÞ
ζΦ

δ − 1

ðΛIR
ΛUV

Þ2ð1−δÞ − 1
þ N 2

Φ

2
	
1þ m2

Φ1

Λ2
IR



1
CAξ4

jFX j2
Λ2
IR

; ð33Þ

where g1 is the Uð1ÞY gauge coupling, Y denotes the hypercharge, and m2
Φ1

¼ ðε2Φ þ gð1Þ2Φ ÞΛ2
IR.

Finally, the corrections that involve gauginos arise from gauge interactions. The dominant contribution is given by

ðΔm2
HÞg ≃ 4CðRHÞN 2

V
g22ðΛIRÞ
8π2

M2
λ log

�
ΛIR

TeV

�
; ð34Þ
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where g2 is the SU(2) gauge coupling and CðRÞ is the
quadratic Casimir of the representation R. In Fig. 3, we
plot the approximate expressions (32), (33), and (34)
for a single sfermion [with YðϕÞ ¼ 1] and gaugino,
assuming

ffiffiffiffiffiffiffiffiffiffiffiffi
ξ4=ζΦ

p
FX ¼ξ3FX ¼ð4.75×1010GeVÞ2, ΛIR ¼

2 × 1016 GeV, ΛIR
ΛUV

≃ 0.026, gð1ÞΦL
gð1ÞΦR

16π2

N λ ≃ 1, gð1Þ2V ≃ g25k,

and ζΦi;V ≃ 1=gð1Þ2Φi;V
, where i ¼ L, R. Furthermore, for later

comparison with the 5D calculation, we use values for m2
Φ1

and m2
V1

corresponding to the 5D Kaluza-Klein masses.
Only the maximal contribution arising from the Yukawa
interaction (corresponding to δL ¼ δ and δR ¼ 1) is shown
in the figure. All contributions are qualitatively similar to
the precise 5D results that are given in Sec. III C and
calculated in Appendix C.

D. Higgsino mass

Since the Higgs supermultiplet is elementary, there is no
direct coupling to the supersymmetry-breaking spurion in
the composite sector, and therefore the generation of a μ-
term via a Giudice-Masiero mechanism [32] is forbidden.
Instead, to generate a sizeable μ-term, we consider the
Kim-Nilles mechanism [33] and introduce an elementary
Standard Model singlet S, together with a global U(1)
Peccei-Quinn symmetry, where Hu,Hd, S have the charges
þ1, þ1, −1, respectively.2 This global symmetry then
allows the following nonrenormalizable superpotential
term:

WKN ¼ κμ
2MP

S2HuHd; ð35Þ

where κμ is a dimensionless coupling. Assuming that the
Peccei-Quinn symmetry is spontaneously broken by a
nonzero vacuum expectation value hSi ∼ f, an effective
μ-term of size

μ ≃
κμf2

2MP
ð36Þ

is then generated. Since the global symmetry is anomalous
(and assuming all other sources of breaking are small), the
pseudo Nambu-Goldstone boson associated with the spon-
taneous symmetry breaking can be identified with the
axion. This axion is of the invisible DFSZ type, and is
consistent with the present astrophysical constraints pro-
vided that 109 GeV≲ f ≲ 1012 GeV. For this range of f,
the μ-term (36) can easily accommodate values in the
range 0.1 TeV≲ μ≲ 100 TeV. Thus, using the Kim-Nilles
mechanism, we can solve the strong-CP problem and
generate the required values of the μ term.

E. The sfermion mass hierarchy

In a supersymmetric model, partial compositeness relates
the fermion and sfermion mass hierarchies. To explicitly
see this relation we consider a numerical example involving
the electron and the top quark. In order to explain the
fermion mass hierarchy, the top quark must be mostly
elementary with δt > 1 (i.e., irrelevant mixing), while the
electron must have a sizeable composite admixture with
0 < δe < 1 (i.e., relevant mixing). Using the fermion mass
expressions (5), the ratio of the Yukawa couplings at the IR
scale is then given by

ye
yt

≃
1 − δe
δt − 1

�
ΛIR

ΛUV

�
2ð1−δeÞ

: ð37Þ

The ratio of the electron to the top-quark Yukawa coupling
is determined in terms of δe;t, and for a sufficiently large
hierarchy between ΛIR and ΛUV, depends sensitively on the
anomalous dimension δe. It is plotted in Fig. 4 for various
values of ΛIR=ΛUV, assuming that the Yukawa coupling
ratio is approximately ye=yt ≃ 10−5 over most IR scales.
Note that (37) is a simplified expression for δ values not
very close to one, but exact expressions are used in the
figure.
Using the sfermion mass expressions (23) and (24), we

similarly obtain the ratio of the selectron mass squared to
the stop mass squared at the IR scale:

m2
ẽ

m2
t̃

¼

8>><
>>:

1−δe
δt−1

	
ΛIR
ΛUV



2ð1−δtÞ δt < δ�t ;

4π
α3
ð1 − δeÞlog2

	
ΛUV
ΛIR



δt ≥ δ�t :

ð38Þ

Note that this expression is separately valid for left- and
right-handed scalar masses and only the gluino contribution

( mH)y

( mH)D

( mH)g1

( mH)g2

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.1

0.5

1

5

10

50

100
m

H
[T

eV
]

FIG. 3. One-loop corrections to the Higgs mass parameter that
arise from gauge, Yukawa, and D-term interactions due to a
single sfermion or gaugino as a function of the anomalous
dimension δ.

2To allow for Yukawa interactions with the Higgs fields, the
fermions Q, L, ū, d̄, ē must have charges −1, −1, 0, 0, 0,
respectively.
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is included in (24) for the gaugino-mediated contribution to
the stop mass squared. Interestingly, the two expressions
(37) and (38) differ only in the exponents for δt < δ�t , while
for δt ≥ δ�t the ratio no longer depends on δt. As shown in
Fig. 4, the allowed region is 0≲ δe ≲ 0.9 and 1≲ δt ≲ 1.8,
depending on the value of ΛIR=ΛUV. The largest value of
the ratio mẽ=mt̃ is approximately 140 (390) for ΛIR=
ΛUV ≃ 10−3ð10−16Þ. Note that the Yukawa coupling ratio
contours in Fig. 4, end at δ�t because the sfermion mass ratio
becomes approximately constant as seen in (38).
Although these are naïve tree-level results obtained at the

IR scale, they clearly reveal an inverted mass hierarchy for
the sparticle spectrum where mẽ=mt̃ ∼ 10–350. To obtain a
physical mass spectrum, this range is further restricted due
to renormalization group (RG) effects. We next include
these effects, as well as a number of phenomenological
constraints, such as the 125 GeV Higgs boson. Since the
strong dynamics is nonperturbative, the AdS=CFT corre-
spondence is used to calculate the mass spectrum in a slice
of five-dimensional AdS.

III. THE FIVE-DIMENSIONAL PICTURE

A. Supersymmetry in a slice of AdS

We consider a warped five-dimensional spacetime
ðxμ; yÞ, where μ ¼ 0, 1, 2, 3 are the 4D coordinates and
−πR ≤ y ≤ πR is the coordinate of an extra dimension

compactified on a S1=Z2 orbifold of radius R. The
spacetime metric is anti-de Sitter, given by

ds2 ¼ e−2kjyjημνdxμdxν þ dy2 ≡ gMNdxMdxN; ð39Þ

where k is the AdS curvature scale and capital Latin indices
M ¼ ðμ; 5Þ label the 5D coordinates. The 5D spacetime is a
slice of AdS5 geometry, bounded by two 3-branes located
at the orbifold fixed points: a UV brane at y ¼ 0 and an IR
brane at y ¼ πR.3

The cutoff scale of the UV brane is ΛUV ¼ M5, where
M5 is the 5D Planck scale, while the scale of the IR brane is
ΛIR ¼ ΛUVe−πkR. The 4D reduced Planck mass, MP, is
given by [23]

M2
P ¼ M3

5

k
ð1 − e−2πkRÞ ≃M3

5

k
; ð40Þ

where we are assuming πkR ≫ 1. Note that this expression
is consistent with the result (19) derived from partial
compositeness. In order for the classical metric solution
to be valid, the AdS curvature must be small enough
compared to the 5D Planck scale so that higher-order
curvature terms in the 5D gravitational action can be
neglected. This requires k=M5 ≲ 2 [37], but, in the follow-
ing, we have taken k to be generically smaller, choos-
ing k=M5 ¼ 0.1.
Besides gravity, we introduce the matter and gauge field

content of the minimal supersymmetric standard model
(MSSM) in the bulk. Since only Dirac fermions are allowed
by the 5D Lorentz algebra, the bulk supersymmetry has
eight supercharges, corresponding to N ¼ 2 supersym-
metry (SUSY) from the 4D perspective. All fields that
propagate in the AdS bulk are thus in N ¼ 2 representa-
tions of supersymmetry, but the orbifold compactification
breaks this to an N ¼ 1 supersymmetry at the massless
level, preserving four supercharges [17,25]. The massless
modes which form this 4D MSSM are the zero-mode
solutions in the Kaluza-Klein (KK) decompositions of the
5D fields.
The zero-mode profiles for the bulk fields are summa-

rized in Appendix B. In a bulk hypermultiplet, the fermion
and scalar zero-mode profiles depend on the bulk fermion
mass parameter c. By the AdS=CFT correspondence, the
scaling dimension of fermionic operators in the 4D dual
theory is dimOψ ¼ 3

2
þ jc� 1

2
j, and for scalar operators it

is dimOϕ ¼ 1þ jc� 1
2
j, where the upper (lower) sign is

used for left-handed (right-handed) fields. Thus, there is
direct relation δi ¼ jci � 1

2
j between the anomalous dimen-

sions δi in the 4D dual theory (introduced in Sec. II B) and
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FIG. 4. Values of the anomalous dimensions δe and δt that give
rise to the electron to top-quark Yukawa coupling ratio. The
approximately horizontal lines are contours of the ratio ΛIR=ΛUV,
while the approximately vertical lines are contours of the tree-
level sfermion mass ratio mẽ=mt̃. The running of the Yukawa
couplings has been included, assuming ΛUV ¼ 1018 GeV,
tan β ¼ 3, and a supersymmetric mass threshold at 50 TeV.

3We do not specify a particular mechanism to stabilize
the extra dimension. In a supersymmetric theory, one possibility
is supersymmetrization of the Goldberger-Wise mechanism
[34–36].
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the bulk fermion mass parameters ci. Furthermore, for a
bulk vector supermultiplet, the zero-mode profiles of the
gauge field and gaugino field are flat, such that the bulk
mass parameter of the Majorana fermion gaugino is c ¼ 1

2
.

Similarly, the gravity supermultiplet contains a graviton
with the UV-localized zero mode (∝ e−ky) and a spin-3

2

Rarita-Schwinger fermion (the gravitino), whose bulk mass
parameter is fixed to be c ¼ 3

2
.

The warped geometry naturally generates a separation of
scales that can be used to explain the hierarchy between the
scale of supersymmetry breaking and the Planck scale. The
IR brane is therefore identified with the scale where
supersymmetry is broken; the bulk and UV brane remain
supersymmetric. The Higgs fields are localized on the UV
brane, while the rest of the MSSM fields propagate in the
bulk and couple to the Higgs fields with brane-localized
Yukawa couplings. As discussed in Sec. III B, the degree of
overlap between a particular bulk fermion zero-mode
profile and a UV-localized Higgs field determines its
effective 4D Yukawa coupling and thus the size of the
corresponding fermion mass. In this setup, third-generation
fermions are therefore UV localized, whereas the lighter
first- and second-generation fermions are more IR local-
ized. Including the SM gauge fields, the gauginos, and
gravity, a full schematic diagram of the 5D model is
depicted in Fig. 5.
Since the localization of the fermion in each chiral

supermultiplet determines the corresponding scalar
localization, this 5D fermion geography has distinctive
consequences in the SUSY sector: the third-generation
sfermions are generally UV localized and the first- and

second-generation sfermions are IR localized. Due to the
properties of localization, the effective coupling strength of
each superfield on the IR brane is inversely related to its
coupling strength on the UV brane. Therefore, when
supersymmetry is broken on the IR brane, as discussed
in Sec. III C, the localization of the sfermions induced by
the fermion mass spectrum results in an inverted scalar soft
mass spectrum: light fermions have heavy superpartners,
while heavy fermions have light superpartners. We next
construct the details of this distinctive supersymmetric
particle spectrum.

B. The fermion mass hierarchy

Consider first the generation of the fermion mass
hierarchy [25,38]. In our 5D spacetime, the SM fermion
mass hierarchy is determined from the overlap of the bulk
SM fermion zero modes with the UV-localized Higgs
fields. The Yukawa interactions take the form

S5¼
Z

d5x
ffiffiffiffiffiffi
−g

p
Yð5Þ
ij ½Ψ̄iLðxμ;yÞΨjRðxμ;yÞþH:c:�HðxμÞδðyÞ

≡
Z

d4x½yijψ̄ ð0Þ
iL ðxμÞψ ð0Þ

jR ðxμÞHðxμÞþH:cþ����; ð41Þ

where the Yð5Þ
ij (with flavor indices i, j ¼ 1, 2, 3) are

dimensionful (inverse mass) 5D Yukawa couplings, ΨLðRÞ
is a Dirac spinors that contains an SUð2ÞL doublet (singlet)
of the MSSM as its zero mode, and H is the appropriate
Higgs field. Using the 5D fermion zero-mode4 profiles
(B3), the effective 4D SM Yukawa couplings yij are then
given by [25]

yij ¼ Yð5Þ
ij f̃

ð0Þ
iL ð0Þf̃ð0ÞjR ð0Þ

¼ Yð5Þ
ij k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
− ciL

e2ð12−ciLÞπkR − 1

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
þ cjR

e2ð12þcjRÞπkR − 1

s
: ð42Þ

By assuming that the dimensionless 5D couplings Yð5Þ
ij k are

of order one, and since πkR ≫ 1, the hierarchy in the 4D
Yukawa couplings yij is generated by the order one bulk
mass parameters ci of the fermions. Recall that in the 4D
dual theory, this is equivalent to choosing the anomalous
dimensions δi.
After electroweak symmetry breaking, the neutral com-

ponents of each MSSM Higgs doublet acquire VEVs, vu ¼
hH0

ui and vd ¼ hH0
di, which are related by tan β≡ vu=vd,

and the fermions obtain masses

ðmeÞij ¼ ðyeÞijv cos β; ð43aÞ

FIG. 5. Schematic diagram of the 5D model with the Higgs
fields, Hu;d, localized on the UV brane and supersymmetry
broken on the IR brane. The Yukawa coupling hierarchy requires

that the lighter first- and second-generation fermions ψ ð0Þ
1;2 (and

their superpartners ϕ̃ð0Þ
1;2) are IR localized (dark gray line) and the

heavier, third-generation fermions ψ ð0Þ
3 (and their superpartners

ϕ̃ð0Þ
3 ) are UV localized (light gray line). The vector super-

multiplet, Að0Þ
μ and λð0Þ, (dashed line) is not localized, while

the gravity multiplet, hð0Þμν and ψ̃ ð0Þ
μ , (dotted line) is UV localized.

4Use of the zero-mode approximation for the profiles, where
the backreaction of the boundary Higgs-generated fermion mass
is neglected, is a valid approximation provided v2=Λ2

UV ≪ 1.
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ðmdÞij ¼ ðydÞijv cos β; ð43bÞ

ðmuÞij ¼ ðyuÞijv sin β; ð43cÞ

where ðmu;d;eÞij and ðyu;d;eÞij are the SM fermion mass and
Yukawa coupling matrices, respectively, and v2 ≡ v2u þ
v2d ≃ ð174 GeVÞ2 is the SM Higgs VEV. In the mass basis,
these matrices are diagonal. Neglecting quark mixing (see
Refs. [39,40] for a fuller treatment) the interaction basis
coincides with the mass basis, resulting (given values for

tan β and ΛIR) in a system with 24 free parameters ðYð5Þ
e;d;uÞii

and cLi;ei;Qi;di;ui and nine constraint equations following
from (43). If we take a universal value for the 5D Yukawa

couplings such that ðYð5Þ
e;d;uÞii ¼ Yð5Þk, there remains one

parameter degree of freedom within each generation of
leptons and within each generation of quarks, which we
choose as the doublet c parameters cLi;Qi

, without loss of
generality.
The relations (43) hold for the runningmasses. Ultimately,

we are interested in the bulk mass parameters at the IR-brane
scale, where they determine the soft masses received by the
sfermions when supersymmetry is broken. Therefore, before
we perform the 4D-5DYukawa matching, we first evolve the
4D Yukawa couplings to the IR-brane scale. We discuss the
procedure we use to consistently perform the renormaliza-
tion in Sec. IVB 1. In Fig. 6, we give an example of the
resulting matching, showing the allowed range of local-
izations (c parameters) of the SM leptons and quarks when
the 5DYukawa coupling takes the universal value Yð5Þk ¼ 1

and ΛIR¼2×1016GeV. Generally, we see that the largeness
of the third-generation Yukawa couplings requires the
third-generation fermions for both leptons and quarks to
be UV-localized (white region), while the smaller Yukawa
couplings of the first and second generations lead to IR
localization (darker gray region). Although it is always
possible to make one of the chiral fermions in each
generation UV-localized, only for the third generation can
this be done without making at least one of the other chiral
fermions IR localized.
We note in passing that in the quark sector, since both

singlet fields in a given generation must be separately
matched to the same doublet field according to (42), the
asymmetry between the 4D couplings yui and ydi precludes

the solution cQi
¼ −cdi ¼ −cui unless yui=ydi ¼ Yð5Þ

ui =Y
ð5Þ
di
.

In this case, the 4DYukawa coupling hierarchies are simply
moved into the 5D couplings. This behavior is an indication
of the universality of the warped extra dimension: while it
can explain the magnitude of the Yukawa coupling hier-
archies, since it is flavor-blind, the underlying flavor
structure remains as an order-one feature. In practice, we
take Yð5Þk to have a universal value and absorb the flavor
structure completely into the quark c parameters. A similar
situation does not arise in the lepton sector as we do not

include Yukawa couplings for the neutrinos. Neutrinos can
be naturally incorporated in a warped extra dimension to
generate the required neutrino masses [24,41–44].

