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A unification of left-right SU(3); x SU(3)g, color SU(3)¢, and family SU(3)p symmetries in a
maximal rank-8 subgroup of Eg is proposed as a landmark for future explorations beyond the Standard
Model (SM). We discuss the implications of this scheme in a supersymmetric (SUSY) model based on
the trinification gauge [SU(3)]* and global SU(3)g-family symmetries. Among the key properties of this
model are the unification of SM Higgs and lepton sectors, a common Yukawa coupling for chiral
fermions, the absence of the y problem, gauge couplings unification, and proton stability to all orders in
perturbation theory. The minimal field content consistent with a SM-like effective theory at low energies
is composed of one Eg 27-plet per generation as well as three gauge and one family SU(3) octets inspired
by the fundamental sector of Eg. The details of the corresponding (SUSY and gauge) symmetry-breaking
scheme, multiscale gauge couplings’ evolution, and resulting effective low-energy scenarios are

discussed.
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I. INTRODUCTION

Finding successful candidate theories unifying the strong
and electroweak interactions, leading to a detailed under-
standing of the Standard Model (SM) origin, with all its
parameters, hierarchies, symmetries, and particle content
remains a big challenge for the theoretical physics com-
munity. Some of the most popular SM extensions are based
on supersymmetric (SUSY) grand-unified theories (GUTs)
where the SM gauge interactions are unified under sym-
metry groups such as SU(5) and SO(10) [1-7] as well
as By’ and E; [11]. A particularly appealing scenario
proposed by Glashow in 1984 [12] is based upon the
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"The Eq4-based models are typically motivated by heterotic
string theories where massless sectors consistent with the chiral
structure of the SM are naturally described by an Eg x E; gauge
theory. For more details we refer the reader to Refs. [8—10].
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rank-6  trinification symmetry [SU(3)]® = SU(3), x
SU(3)g x SU(3)c x Z3 C E¢ (T-GUT, in what follows)
where all matter fields are embedded in bitriplet represen-
tations and, due to the cyclic permutation symmetry Z5, the
corresponding gauge couplings unify at the T-GUT sponta-
neous symmetry-breaking (SSB) scale, or GUT scale in
what follows.

There have been many phenomenological and theoretical
studies of T-GUTsS, in both SUSY and non-SUSY formu-
lations, motivated by their unique features (see, e.g.,
Refs. [13-36]). For example, due to the fact that quarks
and leptons belong to different gauge representations in T-
GUT scenarios, the baryon number is naturally conserved by
the gauge sector [15], only allowing for proton decay via
Yukawa and scalar interactions, if at all present. As was
shown for a particular T-GUT realization in Ref. [26], the
proton decay rates were consistent with experimental limits
in the case of low-scale SUSY or completely unobservable in
the case of split SUSY. Many T-GUTs can also accommo-
date any quark and lepton masses and mixing angles [15,30],
whereas neutrino masses are generated by a seesaw mecha-
nism [23] of radiative [26] or inverse [28] type.

Despite a notable progress in exploring gauge coupling
unification, neutrino masses, dark matter candidates, TeV-
scale Higgs partners, collider and other phenomenological
implications of GUTs, there are several yet unresolved
problems. One of problems emerging in the case of SUSY
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T-GUT model building is the long-standing issue of avoiding
GUT-scale masses for the would-be SM leptons. To circum-
vent this, the usual solution is to add several 27-plets of Eg
with scalar components responsible for SSB of gauge
trinification [15,18,20,21,25,26,28-31,33,37] or to simply
add higher-dimensional operators [20,21,25,28,38]. These
approaches typically require a significant fine-tuning in high-
scale parameter space (especially, in the Yukawa sector) [26].
Otherwise, they exhibit phenomenological issues with proton
stability [15,21,26] and with a large amount of unobserved
light states [12,20,30,31,34,38]. Despite continuous progress,
the SM-like effective field theories (EFTs) originating from T-
GUTs still remain underdeveloped in comparison to other
GUT models such as SU(5), SO(10), or even Eg¢ (see, e.g.,
Ref. [32] and references therein).

In this paper, we explore in detail the SUSY T-GUT model
proposed in [39] with a global SU(3)g-family symmetry
inspired by the embedding of E x SU(3) into Eg. We will
refer to this model as the SUSY Higgs-unified trinification
(SHUT) model [for alternative ways of extending the SM by
means of an SU(3), symmetry see, e.g., Refs. [40-43]. As
we will see, the SHUT model offers solutions to some of the
problems faced by previous T-GUTs. As the light Higgs and
lepton sectors are unified, the model can be embedded into a
single Eg representation. Furthermore, the embedding sug-
gests the introduction of adjoint scalars and a family SU(3),
where the former protects a sufficient amount of fermionic
states from acquiring masses before electroweak symmetry
breaking (EWSB) to be in agreement with the SM. The
interplay of the family SU(3) also provides a unification of
the high-scale Yukawa sector into a single coupling. This is
in contrast to well-known SO(10) and Pati-Salam models
where the Yukawa unification is constrained to the third
family only (see, e.g., Refs. [44-56]).

The Yukawa and gauge couplings unification in the
SHUT model largely reduces its parameter space, making a
complete analysis of its low-energy EFT scenarios techni-
cally feasible. The model also has a particular feature in that
no further spontaneous breaking of the symmetry towards
the SM gauge group is provided by the SUSY conserving
part of the model and that the energy scales at which the
symmetry is further broken are instead associated with the
soft SUSY-breaking operators. As such, both the electro-
weak scale and the scales of intermediate symmetry
breaking are naturally suppressed relative to the GUT scale.

In Sec. II we briefly discuss the key features of the SHUT
model and its SSB scheme, and in Sec. III the high-scale
SHUT model is introduced in its minimal setup in detail. In
particular, we discuss its features and the details on how it
solves the long-standing problems of previous T-GUT
realizations and how the GUT-scale SSB in this model
leads to a left-right (LR) symmetric SUSY theory. In Sec. [V
we discuss the inclusion of soft SUSY-breaking interactions
and how they lead to a breaking of the remaining gauge
symmetries down to the SM gauge group, and in Sec. V we

present a short overview of the low-energy limits of the
SHUT model. Finally, Sec. VI contains an analysis of
renormalization group (RG) evolution of gauge couplings
at one loop and extraction of characteristic values of the
GUT and soft scales, before concluding in Sec. VII.

In this article, we adopt the following notations:

(1) Supermultiplets are always written in bold (e.g., A).
As usual, the scalar components of chiral supermul-
tiplets and fermionic components of vector super-
multiplets carry atilde (e.g., A), except for the Higgs-
Higgsino sector where the tilde serves to identify the
fermion SU(2); x SU(2)g bidoublets (e.g., H).

(2) Fundamental representations carry superscript indi-
ces, while antifundamental representations carry
subscript indices.

(3) SU(3)k and SU(2)g (anti-)fundamental indices are
denoted by k, k', ky, k,... for K = L, R, respectively,
while color indices are denoted by x, x', x;, x,....

(4) Indices belonging to (anti-)fundamental representa-
tions of SU(3)p are denoted by i, j, k....

(5) If a field transforms both under gauge and global
symmetry groups, the index corresponding to the
global one is placed within the parentheses around
the field, while the indices corresponding to the
gauge symmetries are placed outside.

(6) Global symmetry groups will be indicated by {...}.

II. LEFT-RIGHT-COLOR-FAMILY UNIFICATION

In Glashow’s formulation of the trinified [SU(3); x
SU(3)g x SU(3)¢] x Z3 CEg (LRC-symmetric) gauge
theory [12], three families of the fermion fields from the
SM are arranged over three 27-plet copies of the E¢ group,
namely,

27" = (L)', @ (01)" @ (QR)",
=3.3.1)®3.1.3) @ (1,3.3),

while the Higgs fields responsible for a high-scale SSB are
typically introduced via, e.g., an additional 27-plet. Here and
below, the left, right, and color SU(3) indices are denoted by
[, r, and x, respectively, while the fermion families are
labeled by an index i =1, 2, 3.

The SHUT model first presented in Ref. [39], in contrast
to the Glashow trinification, introduces the global family
symmetry SU(3)g, which acts in the generation space. In
this case, the light Higgs and lepton superfields, as well as
quarks and colored scalars, all are unified into a single
(27, 3)-plet under Eg x SU(3)p symmetry, i.e.,

(27.3) = (L"), ® (Q1)", ® (QR)"x
=(3.3,.1,3)® (3,,1,3.3) ® (1,3.3,.3)).

The leptonic tritriplet superfield (L')!, that unifies the SM
left- and right-handed leptons and SM Higgs doublets can
be conveniently represented as
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Hy,, Hy, e
(L), =| Hy Hy v |. (1)

e % b

Besides, the left-quark (Qi)*, and right-quark (Q%)",
tritriplets are

QL) = (ul di Di).
(QR)"x = (ui, di, D) (2)

In addition, the SHUT model also incorporates the adjoint
[namely, SU(3) g ¢ octet] superfields Aj g cp. The first
SSB step in the SHUT model SU(3); g = SU(2)_ g X
U(1)p g is triggered at the GUT scale by the SUSY-
preserving vacuum expectation values (VEVs) in the scalar
components of the corresponding octet superfields, while
all the subsequent low-scale SSB steps are triggered by
VEVs in the leptonic tritriplet (L')!, through the soft
SUSY-breaking operators.

Along this work, we will be focused on the symmetry-
breaking scheme shown in Fig. 1. There it can be seen that
an accidental global U(1)g x U(1)y, symmetry (which is
marked in red and will be discussed in detail in the next
section) appears in the high-scale theory. As we will see,

[SU3)L x SUB)r x SU(3)c] x
{SU(3)F X U(l)\y X U(l)n}

<z§,,R,F> ~v

[SU@)c x SU2)L x U(L)g x SU(2)r x U(1)r] x
{SU@2)r x U(1)r x Ubw x U(1)p}

<£3> ~ Msoft K U

[SU@)o x SU@)L x SU@)R x U(1)Lsr] X J
{SU2)r x U(1)s x Uyg x U(1)p}

(%), () S ot

[SU(3)C X SU(Q)L X U(l)y] X
{U)r x U x U(1)p}

FIG. 1. The symmetry-breaking scheme in the SHUT model
studied in this work. The symmetry groups in red correspond to
the accidental symmetries of the high-scale theory. The global
accidental U(1)y, and, consequently, its low-energy counterparts
U(1)g 1 discussed below are considered to be softly broken at
low-energy scales and thus are shown as crossed-out symmetry
groups.

although alternative breaking schemes are possible, this is
the one leading to the low-energy SM-like scenarios we find
most interesting. As we shall see in Sec. V, dimension-3
operators that softly break U( 1)y, and consequently its low-
energy descendants [which will be denoted below as
U(1)g ], are needed for a phenomenologically viable
low-scale fermion spectrum. Such interactions do not have
a perturbative origin from the high-scale theory and are
added to the effective theory that emerges once the heavy
degrees of freedom of the SHUT model are integrated out.

III. SUPERSYMMETRIC TRINIFICATION
WITH GLOBAL SU(3)

This section contains a review of the SHUT model before
and after the T-GUT symmetry is broken spontaneously by
adjoint field VEVs. We here present the symmetries,
particle content, and interactions of the model at both
stages, in addition to showing how it addresses the short-
comings of previous T-GUTs.

A. Tritriplet sector

In the following, we consider the SHUT model—a
SUSY T-GUT theory based on the trinification gauge
group with an accompanying global SU(3)g-family sym-
metry, i.e.,

G333 = [SU(3), x SU(3)g x SU(3)c]

x Z9RO) % {SU(3)g)- (3)

Here and below, curly brackets indicate global (nongauge)
symmetries. The minimal chiral superfield content (shown
in Table I) that can accommodate the SM (Higgs and
fermion) fields, is composed of three tritriplet representa-
tions of Gasz(3), which we label as L, Qp, and Ok,
respectively [for their explicit relation to the SM field

content up to a possible mixing, see Eqs. (1) and (2)]. The

ZgLRC) in Eq. (3) is realized on the chiral and vector

superfields as the simultaneous cyclic permutation within
{L,Q.,0r} and {V,Vc, Vi} sets, respectively, where

VLrc are the vector (super)fields for the respective gauge

(LRC)

SU(3)_grc groups. The Z; symmetry enforces the

TABLE I. Tritriplet chiral superfields in the SHUT model and
their quantum numbers.

Chiral supermultiplet fields

Superfield SUB), SUB)y SUB). SUQ).
Higgs-lepton  (L')!, 3 3, 1 3
Left quark Q1) 3 1 3 3
Right quark  (Q%)", 1 3 3, 3
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gauge couplings of the SU(3) p ¢ groups to unify, i.e.,
gL = 9r = 9c = Ju-

As mentioned previously, all fields in Table I can be
contained in a (27, 3) representation of Eg x SU(3)g. In
turn, the group E¢ x SU(3)p is a maximal subgroup of Eg,

Eg D Eg x SU(3)p, (4)

where the (27, 3) fits neatly into the 248 irreducible
representation of Eg whose branching rule is given by

248 = (1,8) @ (78.1) & (27.3) ® (27.3).  (5)

Note, for clarity, that we are only considering represen-
tations of the subgroup [SU(3)]* of Eg, which are chiral
rather than vectorlike, in agreement with the chiral fermion
content of the SM. In this work, we treat SU(3 ) as a global
symmetry. While considerably simpler, the trinification
model with global SU(3)g can be viewed as the principal
part of the fully gauged version in the limit of a vanishingly
small family gauge coupling gr < gy. In that case,
Goldstone bosons would become the longitudinal degrees
of freedom (d.o.f.) of massive SU(3) gauge bosons instead
of remaining as massless scalars. Such a restricted model
can thus be a first step towards the fully gauged Eg-inspired
version.

Considering only renormalizable interactions, the sym-
metry group Gis3qzy allows for just a single term in the
superpotential with the tritriplet superfields

W = dyze;jn (L) (Q])*1(QR)" . (6)

where 1,7 can be taken to be real without any loss of
generality, as any phase can be absorbed with a field
redefinition. As the light Higgs and lepton sectors are fully
contained in the single tritriplet L, this construction
provides an exact unification of Yukawa interactions of
the fundamental superchiral sector and the corresponding
scalar quartic couplings to a common origin, A,7.