C. Supersymmetry breaking

Supersymmetry is assumed to be broken on the IR brane
and is parametrized by the introduction of a spurion
superfield X ¼ θθFX that couples to the sfermions and
the gauginos. The sfermions and gauginos acquire tree-
level soft masses with a characteristic scale F=ΛIR, where
F ¼ FXe−2πkR, modulated by their overlap with the IR
brane. A gravitino mass of order F=MP is generated by the
super-Higgs effect. The Higgs fields receive no tree-level
soft masses, as they are confined to the UV brane and do
not couple directly to the supersymmetry-breaking spurion.
We do not include any mechanism to generate tree-level
trilinear soft scalar couplings, although, like the Higgs-
sector soft terms, they arise radiatively.
Contributions to the soft masses also generically arise

from anomaly mediation. Since the gravitino mass is
Planck-scale suppressed (as opposed to the other soft
masses, which are suppressed by the IR-brane scale), the
anomaly-mediated contribution typically is subdominant
to the effects (both at tree level and loop level) of the

FIG. 6. Contours of the effective 4D Yukawa coupling (42) at
the IR-brane scale as a function of the localization parameters cL
and cR of the bulk fermion fields for tan β ¼ 3, ΛIR ¼
2 × 1016 GeV, and Yð5Þk ¼ 1. The dashed gray lines give
contours of the Yukawa coupling strength. In color are contour
lines corresponding to the coupling strengths of the SM Yukawa
couplings at the IR-brane scale. The region in which each field is
IR localized is shaded light gray and the region where both fields
are IR-localized is darker gray.

BUYUKDAG, GHERGHETTA, and MILLER PHYS. REV. D 99, 035046 (2019)

035046-12



supersymmetry-breaking sector on the IR brane. An addi-
tional source of supersymmetry breaking arises due to the
stabilization of the radion of the extra dimension, which
generically requires a nonzero F-term for the radion
superfield (equivalently, the introduction of a constant
superpotential on the IR brane). The scale of the radion-
mediated contribution to the soft masses depends on the
details of the stabilization model. We are interested in the
regime where such effects are subdominant to the effects
of the supersymmetry-breaking sector on the IR brane. In
the model of Ref. [36], this can be accomplished if the
Goldberger-Wise bulk hypermultiplet is sufficiently UV
localized.

1. Gravitino mass

When supersymmetry is spontaneously broken on the IR
boundary, the effective 4D cosmological constant receives a
positive contribution from the VEV of FX. In the 5D
warped geometry, this contribution can be canceled by the
addition of a constant superpotential W on the UV brane
[36,45–50], which introduces a boundary mass term for the
gravitino:

S5 ¼
Z

d5x
ffiffiffiffiffiffi
−g

p �
1

4

W
M3

5

ψμ½σμ; σ̄ν�ψν þ H:c:

�
δðyÞ: ð44Þ

The cosmological constant vanishes when

jFj2 ≃ 3
jWj2
M2

P
; ð45Þ

such that the lightest gravitino obtains a Majorana mass:

m3=2 ≃
Fffiffiffi
3

p
MP

: ð46Þ

This is the super-Higgs effect.5 Again, higher-order terms
can be included to account for the back reaction of the
gravitino boundary mass, although in practice this is not
necessary in the relevant regions of our parameter space. As
expected, due to the universality of gravity, this matches the
usual 4D result. Since the gravitational coupling is Planck-
scale suppressed, the gravitino mass is lower than the
characteristic soft mass scale F=ΛIR by a warp factor, and
the gravitino is therefore always the LSP in the relevant
regions of parameter space. This is consistent with the
partial compositeness result (31) in the 4D dual theory,
where the gravitino is mostly an elementary state.

2. Gaugino masses

For a field strength superfield Wa of a vector super-
multiplet Va containing a standard model gauge field Aa

μ

and its Majorana fermion gaugino superpartner λa (where a
is the gauge index), we introduce the interaction

S5¼
Z

d5x
ffiffiffiffiffiffi
−g

p Z
d2θ

�
1

2

X
ΛUVk

WαaWa
αþH:c:

�
δðy−πRÞ:

ð47Þ
This term gives rise to a boundary Majorana mass for the
gaugino field and breaks supersymmetry, shifting the
masses of the Kaluza-Klein modes up such that there is
no longer a massless gaugino zero-mode solution. At tree
level, the lightest KK mass is

Mλ ≃
g25k
2πkR

F
ΛIR

¼ g2
F
ΛIR

; ð48Þ

where g25k ¼ ð2πkRÞg2. This mass expression (48) assumes
the zero-mode approximation for the profiles, where the
back reaction of the boundary Majorana mass is neglected,
an approximation that is valid provided

ffiffiffiffi
F

p
=ΛIR ≲ 1. In

practice, we include terms higher order in
ffiffiffiffi
F

p
=ΛIR. The

mass for arbitrary F can be determined by solving the full
KK mass quantization condition (see Refs. [17,25]). Note
that the gaugino masses are suppressed relative to F=ΛIR by
g2 ∼ g25=πkR, the square of the 4D gauge coupling [49],6 and
hence the gauginos in general obtain masses suppressed
below those of sfermions with flat profiles (�c ¼ 1

2
). This

suppression matches that found in (26), as expected from the
AdS=CFT dictionary.
If the supersymmetry-breaking sector does not contain

any singlets with large F-terms, the interaction (47) is
forbidden. In this case, with a nonsinglet spurion X, the
leading contribution to the gaugino masses is [51]

S5¼
Z

d5x
ffiffiffiffiffiffi
−g

p Z
d4θ

�
1

2

X†X
Λ3
UVk

WαaWa
αþH:c:

�
δðy−πRÞ;

ð49Þ
such that

Mλ ≃
g25k
2πkR

F2

Λ3
IR

¼ g2
F2

Λ3
IR
: ð50Þ

Except in the regime
ffiffiffiffi
F

p
∼ ΛIR, this mass is highly sup-

pressed, and other supersymmetry-breaking contributions
such as radion mediation may dominate.

5Note that a constant superpotential can also be introduced on
the IR brane, as is generically expected in the context of radion
stabilization. However, such a superpotential provides a positive
contribution to the cosmological constant, and so it cannot be the
sole source for the gravitino mass.

6The gauge-coupling dependence arises since we assume a
generic GUT symmetry that is broken by the Higgs mechanism
on the UV brane, separated from the supersymmetry-breaking
sector on the IR boundary.
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3. Sfermion masses

For a chiral supermultiplet Φ containing a Weyl fermion
ψ and its complex scalar superpartner ϕ, we introduce the
interaction

S5 ⊃
Z

d5x
ffiffiffiffiffiffi
−g

p Z
d4θ

X†X
Λ2
UVk

Φ†Φδðy − πRÞ: ð51Þ

As with the gauginos, adding this boundary mass breaks
supersymmetry. At tree level, the lightest KK mass is

mtree
ϕL;R

≃
F
ΛIR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
∓ c

e2ð12∓cÞπkR − 1

s
eð12∓cÞπkR

∼

8>><
>>:
	
�c − 1

2



1=2 F

ΛIR
eð12∓cÞπkR �c > 1

2
;	

1
2
∓ c



1=2 F

ΛIR
�c < 1

2
;

ð52Þ

where the upper (lower) signs refer to the L (R) states. As
with the gauginos, the scalar mass is valid in the limitffiffiffiffi
F

p
=ΛIR ≲ 1, and in our numerical calculations we include

terms higher order in F=Λ2
IR to account for the back

reaction of the sfermion boundary mass. For simplicitly,
we have taken these interactions to be flavor-diagonal,
although this assumption can be relaxed. Note that the
UV-localized ð�c > 1

2
Þ sfermion masses are suppressed

by a warp factor relative to the IR-localized sfermion
masses ð�c < 1

2
Þ because supersymmetry is broken on the

IR brane. This behavior is illustrated in Figs. 7 and 8.
Using the relations ΛIR=ΛUV ¼ e−πkR and δi ¼ jci � 1

2
j,

the expressions (52) are seen to be consistent with the
masses (23) obtained in the 4D dual theory.
Since the soft masses generated at tree level by (51) can

be exponentially small for UV-localized bulk scalar fields,
quantum corrections become significant when �c is
sufficiently large. At the one-loop level, supersymmetry
breaking is transmitted to the bulk scalars via interactions
with other bulk scalars and gauginos. In Appendix C 1, we
derive the resulting contributions to the bulk scalar masses
squared in the bulk theory. From the 4D perspective, these
appear as one-loop threshold corrections to the scalar soft

masses squared at the IR-brane scale, arising when the KK
modes of the theory are integrated out. Parametrized in
terms of the gaugino and sfermion tree-level soft masses,
the corrections take the forms

16π2ðΔm2
Q̃i
Þ1-loop ¼

32

3
rQ̃i
g3 g

2
3M

2
3 þ 6rQ̃i

g2 g
2
2M

2
2 þ

2

15
rQ̃i
g1 g

2
1M

2
1 − 2rQ̃i

yui
y2uim

2
ũi
− 2rQ̃i

ydi
y2dim

2
d̃i
−
1

5
g21ΔS; ð53aÞ

16π2ðΔm2
ũi
Þ1-loop ¼

32

3
rũig3g

2
3M

2
3 þ

32

15
rũig1g

2
1M

2
1 − 4rũiyui y

2
uim

2
Q̃i

þ 4

5
g21ΔS; ð53bÞ

16π2ðΔm2
d̃i
Þ1-loop ¼

32

3
rd̃ig3g

2
3M

2
3 þ

8

15
rd̃ig1g

2
1M

2
1 − 4rd̃iydi y

2
di
m2

Q̃i
−
2

5
g21ΔS; ð53cÞ

16π2ðΔm2
L̃i
Þ1-loop ¼ 6rL̃i

g2g
2
2M

2
2 þ

6

5
rL̃i
g1g

2
1M

2
1 − rL̃i

yei
y2eim

2
ẽi
þ 3

5
g21ΔS; ð53dÞ

FIG. 7. Plot of the magnitude of the tree-level scalar soft
mass and the gauge and Yukawa one-loop radiative corrections as
a function of hypermultiplet localization when the gaugino
masses are given by (48). We take ΛIR ¼ 2 × 1016 GeV,

ffiffiffiffi
F

p ¼
4.75 × 1010 GeV, and tan β ¼ 3.

FIG. 8. Plot of the magnitude of the tree-level scalar soft mass
and the gauge and Yukawa one-loop radiative corrections as a
function of hypermultiplet localization when the gaugino masses
are given by (50).We takeΛIR¼6.5×106GeV,

ffiffiffiffi
F

p ¼2×106GeV,
and tan β ¼ 5.
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16π2ðΔm2
ẽi
Þ1-loop ¼

24

5
rẽig1g

2
1M

2
1 − 4rẽiyei y

2
eim

2
L̃i
−
6

5
g21ΔS; ð53eÞ

where ΔS, defined in (C22), is

ΔS ¼
X
i

YðϕiÞrDϕi
m2

ϕi
¼ Tr

h
rD
Q̃i
m2

Q̃i
− 2rDũim

2
ũi
þ rD

d̃i
m2

d̃i
− rD

L̃i
m2

L̃i
þ rDẽim

2
ẽi

i
; ð54Þ

and the sum is over the sfermions. The coefficients rϕi
g , r

ϕi
y ,

and rDϕi
, defined in (C7), (C14), and (C23), respectively, are

numerical parameters which encode the effect of the extra
dimension.
The radiative corrections to the bulk scalar soft masses

can be divided into three types of contributions: gauge
corrections arising from loops involving bulk vector super-
multiplets, Yukawa corrections arising from loops of bulk
hypermultiplets and boundary Higgs fields, and D-term
corrections arising from the Fayet-Iliopoulos D-term for
weak hypercharge. In Fig. 7 we plot the magnitudes of the
various contributions as functions of the hypermultiplet
localization when the gaugino mass is given by (48)
(singlet spurion), and the magnitudes when the supersym-
metry-breaking sector does not contain any singlets with
large F-terms and the gaugino mass takes the form (50) in
Fig. 8. In each case, the tree-level sfermion mass is plotted
in grey, the one-loop U(1), SU(2), and SU(3) gauge
radiative corrections are plotted in green, and the magni-
tude of the maximal contribution from a single Yukawa
coupling (this corresponds to cL ¼ 1

2
or −cR ¼ 1

2
for the

corresponding doublet and singlet hypermultiplets),
neglecting all color multiplicity factors and modulo the
5D Yukawa coupling, is plotted in orange. Also shown is
the magnitude of the one-loop D-term radiative contribu-
tion due to a single scalar mode (yellow), modulo hyper-
charge factors.7

Due to the conformal flatness of the vector supermul-
tiplet, the gauge corrections take a universal value for
UV-localized sfermions that is of order of the gaugino
masses. These contributions are positive and set the
characteristic scale of the radiative corrections. Since the
tree-level contribution is dominant for IR-localized sfer-
mions, which accordingly receive a mass of order of the
characteristic soft mass scale

ffiffiffiffi
F

p
=ΛIR, the sfermion sector

thus accommodates a hierarchy mUV
ϕ =mIR

ϕ ∼MaΛIR=F.
When the gaugino mass is given by (48) as in Fig. 7,
the sfermion hierarchy is mUV

ϕ =mIR
ϕ ∼ g2a ∼Oð0.4 − 1Þ,

which may be increased modestly in individual families

with the inclusion of D-term and Yukawa radiative con-
tributions. The moderate size of this hierarchy is an
important result of the inclusion of radiative corrections,
which wash out the exponential localization dependence of
the sfermion soft masses that is a tree-level feature of the
extra dimension.
A larger hierarchy can be achieved if the supersymmetry-

breaking sector does not contain any singlets with large
F-terms as in Fig. 8. In this case, the gaugino masses take
the form (50), and the characteristic sfermion hierarchy is
mUV

ϕ =mIR
ϕ ∼ g2aF=ΛIR. The maximum splitting that can be

accommodated between the two sfermion mass scales is
limited by the requirement that no sfermions receive
negative soft masses at the IR-brane scale or in the
subsequent RG evolution of the theory to lower scales.
The constraints this condition imposes on the pattern of
sfermion mass spectrum at the IR-brane scale are discussed
in Sec. IVA 2.
In the sfermion sector, localization in the extra dimen-

sion thus distinguishes between two scales: a tree-level
mass scale associated with IR-localized sfermions and a
lower mass scale arising from radiative corrections for UV-
localized sfermions. When the localizations of the matter
hypermultiplets are chosen to explain the SM fermion mass
hierarchy (i.e., the third-generation fermions must be
predominantly UV-localized, while the lighter generations
are mostly IR-localized), the result is a split sfermion
spectrum, with the third-generation sfermions hierarchi-
cally lighter than the first two generations. We note that the
sfermion spectrum inverts the ordering of the fermion
spectrum, a consequence of the separation of the super-
symmetry-breaking sector and the Higgs sector on opposite
orbifold fixed points. Additionally, although both are
explained by the same localization mechanism, the sfer-
mion hierarchy is necessarily less split than the fermion
hierarchy. This is because the Yukawa couplings only
receive wave function renormalization, while the scalar
masses are soft parameters and can receive large radiatve
corrections from the extra dimension and MSSM running.

4. Higgs sector

The Higgs sector, confined to the UV brane, does not
couple directly to the supersymmetry-breaking sector, and
thus the Higgs soft terms at the IR-brane scale are zero at
tree level. Nevertheless, as with the sfermions, the breaking

7As seen in Appendix C 1 c, one-loop D-term corrections are
independent of the localization of the external scalar, and so here
we plot the contribution as a function of the localization of the
scalar contributing in the loop (unlike the other radiative con-
tributions, which depend on the localization of the external
scalar).
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is transmitted to the Higgs fields at the quantum level. We
derive the one-loop corrections tom2

Hu
,m2

Hd
, and b from the

bulk theory in Appendix C 2. Parametrized in terms of the
tree-level gaugino and sfermion soft masses, the one-loop
Higgs masses take the form

16π2m2
Hu

¼ 6rHg2g
2
2M

2
2 þ

6

5
rHg1g

2
1M

2
1

− 6Tr½rHyui y2uiðm2
Q̃i

þm2
ũi
Þ� − 3

5
g21ΔS; ð55aÞ

16π2m2
Hd

¼6rHg2g
2
2M

2
2þ

6

5
rHg1g

2
1M

2
1−6Tr½rHydi y2diðm2

Q̃i
þm2

d̃i
Þ�

−2Tr½rHyei y2eiðm2
L̃i
þm2

ẽi
Þ�þ3

5
g21ΔS; ð55bÞ

16π2b ¼ −μ
�
6rbλ1g

2
2M2 þ

6

5
rbλ2g

2
1M1

�
; ð55cÞ

where rHg , rHy , and rbλ are defined in (C29), (C34), and
(C41), respectively. The origin of the μ-term on the UV
brane is assumed to arise from the Kim-Nilles mechanism,
as discussed in Sec. II D; its magnitude is determined as
necessary to ensure that electroweak symmetry is broken,
along with the value of tan β, as described in Sec. III D.
In Figs. 9 and 10, we plot the magnitudes of the various

one-loop contributions to the Higgs soft masses as func-
tions of hypermultiplet localization in the singlet spurion
and nonsinglet spurion cases, respectively. The U(1)
(lighter green) and SU(2) (darker green) gauge-sector
contributions are independent of localization. In orange,
we give the maximal contribution from a single Yukawa
coupling (this corresponds to cL ¼ 1

2
or −cR ¼ 1

2
for the

corresponding doublet and singlet hypermultiplets),
neglecting all color multiplicity factors and modulo the
5D Yukawa coupling. These contributions are negative. In
yellow is the D-term contribution from a single bulk scalar,
modulo the scalar hypercharge. These individual contribu-
tions can be either positive or negative depending on the
relative sign between the hypercharge of the Higgs field
and the hypercharge of the scalar.