The superpotential in Eq. (6) has an accidental U(1)y, x
U(1)g symmetry as we can perform independent phase
rotations on two of the tritriplets as long as we do a
compensating phase rotation on the third. We can arrange
the charges of the tritriplets under U(1)y, x U(1)g as shown
in Table II, such that U(1)y is identified as the symmetry
responsible for baryon number conservation. With this, we
have proton stability to all orders in perturbation theory.

The model with the superpotential in Eq. (6) also
exhibits an accidental symmetry under LR parity P. This
is realized at the superspace level as

[ P *) S
(L)' = = (L))"

[ P B X
(Qf_,R)XS - (QRA,LJS
a P a
VL,R,C — = ViLe (7)

accompanied by

TABLE II. Charge assignment of the tritriplets under the
accidental symmetries.
U(hw U(1)g
L +1 0
oL -1/2 +1/3
Or -1/2 -1/3
#Dx, 0,50 (8)

Here, a is the spinor index on the Grassman valued
superspace coordinate 4. Note that s and ¢ in Eq. (7) label
both SU(3), y indices as such representations are swapped
under LR parity. At the Lagrangian level, the LR-parity
transformation rules become

(L, = = (L) @y ], =ilLhe
(0L, = Ok QL)) —il(Q,) M)
(rey o Ghron  Mrdew =il c1% )

which can be verified by expanding out the components of
the superfields in Eq. (7). In this model, LR parity exists
already at the SU(3) level, unlike common SU(2); x
SU(2)g LR-symmetric realizations. Note also that there

exist the corresponding accidental right-color and color-left

parity symmetries due to the ZgLRC)

imposed in the SHUT model.

As mentioned in the Introduction, one of the main
drawbacks of a SUSY T-GUT (as well as any SUSY
GUT with very few free parameters) is the difficulty for
spontaneous breaking of high-scale symmetries. For exam-
ple, while the non-SUSY T-GUT in Ref. [36] has no
problem with SSB down to a LR-symmetric theory, when
including SUSY the additional relations between potential
and gauge couplings make it so that there is no minimum of
the potential allowing for that breaking. Moreover, even
when relaxing the family symmetry, any VEV in, e.g., L'
induces mass terms that mix the L’ fermions with the
gauginos ;Iﬁ.R through D-term interactions of the type

permutation symmetry

Lp = —\/Egu(i?)llr(Ta)l‘ zz(Li)Izrzf (10)

This is a common problem in the previous T-GUT
realizations as the number of light fields would not be
enough to accommodate the particle content of the SM at
low energies. While it is possible to get around this issue by
adding extra Higgs multiplets to the theory and making
them responsible for the SSB, this significantly increases
the amount of light exotic fields that might be present at low
energies but are unobserved. Such theories typically con-
tain a very large number of free parameters and a fair
amount of fine-tuning, which significantly reduces their
predictive power.
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In the SHUT model, this issue is instead solved by the
inclusion of adjoint SU(3); p ¢ chiral supermultiplets,
A| rcp- By triggering the first SSB, while preserving
SUSY, VEVs in scalar components of A; g ¢ do not lead to
heavy would-be SM lepton fields. In addition, the scalar
and fermion components of A g ¢ are all automatically
heavy after the breaking and thus do not remain in the low-
energy theory.

B. SU(3) adjoint superfields

The addition of gauge-adjoint superfields is the main
feature preventing SM-like leptons from getting a GUT-
scale mass. As was briefly mentioned above, the gauge
and family SU(3) adjoints are motivated by the (78, 1) and
(1,8) representations of Eg x SU(3)r [which can be
inspired by the branching rule of the 248 representation
in its embedding into Eg as shown in Eq. (5)]. Indeed, the
78 representation, in turn, branches as

78=(8.1.1)®(1.8.1)® (1.1.8) ® (3.3.3)® (3.3.3).
(11)

under Eg D [SU(3)]°. We include three gauge-adjoint chiral
superfields A g ¢ corresponding to (8,1,1), (1,8,1), and
(1,1,8) in Eq. (11), respectively, as well as the family

SU(3)r adjoint Ag (all listed in Table III). The trans-

formation rule for the ZgLRC) symmetry in Gszzzqzy of

Eq. (3) is now accompanied by the cyclic permutation
of {AL’ Ac, AR} fields.

In order to keep the minimal setup, in this work we will
not consider the fields that correspond to (3,3,3) and
(3,3,3) from Eq. (11). In practice, they can be made very
heavy and only couple to the tritriplets via gauge
interactions.

By introducing the adjoint chiral superfields, we have to
add the following terms

wo >y

1 1 X
{MsA/'iAX + — Argdapc AGALAG

A=LR.C 2 3!
1 apaa 1 aAbAcC
+ §M1AFAF + aﬂldabcAFAFAF (12)
TABLEIII. SU(3) adjoint chiral superfields in the SHUT model

and their representations.

Chiral supermultiplet fields

Superfield SU3)., SU@B)x SU@B). SUQB)r
Left adjoint Af 8¢ 1 1 1
Right adjoint Af 1 8¢ 1 1
color adjoint A¢ 1 1 8¢ 1
Family adjoint ~ Af 1 1 1 8¢

to the superpotential in Eq. (6). Here, d ,;,. =2Tr[{T,, T } T.]
are the totally symmetric SU(3) coefficients.

Note that bilinear terms are only present for the adjoint
superfields and not for the fundamental ones, as they are
forbidden by the T-GUT symmetry. This leads to the fact
that the VEVs of the adjoint scalars set the first scale where
the T-GUT symmetry is spontaneously broken, while all
subsequent breaking steps occur at scales given by the soft
parameters. In other words, the model is free of the so-
called p problem.

We can pick the phase of Aj g ¢ to make pyg and py
real, which makes 474 and 4; complex, in general. Notice
that the superpotential provides no renormalizable inter-
action terms between the adjoint superfields and the
tritriplets. The accidental U(1)y x U(1)g symmetry of
the tritriplet sector is not affected by Aj grcp as we can
take these fields simply to not transform under this
symmetry. The gauge interactions are parity invariant with
the following definitions for the transformation rules:

~ P ~ P .
Al RcF— AE(TL,C.F’ [Aﬁ.R,C,F]a_) 1[A1T{.1L,C,F]a’ (13)

or, equivalently, Aﬁ.R’C,FﬂAI"{“’L’C,F at the superfield level.
However, LR parity is not generally respected by the F-
term interactions unless A7g and 4, are real. In what follows,
we assume a real A,g, whereas the accidental LR parity can
be explicitly broken by the soft SUSY-breaking sector of
the theory, at or below the GUT scale.

Now, for illustration, let us discuss briefly the first
symmetry-breaking step, which determines the GUT scale
in the SHUT model (see Fig. 1). Equation (12) leads to a
scalar potential containing several SUSY-preserving min-
ima with VEVs that can be rotated to the eighth component
of A} ¢ . In particular, there is an SU(3). and LR-parity-
preserving minimum with

(R¢ ) = %‘5@1 with v g =v= 2\/6%88, ve =0,
(14)
for the gauge adjoints, and
(Rg) = \”—Eag with vp = 2\/6’;—:, (15)

for the family adjoint, setting the GUT scale v ~ vg.
The vacuum structure (A§ ¢} # 0 leads to the sponta-
neous breaking SU(3); g = SU(2) g X U(1) g [see
Appendix A for the corresponding generators and U(1)
charges], resulting in the unbroken group

Gy = SU(3)c x [SU(2), xSU(2)g
xU(1) xU(1)g] x{SUQ)exU(1)g}.  (16)
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LR parity also remains unbroken since vy = vy, which is
true as long as Asg is taken to be real.
By making the shift

v v
Al > Af g +—=08 AR —Af+—288  (17)

V2 V2
and substituting p7g = 2’\% M1 =5 f in the superpotential,
we obtain
W:ZFW’( + )Awuulz oy AGALAS
A 2\/* aa8 \/— 78%abc
+M<d + >A“A“+1/1 oy ASALAS
2\/’ aa8 2\/’ 78%abc
/1781) 1
+=ALAL +3 /1 d iy ALALAL +const. 18
46 ¢ 78 ap (18)

The quadratic terms in the superpotential vanish for
Aﬁflj, since d .3 = —1/(2\/5) fora =4,5, 6,7, meaning
that these fields receive no JF-term contribution to their
masses (contrary to the other components of A; and
Ap, which receive GUT-scale masses m3 ~ A3gv”> and
23v%, respectively). While the global Goldstone bosons
Re[&é’s ’6’7] are present in the physical spectrum, the gauge
ones become the longitudinal polarization states of the
heavy gauge bosons related to the breaking G333 — G3y911-

The presence of massless scalar degrees of freedom can
only be avoided in the extended model with the gauged
family symmetry. It is clear, however, that even in the case
of an approximately global SU(3)g with gr < gy there are
no massless Goldstones in the spectrum (provided that the
accidental symmetries are softly broken at low energies),
but a set of relatively light family gauge bosons very
weakly interacting with the rest of the spectrum.

By performing the shifts in Eq. (17) in the D-terms, we
obtain

S —ifereAbTAG — —l%f"g”(ﬁﬁ — AbT

_ ifabCAgTA%,

for B = L, R, leading to the universal GUT-scale mass term

m? = 3g%v? /4 for the gauge adjoints Im[A};"’], while
A%%" have no D-term contributions [or a small one in the
case of approximately global SU(3), with gr < gyl
Hence, all components of the gauge adjoints and 511:23’8
receive masses of order GUT scale and are integrated out in
the low-energy EFT. The remaining Aé's %7 on the other
hand, receive a much smaller mass from the soft SUSY-
breaking sector (and strongly suppressed D-terms) and stay

in the physical spectrum of the EFT. In what follows, we

shall denote by H:. the superfields containing Im[A['}
and by G'. the superfields containing Re[&i‘i’ﬁj].

54,5,6,7]

C. LR-symmetric SUSY theory

In this section we describe the details of the super-
symmetric theory left after the adjoint fields acquire VEVs.
As shown in the previous section, all components of the
gauge-adjoint chiral superfields receive masses of the order
of the GUT scale [O(v)] in the vacuum given by Eq. (17).
This means that to study the low-energy predictions of the
theory, we need to integrate out A pc, as well as
components 1, 2, 3, and 8 of Ag.

For the gauge sector of the SHUT model, (A )
naturally triggers an SU(3)_p = SU(2) g x U(1)_
breaking also for the tritriplets (whose interactions with
A| g are mediated via V{ r gauge bosons). For the global

SU(3)g sector, there is no coupling of A to the tritriplets
and, thus, the SU(3)r symmetry remains intact (or approxi-
mate in the case of gp < gy) in the tritriplet sector, resulting
in G3py3y rather than Gipqyzq;. Integrating out Ay g c,
and components 1, 2, 3, and 8 of Ap, therefore leaves us
with a supersymmetric theory based on the symmetry
group Ganiyq3y, With a chiral superfield content given
by Af7 and by the branching of L, Q;, and Q.

Writing the trinification tritriplets in terms of Gszjpq1(3)
representations, one gets

H,, H, ‘ e\’
(L), = | Hy Hy v |, (19)
P
(@) = (ui da | DY),
i\r c c c Ti
(QR) x = (qu di, ‘ DRx) ) (20)

where the vertical and horizontal lines denote the separation
of the original tritriplets into SU(2) doublets and singlets
after the first SSB step. We will refer to the lepton and
quark SU(2); p doublets as E; g and g, g. With this, we
find that the most general superpotential consistent with

G313 is

W= gijk{yl¢iDLjDRk + yZ(Hi>LR(qu)L(qu)R
+ 3 (ELi)L(qu)LDRk + y4(ERi)RDLj(qu)R}- (21)

Note, in this effective SUSY LR theory one could naively
add a mass term like ¢; jﬂ’H;gj; [which is symmetric under
SU(2)g x U(1)g but not under full SU(3)g] between the
massless components of the family adjoint superfield H}
and the massless superfield G%. containing the Goldstone
bosons. Such an effective u-term is matched to zero at tree

035041-6



SCALE HIERARCHIES, SYMMETRY BREAKING, AND PARTICLE ...

PHYS. REV. D 99, 035041 (2019)

level at the GUT scale. Due to SUSY nonrenormalization
theorems [57], in the exact SUSY limit this term cannot be
regenerated radiatively at low energies, so fi is identically
zero and was not included in the superpotential given by
Eq. (21). So, the resulting superpotential contains only
fundamental superfields coming from L, @, and Qg and is
indeed invariant under SU(3)p.

In the GUT-scale theory, a complex 473 would be the
only source of LR-parity violation. In the low-energy
theory this should lead to y; # y;. Otherwise, y; =y
and after the matching is performed we can always make
any yj,34 real by field redefinitions. The same argument
applies for the equality of the corresponding LR gauge
couplings for SU(2); p x U(1), g symmetries.

Since we now have an effective LR-symmetric SUSY
model with a U(1),  symmetry, there is a possibility of
having gauge kinetic mixing. The U(1); z D-term con-
tribution to the Lagrangian is given by

1
L DEOKDLDRWLDf +Dg) —k(Dp —DR) + X D+ Xg Dy,
(22)

where the terms proportional to k are the Fayet-Iliopoulos
terms, while the D-terms and the expressions for X| p are

shown in Appendix D 3 b.
The values of the parameters {y| 234, gc, 9LR: LR XK}
in the LR-symmetric SUSY theory are determined by the
|

values of the parameters {,7, A7, gy, v} in the high-scale
trinification theory at the GUT-scale boundary through a
matching procedure.” Regarding the RG evolution of the
couplings, we note that the only dimensionful parameter in
the effective theory is the Fayet-Iliopoulos parameter «.
This means that f, < k so that if x = 0 at the matching
scale (which is true, at least, at tree level), then « will
remain zero throughout the RG flow yielding no sponta-
neous SUSY breaking. Thus, we stick to the concept of soft
SUSY breaking in what follows.

IV. SOFTLY BROKEN SUSY

In this section we describe the details of adding
soft SUSY-breaking terms before the SHUT symmetry
is broken spontaneously by adjoint field VEVs. One
of the most important results is treated in Sec. IV B,
where it is shown that the symmetry breakings below
the GUT scale are triggered solely by the soft SUSY-
breaking sector. This, in turn, allows for a strong hierarchy
between the GUT scale and the scale of the following
VEVs.