5. Trilinear soft scalar couplings (a-terms)

Soft a-terms are also generated radiatively. We derive the
one-loop corrections inAppendix C 4. Parametrized in terms
of the tree-level gaugino masses, these take the forms:

16π2aui ¼ −yui

�
32

3
ðraλ3ÞQiuig

2
3M3 þ 6ðraλ2ÞQi

g22M2 þ
�
−
2

5
ðraλ1ÞQi

þ 8

5
ðraλ1Þui þ

8

15
ðraλ1ÞQiui

�
g21M1

�
; ð56aÞ

16π2adi ¼ −ydi

�
32

3
ðraλ3ÞQidig

2
3M3 þ 3ðraλ2ÞQi

g22M2 þ
�
2

5
ðraλ1ÞQi

þ 4

5
ðraλ1Þdi −

4

15
ðraλ1ÞQidi

�
g21M1

�
; ð56bÞ

16π2aei ¼ −yei

�
6ðraλ2ÞLi

g22M2 þ
�
−
6

5
ðraλ1ÞLi

þ 12

5
ðraλ1Þei þ

12

5
ðraλ1ÞLiei

�
g21M1

�
; ð56cÞ

where the raλ are defined in (C46a) and (C46b).

FIG. 10. Plot of the magnitude of the one-loop radiative
corrections that generate the Higgs soft masses as a function
of hypermultiplet localization in the nonsinglet spurion case. We
take ΛIR ¼ 6.5 × 106 GeV,

ffiffiffiffi
F

p ¼ 2 × 106 GeV, and tan β ¼ 5.

FIG. 9. Plot of the magnitude of the one-loop radiative
corrections that generate the Higgs soft masses as a function
of hypermultiplet localization in the singlet spurion case. We take
ΛIR ¼ 2 × 1016 GeV,

ffiffiffiffi
F

p ¼ 4.75 × 1010 GeV, and tan β ¼ 3.
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D. Electroweak symmetry breaking

In the MSSM, the tree-level scalar potential has a
minimum breaking electroweak symmetry if the following
two equations are satisfied:

m2
Hu

þ jμj2 − b cot β −
1

8
ðg21 þ g22Þv2 cos 2β ¼ 0; ð57aÞ

m2
Hd

þ jμj2 − b tan β þ 1

8
ðg21 þ g22Þv2 cos 2β ¼ 0: ð57bÞ

In our model, m2
Hu
, m2

Hd
, and b, given by (55a), (55b),

and (55c), respectivelt, are radiatively generated at the IR-
brane scale when the extra dimension is integrated out.
Solving (57) determines two parameters: the magnitude of
the Higgsino mass parameter jμj and the ratio of Higgs
VEVs tan β. In the limit that the scale of supersymmetry
breaking is much larger than the scale of electroweak
symmetry breaking the physical solutions are

tan β ≃
ðm2

Hd
−m2

Hu
Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

Hd
−m2

Hu
Þ2 þ 4b2

q
2b

þO
�
v2

b

�
;

ð58aÞ

jμj2 ≃m2
Hd

−m2
Hu

tan2 β

tan2 β − 1
þOðv2Þ; ð58bÞ

where we require signðμÞ ¼ −1 and m2
Hu

<minðm2
Hd
;m2

Hd
=

tan2βÞ. Solutions with signðμÞ ¼ þ1 are excluded at tree
level since b is constrained to have the opposite sign from μ
at the IR-brane scale according to (55c) (and this typically
remains true under RG evolution). Although these equa-
tions are modified when loop corrections to the Higgs
scalar potential are included, they remain practical con-
straints since the iterative method employed to determine
electroweak symmetry breaking (EWSB) in the numerical
renormalization procedure (see Sec. IV B 1) requires an
initial tree-level solution. It is not guaranteed that the Higgs
soft terms (55a), (55b), and (55c) permit a tree-level
solution at the IR-brane scale, in which case electroweak
symmetry must be broken radiatively.
The conditions (58) for EWSB strongly favor m2

Hu
< 0.

In order for this to occur, the combined radiative correc-
tions to m2

Hu
both from the KK modes at the IR-brane scale

and from the MSSM running to lower scales must be
overall negative. We discuss the constraints this imposes on
the parameter space of our theory in Sec. IVA 2.

IV. SUPERPARTNER MASS SPECTRUM

A. Model parameter space

As we have seen in generating the fermion mass
hierarchy and breaking supersymmetry, the parameter
space available for our partially composite supersymmetric

model is in general quite large. The overall mass scale of
our sparticle spectrum is jointly determined by ΛIR, the
scale of the IR brane, and

ffiffiffiffi
F

p
, the scale of supersymmetry

breaking. Together these two parameters fill the roles
associated with MGUT, m1=2, and m0 in classic universal
supergravity (SUGRA) models. As we discuss in Sec. III D,
we do not have the usual freedom in tan β and the sign of μ,
which are in this case determined by electroweak symmetry
breaking. In addition to these universal parameters, our
model features nonuniversal IR-scale boundary conditions
for the sfermion soft masses, which we specify in a flavor-
dependent way by choosing field localizations to explain
the SM fermion mass spectrum, as described in Sec. III B.
We choose a universal value Yð5Þk for all 5D Yukawa
couplings, such that this specification requires fixing six
additional free parameters, which we take as the doublet
c parameters cLi

and cQi
. In this section we discuss various

phenomenological and theoretical constraints that impose
limits on the set of model parameters.

1. Phenomenological considerations

We first consider five phenomenological desiderata that
constrain our model.
(1) Gravitino dark matter.—Since the gravitino mass is

Planck-scale suppressed, it is the LSP throughout
our parameter space. In the absence of R-parity
violation, the LSP is absolutely stable, and as such,
the gravitino makes an attractive dark matter can-
didate. However, the stability of a gravitino LSP can
lead to cosmological problems, as the thermal
gravitino mass density arising from freeze-out is
sufficient to overclose the universe unless the grav-
itino is very light ½Oð100Þ eV� [52,53]. In this case,
observations of the matter power spectrum at small
cosmological scales limit the free-streaming length
of the gravitino, further requiring m3=2 < 4.7 eV in
order for the gravitino to be adequately cold [54],
and gravitinos in this scenario cannot therefore
account for all of the observed dark matter density.
Throughout the relevant parameter space of our

model, the gravitino is sufficiently heavy that we
require inflation to dilute the initial thermal pop-
ulation [55] and must restrict the reheating temper-
ature so that the gravitino does not subsquently
come back into thermal equilibrium. In this case,
structure-formation constraints are weaker, requir-
ing m3=2 ≳Oð1Þ keV for generic warm dark matter
candidates [56–58], such the gravitino may be the
dominant component of dark matter. In this sce-
nario, gravitinos may still be produced from the
scattering of particles in thermal equilibrium with
the plasma. The largest contribution arises from
gluinos, such that the thermal gravitino density
takes the form
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Ωthermal
3=2 h2∼0.3

�
100GeV
m3=2

��
mg̃

1TeV

�
2
�

TR

1010 GeV

�
:

ð59Þ

For m3=2 ≲ 1 keV, thermal scattering production of
gravitinos cannot supply all of the observed dark
matter density unless TR is high enough to bring
the gravitino into thermal equilibrium.
Gravitinos are also produced nonthermally,

via decays of the next-to-lightest supersymmetric
particle (NLSP), which in our model is typically
either a (Bino-like or Higgsino-like) neutralino
or a (mainly right-handed) stau. In both cases,
the NLSP is sufficiently long-lived throughout our
parameter space to decay after freeze-out, such that
the resulting nonthermal gravitino population takes
the form (superWIMP scenario [59]):

Ωnonthermal
3=2 h2 ¼ m3=2

mNLSP
ΩNLSPh2: ð60Þ

The initial NLSP population that contributes to
ΩNLSPh2 is moderated by TR. In particular, if the
reheating temperature is low enough that the NLSP
never comes into thermal equilibrium after infla-
tion (TR ≲mNLSP=20), the initial NLSP population
is Boltzmann-suppressed.
The observed dark matter abundance (Ωdmh2 ¼

0.1186� 0.0020 [60]) thus places an upper limit
on the reheating temperature. We show an estimate
of these limits in the space of ðΛIR;

ffiffiffiffi
F

p Þ in Figs. 11
and 12. In each case, the yellow contours give the
reheating temperature necessary for the thermal
gravitino relic density (59) to provide the dominant

component of dark matter. If nonthermal production
is significant, the reheating temperature must be
lowered to suppress the contribution from thermal
production. In the hatched yellow regions, the
thermal relic density is insufficient to provide all
of the dark matter, and some level of nonthermal
production is required to obtain the observed dark
matter density.
Further parameter space constraints arise from big

bang nucleosynthesis (BBN), which strongly limits
the NLSP energy density if the NLSP is long-lived
enough to decay to the gravitino during or after the

FIG. 11. Plot of the gravitino dark matter constraints on the parameter space of our model in the (ΛIR;
ffiffiffiffi
F

p
) plane in the singlet spurion

case for Yð5Þk ¼ 1.

FIG. 12. Plot of the gravitino dark matter constraints on the
parameter space of our model in the (ΛIR;

ffiffiffiffi
F

p
) plane in the

nonsinglet spurion case for Yð5Þk ¼ 1.
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formation of the light elements. To avoid altering the
successful predictions of the standard BBN scenario,
decays to the gravitino must be prompt, limiting the
lifetime of the NLSP to τNLSP < Oð0.1 − 100Þ s, or,
for m3=2 ≪ mNLSP,

mNLSP > Oð1 − 4Þ TeV
�

m3=2

10 GeV

�
2=5

; ð61Þ

as a conservative estimate. This condition places
constraints in the space of ΛIR and

ffiffiffiffi
F

p
. We show the

regions where τNLSP < 0.1 s in the neutralino
case (dark orange) and in stau case (magenta) in
Figs. 11 and 12. Evading these limits restricts the
reheating temperature for our model to the range
TR ∼Oð102–106Þ GeV, necessitating an alterna-
tive to thermal leptogenesis to generate the baryon
asymmetry.
If the NLSP is the stau and is sufficiently stable to

survive into BBN, the formation of bound states with
nuclei can catalyze the production of light elements
[61]. In particular, if 103 s≲ ττ̃1 ≲ 5 × 103 s, the
catalytic enhancement for 6Li can solve the lithium
problem in the standard BBN scenario [62].We show
an estimate of the region in which the stau lifetime
falls within these limits in teal in Fig. 11. We note
however, that this solution to the lithium problem is
ruled out for our model, as the entirety of the catalytic
region is excludedbycurrentLHClimits (seeFig. 13).
In the nonsinglet spurion case, the stau is not
sufficiently long-lived to survive into BBN anywhere
in the relevant parameter space.

(2) The supersymmetric flavor problem.—It is well
known that the additional couplings and degrees of
freedom introduced in supersymmetry can generate

flavor-changing neutral currents (FCNCs) and
CP-violation at levels above current experimental
limits. This problem can be alleviated if the sfermions
of the first and second generations are heavy,
Oð100Þ TeV [63–66], or even heavier [67–69], a
solution that has gained popularity in the absence of
any low-energy experimental signatures of supersym-
metry. Such a solution is a natural and elegant choice
in our model, as the inverted hierarchy in the sfermion
soft mass spectrum naturally separates the scale of the
first two generations from that of the third, which can
remain light enough to explain the Higgs mass and
offer the possibility of experimental detection.
Thus, to ameliorate the flavor problem, we restrict

the masses of the first- and second-generation sfer-
mions to be at least 100 TeV. As a constraint, this
condition places an upper (lower) limit on the
c parameters of the first- and second-generation
left-handed (right-handed) bulk hypermultiplet fields.
This is a further limit on the hypermultiplet local-
izations beyond the structure necessary to explain the
SM fermion mass spectrum. In Figs. 13 and 14, we
show an estimate of the region in the space of
ðΛIR;

ffiffiffiffi
F

p Þ where this limit is incompatible with the
SM fermion mass for at least one field (the strictest
constraint typically comes from themuon, the heaviest
of the first- and second-generation fermions).

(3) 125 GeV Higgs mass and collider exclusion limits.—
In the MSSM, the tree-level mass of the neutral
scalar Higgs boson is bounded from above by
mtree

h < mZ. Radiative corrections, the largest arising
from top and stop loops, can raise mh considerably,
and accordingly, the observed value of 125.18�
0.16 GeV [3,60,70] offers an important constraint

FIG. 13. Plot of the constraints on the parameter space of our model in the (ΛIR;
ffiffiffiffi
F

p
) plane in the singlet spurion case for

Yð5Þk ¼ 1.
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on the sparticle spectrum, particularly on the masses
of the stops. In the MSSM, the observed Higgs mass
constrains the general stop mass scale ffiffiffiffiffiffiffiffiffiffiffiffiffimt̃1mt̃2

p
and is broadly compatible with stop masses ranging
from Oð1Þ TeV for tan β ∼ 50 to Oð100Þ TeV for
tan β ∼ 3 [71]. In our model, the stop masses depend
critically [at least Oð1Þ] on the localizations of the
bulk hypermultiplets, and hence the Higgs mass
principally induces constraints on the c parameters
of the theory. The precise calculation of the Higgs
mass requires a complete numerical analysis (see
Sec. IV B). To obtain a conservative evaluation of the
constraint induced by the Higgs mass on our model
we can exclude the region where the stop masses are
always greater than 100 TeV. We show an estimate
of this region in the space of ðΛIR;

ffiffiffiffi
F

p Þ in Figs. 13
and 14.
Further limits on sparticle masses are set by

experiments searching for direct sparticle production
at colliders. In the context of our model, the strictest
of constraints arise from the exclusion limits on the
masses of the gluino and the squarks, which must be
heavier thanOð1Þ TeVwhen the LSP is the gravitino
[72–75].8 Qualitatively, these limits place an effective
lower bound on the soft mass scale of our model,
restricting the ratio

ffiffiffiffi
F

p
=ΛIR. We show an estimate of

the excluded region in Figs. 13 and 14.
(4) Gauge coupling unification.—Gauge coupling uni-

fication is a generic feature of the minimal super-
symmetric model. The renormalization of gauge
couplings depends on the number of degrees of

freedom present in the theory at a given energy scale;
in the MSSM, unification is most sensitive to the
Higgsino mass μ as well as the ratio of the Wino
mass to the gluino mass [76], and it can be spoiled if
the magnitude of μ is larger than a few hundred TeV
[6]. As discussed in Sec. III D, μ is determined as
necessary to achieve electroweak symmetry break-
ing. Generically, this implies that the scale of μ is of
the same order of magnitude as the soft masses in the
Higgs sector, i.e., jμj2 ∼ jbj ∼ jm2

Hu
j ∼ jm2

Hd
j. Since

the Higgs soft masses are generated radiatively (and
therefore characteristically of the scale of the gau-
gino masses) a first-order estimate of this constraint
is jμj ∼M2 ≲ 100 TeV. A more precise constraint
can be obtained by solving the tree-level EWSB
equations (57). We show an estimate of the excluded
region in the space of ðΛIR;

ffiffiffiffi
F

p Þ where jμtreej ≳
100 TeV in Figs. 13 and 14.
Note that for the case where ΛIR is much below

∼1016 GeV, we are implicitly assuming that the
gauge boson Kaluza-Klein states form complete
SU(5) multiplets so that there is a universal shift
in the running of the gauge couplings. In the warped
extra dimension this can be modeled by considering
the full SU(5) gauge symmetry in the bulk, although
there are no Kaluza-Klein states for the UV-
localizeqd Higgsino. For simplicity, we will not
consider the full SU(5) extension here, since it does
not affect the details of our low-energy spectrum.9

(5) Minimal supersymmetric particle content.—In the
construction of our model, we are motivated to
explain the observed Higgs mass using only the
minimal supersymmetric particle content at low
energy. While the orbifold compactification allows
us to recover this particle content as the zero modes
of the 5D N ¼ 1 supersymmetric theory, the essen-
tially Dirac nature of fermions in five dimensions is a
nontrivial feature of the model and can have phe-
nomenological implications when the scale of
N ¼ 1 supersymmetry breaking on the IR brane,ffiffiffiffi
F

p
, approaches the local compactification scale,

ΛIR. In this case, the backreaction of the supersym-
metry-breaking boundary mass on the wavefunction
profiles of the gaugino and sfermion fields cannot be
neglected. In particular for the gauginos, the effect of
larger

ffiffiffiffi
F

p
=ΛIR is to increase the zero-mode mass,

but at the same time to decrease the magnitude of the

mass of the next-to-lightest KK mode, mð1Þ
λ . This

FIG. 14. Plot of the constraints on the parameter space of our
model in the (ΛIR;

ffiffiffiffi
F

p
) plane in the nonsinglet spurion case

for Yð5Þk ¼ 1.

8These limits are weakly model-dependent: see the review [60].

9We note that in a theory with IR-localized bulk hyper-
multiplets, higher-dimension operators may only be suppressed
by the IR-brane scale, which, in the context of grand unification,
can lead to proton decay constraints [25]. These may be
addressed by the introduction of an additional global symmetry
in the bulk, such as a Uð1ÞB baryon number symmetry as in
Refs. [77,78], or by an orbifold GUT scenario [41].
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behavior smoothly approaches the twisted limit
(
ffiffiffiffi
F

p
=ΛIR ≫ 1), where the magnitudes of the masses

of the lowest two gaugino KK modes meet at a
common value and the two states form a Dirac
spinor. For

ffiffiffiffi
F

p
=ΛIR ≲ 1, the gaugino mass is only

approximately Dirac, but the first KK mode is light
enough that it must be included in the spectrum.
While the presence of such modes in the theory at
low energy can be helpful to achieve a more natural
model, we leave the exploration of this region of
parameter space for the future. Under this criterion,

we exclude the region in which mð1Þ
λ1

< ke−πkR,
shown in Figs. 13 and 14.