A. The soft SUSY-breaking Lagrangian

The soft SUSY-breaking scalar potential terms respect-
ing the imposed G333(3) symmetry are bilinear and trilinear
interactions given by

Fi 3 A *a A 1 Aa A 1 AaxbAc 1 X*axAb Xc
soft = {m%7(U)lr(L7)zr + magAfAf + {2 b AT AT + C-C} + dape [A78AfAfAﬁ + 2 CrsAfAYAf + C-C-]

3!

+AGAL(TL) (L7), (L), + AGR& (T )R (L), (L), + c.c] + (ZéLRC)permutaﬁon@}

+ [Agre (0L 1(08) (L), + c.c].

for the gauge adjoints and pure tritriplet terms, and

VF

+[ARA(T,) (L), (L), + e + (24

J

for the family adjoint. All parameters here are assumed to
be real for simplicity. We note that, although trilinear terms
with the gauge singlets (such as A;AF&F above) are not in
general soft, due to the family symmetry and the fact that
> adaay = 0, the dangerous tadpole diagrams do indeed

cancel and do not lead to quadratic divergences.

"Before adding soft SUSY-breaking interactions, Ag is com-
pletely decoupled from the fundamental sector when taking
SU(3) to be global, meaning that A; and vg do not enter in
the matching conditions.

(23)

S | . T L
F o =miAAL + [5 by AgAL + c.c] + d e [—AlAgA{;Ag +3 Ci A ALAE + c.c.]

3!

(LRQpermutations)] (24)

[

The terms in Egs. (23) and (24), which account for the most
general soft SUSY-breaking scalar potential consistent with
Gi33(3y and real parameters, also respect the accidental
U(l)y x U(1)g symmetry of the original SUSY theory.
However, accidental LR parity is, in general, softly broken
aslongas Ag # Ag, and this breaking can then be transmitted
to the other sectors of the effective theory radiatively (e.g., via
RG evolution and radiative corrections at the matching scale).

The only dimensionful parameters entering in the tree-
level tritriplet masses come from soft SUSY-breaking
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parameters, such that the corresponding scalar fields
receive masses of the order of the soft SUSY-breaking
scale. The full expressions are given in Appendix B, from
which we notice that positive squared masses require

|AG,G|U ~ |Ag|vg ~ |Aq|vp
2 2
Aggrl <72~ T
~ Mg A <m”; " (25)
1 ~

<
5]

For more details, see Appendix B 1 a.

Note that the Ag-term in the soft sector introduces small
SU(3) violating [but SU(2)g x U(1)g preserving] effects
on the interactions in the effective theory once (Ag) # 0.
Consider, for example, effective quartic interactions
between components of L that come from two Ap trilinear
vertices connected by an internal Al 23 or A% propagator.
The value of this diagram is ~1A2 2/23v% neglecting the
external momentum in the propagator. Using Eq. (25), we
see that this diagram behaves as [m.q/v]*.

The possible fermion soft SUSY-breaking terms are the
Majorana mass terms for the gauginos and the Dirac mass
|

1
5’””%7
1

1
Vyae=

As all other fields (that do not acquire VEVs) only enter
in bilinear combinations, it suffices to consider the above
terms to solve the conditions for vanishing first derivatives
of the scalar potential. We retain the notation v =
21/64i73/ 275 for the VEVs of Af’R in the absence of soft
terms. Assuming that the soft terms are much smaller than
the GUT scale, i.e., my; << v, we can approximately solve
the extremum conditions for vy g, by Taylor expanding
them to the leading order in soft terms. Doing so, we find

3 2 2
2 x| —md Z(Ag + Ag \/:A ,
Uy g%[ m27+\/;( G tAg)v + 3 FUF]
2
+ b 3/1
Mag 7s+\/7 Ayt~ C7s
v 3!
1 v,\ 2
+—=Acq —"’> } 28
\/6 G,G(,U ( )

where in the top equation we see that the ¢* VEV is of the
order of the soft SUSY-breaking scale. In other words, the
@* VEV cannot be triggered unless soft terms are intro-
duced. As is described in Sec. IVA, the soft trilinear

+24 [
ULRNv —
j'78

+5 ”L(z\/—/178L M7s>2+(UL—’UR)} ;(m1+b1)1’13 \/—<

terms between the gauginos and the fermion components of
A| R c, namely,

1 o~ . -
Els’irfxplon _ _EMOAI(Z/,LT? — M{)AﬁAi 4+ c.c.
+ (ZgLRC> permutations) | . (26)

From the transformation rules in Eqgs. (7) and (13) it follows

that LR parity is not respected by £<mion ynless My, = 0.

B. Vacuum in the presence of soft
SUSY-breaking terms

Here we show how the scalar potential changes in the
presence of soft SUSY-breaking interactions. In particular,
how soft SUSY-breaking terms trigger a VEV in (L3)3; =
@* of the same order as the soft SUSY-breaking scale.

With (A} ¢ ) = %UL.R’F and (§*) = \/%vq, being the
VEVs present, our potential evaluated in the vacuum is
given by

31

1 1 1 1
_\/E(AGUL+AGUR+AFUF):| 129UU +{2(m7s+b7s)UL \/-( A+ C7S>UL

1, > c1> (27)

[
couplings Ag g, Azg, and Cyg need to be §m§7 /v for having
positive squared masses.

Adding the soft terms shifts the values of the VEVs vy g
described in Sec. III B by a relative amount behaving as

~ {%] " (29)

Furthermore, we note that the presence of v, slightly
affects the equality of vy g,

46 (v,\2
UL —UR = e (_,;) (A — Ag). (30)
78 \V
as long as Ag # Ag. The relative difference between vy g,
therefore, behaves as

Mot | 4
N[ v ] ’ (31)
That is, although the VEVs of AL,R are shifted by the soft
terms, the effect is very small, if not negligible, for
My K< V.

With a nonzero v, ~ mg; < v, the symmetry is further
broken as

035041-8



SCALE HIERARCHIES, SYMMETRY BREAKING, AND PARTICLE ...

PHYS. REV. D 99, 035041 (2019)

U(1)p x U(1)g x {U(1)p x U(1)w}

DU x (UM x U}, (32)

where U(1); . consists of simultaneous U(1); z phase
rotations by the same phase. U(1)g and U(1)y are also
simultaneous U(1);  phase rotations, but with opposite
phase, which is compensated by an appropriate U(1)g and
U(1)y transformation, respectively. All generators are
presented in Appendix A.

In the limit of vanishingly small A — 0 in Eq. (24), the
model exhibits an exact global SU(3)p x SU(3)p sym-
metry as we could then perform independent SU(3)-family
rotations on (L, @y r) and Ag. With nonzero v, and vg, we
would in this case end up with Goldstone fields built up out
of ¢"? and Re[Af77] from the spontaneous breaking of
SU3)p and SU(3)p, respectively. With Ap #0 the
SU(3)p x SU(3)p symmetry softly breaks to the familiar
SU(3)g. This causes ¢'? and Re[Ag™®7] to arrange
themselves into one pure Goldstone and one pseudo-
Goldstone SU(2)r doublet (the mass of the latter is
proportional to Ag). Since v, < vg, the pure Goldstone

is mostly Re[A%>*] [it has a small O(v,,/v) admixture of
$'?, while the pseudo-Goldstone mode is mostly ¢'*
containing an O(v,,/v) amount of Re[A%>0]].

C. Masses in presence of soft SUSY-breaking terms

The inclusion of soft SUSY-breaking interactions results
in nonzero masses for the fundamental scalars contained in
the L, Q;, and Qy superfields as well as for the gauginos.
By construction, the soft SUSY-breaking parameters are
small in comparison to the GUT scale, i.e., my < v,
which means that the heavy states in the SUSY theory
discussed in Sec. III will remain heavy and only those that
were massless will receive contributions whose size is
relevant for the low-energy EFT.

The masses of the fundamental scalars are purely
generated in the soft SUSY-breaking sector. Furthermore,
for a vacuum where only adjoint scalars acquire VEVs as in
Eq. (17), there is no mixing among the components of the
fundamental scalars corresponding to the physical eigen-
states at the first breaking stage shown in Fig. 1.

The Higgs-slepton masses (no summation over the
indices is implied) read

m2

(L., = m%7 + Z[AG'U(Tg)é

+ Ag(T®) + Apvp(T®)], (33)
while the corresponding squark masses are given by
My, = M3y + 2AGu(T®)] + Apve(T%)),
my o = mly + 20A6u(TH); + Aper(TP)]. (34)

In Table IX of Appendix B we show the masses for each

fundamental scalar component in the LR-parity symmetric

limit corresponding to Ag = Ag, for simplicity.
Moreover, the T mass is given by

m%F ~2mi + O(ms/vE). (35)

The exact expressions for scalar fields’ squared masses can
be found in Table X of Appendix B.

The massless superpartners of the gauge bosons asso-
ciated with the unbroken symmetries also acquire soft-scale
masses. In particular, they mix with the chiral adjoint
fermions via Dirac terms whose strength, M6 in Eq. (26), is
also of the order mgy. Typically, for minimal Dirac-
gaugino models, the ad hoc introduction of adjoint chiral
superfields has the undesirable side effect of spoiling the
gauge couplings’ unification. However, in the model
studied in Refs. [58,59], this problem is resolved by
evoking trinification as the natural embedding for the
required adjoint chiral scalars needed to form Dirac mass
terms with gauginos. With this point in mind, we want to
note that the SHUT model, with softly broken SUSY at the
GUT scale, is on its own a Dirac-gaugino model and a
possible high-scale framework for such a class of models.

The mass matrix for the adjoint fermions in the basis

31,2.3 1,23 38 8 :
{ALR AR AL, AL R} i then

My M, 0 0
/ vA
Mo My Ftus 0 0 36)
4 0 0 My, M,
0 0 M; %758—,“78

We denote the resulting mass eigenstates as {7 r. 7,
RY, S g, Sitr}. where S i and T i are the light (soft-
scale) adjoint fermions while Si'y and 77 denote the
heavy (GUT-scale) ones. Note that, due to a small mixing,
both the low- and high-scale gauginos are essentially
Majorana-like. Indeed, the mass of the former ones are
approximately given by M, while the high-scale adjoint
fermions 77 and Si'y get their masses from F-terms being
approximately equal to (M )3 and (M; 3 )3, respectively.

The same effect is observed for the gluinos §* whose
masses, in the limit My ~ M{; < v ~ pi7g, are equal to M
for the light states and pi7g for the heavy states. There is also
an SU(2)g-doublet fermion Hp that acquires a mass of the
order of soft SUSY-breaking scale mg;. Note that Hy as
well as its superpartner H receive D-term contributions if
SU(3)g is gauged. Finally, the chiral fundamental fermions
are massless at this stage.
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V. PARTICLE MASSES AT LOWER SCALES:
A QUALITATIVE ANALYSIS

In this section we give a short overview of the low-
energy limits of the SHUT model, i.e., the spectrum after
#*, ¢*, and 7k acquire VEVs. In particular, we investigate
whether the SM-extended symmetry, Ggy X U(1)p x
U(1)p as represented at the bottom of Fig. 1, leaves
enough freedom to realize the SM particle spectrum.
Note that SU(2) (anti-)fundamental indices are denoted
with lowercase letters for the remainder of the text, rather
than with uppercase letters.

A. Color-neutral fermions
Once the SU(2)g x SU(2)p symmetries are broken, the

tridoublet I:I{'Z and the bidoublet 711, are split into three
distinct generations of SU(2), doublets. We will then

rename them as o =al B =k, B, =a],
and h'_, = K, such that

_ HD o Hi- . el
() e () 5= ()

H Hj 173
ey . EF @
hy = (f{l31+> hy = ([:1(31() &L= Vi , (37)

where i = 1, 2, and where their scalar counterparts follow
the same notation but without and with tildes, respectively.
From this we can build mass terms for the charged lepton
and charged Higgsinos as

H- HY H)MC
HYY HY HF)T+cc (38)

Lo= (el e ¢
x(eq ek eq
Let us start by classifying all possible electroweak (EW)
Higgs doublet and complex-singlet bosons, whose VEVs
may have a role in the SM-like fermion mass spectrum.
There are three types of Higgs doublets distinguished in
terms of their U(1)y x U(1); charges and one possibility
for complex singlets (and their complex conjugates). In
particular, we can have ~
(1) (1, 1): H2, hy, HiY, E2, &, with VEVs denoted as
* type.
(2) (1, 5): H\, H32, hj, with VEVs denoted as * type.
(3) (1,-3): E;!, with VEVs denoted as * type.
4) (0,-4): 5'1,2, with VEVs denoted as ¢ type.
Note that the doublets in each line can mix, in particular, in
the last line the two complex singlets emerge from the
mixing (¢*!, 7%, 75) = (8,5,,G,) induced by the third
breaking step in Fig. 1, with G, being a complex Goldstone
boson.”

The  breaking  SU(2)g x SU(2)g x U(1); g x U(1)g —
U(1)y x U(1)y gives rise to six Goldstone bosons, three gauge
and three global ones, where the former are Im|[f}], Re[2}], and
Im[2}], while the latter ones are Im[$?] and G,.

According to the quantum numbers shown in Table VIII
of Appendix A, the matrix MC has the structure

0 * * 0O 0 O

x e+ o« | 000
Mc*--ooo 39
"l e e 00 0] (39)

« 00| 000

. 0 0 0

where the symbols denote the type of VEVs contributing to
the entry. In this case, the rank of the matrix M€ is at most
three, which means that, while we may be able to identify
the correct patterns for the masses of the charged leptons in
the SM, there will be massless charged Higgsinos remain-
ing in the spectrum after EWSB, which is in conflict with
phenomenology. The mass terms are forbidden by the
U(1)p symmetry, which remains unbroken after EWSB,
and the latter is independent of the number of Higgs
doublets involved.