2. Charge- and color-breaking minima

Oneof the primary features of ourmodel is the presence of
significant hierarchies in the soft mass parameters—both
within the sfermion sector and between the heavier sfer-
mions and the gauginos—resulting from the structure
imposed on the matter bulk mass hypermultiplets in order
to explain the SM fermion mass spectrum. Although such
hierarchies have desirable phenomenological features, they
can also be the source of considerable constraints in the
renormalization of the spectrum, as radiative corrections
from heavier scalars may be large enough compared to the
lighter scalar mass scale to destabilize the running masses.
While, this may be favorable in the Higgs sector for
electroweak symmetry breaking, for the sfermions it results
in phenomenologically unacceptable charge- and color-
breaking minima.
In our model, large negative radiative corrections to the

scalars can arise both in the 5D bulk theory and in the
effective 4D MSSM below the scale of compactification.
As discussed in Secs. III C 3 and III C 4, we calculate the
bulk contributions as threshold corrections to the scalar soft
masses squared at the IR brane scale. Due to the flavor
structure imposed on the matter bulk hypermultiplets that
explains the SM fermion mass hierarchy, the trace ΔS is
generically nonzero.10 If the spectrum also contains suffi-
ciently IR-localized scalars, the bulk D-term corrections
(C15) may provide the dominant radiative contributions to
the scalar masses. These corrections are negative (positive)
for scalars with hypercharge of the same (opposite) sign as
ΔS. In order to avoid negative sfermion soft masses squared
at the IR-brane scale in this case, the localizations of the
matter bulk hypermultiplets must be correlated. The cor-
responding restrictions on the allowed c-parameter ranges
have a distinctive structure that depends on hypercharge. In
particular, upper (lower) limits arise on the c parameters of

left-handed (right-handed) sfermions with hypercharge of
the same sign as the sign of ΔS , which is determined by the
heaviest (most IR-localized) sfermions.
Scalars in our theory also receive negative Yukawa

corrections of the form (C8) from the bulk. As a result of
the bulk hypermultiplet c-parameter structure necessary to
explain the SMfermionmass hierarchy, themagnitude of the
Yukawa contribution to a left-handed (right-handed) field
grows as that field becomes more UV-localized (see Figs. 7
and 8). These corrections can become large, particularly
for the third-generation fields, such that upper (lower)
c-parameter limits for each left-handed (right-handed) field
must be imposed in order to avoid any tachyonic masses. In
some cases, the combinedD-term andYukawa limits for one
or more of the third-generation fields may exclude all
solutions compatible with the SM fermion mass spectrum.
Further contributions from heavy scalars arise in the

MSSM running below the IR-brane scale. At the one-loop
level, the β function of each scalar soft mass-squared m2

ϕi

includes a contribution from the tree-level Fayet-Iliopoulos
(FI) D-term for weak hypercharge [64,66]

16π2ðβm2
ϕi
Þ1-loop ⊃

6

5
g21YðϕiÞTr½YðϕjÞm2

ϕj
�≡ 6

5
g21YðϕiÞS;

ð62Þ
where S is the trace

S¼m2
Hu

−m2
Hd

þTr½m2
Q̃
−m2

L̃
−2m2

ũþm2
d̃
þm2

ẽ�: ð63Þ

The scalar soft masses squared also receive negative
contributions from scalars at the two-loop level. In the
MSSM, the dominant contributions take the form

ð16π2Þ2ðβm2
ϕi
Þ2-loop ⊃ 4

X
a

g4aCaðRϕi
Þσa; ð64Þ

where

σ1¼
1

5
ð3m2

Hu
þ3m2

Hd
þTr½m2

Q̃
þ3m2

L̃
þ8m2

ũþ2m2
d̃
þ6m2

ẽ�Þ;
ð65aÞ

σ2 ¼ m2
Hu

þm2
Hd

þ Tr½3m2
Q̃
þm2

L̃
�; ð65bÞ

σ3 ¼ Tr½2m2
Q̃
þm2

ũ þm2
d̃
�: ð65cÞ

These terms are loop-suppressed compared to (62), but
cannot be reduced by tuning the scalar masses to obtain
cancellations between the various masses as can be done
for (62).11

In the context of the supersymmetric flavor problem and
high-scale supersymmetry breaking, it was noted in10This is ultimately a consequence of the asymmetry between

the 4D Yukawa couplings yui and ydi , which, as mentioned in
Sec. III B, precludes the solution cQi

¼ −cui ¼ −cdi . The trace
ΔS can be tuned to zero, but this requires some additional
intergenerational or interfamilial correlation.

11Note that if some symmetry or universality in the soft mass
boundary conditions are assumed such that (62) is zero, it remains
zero at all scales.
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Ref. [68] that the two-loop contributions from heavy scalars
provide considerable tachyonic constraints on the allow-
able hierarchy among the scalar soft mass parameters
unless the effect can be balanced by positive contributions
from the gauginos. This analysis assumed a common mass
for the heavy scalars. When this assumption is lifted, we
note that the presence of nonuniversality among the soft
scalar masses generically induces a nonzero value for the
trace S. The MSSM D-term corrections have the same
hypercharge dependence as the D-term corrections from
the bulk. Thus, the resulting contributions to scalars with
hypercharge of sign opposite to that of the trace S are
positive, and consequently may ameliorate the effect of the
negative two-loop contributions. This comes, however, at
the cost of worsening the constraints for scalars with
hypercharge of the same sign as that of S, which receive
negative corrections in the running.
For our model, the MSSM corrections further restrict the

accessible c-parameter ranges of the matter bulk hyper-
multiplets. Since the sign of S is typically the same as that
of ΔS , the MSSM limits generally reinforce the bulk limits,
further restricting the viable IR-brane hierarchies for
sfermions (particularly squarks) with hypercharge of the
same sign as S. Large hierarchies in the high-scale
spectrum are only allowed for sfermions with hypercharge
sign opposite to the sign of S. For example, if S > 0, then
ũ3 (hypercharge − 2

3
) may receive large negative correc-

tions, and therefore cannot have a mass at the IR-brane
scale significantly lower than the scale of the other
sfermions. Such high-scale sfermion structure is a generic
signature of a nonuniversal split sfermion spectrum.
A similar analysis can be performed in the Higgs sector,

where, conversely, large negative corrections are typically
favorable for electroweak symmetry breaking. Negative
corrections to the Higgs soft masses squared m2

Hu
and m2

Hd

may arise from both the bulk, in the form of Yukawa
contributions (C30) and D-term contributions (C35) at
one loop, or from the MSSM, in the form of Yukawa
corrections

16π2ðβm2
Hu
Þ1-loop ⊃ 6jytj2ðm2

Hu
þm2

Q̃3
þm2

ũ3
Þ; ð66aÞ

16π2ðβm2
Hd
Þ1-loop ⊃ 6jydj2ðm2

Hd
þm2

Q̃3
þm2

d̃3
Þ

þ 2jyτj2ðm2
Hd

þm2
L̃3

þm2
ẽ3
Þ; ð66bÞ

andD-term corrections (62) at one loop and the corrections
(64) at two loops. As discussed in Sec. III D, EWSB in our
model requires m2

Hu
< minðm2

Hd
; m2

Hd
= tan2 βÞ. If the sfer-

mion hierarchy is relatively modest, such that at least one of
m2

Q̃3
or m2

ũ3
is relatively heavy, this may be achieved in the

familiar way in the MSSM through Yukawa radiative
corrections. If, however, the sfermion splitting is large,
the MSSM Yukawa contributions may be suppressed, and
successful EWSB may rely on the presence of D-term

contributions to destabilize the Higgs VEV, setting a lower
limit on the net correction (ΔS and S together). The
predicted Higgs boson mass in this case is also correlated
with the D-term corrections, and consistency with the
observation may require additional limits on ΔS and S.
Together, these requirements introduce a global constraint
on the c parameters of the heavy (typically, first- and
second-generation) sfermions which give the dominant
contributions to ΔS and S and can also induce additional
tachyonic limits on the matter bulk hypermultiplet c
parameters, primarily constraining the familiesQ, d, and e.
In some regions of the parameter space of our model, the

union of all limits imposed on the bulk hypermultiplet c
parameters by these effects excludes all solutions compat-
ible with the SM fermion mass spectrum.When the gaugino
mass is given by (48) (singlet spurion), the splitting
between the masses of the third-generation sfermions
and the heavier mass scale of the first and second
generations that results from the explanation of the SM
fermion masses is small enough throughout the parameter
space that tachyonic constraints are not significant, but
when the gaugino mass is given by (50) (nonsinglet
spurion), larger hierarchies arise, excluding some areas
of the parameter space. We show an estimate of the
excluded region in the space of ðΛIR;

ffiffiffiffi
F

p Þ in Fig. 14.
Hierarchies in the sfermion mass spectrum (and separa-

tions of scale in general) also complicate the numerical
renormalization procedure, since they necessitate a careful
account of particle decoupling if precision in mass spec-
trum calculations is to be obtained. In mass-independent
renormalization schemes such as DR, the effects of heavy
particles do not decouple, and hence, at renormalization
scales small compared to the particle masses, finite quan-
tum corrections may involve terms with large logarithms of
the masses of these particles (see [79] for MSSM expres-
sions). In order for mass calculations to be precise when
large hierarchies in the soft mass parameters are present,
such large logarithmic corrections need to be resummed, a
process which is most naturally accomplished by the use of
an effective theory, or of a tower of effective theories [80].
Precision in the case of scalar hierarchies is especially
critical, since the light scalar masses depend crucially on
the heavy scalar masses through the factors such as (62)
and (64). It is important to note as well that the scale of
supersymmetry breaking in our model, the IR brane, which
can be significantly lower than the Planck scale or the GUT
scale due to the warped 5D geometry, is the natural cutoff
for the IR-localized (or composite) part of the 4D MSSM.
Thus, the effects of the heavy scalars, which may receive
masses very near (or even above, depending on the choice of
F and k) the IR-brane scale, may decouple after a little
running, minimizing the effect of the heavy scalar contri-
butions. In an effective field theory (EFT) approach, these
heavy scalars are integrated out, introducing threshold
corrections to the lighter scalar masses. At the one- and
two-loop level, such corrections can be large and negative as
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a result of the effects mentioned above, but overall, the
decoupling procedure may substantially relax the tachyonic
bounds indicated in purely MSSM DR renormalization
[81,82]. Our renormalization procedure, discussed in
Sec. IV B 1 does not implement decoupling; hence, we
expect that some regions of our parameter space with light
scalars may be unnecessarily excluded on tachyonic
grounds, solely as an artifact of the numerical renormaliza-
tion method.

3. Parameter space constraints

Together, the constraints discussed in Secs. IVA 1 and
IVA 2 lead to restrictions on the ðΛIR;

ffiffiffiffi
F

p Þ parameter space,
which is shown in Figs. 13 and 14 for the singlet spurion and
nonsinglet spurion cases, respectively.
In the light gray region of each plot

ffiffiffiffi
F

p
> ΛIR, which is

excluded as the dynamics of the spurion are restricted by
ΛIR as a cutoff scale. Along the edges of these regions, the
shaded strip gives the area in which the next-to-lightest
gaugino KK mode must be included in the low-energy
spectrum. The dark gray/blue regions give an estimate of
the exclusions due to collider direct-detection limits. The
yellow region of Fig. 13 shows our estimate of the BBN
exclusions when the NLSP is the lightest neutralino or the
lightest stau (also see Fig. 11). The corresponding limits in
the nonsinglet spurion case (see Fig. 12) are less strict than
the collider constraint, and therefore not visible in Fig. 14.
In blue are the regions in which jμj > 100 TeV, which is
excluded in order to preserve gauge coupling unification. In
the red regions, the bulk hypermultiplet localization cannot
be chosen such that all of the first- and second-generation
sfermions have masses that are at least 100 TeV. In green
are the regions where we estimate that the stop masses are
heavier than 100 TeV, and hence we expect the resulting
Higgs boson mass to be too heavy to match the observed
value. In the purple region of Fig. 14, one or more of the
sfermions receives a tachyonic mass, either on the IR brane,
or in the subsequent MSSM running. The remaining white
areas are the regions of interest, simultaneously satisfying
all constraints. Within these regions, the flavor constraint,
the observed Higgs boson mass, and radiative corrections
impose additional restrictions on the hypermultiplet c
parameters.
The constraints favor two regions: eitherΛIR ∼ 107 GeV,

with a keV-scale gravitino and a singlet spurion, or a GUT-
scale value for ΛIR, with an ∼500 GeV gravitino and a
nonsinglet spurion. In Sec. IV B, we calculate detailed
sparticle spectra for two benchmark scenarios (marked as
A and B in Figs. 13 and 14, respectively).

B. Numerical results

Based on the constraints considered in Sec. IVA, we
select the regions of parameter space given in Table I as our
benchmark scenarios. With these parameters we determine
the sparticle mass spectrum and Higgs boson mass

predicted by the partially composite supersymmetric
model. The IR brane scale, ΛIR, and the scale of super-
symmetry breaking,

ffiffiffiffi
F

p
, set the overall soft mass scale, and

are chosen to comply with all phenomenological con-
straints in Sec. IVA 1. tan β is determined by the measured
Higgs boson mass and the sign of μ is set in order to achieve
the correct pattern of EWSB.

1. Renormalization procedure

To obtain pole mass predictions for the superpartners, we
use the spectrum calculator FLEXIBLESUSY [83,84], which
incorporates elements of SARAH [85–88] and SOFTSUSY

[89,90], to run selected points down from the input scale
(IR brane) to lower energy. To solve the renormalization
boundary value problem, FLEXIBLESUSYemploys a nested
iterative algorithm, using the three-loop MSSM β functions
(the renormalization procedure includes components and
corrections from [91–97]) between boundary conditions
imposed at the high scale, ΛIR, and the SM at the electro-
weak scale. Electroweak symmetry breaking is determined
by numerical minimization of the loop-corrected Higgs
potential, with the value of tan β and the Higgsino mass
parameter μ determined iteratively. Loop-corrected pole
masses are calculated from the full self-energies for each
particle.
The renormalization procedure is made more complicated

by the fact that the soft mass spectrum at the IR-brane scale
depends on the values of the supersymmetric parameters (the
gauge and Yukawa couplings and the Higgsino mass
parameter) at that scale. As discussed in Sec. III B, the value
of the 4D Yukawa couplings at the IR-brane scale must be
known in order to choose the localizations of the bulk
hypermultiplets to explain the fermion mass hierarchy;
additionally, the radiative corrections included for the soft
masses at the IR-brane scale explicitly incorporate gauge and
Yukawa couplings as well as the Higgsino mass parameter.
The IR-brane values of these parameters in turn depend
(weakly) on the resulting sparticle pole masses. In order to
consistently determine the sparticle mass spectrum, we must
therefore apply the renormalization procedure iteratively.

TABLE I. Selected parameter space sampling regions.

A B

ΛIR 2 × 1016 GeV 6.5 × 106 GeVffiffiffiffi
F

p
4.75 × 1010 GeV 2 × 106 GeV

tan βa ∼3 ∼5
sign μ −1 −1
Yð5Þk 1 1
spurion singlet nonsinglet
M1

a 52.9 TeV 14.60 TeV
M2

a 50.7 TeV 22.9 TeV
Ma

3 49.85 TeV 38.94 TeV
m3=2 535 GeV 1 keV

aAt scale ΛIR.
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To do this, we first obtain an initial estimate of the high-
scale theory using FLEXIBLESUSY to extract the Yukawa
and gauge couplings from low-energy experimental data and
run them in the SM (including components and corrections
fromRefs. [98–108]) up to a common supersymmetry scale,
mSUSY, where they are matched at tree level to the MSSM
DR couplings. The evolution is then continued under the
two-loop MSSM RGEs (extracted from SARAH) up to ΛIR.
The IR-scale couplings calculated using this procedure are
insensitive to the details of the sparticle spectrum, since the
tree-levelmatching procedure neglects threshold corrections
at the scalemSUSY, where the MSSM is matched to the SM.
We accordingly use this procedure to provide coupling
estimates in cases where we wish to make a general
calculation without reference to a particular spectrum. The
uncertainty resulting from the tree-level matching approxi-
mation can bequantified byvaryingmSUSY andobserving the
variation in the renormalized couplings. This is illustrated in
Fig. 15, where we plot the percent deviation of the Yukawa
couplings under this renormalization procedure, relative to
mSUSY ¼ 10 TeV. By this measure, the uncertainty in this
Yukawa coupling estimate is less than 6% throughout our
parameter space.
To obtain higher precision coupling values, a particular

spectrummust be specified by choosing localizations for the
doublet bulk hypermultiplets. Given these, the IR-brane
couplings calculated as above can be combined with
educated guesses for tan β and μ to obtain an initial estimate
of the IR-brane scale soft mass spectrum. This spectrum is
then renormalized and EWSB computed using the full
FLEXIBLESUSY MSSM routine. Unlike our spectrum-
agnostic procedure above, this renormalization andmatching

procedure includes threshold effects from the soft masses,
and the running values of the resulting supersymmetric
parameters are spectrum-dependent. The values of the
parameters extracted at the IR-brane scale are then used to
construct an updated input spectrum and the procedure is
repeated until the values of the input parameters converge.

2. Higgs mass calculation

Due to the high scale of supersymmetry in our model, to
calculate the neutral scalar Higgs pole mass we use HSSUSY

[83–90,98–109] and FLEXIBLEEFTHIGGS [83–95,98–108,
110]. Both numerical methods are based on an effective
field theory approach in which all non-SM particles are
integrated out at a common threshold (namely, mSUSY ¼ffiffiffiffiffiffiffiffiffiffiffiffiffimt̃1mt̃2
p ), at which point the theory is matched to the
SM and run down to the electroweak scale, where the SM
couplings are matched to experimental data and the Higgs
pole mass is extracted. Theoretical uncertainty in this type
of procedure arises in three areas:
(1) SM uncertainty: uncertainty due to neglected higher-

order corrections at the electroweak scale.—We
consider two sources. The first source is missing
corrections in the extraction of the SM running
parameters from experimental data at the electroweak
scale, which induce uncertainty that can be estimated
as the effect of higher loop corrections on the Higgs
pole mass. Here, we estimate the uncertainty by
comparing the Higgs pole mass when 3-loop QCD
corrections to the top Yukawa coupling are included
the to the result for 2-loop top Yukawa coupling
corrections. The second source is missing corrections
in the calculation of the Higgs pole mass itself.
Since such missing corrections lead to residual
renormalization-scale dependence in the pole mass,
we estimate this uncertainty by varying the scale at
which the pole mass is calculated over the range
ð1
2
mt; 2mtÞ and taking the difference between the

maximum andminimum. The total SM uncertainty is
the linear sum of these two contributions.

(2) SUSY uncertainty: uncertainty due to neglected
threshold corrections in the matching of the SM to
the MSSM.—In the EFT approach, the Higgs pole
mass is primarily sensitive to new physics via thresh-
old corrections from supersymmetric particles to the
Higgs quartic coupling, at the scale where the Stan-
dard Model is matched to the MSSM. The matching
in HSSUSY and FLEXIBLEEFTHIGGS is complete up
through the 2-loop level, and includes some 3-loop
corrections. The uncertainty due to the neglected
higher-order corrections to theHiggs quartic coupling
can be estimated by the residual matching-scale
dependence in the Higgs pole mass. To calculate this,
we vary the scale at which the SM is matched to the
MSSM over the interval ð1

2
mSUSY; 2mSUSYÞ and take

the difference between the maximum and minimum
value of the Higgs pole mass.

FIG. 15. Plot of the percent deviation of the Yukawa couplings
in the DR scheme for mSUSY ¼ 5 TeV (dotted) and mSUSY ¼
100 TeV (dashed) from the value for mSUSY ¼ 10 TeV,
with tan β ¼ 5.
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(3) EFT uncertainty: uncertainty due to neglected
higher-dimensional operators in the SM EFT
below the matching scale.—Both HSSUSY and
FLEXIBLEEFTHIGGS only include terms up to order
Oðv=mSUSYÞ in the SM EFT. In a pure EFT
approach, the uncertainty due to the missing terms
of order Oðv2=m2

SUSYÞ and higher can be estimated
as a shift in the SUSY threshold corrections to the
Higgs quartic coupling. Accordingly, in HSSUSY, we
calculate this uncertainty as the shift in theHiggs pole
mass induced by multiplying all 1-loop threshold
corrections to the Higgs quartic coupling at the scale
mSUSY by ð1þ v2=m2

SUSYÞ. In FLEXIBLEEFTHIGGS,
conversely, this uncertainty is not present, as the
calculation departs from the pure EFT approach at
low energy by switching to a diagrammatic calcu-
lation, which correctly resums leading and sublead-
ing logarithms to all orders.

The total uncertainty is taken to be the linear sum of the SM,
SUSY, and EFT uncertainties. As our Higgs mass estimate,
we take the average of the HSSUSYand FLEXIBLEEFTHIGGS

results, with uncertainty given by the union of the two
calculated ranges.

3. Superpartner mass spectrum

To explore the parameter space of the benchmark scenar-
ios given in Table I, we randomly sample over the estimated
ranges of doublet c parameters (cLi;Qi

) that are consistent
with all phenomenological constraints. The allowed ranges
are principally determined by the FCNC constraints on the
first- and second-generation sfermions and by the Higgs
mass constraints on the third-generation squarks. EWSB
and the large D-term radiative corrections discussed in

Sec. IVA 2 impose further limits on the c parameters that
can only be determined a posteriori in the numerical
renormalization. These constraints can further limit the
c-parameter ranges and introduce correlations among
the c parameters of successful spectra. Once the doublet
c parameters are specified, the singlet c parameters are fixed
according to (42) to generate the SM fermion mass spec-
trum. In order to avoid introducing any new hierarchies
with this mechanism, we additionally require that all the
c parameters are order-one numbers. In practice, we (gen-
erously) require �c≲ 10, providing effective upper and
lower limits on all sfermion masses that hold in the absence
of stronger constraints.
In Fig. 16 we present the resulting superpartner pole mass

spectra obeying all phenomenological constraints and con-
sistent with the measured value of the Higgs boson mass
(see Sec. IV B 2 for details of the Higgs mass calculation).
The corresponding ranges for the sfermion, gaugino, and
Higgsino masses in the gauge-eigenstate basis are shown in
Fig. 17. In general, the spread in the masses is a result of the
freedom in the bulk hypermultiplet localizations (c param-
eters) remaining after the application of all constraints,
combined with the uncertainty in the numerical calculations.
In both cases, the allowed mass ranges for the third-

generation sfermions are relatively unconstrained on phenom-
enological grounds, and their limits are principally determined
by the restriction of c-parameters to order-one numbers. In
particular, we note that for the stops (below 100TeV, these can
be identified unequivocally with ũ1;2), the general mass scale
( ffiffiffiffiffiffiffiffiffiffiffiffiffimt̃1mt̃2
p ) is broadly consistentwith the observedHiggsmass
throughout the allowed c-parameter ranges.
The observed Higgs boson mass provides stronger con-

straints indirectly, since the particular structure of EWSB in

FIG. 16. Predicted superpartner pole mass spectra for benchmark scenarios A (hatched) and B (solid) given in Table I.
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our model makes it sensitive to the scalarD-term corrections
arising either from the extra dimension or in the MSSM
running (see Sec. IVA 2). We show the Higgs boson mass
estimates for both scenarios in Fig. 18 as smoothed functions
of tan β. For both benchmark scenarios, consistency with
the observedHiggs bosonmass restricts the allowed range of
D-term corrections, such that the necessary value of tan β
results from EWSB. This, first of all, introduces correlations
among the heavy sfermion masses, such that the necessary
corrections are obtained. The primary constraint arises on the
c parameters of the first-generation sfermions (the heaviest
sfermions) cL1

and cQ1
, which must be correlated such

that ΔS;S∼m2
ũL;d̃L

−2m2
ũR
þm2

d̃R
−m2

ẽL
þm2

ẽR
are of the cor-

rect scale.
We show this correlation for scenario A in Fig. 19. For

scenario A, the explanation of the SM fermion mass
hierarchy typically requires that either ũL or ũR is the
heaviest sfermion. Thus, in order to obtain ΔS;S > 0, as
preferred by the Higgs boson mass, m2

ẽR
must be heavy

enough to compensate for the negative contribution of
m2

ũR
, if mũR > mũL . When mũL > mũR , then mẽL > mẽR is

allowed. Note that the Higgs mass measurement also

FIG. 19. Correlation between first-generation slepton and
up-squark masses for benchmark scenario A (given in Table I).
The green region gives a smoothed estimate of the region
preferred by the experimentally measured Higgs boson. The
horizontal (vertical) gray lines give the range of cL1

(cQ1
).

(a) (b)

FIG. 18. Predicted Higgs boson mass and uncertainty for
benchmark scenarios A (left) and B (right) as functions of
tan β at the scale mSUSY ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffimt̃1mt̃2

p . The horizontal blue line
and surrounding region shows the observed Higgs mass value and
its uncertainty.

FIG. 17. Predicted sfermion mass spectra in the gauge-eigenstate basis for benchmark scenarios A (hatched) and B (solid) given in
Table I.
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constrains the allowed spread of the first-generation sfer-
mion masses more than the condition imposed to suppress
FCNCs, which merely restricts the masses to be above
100 TeV. Similarly, for scenario B, the Higgs boson mass
prefers ΔS;S < 0, which is accomplished when ũR is the
heaviest sfermion in the theory. ΔS;S > 0 is also allowed,
but in this case, mũR must be tuned against mẽR . For this
point we note that the Higgs boson mass also limits the
mass ranges of the other first- and second-generation
sfermions more strictly than necessary to suppress FCNCs.
For the third-generation sfermions, the D-term correc-

tions necessary to obtain the observed Higgs boson mass
may necessitate additional constraints in order to avoid
tachyonic masses. For both scenarios, this effect imposes
the lower limit on mτ̃R , and for scenario B it also imposes
the lower limit on mτ̃L . These are the only constraints
on the third-generation sfermion masses that are stronger
than those set by the order-one limit on the c parameters.
For both scenarios, the right-handed stau may thus
be the lightest sfermion, and τ̃1 may accordingly be
the NLSP.
When τ̃1 is heavy, the NLSP for both scenarios is χ̃01. For

scenario A, χ̃01 is Bino-like and χ̃�2 , χ̃
0
2 are Wino-like, while

the heavy charginos, χ̃�2 , and the heavy neutralinos, χ̃
0
3;4, are

Higgsino-like. This is reversed for scenario B, where χ̃01;2;3
and χ̃�1 are Bino-like or Higgsino-like and χ̃�2 , χ̃

0
4 are Wino-

like. The spread in the masses of the Higgsino-like states is
due to the spread of the Higgsino mass parameter μ, which
is fixed by EWSB. In both cases, μ correlates precisely with
the soft mass parameter m2

Hu
, which is predominantly

determined by Yukawa radiative corrections from m2
Q̃3

and m2
ũ3
. Thus, the spread of μ is ultimately tied to freedom

in cQ3
, which as we discussed above, is limited only by the

constraint that it is an order-one number. The masses of the
heavy Higgs, H0, H�, and A0 also scale with μ, but about
10% of their spread is due to the running of the soft masses
m2

Hu
and m2

Hd
. The spread in the gluino and the Bino-like

and Wino-like states is due primarily to the uncertainty in
the gauge and Yukawa couplings. In Figs. 16 and 17 that
spread is exaggerated for clarity.
In both scenarios, the hierarchical structure of the mass

spectrum is clear. The largest hierarchy occurs for τ̃1, where
we find ratios up to mũ6;d̃6

=mτ̃1 ∼ 13 in the singlet spurion
case and up tomũ6=mτ̃1 ∼ 35 in the nonsinglet spurion case.
The hierarchy for the stops is relatively more modest: we
find ratios up to mũ6;d̃6

=mt̃1 ∼ 3 in the singlet spurion case
and up to mũ6=mt̃1 ∼ 18 in the nonsinglet spurion case. The
size of these mass splittings, which cannot be generated by
MSSM running alone, is a direct consequence of the
hierarchy in the sfermion IR-brane soft mass boundary
conditions, and hence is ultimately a signature of the SM
fermion mass spectrum, mediated by the radiative correc-
tions of the extra dimension and the MSSM.

V. CONCLUSION

We have presented a minimal supersymmetric model that
uses partial compositeness to relate the SM fermion mass
hierarchy to the sfermion mass hierarchy. This occurs by
assuming that the SM gauge fields, Higgs sector, and the
third-generation matter are (mostly) elementary, while the
first two generations of matter are composite due to some
unknown strong dynamics that confines at a scale ΛIR.
Hierarchies are then generated when elementary superfields
linearly mix with supersymmetric operators that have large
anomalous dimensions. Since the Higgs fields are elemen-
tary, the more composite the fermion, the lighter the
corresponding fermion mass. The strong dynamics is also
assumed to dynamically break supersymmetry, such that the
composite sparticle states directly feel the supersymmetry
breaking. The predominantly elementary states, such as the
third-generation sfermions, Higgsinos, and gauginos, are
therefore split from the much heavier first- and second-
generation composite sfermions. Thus, the partially
composite supersymmetric model generically predicts that
light (heavy) SM fermions, have heavy (light) sfermion
superpartners. Moreover, since the gravity multiplet mixes
with the stress-energy tensor (via an irrelevant term), the
gravitino is much lighter than the gauginos. It therefore
becomes the LSP that can play the role of dark matter.
To obtain quantitative predictions andmodel the unknown

strong dynamics responsible for the composite states and
large anomalous dimensions, we use the AdS=CFT corre-
spondence to study a 5D version of our 4Dmodel [where the
strong dynamics is specifically due to a large-N gauge theory
(CFT)]. In a slice of AdS5, the Higgs sector is confined to
the UV brane, while the remaining MSSM superfields are
located in the bulk. Supersymmetry breaking occurs on the
IR brane. The MSSM fields are identified with the zero
modes of the corresponding 5D fields. The zero-mode profile
depends on a bulkmass (dimensionless) parameter c that can
be arbitrarily varied to localize the zero-mode superfield
anywhere in the bulk. The fermion and sfermion mass
hierarchy is now dictated by the 5D fermion geography.
Since theHiggs fields are confined to theUVbrane, the third-
generation SM fermions are UV-localized, while the first-
and second-generation SM fermions are IR-localized. This
naturally leads to an inverted sfermionmass hierarchy,where
the first- and second-generation sfermions are heavy, while
those of the third generation are light.
At tree level, the sfermion hierarchymay be exponentially

large due to the suppressed coupling between the UV-
localized fields and the supersymmetry-breaking sector. The
mass scale of the third-generation sfermions is therefore set
by radiative corrections from the heavy states, which trans-
mit the breaking of supersymmetry at loop order and become
the dominant soft mass contribution. At one loop in 5D,
these corrections arise frombulk gauginos and scalars. Since
the Higgs fields are localized on the UV brane, both the
Higgs-sector soft masses and the soft trilinear scalar
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couplings (a-terms) are zero at tree level, but they, too,
receive radiative corrections from the bulk.
The overall scales in the 5D model can be fixed by

imposing a number of phenomenological constraints:
(i) the LSP gravitino is assumed to be the dark matter
with a mass ≳1 keV; (ii) electroweak symmetry is broken,
consistent with a 125 GeV Higgs boson; (iii) the first- and
second-generation sfermions are at least as heavy as
100 TeV to ameliorate the supersymmetric flavor problem;
(iv) the gaugino and Higgsino masses are constrained, so as
to preserve gauge coupling unification as in the usual
MSSM [assuming any underlying dynamics preserves
SU(5)]; and (v) only the MSSM fields are present in the
theory below the scale of compactification. The SM
fermion mass spectrum is used to constrain the bulk
fermion mass parameters ci. The 5D model then predicts
the sfermion masses at the IR-brane scale, ΛIR, which are
run down to lower energies using renormalization group
equations. Since the boundary conditions for the sfermion
masses are nonuniversal and flavor-dependent, tachyonic
constraints that avoid charge- and color-breaking minima
must be imposed to further restrict the parameter space.
The numerical results of our benchmark scenarios, given

in Table I, predict a hierarchical sfermion mass spectrum.
The third-generation sfermions have masses in the approxi-
mate range 10–100 TeV (20–100 TeV for the stops), while
the first- and second-generation sfermions have masses in
the range 100–350 TeV. We do not obtain a unique
prediction because we assume that there is no relation
between the cL;R parameters of the left- and right-handed
fermions. Nevertheless, the numerical results reveal some
interesting features. Most obvious is the hierarchical nature
of the spectrum. Typical MSSM running cannot produce a
mass spectrum with widely separated sparticle masses, and
thus, with minimal particle content, the origin of the mass
hierarchy must necessarily reside in the high-scale boun-
dary conditions. Such conditions are a generic feature of
our model and result in a distinctive split spectrum. The
nonuniversality of the sfermion boundary conditions is also
visible at a finer level, as it is responsible for the presence of
sizeable D-term radiative corrections to the scalar masses.
Although the sign and magnitude of these corrections are
highly constrained on tachyonic grounds, they can be
favorable for EWSB and can offset negative contributions
to the scalars that arise at two loops. Due to the structure of
EWSB in our model (imposed by radiative corrections from
the bulk), the predicted Higgs boson mass is also sensitive
to D-term corrections, and the experimentally measured
mass value can therefore indirectly constrain the heaviest
mass scales in the theory. In fact, since the measured
Higgs mass is broadly consistent with stop masses in the
10–100 TeV range (as predicted in both benchmark
scenarios) it is primarily through this effect that it con-
strains our benchmark spectra.
Our model is not too different from the usual MSSM,

where a hidden sector with strong dynamics is typically

invoked to dynamically break supersymmetry (e.g., via
gaugino condensation). The supersymmetry breaking is
then mediated via gravity (or alternatively, gauge inter-
actions) to the visible sector with universal boundary
conditions for the sfermion masses. The difference in
our model is that the first- and second-generations of
matter are composites of the strong dynamics at some
high scale ΛIR. The composite states also directly feel the
supersymmetry breaking (e.g., perhaps via a nonzero
F-term of the underlying constituents), thereby giving rise
to strongly flavor-dependent sfermion mass boundary con-
ditions. Furthermore, assuming that the strong dynamics is
SU(5) invariant (similar towhat is imposed on themessenger
sector in gauge-mediated models), gauge coupling unifica-
tion is still preserved at the GUT scale ∼1016 GeV.
In light of the Higgs boson discovery and its implications

for the supersymmetric spectrum, our model thus provides
a more predictive, split-like supersymmetry scenario by
explicitly relating the SM fermion mass hierarchy to the
sfermion mass spectrum. It would be interesting to con-
struct models of the nontrivial dynamics (perhaps going
beyond large-N theories) that may constrain the anomalous
dimensions even further, and therefore lead to exact
predictions for the sparticle spectrum. Nonetheless, the
partially composite supersymmetric model provides the
raision d’être for the inverted sfermion hierarchy with a
gravitino LSP. The NLSP is typically a Bino, Higgsino,
or right-handed stau which decays to the gravitino and
could eventually be probed at a future 100 TeV collider.
Alternatively, the heavy first- and second-generation sfer-
mions could be indirectly probedvia rare-decay experiments,
such as the flavor-violating Mu2e experiment [111], or
experiments attempting to measure the electric dipole
moment of the electron [112]. Of course, with heavy super-
partners, our model is tuned, and the question of why the
overall scale of the sparticle spectrum is much heavier than
the TeV scale remains amystery. Perhaps this is just evidence
of the multiverse, as speculated in split-supersymmetric
models, or a supersymmetric relaxion mechanism is at play,
or, instead, the tuning could be related to the strong dynamics
of the supersymmetry-breaking sector. In any case, we have
attempted to provide further rationale for why low-energy
supersymmetry may be lurking at a scale of 10–1000 TeV.
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APPENDIX A: PARTIAL COMPOSITENESS

In this appendix we present details of the partial
compositeness (equivalent to holographic mixing in 5D)
for the chiral, vector, and gravity supermultiplets.
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1. Chiral supermultiplet

a. Complex scalar

At the IR scale, the supersymmetric Lagrangian (7) for
the chiral supermultiplet has the component form

Lscalar¼−∂μϕ
†∂μϕþF†FþεΦΛIRðϕFcð1ÞþFϕcð1ÞþH:c:Þ

−∂μϕ
cð1Þ†∂μϕcð1ÞþFcð1Þ†Fcð1Þ−∂μϕ

ð1Þ†∂μϕð1Þ

þFð1Þ†Fð1Þþmð1Þ
Φ ðϕð1ÞFcð1ÞþFð1Þϕcð1ÞþH:c:Þ;

ðA1Þ

where εΦ is a dimensionless constant and mð1Þ
Φ ¼ gð1ÞΦ ΛIR.