In order to get a particle content consistent with the SM,
one needs to break the U(1)y, symmetry, thus avoiding the
remnant U(1) symmetry. The most general U(1)y, violat-
ing terms after <AE7R!F> (obeying all other symmetries) are

/ 1 1~ ! ~fl =f
Vg‘(;ft = Eff/é'”ré‘rr (AHh¢Hrfhlr/¢f + AhEEhiE{ Eer/
+AhEgH{IE{/Z/(§Rrr + AhEgH{IE{:r/g{) + c.c., (40)

with A;j; < v. The charged lepton mass matrix now reads

0 * = 0 o ¢
* ° ° S @ ¢
* . ° S @ ¢
MO~ s e ol (41)
°  x  k ® o o
ek ® o ©

where # labels entries related to the 7 VEV and can thus be
well above the EW scale. We now have a mass matrix of rank
6, which means that no charged leptons and Higgsinos are
left massless after EWSB. Note that before the EW sym-
metry is broken there are three massless lepton doublets, as
the matrix in (41) with only 4#-type entries has rank 3, in
accordance with the SM. Furthermore, due to large #-type
entries, the structure of M© allows for three exotic lepton
eigenstates heavier than the EW scale. Similarly, in the
neutrino sector, no massless states remain after EWSB.
We see from the structure of Eq. (41) that, while the
maximal amount of light SU(2); Higgs doublets is nine,
the minimal low-scale model needs at least two Higgs
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doublets, one of the x type and one of the * type, for the
rank of the matrix to remain at six. Note also that the low-
scale remnant of the family symmetry, U(1)y, is nonuni-
versal in the space of fermion generations. As such, the
various generations of Higgs bosons couple differently to
different families of the SM-like fermions, offering a
starting point for a mechanism explaining the mass and
mixing hierarchies among the charged leptons. In addition,
with the only tree-level interaction among fundamental
multiplets arising from the high-scale term L'Q{ Oke; jk» the
masses for all leptons must be generated at loop level,
providing a possible explanation for the lightness of the
charged leptons observed in nature.

To see this, we write the allowed lepton Yukawa terms
(omitting the heavy vectorlike lepton contributions)

—Ly =1I§;/LH eg; + c.c. (42)
Note that the equation above is written in terms of Dirac
spinors rather than left-handed Weyl spinors (such that the
charges for all right-handed spinors in Table VI should be
conjugated). Also, to match conventional notation, the left-
handed spinor Ej is here denoted as 77.

For the case of the three Higgs doublets being H)., H?
and Hfz* (which is one of the possible scenarios enabling
the Cabbibo mixing at tree level, as shown in the following
subsection), the charged lepton mass form reads

0 011, + 01, oI + v, 013,
Me:\}j oI 40,11, 0,115, 0,115 ;
0y 115, + g1, 0,113, N VES

0 0 0 0 ® ® O

0 x x x 0 0 O

0 x Uu x 0 0 0

0 x x x 0 0 0

® 0 0 0 0 0 vV

® 0 0 0 0 0 vV

0O 0 0 0 v v O

MV=[0 v v v v v 0

0O v v v v v 0

0O v v v v v 0

v v v v 0 0 0

v v v.v 0 0 0

0O v v v v v 0

v v v.v 0 0 0

v v v.v 0 0 0

where v, v, and v, is the VEV of H}, H2, and H2x,
respectively. The Yukawa couplings ITf; are generated
radiatively, by a higher-order sequential matching of the
EFT to the high-scale SHUT theory at each of the breaking
steps (tree-level matching yields IT; = 0).

With this form, and with Hfi as free parameters, there is
enough freedom to reproduce the pattern of charged SM-like
lepton masses. However, whether or not it can be derived in
terms of the high-scale SHUT parameters remains to be seen
after the RG evolution and the calculations of the radiative
threshold corrections have been carried out.

Finally, consider the neutrino sector of the model
composed of 15 neutral leptons emerging from the leptonic
tritriplet (L')!, after the EWSB,

ol 24301, 2 3 1,23 £710 7720 £730 £710 £720 7730
Yy =A{p'¢° ¢ vgugpyivivi HYHY HYP H L H HY b

Note, in this first consideration we ignore the adjoint (chiral
superfields Af p g and neutral gaugino ;11“‘3) sectors for the
sake of simplicity, while they should be included in a
complete analysis of the neutrino sector involving the RG
running and the radiative threshold corrections at every
symmetry-breaking scale. The corresponding 15 x 15 mass
form with all the Dirac and Majorana terms allowed after
the EWSB

'CN - TNMN\P;(/ (43)

has the following generic structure

S o R oo oo o o o o <K <K KL
S O RQ © o oo o o0 o o LK LK KL
S oo c o ®®R R R ©c o o <K < <KL

® ® ©c oo oo oo < K K K K o
® ® ©c o o oo oo < K K K K o
R ® ©c o o oo o o K K K K K o
S 0o o R® RV © oo o o <K K K K Koo
S oo oo o @R R © oo <K K KL
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where the symbol U denotes the only Majorana bilinear
below the (¢) scale, x represents the Majorana bilinears
below the (¢?) and (7}) scales, ® denotes the Dirac
bilinears below (¢?) and (7}) scales, and v denotes the
Dirac bilinears at the lowest EWSB scale. For mass terms
receiving contributions from more than one symmetry-
breaking scale, only the highest scale is displayed in the
matrix above. Note that all bilinears with both fields having
zero charge under all U(l) groups are referred to as
Majorana bilinears and not just combinations consisting
of a field with itself.

Despite of the absence of tree-level Yukawa interaction
for the leptonic tritriplet (L')!, at the GUT scale, the
Majorana mass terms in the upper-left 3 x 3 block of the
mass form are generated at tree level at the intermediate
matching (¢®), (¢*), and (7%) scales due to interactions
with gauginos, while all other Majorana and Dirac terms
are generated radiatively, either at one- or two-loop level.
With this structure, and with the hierarchy of scales
presented in Sec. VI, there are solutions with three sub-
eV neutrino states. Two of these states are present for a
wide range of parameter values, while a third light state, in
the considered simplistic approach, typically requires a
tuned suppression of one or more entries in the lower-right
8 x 8 block. Whether this can be obtained with less fine-
tuning, when including the full set of neutral states coming
from the adjoint superfields, remains to be seen once the
full RG evolution and matching has been carried out.

B. Quark sector

In the absence of the accidental U(1) symmetry, the
low-energy limit of the SHUT model also offers good
candidates for SM quarks without massless states after
EWSB. To see this we first note that once ¢° develops a
VEV at the second SSB stage shown in Fig. 1, two
generations of D quarks mix and acquire mass terms of
the form mDD{D{;sff/, with mp = O(mgy) > Mgy.
Then, at the third breaking stage, the 7} and ¢* VEVs
trigger a mixing between the R-type quarks D} and di

db 10 0 0 0 0 [k

D} 0 a ao 0 0 O %

D} _ 0 ag ag¢ 0 0 O Dk (44)
Dk 0 0 0 as as ay a3 |

dx 0 0 0 ag ag ap D}

dy 0 0 0 ay ap ap D}

where the parameters a;—a 5 are not all independent as the
matrix is unitary. At the classical level, and with

(%) = (§*) = (%), the parameters are given by

1 1
a13412:—a29:—\/_, asg 11 = —=»
’ 2 a V3

2 1
ag =0, a7 = — g a1z = %

while the corresponding expressions for general (%), (¢?),
(Dk) are too extensive to be presented here.

Defining the components of the SU(2), quark doublets
as 017 = (u;?,di*)T and g = (u},d3})", we can con-
struct the Lagrangian for the SM-like quarks as

1
Ur

(1 2 3 2
Lowarks = (up,  up  up JM"| ug

3
Ur

i

+(d df &MY 2R

i

With the different possibilities found for the Higgs sector,

the most generic structure for M" and M¢? matrices obey
the following patterns:

+cc. (45

x o e 0  x
MU~ e x x|, Mins | % x o |, (46)
. * * * * °

In order for all quarks to gain a mass after EWSB, the
matrices in Eq. (46) must be of rank 3. As such, the low-scale
limit of the SHUT model requires, at least, two Higgs
doublets, where both - and *-type ones are present. In
contrast to charged leptons, for which the contributions arise
solely from effective Yukawa couplings, in Eq. (46) there are
allowed tree-level bilinears for the SM-like quarks.

Next, let us consider the possible flavor structure in the
low-scale limit. At the classical level, we have Cabbibo
mixing with a minimum of three Higgs doublets. For a
realistic mass spectrum, it is also required to incorporate RG
effects as well as loop-induced threshold corrections, which
make the Yukawa couplings different from each other. Take
for example the three Higgs doublet model with two up-type
Higgs doublets H} and H2 and a down-type Higgs doublet
H3. In the classical limit of the theory, this corresponds to

2 0 0 —Uy
M="210o o v |,
2
f Uy —Up 0
0 0 —%Ud
Md = % o o |, (47)
(2] 0 0

where v , 4 are the corresponding Higgs VEVs and where
Ar7 1s the high-scale Yukawa coupling. With this, the
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Cabbibo angle satisfies tan 8- = Z—; and results in the quark
mass spectrum

1
me, = 5’137(”12 + 1y?),

1
mi =3m2 = 5/1%71%, mﬁ’d =0, (48)

i.e., the lowest-order contributions to the particle spectrum
imply a degeneracy of charm- and top-quark masses, while
strange and bottom quark masses squared are related with a
factor 3.

When radiative corrections are considered as well, the
mass forms become more involved. Indeed, for an effective
quark Yukawa Lagrangian the allowed terms (omitting, for
simplicity, the heavy vectorlike quark Yukawa terms)

—L% = T4qH dy; + ALGLH ug; + c.c.

written again in terms of Dirac fermions rather than left-
handed Weyl fermions, and where the tilde on the Higgs
doublet refers to F' = ¢!’ H} and not it being a Higgsino, as
in the other parts of the paper. With the three Higgs
doublets again being H 12 and H f,*, we have the mass forms

0 vy AY,
1A%, + 0443,
1AL + 0443,

0 1)21"%2

oD} + 0,05, 0

0 03 + 005, 0

2
U2A13
v AL + v A3
1823 T V4R |,
1 3
01835 + V4435

| 3
015+ val 55

2
vy A%,

2
02A31

1121—%3 5
1}21—%3
(49)

where the zeros are put in as a good approximation since
the corresponding Yukawa terms come from higher-loop
contributions that are generated only at the U(1); break-
ing scale.

Let us estimate whether the radiative corrections can be
sufficiently large to correct for the degeneracy in Eq. (48).
As a demonstration, we will consider the largest mass
discrepancy, namely, the degeneracy between the top and
charm mass whose tree-level value is proportional to A,7.
The key idea here is that y; ~ O(1072), which readily
generates a viable charm mass but leaves the top quark 2
orders of magnitude lighter than its measured value. To lift
such a degeneracy, one needs an order O(1) correction to
AL, while leaving A2, < O(1072). To have an estimate for
these radiative corrections, we can start with an instance of
the mass forms M™9, with textures as in Eq. (49), that
reproduce measured quark masses and mixing angles
[60,61], e.g.,

[
 Hy

LY

(Bly K

~ o~
~3 - A162 ) <ER>
uy, & v
/ As ~
|
/ R
> L < 3 | <
3 Ya2 ~ Ya1 2
ur, g UR
|
2
<E11?>7€ | Hu

~ o~
1 A7U } <ER>
uy, & v
/ A7 o
|
/ R
> L < 3 | <

1 Ya1 ~ Ya2 3
Uur, g UgR

FIG. 2. Diagrams contributing to the one-loop matching con-
ditions for Yukawa interactions with the upper diagram repre-
senting the dominant contributing to the top-quark mass and the
lower one a correction to the charm mass.

0 —7.287 0.636

M'=1| -0.0013 —-0.159-i0.521 —0.0016—i0.005 | GeV,
0.124 —171.944 0.00011
0 —0.0130.055

Mi=|-0.0006 0 0.013 | GeV. (50)
2.814 0 0.188

Keeping in mind that v + v3 + v3 = (246 GeV)?, we then
getan idea of what the values for A, and A2, need to be. In
particular, we see that the magnitude of Al, has to be larger
than 0.7.

The one-loop dominating contributions” for the Yukawa
couplings A, and A%, are illustrated in Fig. 2. When a
propagator in the loop becomes heavier than the renorm-
alization scale, thus integrated out, we generate a threshold
correction. For illustration purposes we will choose this
scale to be either the gluino or the squark mass.

At this scale, the squark (gluino) propagators are
resummed such that the masses are given by their MS
values at the gluino (squark) mass scale, which should be
some function of quartic couplings, soft parameters, and
VEVs. We also have that y,; 4, are approximately equal to

V295, with ag ~ 0.03 at the (¢*) scale, such that the two

“Which diagrams that dominate depends on the specific
parameter point and the details of the RG evolution. However,
the gauge coupling for SU(3). is larger than any other gauge
coupling in the model at all scales, and as such the diagram with
the gluino propagator dominates over diagrams with other
gauginos, unless the gluino would be significantly heavier.
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diagrams only differ when it comes to one of the couplings
and possibly by a mass difference for the squarks in the
loop. The analytic expression for both diagrams, in the zero
external momentum limit, is given by

2 2

diagZmy (M310g(h)  m3log(Ch)
2 _ 2 2_,2 2 2 | (51)

3a(m3 —m3) \ m3 —m; my —nmy

with

Z=haltg),  {mimy.my} = {mg . mgpp.mg}  (52)
for the top diagram in Fig. 2, and with

Z=Iqo(tR)s  {my,my.my} = {my1.mzpi.mg}  (53)

for the bottom diagram. Note that the result is finite also in
the limit of degenerate masses and has the form

iagZ

(54)

3nmy

In what follows we will consider the case where the
intermediate symmetries are simultaneously broken by
the VEVs

(%) ~ (§*) ~ (D) ~ 8.8 x 10'° GeV, (55)

consistent with Sec. VI and with couplings as specified in
Appendix D.

The magnitude of the dominant contributions to the top-
and charm-Yukawa couplings are shown for a selection of
gluino and squark masses in Tables IV and V, respectively.
Here we have, for example, a scenario with squark masses
at the TeV scale, offering an interesting phenomenological
probe to be studied in the context of LHC searches, or
alternatively, a scenario where both the gluino and squark
masses in the top diagram are closely degenerate.
Interestingly enough, we see that radiative corrections to
the charm quark are subleading if at least one squark
propagator is heavy enough and close to the (¢°) scale.
With the examples provided we see that a hierarchy in the
squark sector is reflected as a hierarchy in the radiative
Yukawa couplings, necessary for the phenomenological

TABLE IV. Order of magnitude of the radiative correction to
the top-quark Yukawa coupling (first column) and of the
parameters contributing to the one-loop function (51) (second
to fifth columns). Masses are expressed in GeV.