Eliminating the auxiliary fields gives rise to the Lagrangian

Lscalar¼−∂μϕ
†∂μϕ−ε2ΦΛ2

IRϕ
†ϕ−εΦg

ð1Þ
Φ Λ2

IRðϕ†ϕð1Þ þH:c:Þ
−∂μϕ

ð1Þ†∂μϕð1Þ−mð1Þ2
Φ ϕð1Þ†ϕð1Þ

−∂μϕ
cð1Þ†∂μϕcð1Þ−ðgð1Þ2Φ þε2ΦÞΛ2

IRϕ
cð1Þ†ϕcð1Þ;

ðA2Þ

where, in the basis ðϕ;ϕð1Þ;ϕcð1ÞÞ, the mass matrix is
given by

m2
ϕ ¼

0
BBB@

ε2Φ εΦg
ð1Þ
Φ 0

εΦg
ð1Þ
Φ gð1Þ2Φ 0

0 0 ε2Φ þ gð1Þ2Φ

1
CCCAΛ2

IR: ðA3Þ

Note that there is a mass mixing between the elementary
state ϕ and the composite state, ϕð1Þ. Nevertheless, when
this matrix is diagonalized, there is a massless eigenstate
which can be written as

jϕ0i ≃N Φ

�
jϕi − εΦ

gð1ÞΦ

jϕð1Þi
�
; ðA4Þ

where N Φ is a normalization constant, while the massive
eigenstates are given by

jϕ1i ≃N Φ

�
εΦ

gð1ÞΦ

jϕi þ jϕð1Þi
�
; ðA5aÞ

jϕ2i ≃ jϕcð1Þi: ðA5bÞ

Thus, we see that the massless eigenstate is an admix-
ture of the elementary and composite states and that the
massive eigenstate is a complex scalar with mass-squared

ðε2Φ þ gð1Þ2Φ ÞΛ2
IR. Note that the eigenstates are expressed in

the mass-mixing basis, unlike the kinetic-mixing basis used
in Ref. [27]. While both bases are equivalent at the level of
mass eigenstates, supersymmetry breaking in the mass-

mixing basis is shown in Sec. III C to give consistent results
with the 5D gravity model.

b. Fermion

Similarly, the fermion part of the supersymmetric
Lagrangian (7) at the IR scale is given by

Lfermion ¼ iψ†σ̄μ∂μψþ iψ ð1Þ†σ̄μ∂μψ
ð1Þ þ iψcð1Þ†σ̄μ∂μψ

cð1Þ

−εΦΛIRðψψcð1Þ þH:c:Þ−mð1Þ
Φ ðψ ð1Þψcð1Þ þH:c:Þ:

ðA6Þ

In the basis ðψ ;ψcð1Þ;ψ ð1ÞÞ, this leads to the following
fermion mass matrix:

mψ ¼ 1

2

0
BB@

0 εΦ 0

εΦ 0 gð1ÞΦ

0 gð1ÞΦ 0

1
CCAΛIR: ðA7Þ

The mass eigenstates correspond to a massless
Weyl fermion and a massive Dirac state with mass

ðε2Φ þ gð1Þ2Φ ΛIRÞ1=2. The massless eigenstate is given by

jψ0i ≃N Φ

�
jψi − εΦ

gð1ÞΦ

jψ ð1Þi
�
; ðA8Þ

while the massive eigenstates are

jψ1;2i ≃
N Φffiffiffi
2

p
(
εΦ

gð1ÞΦ

jψi þ jψ ð1Þi �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ε2Φ

gð1Þ2Φ

s
jψcð1Þi

)
:

ðA9Þ

Thus, partial compositeness leads to a massless complex
scalar and Weyl fermion which combine into a chiral
supermultiplet.

2. Vector supermultiplet

The component fields of the vector supermultiplet can be
identified by noting that the IR Lagrangian (11) is invariant
under the supergauge transformations

V → V þ iðΩ† −ΩÞ; ðA10aÞ

Vð1Þ þΦð1Þ
V þΦð1Þ†

Vffiffiffi
2

p
gð1ÞV ΛIR

→Vð1Þ þΦð1Þ
V þΦð1Þ†

Vffiffiffi
2

p
gð1ÞV ΛIR

− i
εV

gð1ÞV

ðΩ†−ΩÞ;

ðA10bÞ

where Ω is a chiral superfield gauge-transformation param-
eter. Choosing the Wess-Zumino gauge for V, the super-
fields then take the form
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V ¼ θ†σ̄μθAμ þ θ†θ†θλþ θθθ†λ† þ 1

2
θθθ†θ†D; ðA11aÞ

Vð1Þ ¼ θ†σμθÃð1Þ
μ þ θ†θ†θλð1Þ þ θθθ†λð1Þ† þ 1

2
θθθ†θ†Dð1Þ;

ðA11bÞ

Φð1Þ
V ¼ ϕð1Þ

V þ
ffiffiffi
2

p
θχð1Þ þ θθFð1Þ

V þ iθ†σ̄μθ∂μϕ
ð1Þ
V

−
iffiffiffi
2

p θθθ†σ̄μ∂μχ
ð1Þ þ 1

4
θθθ†θ†□ϕð1Þ

V ; ðA11cÞ

where □ ¼ ∂μ∂μ. Here, Ãð1Þ
μ , ϕð1Þ

V , λð1Þ, and χð1Þ are

dynamical (composite) fields, while Fð1Þ
V and Dð1Þ are

auxiliary (composite) fields. Next, we diagonalize the mass
term for the component Lagrangians.

a. Gauge field

Using (11) and (A11), the gauge field component
Lagrangian becomes

Lgauge ¼ −
1

4
FμνFμν −

1

4
F̃ð1ÞμνF̃ð1Þ

μν

−
1

2
Λ2
IRðεVAμ þ gð1ÞV Ãð1Þ

μ þ ∂μφ
ð1ÞÞ2; ðA12Þ

which is invariant under the gauge transformations

Aμ → Aμ þ ∂μζ; ðA13aÞ

Að1Þ
μ ≡ Ãð1Þ

μ þ ∂μφ
ð1Þ

gð1ÞV

→ Að1Þ
μ −

εV

gð1ÞV

∂μζ; ðA13bÞ

where ζ is a gauge parameter and φð1Þ ≡ i
2ΛIR

ðϕð1Þ
V − ϕð1Þ�

V Þ.
Note that in the limit of no mixing between the elementary
and composite sectors ðεV ¼ 0Þ, the lowest-lying massive

composite state, Að1Þ
μ , has a mass mð1Þ

V ¼ gð1ÞV ΛIR. The
appearance of a mass term for Aμ is similar to what
happens for vector-meson dominance in QCD [113].
The mass eigenstates are obtained by diagonalizing the

mass-squared term in (A12), where in the basis ðAμ; A
ð1Þ
μ Þ,

the mass matrix is given by

m2
A ¼

 
ε2V εVg

ð1Þ
V

εVg
ð1Þ
V gð1Þ2V

!
Λ2
IR: ðA14Þ

This gives rise to one massless and one massive eigenstate.
For canonical kinetic terms, the massless gauge boson
eigenstate becomes

jAμ0i ≃N V

�
jAμi −

εV

gð1ÞV

jAð1Þ
μ i
�
; ðA15Þ

while the massive gauge boson eigenstate is given by

jAμ1i ≃N V

�
εV

gð1ÞV

jAμi þ jAð1Þ
μ i
�
; ðA16Þ

where N V is a normalization constant. The eigenstates are
expressed in the mass-mixing basis instead of the kinetic-
mixing basis used in Ref. [27], since supersymmetry is
assumed to be broken in this basis. The massless eigen-
mode (A15) now transforms under a gauge transformation

as Aμ0 → Aμ0 þ ð1þ ε2V=g
ð1Þ2
V Þ∂μζ, while, as expected, Aμ1

no longer transforms.
The massive eigenstate Aμ1 obtains a mass

m2
V1

¼ ðε2V þ gð1Þ2V ÞΛ2
IR ≃ ½g2sðΛIRÞ þ gð1Þ2V �Λ2

IR; ðA17Þ

where, in the second expression, we have used

gsðΛIRÞ ≃ ε̃Vffiffiffiffiffi
ZV

p
ffiffiffi
N

p
4π ¼ εV , which follows from the large-N

corrections to the elementary-field gauge coupling gs. The
diagonal gauge-field Lagrangian for the two-state system is
then given by

Lgauge ¼ −
1

4
Fμν
0 F0μν −

1

4
Fμν
1 F1μν −

1

2
m2

V1
A2
1μ; ðA18Þ

where the gauge coupling of the massless mode is obtained
from

gsðΛIRÞψ†σ̄μAμψ − gð1ÞV ψ ð1Þ†σ̄μAð1Þ
μ ψ ð1Þ

þ gð1ÞV ψcð1Þ†σ̄μAð1Þ
μ ψcð1Þ ¼ gψ†

0σ̄
μAμ0ψ0 þ � � � ðA19Þ

Using (A8) and (A15), this leads to the expression

1

g2
¼
�
N 2

ΦN V

�
gsðΛIRÞ þ gð1ÞV

ε2Φ
g2Φ

εV

gð1ÞV

��−2

≃
1

g2sðΛIRÞ
þ 1

gð1Þ2V

: ðA20Þ

Finally, note that by eliminating D and Dð1Þ in the scalar
field part of the Lagrangian, one can check that the real part

of the composite scalar field ϕð1Þ
V also obtains a mass,

identical to that of the gauge field Aμ1.

b. Gaugino

The gaugino part of the vector supermultiplet Lagrangian
(11) is given by

Lgaugino ¼ iλ†σ̄μ∂μλþ iλð1Þ†σ̄μ∂μλ
ð1Þ þ iχð1Þ†σ̄μ∂μχ

ð1Þ

− ΛIRðεVλχð1Þ þ gð1ÞV λð1Þχð1Þ þ H:c:Þ: ðA21Þ
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In the limit εV ¼ 0, the massive composite state is a Dirac

fermion with mass mð1Þ
V ¼ gð1ÞV ΛIR. Using the basis

ðλ; χð1Þ; λð1ÞÞ and the orthogonal matrix

O1=2 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gð1Þ2V þ ε2V

q
0
BBBBB@

gð1ÞV 0 −εV
εVffiffi
2

p −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
gð1Þ2V þε2V

2

q
gð1ÞVffiffi
2

p

εVffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
gð1Þ2V þε2V

2

q
gð1ÞVffiffi
2

p

1
CCCCCA; ðA22Þ

the mass terms in (A21) can be diagonalized via

O1=2

0
BBB@

0 εV
2

0

εV
2

0
gð1ÞV
2

0
gð1ÞV
2

0

1
CCCAOT

1=2¼

0
BBB@
0 0 0

0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2Vþgð1Þ2V

p
2

0

0 0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2Vþgð1Þ2V

p
2

1
CCCA;

ðA23Þ

which gives rise to a massless Weyl fermion and a massive
Dirac fermion. The massless gaugino eigenstate is given by

jλ0i ≃N V

�
jλi − εV

gð1ÞV

jλð1Þi
�
: ðA24Þ

Thus, the massless gaugino is an admixture of the elemen-
tary gaugino λ and the composite gaugino λð1Þ.
The massive Dirac fermion state has the decomposition

jλ1;2i ≃
N Vffiffiffi
2

p
8<
: εV

gð1ÞV

jλi þ jλð1Þi �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ε2V

gð1Þ2V

s
jχð1Þi

9=
;;

≃
N Vffiffiffi
2

p
8<
: 1

gð1ÞV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ζV logðΛUV

ΛIR
Þ

q jλi þ jλð1Þi � jχð1Þi
9=
;;

ðA25Þ

assuming εV ≪ 1 and dropping terms of Oðε2VÞ and higher
in the second expression, with mass eigenvalues

mV1;2
≃�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2sðΛIRÞ þ gð1Þ2V

q
ΛIR: ðA26Þ

This mass agrees with that obtained for the gauge field Aμ1

and scalar field ϕð1Þ
V , as expected by supersymmetry.

3. Gravity supermultiplet

To identify the component fields of the gravity super-
multiplet, we note that the IR Lagrangian (17) is invariant
under the supergauge transformations

Hμ → Hμ þ Δμ; ðA27aÞ

Hð1Þ
μ → Hð1Þ

μ −
εH

gð1ÞH

Δμ; ðA27bÞ

where Δμ is a real superfield gauge-transformation param-
eter. Choosing an analog of the Wess-Zumino gauge for
Hμ, the superfields take the form

Hμ ¼ −
1ffiffiffi
2

p θ†σ̄νθhμν − iθθθ†λ†μ

þ iθ†θ†θλμ þ
1

2
θθθ†θ†Dμ þ � � � ðA28aÞ

Hð1Þ
μ ¼ Cð1Þ

μ − iθωð1Þ
μ þ iθ†ωð1Þ†

μ − θ†σ̄νθVð1Þ
μν

− iθθθ†
�
λð1Þ†μ −

i
2
σ̄ν∂νω

ð1Þ
μ

�

þ iθ†θ†θ
�
λð1Þμ −

i
2
σν∂νω

ð1Þ†
μ

�

þ 1

2
θθθ†θ†

�
Dð1Þ

μ þ 1

2
□Cð1Þ

μ

�
þ � � � ðA28bÞ

where we have neglected terms with auxiliary fields. The
gravity component fields are then defined to be

hð1Þμν ≡ Vð1Þ
μν þ Vð1Þ

νμffiffiffi
2

p ; ðA29aÞ

Cð1Þ
μ ≡ 1ffiffiffi

3
p

ΛIR

1

gð1ÞH

hð1Þμ ; ðA29bÞ

1

2
ψ ð1Þ
μ ≡ λð1Þμ þ 1

3
σμσ̄

ρλð1Þρ ðA29cÞ

bð1Þσ ≡Dð1Þσ þ 1

2
ϵνμκσ∂κV

ð1Þ
νμ ; ðA29dÞ

ωð1Þ
μ ≡ 1

ΛIR

1

2gð1ÞH

χð1Þμ : ðA29eÞ

Note that hð1Þμν , ψ ð1Þ
μ , χð1Þμ , and hð1Þμ are dynamical

(composite) fields,whilebð1Þμ is an auxiliary (composite) field.

a. Graviton

Using (17) the graviton field component Lagrangian
becomes

Lgraviton ¼
1ffiffiffi
2

p hμνEμν þ 1ffiffiffi
2

p hð1Þμν Eð1Þμν

−
1

2
Λ2
IRðεHhμν þ gð1ÞH hð1Þμν Þ2; ðA30Þ

where Eμν ≡ 1ffiffi
2

p ð∂μ∂νhλλ þ □hμν − ∂μ∂λhλν − ∂ν∂λhλμ−
ημν□hλλ þ ημν∂λ∂ρhλρÞ. The Lagrangian is invariant under
the gauge transformation
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hμν → hμν −
1

2
ð∂μζν þ ∂νζμÞ; ðA31aÞ

hð1Þμν → hð1Þμν þ 1

2

εH

gð1ÞH

ð∂μζν þ ∂νζμÞ; ðA31bÞ

where ζμ is a gauge parameter. Note that in the limit of no
mixing between the elementary and composite sectors

ðεH ¼ 0Þ, the lowest-lying massive composite state, hð1Þμν ,

has a mass mð1Þ
H ¼ gð1ÞH ΛIR.

The mass eigenstates are obtained by diagonalizing the
mass term in (A30). The massless graviton eigenstate is
then

jhμν0i ≃N H

�
jhμνi −

εH

gð1ÞH

jhð1Þμν i
�
; ðA32Þ

and the massive graviton eigenstate is given by

jhμν1i ≃N H

�
εH

gð1ÞH

jhμνi þ jhð1Þμν i
�
; ðA33Þ

where N H is a normalization constant. The mass-
less eigenmode hμν0 now transforms under a gauge trans-

formation as hμν0→hμν0−1
2
ð1þε2H=g

ð1Þ2
H Þð∂μζνþ∂νζμÞ,

while, as expected, hμν1 no longer transforms. The massive

eigenstate hμν1 obtains a mass m2
H1

≃ ðε2H þ gð1Þ2H ÞΛ2
IR. The

diagonal gravity Lagrangian for the two-state system is then
given by

Lgraviton ¼
1ffiffiffi
2

p hμν0 Eμν0 þ
1ffiffiffi
2

p hμν1 Eμν1 −
1

2
m2

H1
h2μν1: ðA34Þ

By eliminating bμ and bð1Þμ in the vector-field part of the
Lagrangian, one can check that the composite vector

field hð1Þμ also obtains a mass identical to that of the graviton
field hμν1. For simplicity, we have not included the
scalar components, but they obtain a similar mass by
supersymmetry.

b. Gravitino

The gravitino part of the gravity supermultiplet
Lagrangian (17) at the IR scale is given by

Lgravitino

¼ −
1

2
ϵμνρκψμσν∂ρψ

†
κ −

1

2
ϵμνρκψ ð1Þ

μ σν∂ρψ
ð1Þ†
κ

−
1

2
ϵμνρκχð1Þμ σν∂ρχ

ð1Þ†
κ

−
1

4
ΛIRðεHψμ½σμ; σ̄ν�χð1Þν þ gð1ÞH ψ ð1Þ

μ ½σμ; σ̄ν�χð1Þν þ H:c:Þ;
ðA35Þ

where ψ ð1Þ
μ and χð1Þμ are both contained in the tensor

supermultiplet Hð1Þ
μ . In the limit εH ¼ 0 the massive

composite state is a Dirac fermion with mass mð1Þ
H .