Al A6 my Mg mg py
1 1072 108 10 10°
1 1072 10° 10° 10°

TABLE V. Order of magnitude of the radiative correction to the
charm-quark Yukawa coupling (first column) and of the param-
eters contributing to the one-loop function (51) (second to fifth
columns). Masses are expressed in GeV.

At 470 my mg! Mg p?
1075 1072 108 1010 10°
10°° 1072 100 10'0 10°

viability of the model. Note that for the degenerate scenario
A}, = 2.8 x 10% GeV(4;6,/mj), which means that a viable
correction to the top-quark mass requires the ratio
Mg/ my ~ O(1078 GeV™'). This means that, depending
on the details of the renormalization procedure that may
enhance or suppress the quartic coupling 4,4, an appro-
priate choice of the free gluino mass parameter will in
principle make it possible to naturally lift the top-charm
mass degeneracy in the right direction.

The required parameter values for compatible couplings
at the EW scale remains unknown until the full RG
evolution and sequential matching of all couplings in the
model has been carried out, which is a subject of a further
much more involved and dedicated study. What we can say
at this point is that there do exist parameter space points
with a potential of reproducing the correct hierarchy
between the top and charm masses.

VI. ESTIMATING THE SCALES OF THE THEORY

In this section we estimate the symmetry-breaking scales
of the model, i.e., the GUT scale (A} )~ v, and the
intermediate scales ($°), ($%), and (B}), by forcing the
unified gauge coupling at the GUT scale to evolve such that
it reproduces the measured values of the SU(3)q x
SU(2); x U(1)y gauge couplings at the EW scale. This
is done through a matching and running procedure, where
the gauge couplings are matched at tree-level accuracy and
evolved with one-loop RG equations, as a first step before
matching at one-loop in future work. At each breaking
scale, fermions obtaining a mass from the associated VEV
are integrated out, giving rise to four intermediate energy
ranges of RG evolution with different # functions. We will
refer to these regions as

regionI: u € [($*), 1],
regionll: p €
regionlll: u €

.
regionIV: u € [my, (T})]. (56)

The symmetry alone does not dictate the structure of the
scalar mass spectrum, and we will therefore have to make

assumptions about what scalars are to be integrated out at
each matching scale. However, by studying the extreme

035041-14



SCALE HIERARCHIES, SYMMETRY BREAKING, AND PARTICLE ...

PHYS. REV. D 99, 035041 (2019)

cases we will show that the soft SUSY-breaking scale
(which we associate with the scale of the largest tritriplet
VEYV, (%)) is bounded from below by roughly 10'" GeV,
independent of the scalar content.

With the f functions and matching conditions presented
in Appendix C, we may set up a system of equations with
three known values, the SM couplings at the Z-mass scale,
and five unknown quantities, o;'(v), log((¢*)/v),

log(my/(#)). log((¢*)/(#°)). and log((Zx)/ (%)),

al(my) = a7 (v —% @
gc( Z) q ( ) o 10g<<(}'§3>)

—l;iicllog (%) —%\flog <<’:—1laz>> (57)
2 mz) = a7 () 2 1og @
() Eml)

béV mZ
/N P L7/
2 °g<<a%<>>’ (58)

a 1

51 m2) = S0 + 2 vog ()

mz

9LR 3 JLR

I @GN I
- 2_ log < _bgR + § bgL+R

[ 2
b, +=bl ]

=)
1 (N 1
~ppoe(A) oo ] 0

with the following known parameters at the m; scale
(~91.2 GeV) [62]:

agl(myz) ~ 8.5,
a;!(my) = sin?(Qy) - 128 ~ 29.6,
a;l(mz) = cos*(Oy) - 128 ~98.4. (60)
As we have more than three unknowns, the scales cannot be
solved for uniquely, but are functions of log((¢?)/(¢?))

and log((D)/ (¢*)). If we take, for example, the scenario of
having no hierarchies between these three scales,

(%) ~ (%) ~ () ~ mors. (61)

we end up with the following values

Mgope ~ 8.8 x 1010 GeV,
v~4.9x10"7 GeV,
a;'(v) ~31.5, (62)

where hence the unified gauge coupling satisfies the
perturbativity constraint, the GUT scale is below Mpj,ncio
and the soft scale is well separated from both the GUT scale
and the EW scale. Note that while the hierarchy between
the GUT scale and the soft SUSY-breaking scale is stable
with respect to radiative corrections, the hierarchy between
the EW scale and the soft SUSY-breaking scale needs to be
finely tuned.

Let us investigate whether the introduction of a hierarchy

between (%), (¢*), and (7)) can lower the soft scale (¢°).
By solving for (7) in Eq. (57) and inserting all known

values, we have the equation

(BL) = 20.69 - L tog (A2t — opn
Dg) = mzexp 69 -5 og @72) [ o — by
1 (@)
ralor ol )= ioe ()
X [4BIT — Opll 4 351 4 i | } (63)

The b values will vary depending on the scalar field content
with the extreme values presented in Appendix C. To
minimize the argument of the exponential (and thereby
minimizing the value of (fy)), we should maximize the
values of by, by, and by, while minimizing by
This occurs when including all scalars apart from the left-
handed doublets i‘2‘3, Ei‘m, and H?3, in both regions II
and III. In that case, the values are

13 2
b;lc,lll --3 blglL,llI =-3
4 40
I _ I _
by = 3 B =3 - (64)

When ranging over various hierarchies using the b values in
(64), we see that the scale of () decreases as the hierarchy
between (¢?) and (¢?) increases. The soft scale (¢*), on
the other hand, is minimized when it is equal to (Z1}), i.e.,
when there are no hierarchies, as shown in Fig. 3 (left), by
which we conclude that Eq. (62) is in fact the optimal
scenario in the sense that it provides the strongest hierarchy
between the GUT scale and the soft SUSY-breaking scale.
In Fig. 3 (right), we show the evolution of the gauge
couplings for this scenario.

It is important to mention that these scales are obtained
from gauge couplings evolved to one-loop accuracy but
matched at tree-level, where one-loop matching conditions
could introduce significant corrections, due to the many
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FIG.3. (Left) Figure showing that the (¢*) scale is minimized when there is no hierarchy between the soft scales, i.e., where both lines
meet in the lower-right corner. The purple (solid) line corresponds to VEVs for which the gauge couplings run down to the measured
standard model values. The gray (dashed) line corresponds to the case of no hierarchy between the VEVs. Hence, the optimal choice
corresponds to ($*) ~ (¢*) ~ (7k) and as such the scalar content in the intermediate regions will not affect the running of the gauge
couplings. (Right) RG evolution of the gauge couplings for the scenario where there is no hierarchy between the three intermediate
scales. To match the gauge couplings measured at the EW scale, the soft scale ends up at 8.8 x 10'® GeV and the GUT scale at
4.9 x 10'7 GeV, i.e., we end up with a distinct hierarchy between all three scales.

fields involved, as indicated in Ref. [63]. As the resulting
scales could be sensitive to potentially significant threshold
corrections, we are careful not to draw any strong con-
clusions at this point.

Furthermore, there is a possibility for lowering the soft
scale by relaxing the Z; symmetry at the GUT scale, with
gauge unification instead happening at the Eq level. In fact,
as was demonstrated in [64], a nonuniversal gauge coupling
at the GUT-breaking scale may arise from corrections to the
gauge kinetic terms induced by dimension 5 operators,
emerging due to higher-dimensional Eg¢ representations.
This would also open up the possibility for the emergence
of new gauge bosons at, or at least close to, the TeV scale.
We leave the question about a significance of such effects
and its phenomenological implications for a further study.

VII. SUMMARY

Here, we would like to summarize the basic features of
the left-right-color-family (LRCF)-symmetric SHUT
theory considered in this paper:

(1) Incontrast to previous GUT-scale formulations based
on gauge trinification, all three fermion generations
are unified into a single (27, 3)-plet of SU(3)y x Eg,
and no copies of any fundamental E¢ representations
are required for its consistent breaking down to the
gauge symmetry of the SM. The -considered
SU(3)g x Eg symmetry can be embedded into Eg,
motivating the addition of (1, 8) and (78, 1) multip-
lets corresponding to four SU(3)-octet representa-
tions. The gauge couplings are enforced to unify by
means of a cyclic permutation symmetry Z5 acting on
the trinification subgroup of the LRCF symmetry in
the same way as in Glashow’s formulation.

2

3

“
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The chiral-adjoint sector Af = (1,8) and A{ - C
(78,1) is necessary for a consistent breaking of the
LRCF symmetry down to the SM gauge symmetry
in the softly broken SUSY formulation of the theory
while none of the adjoint fields remain at the EW
scale. In our model, the fields developing VEVs at
lower energies (the tritriplets) happen to have the
mass terms of O(mgy), while the fields whose
VEVs spontaneously break the high-scale SHUT
LRCF symmetry (the adjoints) have their GUT-scale
mass term in the superpotential. Hence, our model
does not exhibit an analog of the u problem in the
minimal supersymmetric standard model.

With the first symmetry breaking being triggered at
the GUT scale by VEVs in the adjoint (octet) scalars,
mass terms in the fundamental (L, Q; , Q tritriplet)
sector are forbidden. This means that the SM-like
quarks and leptons remain massless until EWSB.
In the SHUT model, all possible tree-level masses
for fermions come from a single term in the super-
potential, LiQ{Q’];eijk. As we have seen, only two
generations of would-be SM quarks get such con-
tributions to their masses. As such, the model offers
a starting point for a mechanism explaining the mass
hierarchies of the SM, where, for example, the
charged leptons are all light as they have no allowed
tree-level masses and instead attain their masses
radiatively (i.e., via loop-induced threshold correc-
tions). Also, with three Higgs doublets at low
energies, the model has Cabbibo quark mixing at
tree level, while radiatively generated (and RG
evolved) Yukawa interactions open the possibility
of reproducing the complete structure.
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(5) The symmetry-breaking scales below the GUT scale
(including the EW scale) are fully determined by the
dynamics of the soft SUSY-breaking interactions
and are thus naturally protected from the GUT-scale
radiative corrections. A particularly relevant multi-
stage symmetry-breaking scheme in the SHUT
theory down to the SM-like gauge effective theory
has been shown in Fig. 1.

(6) The LRCF-symmetric theory contains an accidental
U(1)g baryon symmetry, by which the proton
remains stable to all orders in perturbation theory.
Other accidental U(1)y, and LR-parity symmetries
can be (softly) broken in the low-energy EFT
ensuring there are no massless charged leptons
below the EWSB scale and allowing the breaking
of SU(2); and SU(2), symmetries at different
energy scales, respectively.

(7) The smallest possible hierarchy between the EW scale
and the soft scale, and the largest possible hierarchy
between the soft scale and the GUT scale, occurs as
the VEVs of ¢°, ¢°, and Dk are all put at the same
scale. For this scenario, the soft scale ends up at ~9 x
10'° GeV and the GUT scale at ~5 x 10'7 GeV.
However, these numbers do not take into account
potentially large one-loop threshold corrections.

(8) While our estimates have shown a potential agree-
ment with the SM particle spectrum, and, in par-
ticular, the possibility to lift the top-charm mass
degeneracy via quantum effects, it is not less true
that the large (¢°), (¢*), and (D) VEVs introduce
fine-tuning in the scalar sector in order to satisfy the
requirement of light Higgs doublets and possibly
light squarks. We have pointed out that to solve this
issue we need to relax the Z; symmetry and transfer
the unification of gauge interactions to the E¢ level,
which is left for a future work.

Given the above properties, the SHUT model offers
interesting new possibilities for deriving the structure and
parameters of the SM from the GUT-scale physics. This is a
good motivation for investigations of this model, its multi-
scale symmetry-breaking patterns, loop-level matching, and
RG flow. Among the first natural steps would be to uncover
some of the features of the simplest SM-like low-energy EFT's
in a symmetry-based study without invoking the full-fledged
radiative analysis of the SHUT theory. The EFT scenarios
studied in this work pave the ground for further phenom-
enological studies of trinification-based GUTs and move
beyond the most common issues of such theories in the past.
|
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APPENDIX A: SYMMETRY-BREAKING
SCHEMES AND CHARGES

In this Appendix we provide a summary of the SSB
scheme from the high-scale GUT symmetry down to that of
the SM.

1. Breaking path and generators

The breaking path from the GUT symmetry down to a
LR-symmetric effective theory reads

[SU(3)e x SU3)L x SUB)g] x ZIRY x {SU3)p x U(1)y x U(1)g}

V,Vp

(@)

— SU(3)c x [SU(2), x SUR)g] x U(1) g x {SU(2)p x U(1)g x U(1)g x U(1)g} = G3niq21}s

— SU(3)c x [SU(2)., x SU2)g x U(1);, x U(1)g] x {SUQ2)r x U(1)g x U(1)y x U(1)g}

(A1)
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TABLE VI. Field content and quantum numbers of the LR-symmetric EFT after AL.R.F VEVs in Eq. (Al). Here and below, {...}*¢
denote the accidental symmetries. The charges for U(1);, U(1)g and U(1)g are to be rescaled with a factor 1/(2+/3).

Fermion Boson SU(3). SU((2), SUQ2)z {SUQ2)st U1)L Ul)g {UMe} A{UM)gr*  {U(1)y}>e
17 17 1 1 1 1 -2 2 -2 0 1
g P 1 1 1 2 -2 2 1 0 1
&l & 1 2! 1 1 1 2 -2 0 1
E{ 1 E{ ! 1 2! 1 2f 1 2 1 0 1
Er, Ze, 1 2, 1 -2 -1 -2 0 1
E{{ , E{{ , 1 2, 2f -2 -1 1 0 1
Al hL 1 2! 2, 1 1 -1 -2 0 1
il H! 1 2! 2, 2/ 1 -1 1 0 1
q, v, 3 2, 1 1 -1 0 -2 1/3 -1/2
o oY 3 2, 1 2/ -1 0 1 1/3 -1/2
. ks 3, 1 2 1 0 1 -2 -1/3 -1)2
ol ol 3, 1 2 2 0 1 1 -1/3 -1/2
Br B 3 1 1 1 2 0 -2 1/3 -1/2
B, Br, 3, 1 1 1 0 -2 -2 -1/3 -1/2
pY DY 3 1 1 2f 2 0 1 1/3 -1/2
D¢, Dk, 3, 1 1 P 0 -2 1 ~1/3 ~1)2
' G’éa 8¢ 1 1 1 0 0 0 0 0
Ti G 1 3 1 1 0 0 0 0 0
Th Gl 1 1 3 1 0 0 0 0 0
Sir G, 1 1 1 1 0 0 0 0 0
HJFC 7:(/; 1 1 1 2f 0 0 -1 0 0
where global symmetries (including the accidental ones) (D) (%)

are indicated by {---}. The generators of the U(1) groups
after the GUT SSB are

TR Th Tw. T (A2)
whereas after the (¢*) VEV we have
Tog=T{ +T}.  Ts=T{-Tg—2T}.
2
Ty =T — Ty +—=Ty, (A3)

V3

with normalization factors conveniently chosen to provide
integer charges for leptons and scalar bosons.

Note that, according to the discussion in Sec. [VA the
LR parity can be explicitly broken in the soft SUSY-
breaking sector and is therefore absent in the effective
theory.

We may also place a VEV in ¢ and 7. In such a case the
breaking scheme takes the form

Gy — SU(3)c x SU(2), x U(1)y

x AU x U(1)p x U(1)g}, (A4)
where the generators of U(1)y, U(1)y, and U(1)p read

1

Ty = —\ﬁ(TL+R +V/3T3),

Tr=Tht o Ts =21},
3V3 3

Ty =Ty +1Ts —iT%. (AS)
3 V3

2. Quantum numbers

In this section we present the representations and charges
of the light states after each breaking step. We consider as
light states all fields that are decoupled from the GUT scale
after the first SSB step.

In what follows, the Higgs bidoublets are referred to as

H'23 the singlet Higgs-lepton fields denoted as ¢'>3 and

the lepton doublets as Ei‘?, while the quark multiplets split
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TABLE VII. Field content and quantum numbers of the LR-symmetric EFT after ¢ VEV as in Eq. (A1). The charges for U(1); .
U(1), and U(1)g are to be rescaled with a factor v/3/2.

Fermion — Boson  SUQB)c  SU(2).  SUR)x  {SURJs}  U()r  {U)st  {U(M)g}*  {U(1)g}*
7 17 1 1 1 1 0 0 0 0
¢’ ¢ 1 1 1 2f 0 -2 0 0
&l &l 1 2! 1 1 1 1 1 0
El El 1 2! 1 2/ 1 -1 1 0
Err Er, 1 1 2, 1 -1 1 1 0
E{zr E{U 1 1 2, 2f -1 -1 1 0
hl hl 1 2! 2, 1 0 2 2 0
I HY! 1 2! 2, 2f 0 0 2 0
qi, ai, 3 2, 1 1 -1/3 1 -1 1/3
Qi); QE); 3« 2, 1 2f -1/3 -1 -1 1/3
qRr« TRy 3, 1 27 1 1/3 1 -1 -1/3
Qﬁ; QJl;’X 3, 1 27 2f 1/3 -1 -1 -1/3
BY By 3" 1 1 1 2/3 2 0 1/3
Brx Bg., 3, 1 1 1 -2/3 2 0 -1/3
fo fo RA 1 1 2/ 2/3 0 0 1/3
Dﬁx [)J‘R')C 3, 1 1 2 -2/3 0 0 -1/3
g’ G 8¢ 1 1 1 0 0 0 0
Ti Glﬁi 1 3 1 1 0 0 0 0
Th Gﬁi 1 1 3 1 0 0 0 0
SLR Gil‘?R 1 1 1 1 0 0 0 0
HY, L. 1 1 1 2/ 0 -2 0 0

TABLE VIII.  Field content and quantum numbers after the 7 and @* VEVs as in Eq. (A4). The charge for U(1)y is to be rescaled with
a factor —1/6 and the charge for U(1) with a factor —1/+/3.

Fermion Boson SU3)c SU(2),. U(l)y {U(1)r} {U(1)p pree {U(1)g }**
P! P 1 1 0 4 2 0
P9 P p 1 1 0 0 0 0
E)! El! 1 2! -1/2 3 0 0
EX gl ENEL 1 2! -1/2 -1 -2 0
ek ek 1 1 1 6 0 0
vk ok 1 1 0 0 0 0
e}z{g Z,st 1 1 1 2 -2 0
7% 7 1 1 0 —4 -2 0
Al H) 1 2! 1/2 5 -2 0
ay HY 1 2! -1/2 -1 -2 0
ze HZ, R, 1 2! 1/2 1 —4 0
YR HY, bl 1 2! -1/2 -5 —4 0
ol oy 3¢ 2 1/6 3 3 1/3
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TABLE VIIL (Continued)

Fermion Boson SU@3)¢ SU(2). U(l)y {U(1)r} {U(1)p pree {U(1)g }**
il a1, .t 3 2 1/6 -1 1 1/3
ik, ik, 3, 1 -2/3 0 3 -1/3
db, dl, 3, 1 1/3 6 3 -1/3
W23 23 3, 1 -2/3 —4 1 -1/3
dgs g 3, 1 1/3 I ~1/3
D]]f,l Dfl 3 1 —1/3 1 1/3
sz’B}li D,\L2,Bi\: 3 1 —1/3 -2 -1 1/3
DL, DL, 3, 1 1/3 2 1 -1/3
D3, B, D3, Br. 3, 1 1/3 -2 -1 -1/3
g° G 8¢ 1 0 0 0 0
Ti Gt 1 3 0 0 0 0
Tk Gt 1 1 +2 0 0 0
T Gl 1 1 0 0 0
Sir G5, 1 1 0 0 0
Hi H: 1 0 4 2 0
M T3 0 0 0 0
up into Q)% and D{'}’, where Q are the 3 x 2 blocks a'lnd mig = —bqg + % (V6Asg + 3V6C7g — vA3g)
D the 3 x 1 blocks. The superscript 1, 2, 3 is the generation
number. Whenever convenient we will adopt a simplifying n @ vi 9
notation according to 4 Uk = K
3 3 Up \/6
H°> - h, ¢ - @, m% = _bl +ﬁ(\/6Al — l)pi%) +T1)Fﬂlﬂ1 —ﬂ% (Bl)
Eig > &R Dig— Big.
Qi,R - qLR> X2 = X/, <A6)

where f is a family index running over the first two
generations, with X representing any of such SU(2)
doublets.

The quantum numbers of the light eigenstates after the v
and v VEVs are given in Table VI, while those of the model
after ¢> VEV are shown in Table VII. In Table VIII we show
the charges of the SM-like EFT after the 7% and ¢*> VEVs
which may either occur simultaneously or at separate scales.
Note that the () VEV enables mixing between the first and
second generations of singlet (s)quarks. For example, it

allows fermion mass terms of the form mDD{D{: Epf-

APPENDIX B: PARTICLE MASSES IN THE
HIGH-SCALE THEORY

1. Scalar spectra and minimization conditions

The extremizing conditions obtained after taking the first
derivatives of the scalar potential of the SHUT model can
be solved, e.g., with respect to the soft parameters m3g and
m3 from where we obtain

The minimization conditions are then used in the Hessian
matrix whose eigenvalues corresponding to the fundamen-
tal and adjoint scalar sectors are shown in Tables IX and X,

TABLE IX. Scalar masses squared in the SHUT model for
fields in the fundamental (tritriplet) representation of the
[SU(3)]® x SU(3)g symmetry.

d.of. (mass)? Sealar components
8 mz; = \/Lg (Agv +24pvp) 50 2D 5 50

2 m3; — % (4AGv + 2Apvp) g,(s)

8 m; + (ZAGv —24pv)  H| ) Hg?, H(é)’ H(s)

4 my; = (4AGU — Apvg) ¢(1 2)

16 m%r%(AGv—AFyF) ; ) 512 02 502
16 m3; + (2AGU + Agvg) 2) Hgl1 >,H§12'2),H§12’2)
24 mz; + f (Ac,v 2ApvE) ﬁ<L3> RIS

12 my; = \/6 (2Agv + 2AgvR) D](f)’ 13](3)

48 m3y + 7 (Agv + Agvg) g1 312 512 512
24 m%7 — \/Lé (2Agv — Agvg) DS’Z)v Dg.z)
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TABLE X. Scalar masses squared in the SHUT model for fields
in the adjoint representations of the SU(3); g ¢ Symmetries.

d.o.f. (mass)? Label
12 0 GLrF
3 \/%%(3/11/41 +Ay) Ty
1 2 (20pd} —3v6Apu1 —V64;) Sp
1 —2b1+35 (V611 +3V64:) Sy
4 —2by +35(2V/641 11 — vEAT+2V/6A;) He
3 —2by +35(5V/6A1 1 + 20547 —V/6A;) Th
6 \/%% (3278478 +A78+3C7g) Tir
8 L (~vA2g+3V/6Asgpi7+V6A75+3v/6Cz5)  Re[Ag "
2 %(211/1%3 —3\/6/178/478 - \/6A78_3\/6C78) SLr
2 —2b7g +%U(/178/478 +3A75+Css) SLRr
8 —2bg+3g50° +%/1%3 +%U(/178/478 +Az+Cr) MR
v Al 8
8 bR (Bl +Arg +3Cg)  ImlAc ]
6 —2bsg +%/1%s +§U(5ﬂ7sﬂ7s —Az3+5Cs3) Tir

respectively. Note that, for simplicity, we use the LR-
symmetric case with Ag = Ag.

The branching rule for a fundamental representation of
SU(3),, A = L,R,F when it is broken down to SU(2), X
U(1), reads

352,01, (B2)
where, up to an overall normalization factor, the subscripts
represent the U(1), charge. Therefore, after the SSB, the
eigenstates shown in Table IX form representations of the
G311y symmetry given in Eq. (16) and transform as
singlets, doublets, bidoublets, and tridoublets under the
SU(2), g r Symmetries, as schematically represented by the
blocks in Eq. (19).° The LR parity discussed in Sec. III A
yields identical masses for the SU(2); and SU(2)y eigen-
states at the trinification SSB scale.

The adjoint scalars &“A:L’R,F are complex octets whose
branching rule is given by

8§-3,02, 02 1, (B3)
where the complex octet is a reducible representation, while
its real and imaginary parts are the irreducible representa-
tions. As such, we end up with two real triplets, two real
singlets, and two complex doublets and their complex

>The family SU(3)g triplets are also split up into SU(2)g
doublets, containing the first and second generations, and singlets
corresponding to the third generation.

conjugates after the SSB. Each broken SU(3) symmetry
provides four Goldstone degrees of freedom giving rise to
twelve Goldstone bosons in total, out of which eight
correspond to breaking of the local symmetries and four
of them correspond to breaking of the global family
symmetry. While the triplet mass eigenstates, 3, can be
written as

[
~ 1
Ta=—12 2Re[A} :
A V2 3/17 e[. Al ~2
Re[A,] + iRe[A%]
X Im[A}] — ilm[AZ]
T\ = % }/Elm[Ai] s (B4)
Im[A}] + ilm[A}]
the two real singlets 1, read
Sa =Re[Af], S\, =1Im[A]. (B5)

Finally, there are two complex doublets from the real part of
Aﬁ.R’F, transforming as 2_; and 2,

o= 5 s ey )
oo (—Re[Aﬁ]JriRe[Ag])

V2 \ Re[A4] - iRe[A]] (B6)

L

and two complex doublets from the imaginary part of
Af g, transforming as 2_; and 2,
1/ —Im[A§] —ilm[A]]
V2 ( Im[A4] + ilm[A3] )
.1 (-Im[A§] +iIm[A}]
B _( Im[A4] — ilm[A3] )

AT

respectively, where the subscript —1 stands for the doublet
with negative T® eigenvalue.

HAE

(B7)

a. Scalar mass spectrum

It is possible to write the minimization conditions in a
convenient way by recasting the scalar masses. In particu-
lar, the fundamental scalar masses can be collectively
written as

2 _ 2 i i
m; = my; + ciAgU + CHARUE,

(B8)

where ¢}, are constants with index i running over all
fundamental scalar eigenstates. For simplicity, the soft
SUSY-breaking parameters and the family-breaking VEV
can be redefined in terms of a dimensionless parameter
times a common scale v as follows:
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Vg = fv, m%7 = ay0?, Ag = oG, Ag = oRv,
(B9)
where, in the limit of low-scale SUSY breaking,

Qy7,0G,0r < 1, and f~ O(1) such that both gauge and
family SSBs occur simultaneously at the GUT scale.
Equation (B9) allows one to rewrite the scalar masses in
terms of the common scale v

m} = v*(ay + clog + chfor) = vy, (B10)
such that w; < 1. As the expression for the fundamental
scalar masses contains three independent parameters, we
may characterize the entire spectrum by the following three
definitions:
(B11)

wpe = ¢, Wpi2) = 0,

Wpa2) =K,

where the dimensionless parameters &, 9, and k can span the
entire spectrum by laying in the interval of zero to one, as
the common mass scale is chosen to be the largest scale
in the model, i.e., the GUT scale v. With this, we can recast
the scalar mass terms in the resulting EFT as

m?”{(-*) = vz‘}:a m?j](l,z) = V'K,
m2~<3> = 0> (6 + & k), méuﬂz) = 078,
LR LR
mly =0} (28 +E-2),  md, = 0*(26—x).
1
2o =707 (6436 2 =202 (5+2
mg(& 37 (6+3E—k), inl,RzJ v2(6 + 2x),
1 1
myy =30 (45+3E—4k), . =207 (45-K)
LR LR
(B12)

Using Eq. (B12), the general set of conditions necessary to
set the positivity of the fundamental scalar mass spectrum
reads

k>0A

<§§5§KA§>—25+2K>

\/(§>K/\Z_f>0):|. (B13)

Following the same procedure, we may redefine the
parameters of the adjoint sector in terms of the GUT
SSB scale v as follows:

bl = 1'11)2,
2 Al =010,
bag = 7307,
A78 = 0787, (B14)
H1 = aq?,
C78 = 678”'
H7g = 787,

Substituting Eqs. (B14) in Table X and, similar to
Eq. (B10), choosing
N N
a)ﬂL.R =/
where now @;, 3, ~ O(1), since only Hp does not contain

large F- and D-term contributions. Solving the system of
equations with respect to oy, 71, a1, 078, T78, A78, We obtain

2 2
mfF = Ng07,
2 ! 22

mz, — v
Ti: ’7F ’

1
m3, = ¢ (B - 2ne),

1
m%,F =3 v2(B?23 — 217k + 8pg),

My, = prv’,
"= gt =)
" = 41;”2(’138 + 693 + 129 — 8p),
"y = é”z(ﬂgs - 21),
méi.k - %02(’1%8 — 183 — 129 + 24p),
mi, = pvt,
" =0 (B16)

The scalar field components of the gauge and family
adjoint sectors are treated separately. Noting that pp < 1,
the general stability condition for the masses of the family
sector read

pr20A <f7’F>4pFAx>2ni:—8pFAnp<§>, (B17)

where we have defined 247 = x > 0. Finally, the positivity
conditions for the gauge sector are

n>0A2n<y<4nA"9d>0

1 1
/\ﬂ(z—y—l—l%))<p<§(y+6z+1219), (B18)

where we have defined 33 = y > 0 and g3, = z > 0. When
conditions (B13), (B17), and (B18) are simultaneously
satisfied, the tree-level vacuum of the SHUT model is
stable.
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TABLE XIL

Fermion masses squared and left singular eigenvectors in the SHUT model. The ¢y, and sg,

coefficients denote the cosine and sine of the 2 x 2 mixing angles for the representation R. Here, ¢; 534 and 0,534
are coefficients that parametrize a unitary mixing. The fermion masses, for a given irreducible representation R and
gauge group L, R, C are determined in terms of the X%, Yﬁ, and Zﬁ coefficients, with explicit expressions given in

Eqs. (B19)-(B27).