Using the basis ðψμ; χ
ð1Þ
μ ;ψ ð1Þ

μ Þ, the mass term in (A35)
can be diagonalized via the transformation

O3=2

0
BBB@

0 εH
2

0

εH
2

0
gð1ÞH
2

0
gð1ÞH
2

0

1
CCCAOT

3=2 ¼

0
BBB@
0 0 0

0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2Hþgð1Þ2H

p
2

0

0 0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2Hþgð1Þ2H

p
2

1
CCCA;

ðA36Þ

with the orthogonal matrix

O3=2 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gð1Þ2H þ ε2H

q
0
BBBBB@

gð1ÞH 0 −εH
εHffiffi
2

p −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
gð1Þ2H þε2H

2

q
gð1ÞHffiffi
2

p

εHffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
gð1Þ2H þε2H

2

q
gð1ÞHffiffi
2

p

1
CCCCCA; ðA37Þ

which gives rise to a massless Weyl fermion and a massive
Dirac fermion. The massless gravitino eigenstate then
becomes

jψμ0i ≃N H

�
jψμi −

εH

gð1ÞH

jψ ð1Þ
μ i
�
; ðA38Þ

Thus, the massless gravitino is an admixture of the

elementary gravitino ψμ and the composite gravitino ψ ð1Þ
μ .

The massive Dirac fermion state is given by

jψμ1;2i ≃
N Hffiffiffi
2

p
8<
: εH

gð1ÞH

jψμi þ jψ ð1Þ
μ i �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ε2H

gð1Þ2H

s
jχð1Þμ i

9=
;;

≃
N Hffiffiffi
2

p
8<
: 1

gð1ÞH

ffiffiffiffiffiffi
ζH

p
ΛIR

ΛUV
jψμi þ jψ ð1Þ

μ i � jχð1Þμ i
9=
;;

ðA39Þ

where εH ≪ 1 and terms of Oðε2HÞ and higher have been
dropped in the second expression. The mass eigenvalues
are

mH1;2
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2H þ gð1Þ2H

q
ΛIR; ðA40Þ

which agrees with that obtained for the graviton

field hð1Þμν and the vector field hð1Þμ , as expected by
supersymmetry.
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APPENDIX B: BULK ZERO-MODE
PROFILES IN A SLICE OF ADS

The quadratic part of the 5D bulk action of a hyper-
multiplet containing complex scalar fields ϕ and ϕc and
Dirac fermion Ψ living in a slice of AdS5 is given by [25]

S5 ¼
Z

d5x
ffiffiffiffiffiffi
−g

p ½−j∂Mϕj2 −m2
ϕjϕj2 − j∂Mϕ

cj2 −m2
ϕc jϕcj2

þ iΨ̄ΓMDMΨ − imΨΨ̄Ψ�; ðB1Þ

where g ¼ detðgMNÞ is the determinant of the AdS metric
(39) and the curved space covariant derivative DM ¼ ∂M þ
ωM includes the spin connection ωM. The bulk masses are
given by

mΨ ¼ cσ0; ðB2aÞ

m2
ϕ;ϕc ¼ ak2 þ bσ00; ðB2bÞ

where σ ¼ kjyj and a, b, c are dimensionless parameters.
Performing a KK decomposition, the zero-mode profiles
(with respect to a flat metric) are [24,25]

f̃ð0ÞΨL;R
ðyÞ ¼ e−

3
2
kjyjfð0ÞΨL;R

ðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1
2
∓ cÞk

e2ð12∓cÞπkR − 1

s
eð12∓cÞkjyj;

ðB3Þ

f̃ð0Þϕ ðyÞ ¼ e−kjyjfð0Þϕ ðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðb − 1Þk
e2ðb−1ÞπkR − 1

r
eðb−1Þkjyj; ðB4Þ

where the upper (lower) sign is used for the L (R)
component and a ¼ bðb − 4Þ must be satisfied for a
massless scalar mode. This is automatic for a hyper-
multiplet, where supersymmetry requires that b ¼ 3

2
∓ c,

such that f̃ð0ÞΨL;R
ðyÞ ¼ f̃ð0ÞϕL;R

ðyÞ ∝ eð12∓cÞkjyj as expected

for the zero-mode fermions and scalar fields in a
hypermultiplet.
In a vector supermultiplet, the profile for the zero mode

of the gauge boson is

f̃ð0ÞA ðyÞ ¼ fð0ÞA ðyÞ ¼ 1ffiffiffiffiffiffiffiffiffi
2πR

p ; ðB5Þ

while that for the gaugino corresponds to fð0ÞΨL
ðyÞ in (B3)

with c ¼ 1
2
, and therefore matches (B5). Similarly for the

graviton supermultiplet the zero-mode graviton profile is
given by (B4) with b ¼ 0, and for the gravitino the profile

is fð0ÞΨL
ðyÞ in (B3) with c ¼ 3

2
, which again matches by

supersymmetry.
When supersymmetry is broken as in Sec. III C by the

IR-brane operators (51) and (47), the sfermion and gaugino
zero modes acquire soft masses mϕ and Mλ. The boundary

mass terms on the IR brane induce a back reaction on the
KK profiles of these fields. In this case, the zero-mode
profiles are determined in the same manner as the profiles
of massive KK states:

f̃ð0Þϕ ðyÞ ¼ Nϕekjyj
�
J2−b

�
mϕ

k
ekjyj

�

−
J1−bðmϕ

k Þ
Y1−bðmϕ

k Þ
Y2−b

�
mϕ

k
ekjyj

��
; ðB6Þ

f̃ð0Þλ ðyÞ ¼ Nλekjyj
�
J1

�
Mλ

k
ekjyj

�
−
J0ðMλ

k Þ
Y0ðMλ

k Þ
Y1

�
Mλ

k
ekjyj

��
;

ðB7Þ

where Nϕ;λ are determined by the normalization condi-
tions [39]

Z
πR

−πR
dyðf̃ð0Þϕ ðyÞÞ2 ¼ 1; ðB8Þ

Z
πR

−πR
dyðf̃ð0Þλ ðyÞÞ2 ¼ 1þ g2ð2πkRÞ 1

2

F
ΛIRMλ

1

k
ðf̃ð0Þλ ðπRÞÞ2:

ðB9Þ

When supersymmetry is broken, the super-Higgs effect
gives rise to the gravitino coupling (44) on the UV brane,
and the gravitino acquires a mass m3=2 (46). This boundary
mass term induces a back reaction on the gravitino KK
profiles, such that the zero-mode profile is given

f̃ð0Þ3=2ðyÞ ¼ N3=2ekjyj
�
J2

�
m3=2

k
ekjyj

�

−
J1ðm3=2

k Þ
Y1ðm3=2

k ÞY2

�
m3=2

k
ekjyj

��
; ðB10Þ

where

Z
πR

−πR
dyðf̃ð0Þ3=2ðyÞÞ2 ¼ 1þ 1

2

Fffiffiffi
3

p
MPm3=2

1

k
ðf̃ð0Þ3=2ð0ÞÞ2;

ðB11Þ

determines the normalization N3=2.

APPENDIX C: RADIATIVE CORRECTIONS
IN A SLICE OF ADS

In this appendix we calculate the radiative corrections to
the scalar masses as well as soft mass parameters in the
Higgs sector arising from the 5D bulk in our model.
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1. Bulk scalar soft masses

Although the sfermions receive soft masses at tree level
from their couplings to the supersymmetry-breaking sector
on the IR brane, as discussed in Sec. III C, quantum
corrections from the bulk can become significant for
UV-localized fields. At one loop, these corrections arise
from the gauge sector, Yukawa couplings, and D-term
interactions. Here, we consider the corrections to a generic
bulk scalar soft mass squared in a supersymmetric theory.

a. Gauge-sector corrections

In the bulk, scalars couple to gauge bosons and gauginos,
generating soft mass corrections at one loop that take the
form

ðΔm2
ϕi
Þg ¼ 4g2CðRϕi

ÞΠϕi
g ; ðC1Þ

where i indexes the scalar field, g is the (4D) gauge
coupling at the IR-brane scale, CðRÞ is the quadratic
Casimir [in the SU(5) normalization] of the representation
R, and

Πϕi
g ¼ 2πkR

k

Z
d4p
ð2πÞ4

×
Z

πR

−πR
dyðf̃ð0Þϕi

ðyÞÞ2ðGAðp;y; yÞ− e−3kjyjGλðp;y; yÞÞ;

ðC2Þ

in the limit in which we neglect the external momentum. If
we parametrize the amount of supersymmetry breaking on
the IR brane as F=ΛIR ¼ ξ2ke−πkR, the gauge boson, GA,
and gaugino, Gλ, bulk propagators take the forms

GAðpE; y; yÞ ¼
1

2
z2k

S01ðxUV; xÞS10ðx; xIRÞ
T0
0ðxUV; xIRÞ

; ðC3aÞ

GλðpE; y; yÞ ¼
1

2
z5k4S01ðxUV; xÞ

×
S10ðx; xIRÞ − ig2πkRξ2T1ðx; xIRÞ

T0
0ðxUV; xIRÞ − ig2πkRξ2S01ðxUV; xIRÞ

;

ðC3bÞ

where pE ¼ −ip is the Euclidean momentum (the general
expressions for Euclidean 5D mixed position-momentum
propagators, normalized to the interval 0 ≤ y ≤ πR are
given in Ref. [17]), z ¼ ekjyj=k is a conformal coordinate
along the fifth dimension such that zUV ¼ 1=k and
zIR ¼ eπkR=k, and the auxiliary functions

Sα1α2ðx1; x2Þ ¼ Iα1ðx1ÞKα2ðx2Þ þ Kα1ðx1ÞIα2ðx2Þ; ðC4aÞ

Tα1
α2ðx1; x2Þ ¼ Iα1ðx1ÞKα2ðx2Þ − Kα1ðx1ÞIα2ðx2Þ ðC4bÞ

are combinations of the modified Bessel functions I, K.
The natural argument of the Bessel functions is the
dimensionless variable x ¼ pEz. In the following, we
suppress repeated indices, i.e., Tαðx1; x2Þ≡ Tα

αðx1; x2Þ.
That the loop contribution to the scalar soft masses

squared is purely a supersymmetry-breaking effect can be
seen in the difference

GAðpE; y; yÞ − e−3kjyjGλðpE; y; yÞ

¼ −
1

2

1

pE

z2

zUVzIR

S01ðxUV; xÞ
T0ðxUV; xIRÞ

×
ig2πkRξ2S01ðxUV; xÞ

T0ðxUV; xIRÞ − ig2πkRξ2S01ðxUV; xIRÞ
; ðC5Þ

which vanishes (by cancellation) when supersymmetry is
unbroken (ξ ¼ 0). When the gaugino acquires a mass, this
cancellation is shifted, and the scalar receives a correction
that is quadratically divergent.
This divergence arises since the addition of boundary

masses as in Sec. III C deforms the superpartner KK wave-
function profiles, which results in a difference between the
effective couplings of the gauge boson and of the gauginos,
leading to a parametrically hard breaking of supersymmetry
on the IR brane. The extra dimension protects the UV brane
and the bulk from the hard breaking, but on the IR brane,
where there is no finite distance separating the scalar mode
from the source of supersymmetry breaking, quantum
corrections to the scalar masses squared are not finite, and
sensitive to the cutoff scale. We note that this divergent
behavior is a peculiar feature of warped spaces and does not
occur in the flat case, where this type of supersymmetry
breaking is globally realized (and hence does not lead to a
local distortion of field profiles). Thus, the flat-space break-
ing is soft, and quantum corrections are finite and indepen-
dent of the cutoff scale [17,114–116].
In the 4D dual theory, this divergence is a result of the

breakdown of the perturbativity of the loop expansion as the
gauge coupling becomes strong. Since we lose control over
the corrections near the compactification scale, we wish to
extract a well-defined, finite portion of the correction
associated with the long-range physics, which includes
the breaking of supersymmetry. The correspondence
between the renormalization scale in the 4D dual theory
and position in the fifth dimension suggests an appropriate
regularization procedure in which we scale the effective IR
brane seen by the propagators in the loopwith position in the
extra dimension [117]. The equivalent procedure in the 5D
perspective is to isolate the portion of the loop correction due
to the compactification of the theory, absorbing the remain-
ing infinite part into a counterterm [118–121]. Since the
presence of the IR brane inAdS explicitly breaks 5DLorentz
symmetry, this finite correction is nonlocal, associated with
a winding around the compact dimension. This purely
curvature-dependent contribution to (C2) can be extracted
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by employing a cutoff Λ ¼ ke−πkR on the 4D momentum
integral.We have checked that both of these renormalization
methods are numerically equivalent, and therefore may be
used interchangeably. For calculational convenience, we
employ the simple cutoff scheme.
After regularization, the resulting finite part of the

correction can be parametrized in terms of the gaugino
mass as

ðΔm2
ϕi
Þg ¼

rϕi
g

8π2
4g2CðRϕÞM2

λ ; ðC6Þ
where

rϕi
g ¼ 8π2

ReiΠϕi
g

M2
λ

ðC7Þ

is a positive parameter that depends on the amount of
supersymmetry breaking as well as the localization of the
bulk hypermultiplet containing the scalar field (and on the
IR-brane scale). We plot rϕi

g in Fig. 20 as a function offfiffiffiffi
F

p
=ΛIR at ΛIR ¼ 107 GeV for three cases of the hyper-

multiplet localization: the two limits in which the scalar is
confined to the UV and IR branes (�ci → ∞ and
�ci → −∞) as well as the case 1

2
(flat) in between. For

each localization, we give the U(1) (light), SU(2)
(medium), and SU(3) (dark) contributions. The effect of
the supersymmetry breaking saturates for

ffiffiffiffi
F

p
=ΛIR ≫ 1

and rϕi
g approaches a constant value that is independent of

the gauge group.

b. Yukawa corrections

The bulk scalar soft masses squared also receive con-
tributions from their Yukawa couplings on the UV brane.
At one loop, these corrections involve a boundary Higgs
field and a scalar or fermion field from a different bulk
hypermultiplet, taking the form

ðΔm2
ϕL;R

Þy ¼ y2ΠϕL;R
y ; ðC8Þ

where

ΠϕL;R
y ¼

� f̃ð0ÞϕL;R
ð0Þ

f̃ð0ÞψL ð0Þf̃ð0ÞψR ð0Þ

�
2
Z

d4p
ð2πÞ4 ðG

UV
ϕR;L

ðpÞ−GUV
ψR;L

ðpÞÞ:

ðC9Þ
Here, the bulk scalar, GUV

ϕ , and fermion, GUV
ψ , propagators

are evaluated on the UV brane and take the forms

GUV
ϕL;R

ðpEÞ ¼
1

2

1

pE

2pEzIRSαβðxUV; xIRÞ − ξ4TαðxUV; xIRÞ
2pEzIRTβðxUV; xIRÞ − ξ4SβαðxUV; xIRÞ

;

ðC10aÞ

GUV
ψL;R

ðpEÞ ¼
1

2

1

pE

SαβðxUV; xIRÞ
TβðxUV; xIRÞ

; ðC10bÞ

where α ¼ jc� 1
2
j,

β ¼ ðc� 1
2
Þðc ∓ 1

2
Þ

jc� 1
2
j ; ðC11Þ

and c is the fermion bulk mass parameter that specifies the
localization of fields in the hypermultiplet.
The supersymmetry-breaking contribution arises from

the difference between the scalar and fermion loops:

GUV
ϕL;R

ðpEÞ −GUV
ψL;R

ðpEÞ

¼ 1

2

1

p3
E

1

zUVzIR

1

TβðxUV; xIRÞ

×
ξ4

2xIRTβðxUV; xIRÞ − ξ4SβαðxUV; xIRÞ
: ðC12Þ

When supersymmetry is broken, the correction is finite
and negative and can be parametrized in terms of the soft
scalar masses as

ðΔm2
ϕL;R

Þy ¼ −
rϕL;R
y

8π2
y2m2

ϕR;L
; ðC13Þ

where

rϕL;R
y ¼ −8π2

ReiΠϕL;R
y

m2
ϕR;L

ðC14Þ

is positive and depends on the amount of supersymmetry
breaking and the localizations of the bulk hypermultiplets.
In Fig. 21 we plot rϕL;R

y as a function of
ffiffiffiffi
F

p
=ΛIR for

three choices of bulk hypermultiplet localizations: cL ¼
−cR ¼ 0, 1

2
, 1. The behavior of rϕL;R

y is similar to that of rϕi
g ,

saturating to a constant for
ffiffiffiffi
F

p
=ΛIR ≫ 1.