No. of Weyl spinors (mass)? Fermionic components
81 0 ¢(142.3)’1:1(1,2,3)’E](~{i{2‘3), Q<L1.i12’3)vD(Ll.i12’3)
1 L(222 = 2V/6vpdgpy + 6443) A =Sp
3 (223 + 2V6vphipy + 643) AL =T,
4 L (V313 — 4V6vpdpy + 2443) APOT = T
° X - v+ 2 ot~ sp M =7
8 x84\ Y8+ 28) S0, 0 + co, AL =71
g 35 (Xig = \/ Yir +ZiR) coAir =0, ALr = SLr
8 8 _ ol
2 LX Y+ 2L ) so,ALR + Co, AR = Sir
5123 123 _
6 ﬁ (Xi,R 4/ Yi,R + Zi,R) ot R ~ S0, ALK = TR
5123 123 _
6 LR+ +ZR) so R + o AR =Tik
46 5,7 54,6 557 _ 412
8 wXEr—\/Yir +ZiR) QIALR T+ QAR + 034 R + 04l R = HiR
S AA6 = AST = G46 | = 357 _ ayl2l
8 w X+ /Yir+ZiR) QIALR T QALR T 034k + QA R = HLE

2. Fermion masses

The masses of the fermions that originate from the
gauge-adjoint sector are somewhat more complicated. For
the sake of simplicity, we use a shortened notation and
show the exact expressions for the fermion masses squared
in Table XI.

In particular, we parametrize the octet masses by X3, Y¢.,
and Z%, where the number in the superscript denotes the
representation under the symmetry labeled in the subscript.
The explicit form of such parameters reads

X8 = AMF + 2M + i, (B19)
Y8 =AMP(2My + urg)?, (B20)
Z8 = (ug — 4M3)2. (B21)

The singlet and triplet fermion masses depend on the XII"’?{,

13 13 . .
Y1k, and Z7'} parameters, which are given by

X1y = 20235 F 4V60lgguzg + 12(4M3 + 2M7 + 1)),
(B22)
Y1 = [H2V60hsgping — 0223 — 6(4M3 + 2MP + 13)]2,

(B23)

Z13 = 192[3M}} + 2MoME (V6vizg F 6pzg)

+ 2M3(v2A2g F 2V 6vngpizg + 6p%g)]- (B24)

For the new doublet fermions, the mass eigenstates are
written in terms of X7 p, Y7 g, and Z} p, which read

X} = 96MG + 48M + 3607 g + v7 2%
— 4V 6vsg1175 + 2443, (B25)
Y2, = v* 23 — 8V603 A3 240202, (4M?
LR = U'dgg v* ghizg + 24v° A7 (4M5
— 8M} + 307 gl + 6ulg), (B26)
Z% = 96{6[4MP + (uzg — 2M,)*|[30% g%
+ (uzg + 2M)?] + V6vi35(60° G M,
- 8M0M62 + SM(Z)//MS - 4M62M78

- 37129%#78 - Zﬂgs)}- (B27)

Note that the doublets 7, which are the left-handed Weyl
fermions defined to transform as 2, form mass terms of the
form mH ', with 7/, being also the left-handed Weyl
fermions transforming as 2_;.
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3. Gauge boson masses

The gauge bosons of the SU(3). group remain massless
and are identified with the SM gluons, whereas the massive
gauge bosons are generated upon the SSB of the SU(3);
symmetries. The covariant derivative of the GUT symmetry
reads

8
D' =01, @1 ® I —igy ) [GI'T{ @ 1x ® T
a=1

+GR'Tg ® 1, @ Tc +GETE® 1, ® Tg], (B28)
where G} are the gauge fields of the SU(3); symmetry that
cyclically transform into Gf' and G' by means of Z;
permutations. Considering the gauge-breaking VEVs
(Af ) = v, the relevant kinetic terms that couple the
vector and scalar fields evaluated in the vacuum of the
theory are given by

|Dﬂ<ALR ngz Z’]}wG iaR (B29)

Therefore, there are eight massive gauge bosons in the
model that transform as complex 2; representations of
SU(2)_ g x U(1)r whose charge eigenstates read

G%x +1G %
3 1( LR T ) (B30)

w1 po6
GLr H1GLR

LR — \/z
with mass m} = 3 g§v?. In addition to the unbroken color

sector, the remaining gauge bosons are also massless at the
SHUT SSB scale.

APPENDIX C: GAUGE COUPLINGS: g
FUNCTIONS AND MATCHING CONDITIONS

In general, the one-loop f function for a gauge coupling
is given by [65]

3
@ (11 4 1
) =L (2 Cy(G) = ZkS5(F) — = 55(S
B(g:) (4ﬂ)2<3 »(G) 3K »(F) 3 »(S)
b,g;
= L Cl
where k = 1/2 for Weyl fermions, C,(G) =N is the

Casimir index, S,(F) is the Dynkin index for a fermion,
and S,(S) is the Dynkin index for a complex scalar. The
one-loop f function for the gauge coupling of a U(1) theory
reads

p(@:) = 122<2Qf ZQ2>_ ,g,

(C2)

where again « is equal to 1/2 for Weyl fermions, and where
Oy and Q; are, respectively, the charges for all fermions
and scalars in the theory.

Rewriting the gauge couplings in terms of the inverse of
the structure constants, a~! = 47/ ¢?, the solutions of (C1)
and (C2) read

bi H2
-1 — a7l — 1 =
a; (/’42) a; (/’ll) o 0og (//‘1) s

where the b; coefficients are dependent on the number of
particles and respective charges of a given EFT. Below, we
specify such information for each of the four regions and
provide the corresponding results for the one-loop f
functions.

(C3)

1. Region I

As discussed in Sec. IV C, all components of the
fundamental scalars and fermions remain in the spectrum
after the breaking of the T-GUT symmetry. In this region,
the fermion sector also contains two adjoint triplets 7 g,
two adjoint singlets Sy r, and one adjoint octet in color g“.
Here adjoint triplets, doublets, and singlets refers to triplet,
doublet, and singlet representations coming from an SU(3)
octet. Heavy states, with masses the size of the T-GUT
scale, are marked with a symbol L in Table XI of
Appendix B and are integrated out. For the adjoint
doublets, on the other hand, there is no distinct hierarchy
between T, g, ﬂLR and their heavy counterparts and can
hence all be excluded from the spectrum.

With this, there is a total of 18 fermions and 18 scalars in
the fundamental (or antifundamental) representation of
SU(3)¢, 18 fermions and 18 scalars in the fundamental
and antifundamental representation of SU(2), and SU(2)g,
one fermion and no scalars in the adjoint representation of
SU(3)¢, and one fermion and no scalars in the adjoint
representation of SU(2); and SU(2)g, resulting in

b, =0 and b}

JLR

=3, (C4)

with b; defined as f(g;) = )

coupling for SU(3). and gL.R is the gauge coupling
for SU(2); x SU(2)g.

For the U(1), x U(1)g coupling, g g, the f function is
calculated using the charges in Table VI of Appendix A.
With this we obtain

Here gc is the gauge

bL =09.

9LR (CS)
2. Region II

In region II, the adjoint scalars are integrated out, in
addition to Dy in the second and third generation, which
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are the only fermions able to form a Dirac mass at this
stage. When it comes to the fundamental scalars, there are
no clear hierarchies in the spectrum, so here we will instead
present the possible extreme values.

As apparent from Egs. (C1) and (C2), the extreme values
for each b occur for the minimal and maximal number of
scalars, respectively. The maximal b values are hence
obtained when keeping all fundamental scalars, while
the minimal b values correspond to keeping only H/,
E{;, and g;ﬁf . The latter scenario cannot be further reduced,
as H/ is required to remain as it contains the minimal
amount of Higgs SU(2); doublets required for Cabbibo
mixing at tree-level (H,, 1% and H 7)), while Ef and ¢/ are
required as they are involved in the breaking scheme down
to the SM.

With this, the b values lie in the following intervals:

19 10 2 5
"3 Shes-3e T3shasy
1, .5 31, 46
T3Shwsy FEhasye (€O

where hence the upper bound corresponds to the maximal
field content and the lower bound to the minimal field
content.

3. Region IIT

In region III, the fermion spectrum remains the same,
while for the scalar sector we once again investigate the
extreme values. The maximal field content is still to keep all
fundamental scalars, while for the minimal field content we
may now remove E?, as SU(2)y is broken and only E| is
involved in the breaking scheme down to the SM.

With this, all b values are identical to those in region II,
apart from the lower bound of b;

9L+Rr
19 10 2 5
"3 Shes-gze 3shisy
1 5 59 46
<bIII < bIII 7
3— QR—3 6 — yL+R— 3 <C )

where again the upper bound corresponds to the maximal
field content and the lower bound to the minimal field
content.

4. Region IV

In region IV, the minimal field content corresponds to
integrating out all scalars apart from three Higgs doublets,
eg.,H Ll,’z and H 3 and the field responsible for breaking the
U(1); symmetry, e.g., ¢'. A minimum of two Higgs
doublets are required to remain in order for all SM particles
to gain a mass, while a third is needed for getting the
appropriate Cabbibo mixing at tree level, as discussed in
Sec. V B.

Among the fermions, D} > Dg??, vi>?, 123, and all
Higgsinos are integrated out, as they can form massive
states without the Higgs VEV. This can be seen from
Table VIII of Appendix A [with U(1)p broken]. The
remainder of the fundamental fermions are kept in the
spectrum. Regarding the adjoints, both the octets §* and
the triplets 71,7 are integrated out, resulting in

17

B ==7 and b = (C8)
where g; is the gauge coupling for SU(2);.

For U(1)y, the charges in Table VIII of Appendix A

result in
43

bl = —

9y 6 ’ (C9)

where gy is the gauge coupling for U(1)y.

5. Matching conditions

The gauge couplings unification condition at the GUT
scale reads

(C10)

with the charges in Table VI of Appendix A.

At the soft scale, the gauge coupling matching conditions
are obtained by finding the gauge boson mass eigenstates
after the VEVs (¢?), (¢°), and (D)), respectively, by
expanding our old basis in terms of the new one, e.g.,
{G3. B, By} in terms of {By ,g....}.° With this we have

az! ((0) = o3 (%) + a5} ((#7))  (C11)
at the (¢*) scale, and
a5, ((Tr) = ag, (7)) +% @' (FR)  (C12)

at the <17R> scale, while the matching at the ($?) scale is

wivial, a7 ((¢%)) = a3 ((4%)).
Finally, at the Z-boson mass scale, the matching con-
ditions between the electromagnetic coupling, the hyper-
charge coupling, and the SU(2), coupling are already well

known,
1 1

-1 _ 2 —1 —
az, = cos“Owagy and oy

(C13)

= sin’Owagy.

where Oy sin?(Oy ) ~

0.2312 [62].

is the weak mixing angle,

®Here, Gy is the gauge boson corresponding to the third
generator of SU(2)g, By r are the gauge bosons for U(1) g, and
By ,r is the gauge boson for U(1); .
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APPENDIX D: LAGRANGIAN OF THE
LR-SYMMETRIC EFFECTIVE THEORY

The field content of the EFT is derived from the mass
spectrum after the T-GUT symmetry breaking. As a general
rule, the light fields, i.e., those with a mass scale much
smaller than the GUT scale v, are kept in the EFT spectrum,
whereas those with masses of the same order of magnitude
as v are integrated out.

The light field components and their group transforma-
tions under the LR symmetry obtained after v and vg VEVs
[see Eq. (A1)] are shown in Table VI, where we use the
notation given in Eq. (A6).

1. The scalar potential of the LR-symmetric
effective model

The scalar potential of the effective LR-symmetric
theory generated after the T-GUT breaking can be sum-
marized by

ViR =V +V3+V, (D1)

where V,, V3, and V, denote the quadratic, cubic, and
quartic scalar self-interactions, respectively. For simplicity,
we will suppress color indices in Vi and, for all those
terms that can be written from LR-parity transformations on
the fields, we will show them within square brackets as
Prr[ - -]. Note that here we use this notation for both the
cases of invariance or not under LR parity. For instance,
while for the LR-parity-symmetric case we should preserve
the couplings, for the LR-parity-broken case we should also
read m — m,A — A, 1 — 1 whenever LR-parity transfor-
mation is applied.
We start by writing the scalar mass terms

Vo = myHyHE + i h o+ mlgid + m2a
+ miﬂ;fﬂg + Prr [m%EiflE{l + m%gflgi
+maQry Of  +m2g; g, + m%foE{ +mEB By,
whereas the trilinear interactions are expressed as
Vs = erp{PralA OF 1O, + A, DfpD{ |
+ Prx [A3(?§H'51Q£/, + AyBrg DI
+AsBrOf B[ '+ AsDL Of &L
+ A; DLy B 4 cel). (D2)

Due to a large number of possible contractions of four
scalar fields in the effective LR-symmetric model, we will
employ a condensed notation to express the scalar quartic
self-interactions. We describe below the five possible types
of terms.

For the first type, which we denote “scl,” we consider
terms with one reoccurring index, where we define the

reoccurring index as an index possessed by all four fields.
For such a combination there are three possible contrac-
tions, out of which two of them are linearly independent. In
particular, we have

Vscl D /lk]D* D{f H;?Hi;l + lkzb*

= xf £
L i DY HH]

~ ~ l
= ﬂk1*k2Diif/D{ H??H{ s (D3)
where color indices are suppressed in the condensed form.

For terms with two reoccurring indices, denoted as ““sc2,”
no matter if they are SU(2) indices or SU(3) indices,’ there
are four linearly independent contractions that read

~ ,.,l/ T~ l ~ ~ ~ll ~ l ~ U

Vi D A Efy pELT O O + A By 1 ELT Q1 O]
~ ~1 )~ I; ~ 3 ~ ~]f = l/ ~ !
+ I Ef EV Ot fofl + A, Ly g Bl QE”QEJI‘

~ * ~ ll ~ * ~ !

= /1n1—n4EL1’fELf QL.[f’ Q]]:l (D4)
The third type involves terms with two reoccurring indices
[either SU(2) or SU(3) indices] but identical fields. We
denote this case as “sc3” and observe that there are only

two linearly independent terms of the form
Vis D 4Dy oDy Dy DY+ 2,,D;, /DY Dy DY

R
= 4,0 »Di Dy Dy,

(D5)

where color contractions are once again implicit.

For terms with three reoccurring indices and identical
fields, labeled as ““sc4,” there are four linearly independent
combinations that we write as

ol ! o !
Vies D A Hi HL VH T HE 4, YD HE U H T HY,
' f g ' rf' 1 14
+ Ay H5 HL H G HT 4 A, H HY HY HY
. ’ ! | ]
= Auny H HY D H T (D6)
Note that the case with three reoccurring indices and
different fields does not exist and the only case with one
reoccurring index and identical fields is the one involving
the gauge singlet ¢/.

Finally, the fifth type (“’sc5”) involves terms without
reoccurring indices or terms with one reoccurring index but
four identical fields such as

(D7)

Note that, for ease of notation, we assume that combina-
torial factors were absorbed by various 4; and 4;_;.

"The two types coincide since for SU(2) the three combina-
tions reduce down to two, using that ¢; jekl = 55‘5? - 5565?, while
for SU(3) there are only two possible contractions to begin with,
and no Levi-Civita tensor to impose a reduction.
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We will then consider five different scenarios organized according to the type of index contractions as described in detail
in Egs. (D3)—(D7),

Vy = Vscl + Vsc2 + Vsc3 + Vsc4 + VscS- (DS)

The first contribution reads

Vet = 428t 'GLidr @k + 43 4BLBLBR By + s ol Hf l¢f¢f + A7sE L Ef lE*r Ef, + P [29—IOQEIQLZQ1*2er£r
+ M Bi BLDj -D‘li + /113-14@fl@LzDifDL + Ais5-16 QL]'QL[BLBL + Ai7-1841 G BB + /119—2o§fl§L1D1§f'D£
+ 1 0 OF Of \BiBy + A23.24 QLf o/ p TR+ Dos 2637 @y B Br + Axroasi! G I’H}?H{l + A29-3081" GuLrhy "Rl
+ /131-32D{frD{ HTHE 4 2333487 EleEfny{l/ + 2353601 1 Of &1 yEL + AarasdiidLiEr &L
+ 43940 Ql*zrf' QJ]:rEEf IE{I + /14142Dif’D£1EiflE{l + /14344D1§f’D11:EEf1E{1 + A4s46 Q}ilf/ Q{/@}(i’f
+ /147—48DLf'D ¢f¢ + Aao s0hty rhl/Eff zE '+ s 52DLjD Ej, EL' 4253 54H},/Hf 'E &L
+ Ass_sshy ) € (L + Asy_ssBLBLD} (Df + Aso_ E} 5 B ¢f¢f + X612 HY ELf ER
+ (Ags-oshy HY! EifzglL + /165—66h;rHr QLfZ]Lz + /167—68E]_f[’5£61t Of | + Ao 20D; 5 QL[E* "HY'
+ 4712 72DLf’Qf E['¢; + s 74BLQRrD*fZIEr +ec)] + Ve (D9)

with Vg1 corresponding to the interactions generated only after the matching procedure, i.e., not directly obtained by
expansion of the Lagrangian of the original theory, and given by

1 —
Ve = Prr[5) 2QLf’QLlHFfHF + 85405 f’DL HFfHF + 656 E Lf’ Ef HF)‘HF] + 67 5H Y Hf HFij
The effective quartic interactions with two reoccurring indices are given by

* * / 7 Al A /T
Vir = A75- 78QLf’QleRerR + Ao D f’DLD Db+ g3 sohy” WL H S HY +'PLR[’175—7SQL§”Q{ZD Df
~ w1 7 r
+/187-9OQLf'QL1 Db A+ 201047 3 O O + Aos 05 Q1 Q{;/H HI' + 90 10201 of, L/I’Ef
!
+/1103—106H z’H 'E; szf}

The third contribution, which accounts for identical multiplets and two reoccurring indices, has the form
Vi = Aiorooshy” Bl "hl + Prr[dior1028; " 40 I’ZIEZZILl+}*109—1IODif’D{/DifD{—i_/lll1—112Eif’ JE E* B,
while the fourth scenario, where identical fields with three reoccurring indices are considered, reads
Vs = Mz 3 HL  H HE + Prrlhirne O 9f, 010 ).

Finally, for those terms that contain only one independent type of contraction, we have
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Vies = Aot} s + hon T HE' 9% + Aoshi "R + Analt \ELER Ery + Maspd §30" + Miasdh i 07

+ i@ 9" & + Prrliansdhlei ER + 1129foBLB§D£ + 4130 Qflleuzlfir@{z.r + 31 B BB By

+ /11323fBLH}7H{Z + Ai33Df DL + A3 Bi BUki TR+ Aas@i GRET B+ dae Dk O ELEL

+ iz @k GRELEL + /1138foD{Eff1E{l + /1139fo1~){€£1<§£ + haoBEBLEL {EL + Ay BEBREfﬂE{I

+ /1142D1*(fD]1;‘§1tl‘§lL + MsBrBRrEL EL + M G + s QEQQ{@*@ + Aot G P + /1147BfBL€;5?€75f

+ /114sbifb'{¢*¢ + AaoBEBL P + MisoEr I'SfLEEﬂE{I +hisi & ELEL EL + ﬂlszgfzgiEﬁ}'E‘ér

+ /11535:{15@"?& + /1154Efsz{l€~0*¢ + hissELIELD D + (MsGE}tﬂSIL@*@f + /1157Eff1€75fhlréi§r

+ /hsstlEE?gfz@ + /1159Eﬂf;glLBfD{ + Jiood &' D By + o1 D} B! o+ ﬂlﬁzéféLzEE?H{l

+ higs B, Q{[Eﬁ}-hlr + AieaBi G i ERhL + AI6SBEZ]L1E{I§$; + AigsBi. Q{ﬁi&ﬁ? + Aigr B ELe"

+ /IIGSBiD{EE?gRr + /1169fo51ng§er1 + /1170fo of Ex'hl + /1171D]thLIE{I§~0*

+ /1172DEfQ{zglL(7’* +ee)] 4+ Vs

Here, the terms generated after the breaking are
Ves = hinshy rH‘fZ&?@ + /1174Eifzgng§rE£r + 59h}”h£7~ﬁfﬂ’£ + 510ﬂ;.f/ﬂ£/7:{f5f7:f‘£ + 511@*¢7:{;_f7:{£

+ 512&?5”{/7%1*:}07% + PrrlAizsh; "H} lbffBL + /1176f77*§;5fo1f51L1 + 11778?15{75&1% + /1178EffzglLf~I§rQ£r
+ 513ZIEIZILI7:[;]‘,F({; + 514BfBLﬂ;§f7:f£ + 5155fzg£ﬂ;,fﬂ£]-

2. The fermion sector of the LR-symmetric EFT

The part of the Lagrangian of the effective LR-symmetric theory that involves purely quadratic fermion interactions as
well as the Yukawa terms reads

Liermi = Ly + Ly (D10)

For the mass terms we have

.1 1 o A 1 L
EM = PLR EmSLSLSL + EmTLTlLTi + C.C.:| + PLR |:2 mgg“g“ + mLRSLSR + EmHHFfH{: s (Dll)

while for the Yukawa ones we write for convenience

Ly =L+ Lo+ L+ Ls+ Ly + L, (D12)
where the first three terms, which involve only the fields from the fundamental representations of the trinification group,
denote three, two, and one SU(2) contractions, respectively, whereas the last ones describe the Yukawa interactions of the

singlet S, triplet 7, and octet §* fermions.
The terms with three SU(2) contractions are given by

A r '/ A ~r ~ l ! ~ ry ! r l !
Ly = e7p(Prrlyi Qk QL) + Prrlys@i L' Qf j+y; OF 1L QL + yagh HE'QL + c.c]), (D13)
those with two SU(2) contractions are written as

A ~ /l ~ ! ~ fl ~ /I ~ - /l ~ /l
Loo =27 PirlysBr QL EL ' +ysDR QL L +y1DRauiEL +ysBr O EL '+yoDE O (€L +y10DRaLEL +y11 Br QL B
g ! ~ ~ '/l
+y DR QL (EL) +yisDrauiEl ' +e.c, (D14)

and for those with one SU(2) contraction we have
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Lic = epp(Prr y14DE@D{ ] + PirlyisBr#’ D] +y16D5¢” Be + y1:DkoD{ + y1sBr@’D{ +c.c]).  (D15)
The part of the Lagrangian involving the singlets Sy r reads

Ls = Pirly1o QE,IfSLQ{[ + Y2031 'SLqLs + Y21DifSLD£ +ynBiSLBL + Yo H rSLH + Youht} "Sp Ry
+ stEffzsLE{l + Va6 1SLEL + V2P SLe’ + v S + yH;fSLHF + Y29Eff13REL
+ y30Bi SrBL + )’31foSRD{ +Vyn QEZf'SRQ{l + Y3335 'Srars + YL iSREL + e, (D16)

while those interactions that couple to 77  read

L7 =Pirl(0)}(yas Qf?TiL of + Y36ZIEI/TZQLI+Y37H* (TR 4 ysgh TR, +Y39EszT E[" +yao&i TLE +cc)).
(D17)
Finally, the Yukawa interactions involving gluinos are given by

_ T Yk ~a S ~xla~a % axanS 2% ra~a
L; = Pir[ya QLZfTagaQLl + Y2l TG qui + YasDp ;TG Dy, + yaa BLT 5" By + c.c.]. (D18)

3. The gauge sector of the LR-symmetric EFT

In this section, we consider interactions involving the gauge bosons of the effective SHUT-LR model. For ease of
reading, we separate those into the gauge-scalar (gs), gauge-fermion (gf), and pure-gauge (pg) interaction types,

‘Cgauge = ‘Cgs =+ ‘Cgf + ‘Cpga (Dl9)

where Egs. (D21)-(D23) of Appendix D 3 a can be employed to write

L= (D,p)" (D*@)+(Dup) 3 (D*@Y +(D, )] (D* )+ (D, H) (D' H)T 41, Pre[(DEL)] (DHEL) + (DYEL) (DM Ep )
+(D*q) " (Dgy )+ (D* Q) (D QL) +(D*BL) (D*By )+ (D*Dy ) {(D* D),

Ly =ip'5, D' p+i¢}5,(D'$) +ih)'5,(D"h),+iH |5, (D" H){' + PiriE] 5, (DHEyL)!

+1ELflaﬂ(D”EL)f '+igi'5,(D'qL), +1QLf0' (DrQy)] +IBL6”D”BL+1DLf0,, (D*Dy )]

+ ) [i845,04S, +iT 5, (DFT )] +ig*5,(D5)  +e.c.,
A=L,R

1

cpg——z[z (BY Bay+FY'FL, )+ G Go,+ Bl By, |. (D20)

A=L,R

a. Covariant derivatives and field strengths

The covariant derivatives of the LR-symmetric effective model can be written in a compact matrix form as follows:

Di(H, h) = (1, @ 10" —igLAl't’ @ Tp —igrAR't' @ T, +ig YLBI 1, ® T +ighYrBi1, ® Tx)(H.h),
PLR[D”(EL’SL)] P r[(120" —igLA”iTi+i§LYLB”ﬂL +igr YrBRUL)(EL, EL)],
D' (¢.p) = (0" +igLYLB] + igy YrBR)(¢. ).
PrID*(Qr, q1)] = Prrl(1c ® 1,0 —igeGE'T* @ 1,—igrAl't’ @ 1 +igi VLB T1c ® 1,)(Q1. 1)),
PLR [D¥(Dy, BL)] LR[(ﬂcaﬂ —igcGe T +ig Y1.B{ 1¢) (D, BL)], (D21)

DTy = (150" —igu oM ji) Tar DG = (1090 —igc G T34)3, (D22)

adj
where summation is assumed over each pair of repeated indices, Y, is the U(1), hypercharge, and 1, and ﬂjdj are the

identity matrices with the same dimensions of the fundamental and adjoint representations, respectively. The field strength
tensors of the U(1),, SU(2),, and SU(3) gauge symmetries are given by
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B = o*BY — 9Bk,

FIY = OMART — OPAR + gue R AR AL,

G = GE = GE + gef GG (D23)

b. Abelian D-terms

The U(1); g D-terms of the LR-symmetric theory read

1 1
——x(Xgr — k) + X +«|,

L — 2
=l

1 1
——x(XL + &)+ Xg — k|,

-9l 2

DR:

wrpyl Ly s pfl xr T Al & 238D
X, = HyHY = 2¢3¢" + Ef , E[' - 2E3 EL, — 1, 0], + 2D DY,
* 1 Tx 7 Px fl T r T ~Yk ~ Nk T
Xp = _nyHrf + 25 + ZELflE{, - ERfE]l;r + QO - 2DRfo’

with f =1, 2, 3.
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