FIG. 20. Plot of the coefficient rϕi
g , which parametrizes the

one-loop gauge corrections to bulk scalar soft masses squared,
for the U(1), SU(2), and SU(3) gauge groups as a function of the
relative supersymmetry breaking on the IR brane,

ffiffiffiffi
F

p
=ΛIR, for

ΛIR ¼ 107 GeV.
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c. D-term corrections

In models such as ours, where the pattern of supersym-
metry breaking is nonuniversal in flavor-space, Fayet-
Iliopoulos Uð1ÞY D-term corrections to scalar soft masses
squared due to supersymmetry breaking arise. At one loop,
the contributing diagrams are of tadpole form, involving a
bulk scalar field and a vector supermultiplet auxiliary field:

ðΔm2
ϕi
ÞD ¼ 3

5
g21YðϕiÞ

X
j

YðϕjÞðΠϕi
D Þϕj

; ðC15Þ

where

ðΠϕi
D Þϕj

¼ 2πkR
k

Z
d4p
ð2πÞ4

Z
πR

−πR
dyðf̃ð0Þϕi

ðyÞÞ2

×
Z

πR

−πR
dy0GDð0; y; y0Þ

× e−2kjy0jðGϕj
ðp; y0; y0Þ − Gϕc

j
ðp; y0; y0ÞÞ; ðC16Þ

Y is the hypercharge, and the sum is over all bulk scalars.
Here ϕc

i is the N ¼ 2 supersymmetric scalar partner of ψ i,
a member of the same hypermultiplet, but odd under the
orbifold symmetry. The bulk scalar, Gϕ and Gϕc , and
auxiliary field, GD, propagators take the forms

GϕL;R
ðpE; y; yÞ ¼

1

2
z4k3SβαðxUV; xÞ

×
2pEzIRSαβðx; xIRÞ − ξ4Tαðx; xIRÞ

2pEzIRTβðxUV; xIRÞ − ξ4SβαðxUV; xIRÞ
;

ðC17aÞ

Gϕc
L;R
ðpE; y; yÞ ¼

1

2
z4k3

TαðxUV; xÞTαðx; xIRÞ
TαðxUV; xIRÞ

; ðC17bÞ

GDð0; y; y0Þ ¼
k

2πkR
; ðC17cÞ

where we have evaluated the auxiliary field propagator
in the zero-momentum limit, as there is no momentum
flow into the scalar loop. Since the auxiliary field has no
y-dependence in this limit, we can use the orthonormality
condition for the scalar zero-mode profile (B8) to do the
first integral over the fifth dimension, leaving

ðΠϕi
D Þϕj

→ ΠD
ϕj

¼
Z

d4p
ð2πÞ4

Z
πR

−πR
dye−2kjyjðGϕj

ðp; y; yÞ −Gϕc
j
ðp; y; yÞÞ:

ðC18Þ
This quantity is independent of the localization of the
external scalar, indicating that the sumX

i

YðϕiÞΠD
ϕi

ðC19Þ

gives a universal correction for all scalars (bulk and
boundary) that are charged under the U(1) gauge symmetry.
As with (C1), the loop integral here is divergent.

However, the leading divergences in this case arise even
when supersymmetry is unbroken.12 The D-term contribu-
tion to the soft scalar mass squared arising purely as a
supersymmetry-breaking effect can be extracted by con-
sidering the difference between loop integrals in broken
and unbroken supersymmetry: schematically,

ðΠD
ϕi
Þξ ¼ ΠD

ϕi
− ½ΠD

ϕi
�ξ¼0: ðC20Þ

This is equivalent to evaluating the loop integral using the
difference in propagators:

GϕL;R
ðpE; y; yÞ − ½GϕL;R

ðpE; y; yÞ�ξ¼0

¼ 1

2

1

pE

z4

z3UVzIR

SβαðxUV; xÞ
TβðxUV; xIRÞ

×
ξ4SβαðxUV; xÞ

2pEzIRTβðxUV; xIRÞ − ξ4SβαðxUV; xIRÞ
: ðC21Þ

The supersymmetry-breaking contribution extracted in this
manner is linearly divergent. After regularizing the inte-
grals, the resulting finite part of the correction is negative
and can be parametrized in terms of the scalar mass:

FIG. 21. Plot of the coefficient rϕL;R
y , which parametrizes the

one-loop Yukawa corrections to bulk scalar soft masses squared
as a function of the relative supersymmetry breaking on the IR
brane,

ffiffiffiffi
F

p
=ΛIR, for ΛIR ¼ 107 GeV.

12Both quadratic and linear divergences arise in this manner;
the former on the branes, and the latter in both the bulk and on the
branes [122]. The quadratic divergences depend on the hyper-
charge, and hence vanish in the trace over the scalars, provided
that the sum of the scalar hypercharges is zero (as is true for the
MSSM field content). The linear divergences can be absorbed in a
renormalization of the hypermultiplet bulk mass when regular-
ized with a position-dependent cutoff.
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ðΔm2
ϕi
ÞD ¼ −

1

8π2
3

5
g21YðϕiÞ

X
j

YðϕjÞrDϕj
m2

ϕj

≡ −
1

8π2
3

5
g21YðϕiÞΔS; ðC22Þ

where

rDϕi
¼ −8π2

ReiðΠD
ϕi
Þξ

m2
ϕi

ðC23Þ

is positive and depends on the amount of supersymmetry
breaking as well as the localizations of the bulk scalars. In
Fig. 22 we plot rDϕi

as a function of
ffiffiffiffi
F

p
=ΛIR, considering

four cases for the hypermultiplet localization of the internal
scalar: ci ¼ 0, 1

2
, 3
4
, 1. The largeness of rDϕi

when the bulk
hypermultiplet is highly UV-localized is due to the expo-
nential smallness of the scalar tree level mass in that case,
rather than the absolute magnitude of the correction.

2. Higgs soft scalar masses

When the Higgs fields are confined to the UV brane, they
have no direct couplings to the supersymmetry-breaking
sector on the IR brane. The Higgs-sector soft mass terms
are therefore zero at tree level, and are generated instead at
higher loop order by radiative corrections involving bulk
fields that transmit the supersymmetry breaking from the
IR brane. Here, we consider the one-loop corrections to the
soft mass squared for a generic Higgs field completely
localized on the UV brane. A similar one-loop analysis was
performed in the 4D KK formalism for the Higgs sector in
unbroken supersymmetry in Ref. [123].

a. Gauge-sector corrections

The contributions to the Higgs scalar soft masses squared
from the gauge sector arise from loops of bulk gauge

bosons and gauginos. At one loop, the corrections involve
one bulk field and one boundary field and induce the soft
mass correction [115,116,124–126]

ðΔm2
Hi
Þg ¼ 4g2CðRHi

ÞΠH
g ; ðC24Þ

where i ¼ u, d indexes the Higgs field and

ΠH
g ¼ 2πkR

k

Z
d4p
ð2πÞ4 ðG

UV
A ðpÞ −GUV

λ ðpÞÞ: ðC25Þ

The gauge boson, GUV
A , and gaugino, GUV

λ , bulk propa-
gators are evaluated on the UV brane where the Higgs fields
are localized, taking the forms

GUV
A ðpEÞ ¼

1

2

1

pE

S10ðxUV; xIRÞ
T0ðxUV; xIRÞ

; ðC26aÞ

GUV
λ ðpÞ ¼ 1

2

1

pE

S10ðxUV; xIRÞ − ig2πkRξ2T1ðxUV; xIRÞ
T0ðxUV; xIRÞ − ig2πkRξ2S01ðxUV; xIRÞ

:

ðC26bÞ

We note that this correction (C24) is a special case of the
general bulk scalar soft mass-squared correction (C1),
corresponding to the limit in which the scalar is confined
to the UV brane.
The contribution of the loop integral from supersym-

metry breaking is extracted in the propagator difference:

GUV
A ðpEÞ − GUV

λ ðpEÞ

¼ −
1

2

1

p3
E

1

zUVzIR

1

T0ðxUV; xIRÞ

×
ig2πkRξ2

T0ðxUV; xIRÞ − ig2πkRξ2S01ðxUV; xIRÞ
: ðC27Þ

The loop integral (C25) is finite, unlike the bulk scalar case
(C18), due to the finite separation between the Higgs fields
on UV brane and the supersymmetry-breaking sector on the
IR brane. The resulting contribution to the Higgs soft
masses squared can be parametrized in terms of the gaugino
mass as

ðΔm2
Hi
Þg ¼

rHg
8π2

4g2CðRHi
ÞM2

λ ; ðC28Þ

where

rHg ¼ 8π2
ReiΠH

g

M2
λ

ðC29Þ

depends on the amount of supersymmetry breaking. We
plot rHg in Fig. 23 for the U(1) and SU(2) gauge groups as a
function of

ffiffiffiffi
F

p
=ΛIR. This behavior matches the UV-brane

limit of the bulk scalar corrections in Fig. 20 and repro-
duces that found in Ref. [126] up to an order-one shift due

FIG. 22. Plot of the coefficient rDϕi
, which parametrizes the

one-loop corrections to a bulk scalar soft masses squared due to a
D-term coupling with the bulk scalar ϕi as a function of the
relative supersymmetry breaking on the IR brane,

ffiffiffiffi
F

p
=ΛIR, for

ΛIR ¼ 107 GeV.
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to a difference in the definition of the supersymmetry-
breaking gaugino IR-brane operator and the UV cutoff of
the 4D momentum integration.

b. Yukawa corrections

Similarly, the Higgs soft masses squared receive con-
tributions via their Yukawa interactions with bulk fermions
and scalars. At one loop, the corrections each involve two
bulk fields and take the form

ðΔm2
Hi
Þy ¼ y2ΠH

y ; ðC30Þ

where

ΠH
y ¼

�
1

f̃ð0ÞψL ð0Þf̃ð0ÞψR ð0Þ

�
2

×
Z

d4p
ð2πÞ4 ðG

UV
ϕL

ðpÞGUV
FR

ðpÞ þGUV
ϕR

ðpÞGUV
FL

ðpÞ

− 2p2GUV
ψL

ðpÞGUV
ψR

ðpÞÞ: ðC31Þ

TheUV-brane bulk scalar and fermion propagators are given
in (C10) and (C10b). The bulk hypermultiplet auxiliary field
propagator GUV

F (in the style of Ref. [127]) is likewise
evaluated on the UV brane and takes the form

GUV
FL;R

ðpEÞ¼−p2
E½GUV

ϕL;R
ðpEÞ�ξ¼0¼−p2

EG
UV
ψL;R

ðpEÞ: ðC32Þ

As with the bulk scalar Yukawa corrections, the con-
tribution to the loop integral from supersymmetry breaking
is extracted in the propagator differences (C12). The
resulting contribution to the Higgs soft masses squared
is finite and negative and can be parametrized in terms of
the scalar masses squared as

ðΔm2
Hi
Þy ¼ −

rHy
8π2

y2ðm2
ϕL

þm2
ϕR
Þ; ðC33Þ

where

rHy ¼ −8π2
ReiΠH

y

ðm2
ϕL

þm2
ϕR
Þ ðC34Þ

is positive and depends on the amount of supersymmetry
breaking as well as the localization of the bulk fields.
In Fig. 24 we plot rHy as a function of

ffiffiffiffi
F

p
=ΛIR for

three choices of the hypermultiplet localization: cL ¼
−cR ¼ 0, 1

2
, 1.

c. D-term corrections

Since, as discussed above, the D-term corrections to the
scalar soft masses squared are independent of the locali-
zation of the scalar, the Higgs-sector corrections on the
boundary take the same form as the corrections in the bulk:

ðΔm2
Hi
ÞD ¼ 3

5
g21YðHiÞ

X
j

YðϕjÞΠD
ϕj
; ðC35Þ

where ΠD
ϕj

is defined in (C18). We regulate as discussed in

Sec. C 1 c, resulting in a finite negative contribution to the
Higgs soft masses squared, parametrized in terms of the
scalar mass as

ðΔm2
Hi
ÞD ¼ −

1

8π2
3

5
g21YðHiÞ

X
j

YðϕjÞrDϕj
m2

ϕj
; ðC36Þ

where rDϕj
is defined in (C23).

3. Higgs soft b-term

The Higgs soft b-term, like the Higgs soft masses
squared, is zero at tree level, and so is generated at loop

FIG. 24. Plot of the coefficient rHy , which parametrizes the one-
loop Yukawa corrections to the Higgs soft masses squared, as a
function of the relative supersymmetry breaking on the IR brane,ffiffiffiffi
F

p
=ΛIR, for ΛIR ¼ 107 GeV.

FIG. 23. Plot of the coefficient rHg , which parametrizes the one-
loop gauge corrections to the Higgs soft masses squared, for the
U(1) and SU(2) gauge groups as a function of the relative
supersymmetry breaking on the IR brane,

ffiffiffiffi
F

p
=ΛIR, for

ΛIR ¼ 107 GeV.
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order once supersymmetry is broken. In this case, the only
corrections which contribute at one loop arise in the gauge
sector, involving one bulk gaugino field and one boundary
Higgsino field

ðΔbÞλ ¼ 4g2TaðRHu
ÞTaðRHd

ÞΠb
λ ; ðC37Þ

where TaðRÞ is the generator of the gauge group in
representation R, and

Πb
λ ¼ −

2πkR
k

Z
d4p
ð2πÞ4

μ

p2
GUV

Mλ
ðpÞ: ðC38Þ

The Majorana mass-mixing component of the gaugino
propagator, GUV

Mλ
ðpÞ, evaluated on the UV brane, is given

by [128]

GUV
Mλ

ðpEÞ¼−
1

2

1

p2
E

zUV
zIR

i
S01ðxUV;xIRÞ

×
1

T0ðxUV;xIRÞ− ig2πkRξ2S01ðxUV;xIRÞ
: ðC39Þ

Unlike the previous loop corrections, the b-term one-
loop gaugino correction depends explicitly on supersym-
metry breaking through the Majorana gaugino mass, and no
complementary loop of superpartners is present. The
resulting contribution is finite and negative, and we para-
metrize it in terms of the Higgsino mass μ and the gaugino
mass as

ðΔbÞλ ¼ −
rbλ
8π2

4g2TaðRHu
ÞTaðRHd

ÞμMλ; ðC40Þ

where

rbλ ¼ −8π2
ReiΠb

λ

μMλ
ðC41Þ

is positive and depends on the amount of supersymmetry
breaking and μ. We plot rbλ in Fig. 25 as a function offfiffiffiffi
F

p
=ΛIR for the U(1) (lighter) and SU(2) (darker) gauge

groups. In the limit
ffiffiffiffi
F

p
=ΛIR ≫ 1, rbλ tends to zero as 1=ξ.

This is a result of the fact that in the twisted limit the
gaugino mass is pure Dirac and the Majorana mixing that
generates the soft coupling disappears. When

ffiffiffiffi
F

p
=ΛIR ≪ 1,

the effect of the supersymmetry breaking saturates, and rbλ
approaches a constant value.

4. Trilinear soft scalar couplings (a-terms)

The soft a-term interactions, like the Higgs-sector soft
terms, are zero at tree level but are generated at loop order
once supersymmetry is broken. At one loop, the only
nonvanishing corrections arise from loops of bulk gaugi-
nos, bulk fermions, and Higgsinos:

ðΔaÞλ ¼ 4yg2½TaðRHÞTaðRϕL
ÞðΠa

λÞϕL

þ TaðRHÞTaðRϕR
ÞðΠa

λÞϕR

þ TaðRϕL
ÞTaðRϕR

ÞðΠa
λÞϕLϕR

�; ðC42Þ

where

ðΠa
λÞϕL;R

¼−
2πkR
k

Z
d4p
ð2πÞ4

Z
πR

−πR
dy

f̃ð0ÞϕL;R
ðyÞ

f̃ð0ÞψL;Rð0Þ
f̃ð0ÞϕR;L

ð0Þ
f̃ð0ÞψR;Lð0Þ

e−3kjyj

×GψL;R
ðp;0;yÞGMλ

ðp;y;0Þ; ðC43aÞ

ðΠa
λÞϕLϕR

¼ −
2πkR
k

Z
d4p
ð2πÞ4

Z
πR

−πR
dy

×
Z

πR

−πR
dy0p2

f̃ð0ÞϕL
ðyÞ

f̃ð0ÞψL ð0Þ
f̃ð0ÞϕR

ðy0Þ
f̃ð0ÞψR ð0Þ

e−3kjyje−3kjy0j

×GψL
ðp; 0; yÞGMλ

ðp; y; y0ÞGψR
ðp; y0; 0Þ

ðC43bÞ

are the contributing loop integrals. The bulk gaugino
Majorana mass-mixing propagator and the bulk fermion
propagator take the forms

GMλ
ðpE; y; y0Þ ¼ −

1

2

ðzz0Þ5=2
z4UVzIR

i
S01ðxUV; xIRÞ

×
iS01ðxUV; x>ÞS01ðxUV; x<Þ

T0ðxUV; xIRÞ − ig2πkRξ2S01ðxUV; xIRÞ
;

ðC44aÞ

GψL;R
ðpE; 0; yÞ ¼

1

2

1

pE
ðzkÞ5=2 Sαβðx; xIRÞ

TβðxUV; xIRÞ
; ðC44bÞ

FIG. 25. Plot of the coefficient rbλ , which parametrizes the one-
loop gaugino corrections to the Higgs soft b-term, as a function of
the relative supersymmetry breaking on the IR brane,

ffiffiffiffi
F

p
=ΛIR,

for ΛIR ¼ 107 GeV.
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where the values z>ð<Þ represent the greater (lesser) of z
and z0.
As with the soft b-term, this gaugino correction alone

depends explicitly on supersymmetry breaking, without the
presence of the corresponding loop of superpartners. The
loop integrals (C43a) and (C43b) are finite, despite their
extension into the bulk. The resulting correction is negative
and can be parametrized in terms of the gaugino mass as

ðΔaÞλ ¼ −
1

8π2
4yg2½ðraλÞϕL

TaðRHÞTaðRϕL
Þ

þ ðraλÞϕR
TaðRHÞTaðRϕR

Þ
þ ðraλÞϕLϕR

TaðRϕL
ÞTaðRϕR

Þ�Mλ; ðC45Þ

where

ðraλÞϕL;R
¼ −8π2

ReiðΠa
λÞϕL;R

Mλ
; ðC46aÞ

ðraλÞϕLϕR
¼ −8π2

ReiðΠa
λÞϕLϕR

Mλ
ðC46bÞ

are positive and depend on the amount of supersymmetry
breaking and the localizations of the bulk hypermultiplets.
We plot ðraλÞϕL;R

in Fig. 26 and ðraλÞϕLϕR
in Fig. 27 as

functions of
ffiffiffiffi
F

p
=ΛIR for two choices of hypermultiplet

localizations: cL ¼ −cR ¼ −1 and cL ¼ −cR ≥ 1
2
(the cor-

rection saturates for UV-localized fields). The U(1) (light),
SU(2) (medium), and SU(3) (dark) contributions are given
in each case. The coefficients ðraλÞϕL;R

and ðraλÞϕLϕR
exhibit

behavior similar to rbλ , vanishing as 1=ξ in the limitffiffiffiffi
F

p
=ΛIR ≫ 1.
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