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A unification of left-right SUð3ÞL × SUð3ÞR, color SUð3ÞC, and family SUð3ÞF symmetries in a
maximal rank-8 subgroup of E8 is proposed as a landmark for future explorations beyond the Standard
Model (SM). We discuss the implications of this scheme in a supersymmetric (SUSY) model based on
the trinification gauge ½SUð3Þ�3 and global SUð3ÞF-family symmetries. Among the key properties of this
model are the unification of SM Higgs and lepton sectors, a common Yukawa coupling for chiral
fermions, the absence of the μ problem, gauge couplings unification, and proton stability to all orders in
perturbation theory. The minimal field content consistent with a SM-like effective theory at low energies
is composed of one E6 27-plet per generation as well as three gauge and one family SU(3) octets inspired
by the fundamental sector of E8. The details of the corresponding (SUSY and gauge) symmetry-breaking
scheme, multiscale gauge couplings’ evolution, and resulting effective low-energy scenarios are
discussed.
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I. INTRODUCTION

Finding successful candidate theories unifying the strong
and electroweak interactions, leading to a detailed under-
standing of the Standard Model (SM) origin, with all its
parameters, hierarchies, symmetries, and particle content
remains a big challenge for the theoretical physics com-
munity. Some of the most popular SM extensions are based
on supersymmetric (SUSY) grand-unified theories (GUTs)
where the SM gauge interactions are unified under sym-
metry groups such as SU(5) and SO(10) [1–7] as well
as E6

1 and E7 [11]. A particularly appealing scenario
proposed by Glashow in 1984 [12] is based upon the

rank-6 trinification symmetry ½SUð3Þ�3 ≡ SUð3ÞL×
SUð3ÞR × SUð3ÞC ⋊ Z3 ⊂ E6 (T-GUT, in what follows)
where all matter fields are embedded in bitriplet represen-
tations and, due to the cyclic permutation symmetry Z3, the
corresponding gauge couplings unify at the T-GUT sponta-
neous symmetry-breaking (SSB) scale, or GUT scale in
what follows.
There have been many phenomenological and theoretical

studies of T-GUTs, in both SUSY and non-SUSY formu-
lations, motivated by their unique features (see, e.g.,
Refs. [13–36]). For example, due to the fact that quarks
and leptons belong to different gauge representations in T-
GUT scenarios, the baryon number is naturally conserved by
the gauge sector [15], only allowing for proton decay via
Yukawa and scalar interactions, if at all present. As was
shown for a particular T-GUT realization in Ref. [26], the
proton decay rates were consistent with experimental limits
in the case of low-scale SUSYor completely unobservable in
the case of split SUSY. Many T-GUTs can also accommo-
date any quark and leptonmasses andmixing angles [15,30],
whereas neutrino masses are generated by a seesaw mecha-
nism [23] of radiative [26] or inverse [28] type.
Despite a notable progress in exploring gauge coupling

unification, neutrino masses, dark matter candidates, TeV-
scale Higgs partners, collider and other phenomenological
implications of GUTs, there are several yet unresolved
problems. One of problems emerging in the case of SUSY
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1The E6-based models are typically motivated by heterotic
string theories where massless sectors consistent with the chiral
structure of the SM are naturally described by an E8 × E0

8 gauge
theory. For more details we refer the reader to Refs. [8–10].
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T-GUTmodel building is the long-standing issue of avoiding
GUT-scale masses for the would-be SM leptons. To circum-
vent this, the usual solution is to add several 27-plets of E6

with scalar components responsible for SSB of gauge
trinification [15,18,20,21,25,26,28–31,33,37] or to simply
add higher-dimensional operators [20,21,25,28,38]. These
approaches typically require a significant fine-tuning in high-
scale parameter space (especially, in the Yukawa sector) [26].
Otherwise, they exhibit phenomenological issues with proton
stability [15,21,26] and with a large amount of unobserved
light states [12,20,30,31,34,38].Despite continuous progress,
theSM-like effective field theories (EFTs) originating fromT-
GUTs still remain underdeveloped in comparison to other
GUT models such as SU(5), SO(10), or even E6 (see, e.g.,
Ref. [32] and references therein).
In this paper,we explore in detail the SUSYT-GUTmodel

proposed in [39] with a global SUð3ÞF-family symmetry
inspired by the embedding of E6 × SUð3Þ into E8. We will
refer to this model as the SUSY Higgs-unified trinification
(SHUT)model [for alternativeways of extending the SM by
means of an SUð3ÞF symmetry see, e.g., Refs. [40–43]. As
wewill see, the SHUTmodel offers solutions to some of the
problems faced by previous T-GUTs. As the light Higgs and
lepton sectors are unified, the model can be embedded into a
single E8 representation. Furthermore, the embedding sug-
gests the introduction of adjoint scalars and a family SUð3ÞF,
where the former protects a sufficient amount of fermionic
states from acquiring masses before electroweak symmetry
breaking (EWSB) to be in agreement with the SM. The
interplay of the family SUð3ÞF also provides a unification of
the high-scale Yukawa sector into a single coupling. This is
in contrast to well-known SO(10) and Pati-Salam models
where the Yukawa unification is constrained to the third
family only (see, e.g., Refs. [44–56]).
The Yukawa and gauge couplings unification in the

SHUT model largely reduces its parameter space, making a
complete analysis of its low-energy EFT scenarios techni-
cally feasible. The model also has a particular feature in that
no further spontaneous breaking of the symmetry towards
the SM gauge group is provided by the SUSY conserving
part of the model and that the energy scales at which the
symmetry is further broken are instead associated with the
soft SUSY-breaking operators. As such, both the electro-
weak scale and the scales of intermediate symmetry
breaking are naturally suppressed relative to the GUT scale.
In Sec. II we briefly discuss the key features of the SHUT

model and its SSB scheme, and in Sec. III the high-scale
SHUT model is introduced in its minimal setup in detail. In
particular, we discuss its features and the details on how it
solves the long-standing problems of previous T-GUT
realizations and how the GUT-scale SSB in this model
leads to a left-right (LR) symmetric SUSY theory. In Sec. IV
we discuss the inclusion of soft SUSY-breaking interactions
and how they lead to a breaking of the remaining gauge
symmetries down to the SM gauge group, and in Sec. V we

present a short overview of the low-energy limits of the
SHUT model. Finally, Sec. VI contains an analysis of
renormalization group (RG) evolution of gauge couplings
at one loop and extraction of characteristic values of the
GUT and soft scales, before concluding in Sec. VII.
In this article, we adopt the following notations:
(1) Supermultiplets are always written in bold (e.g., Δ).

As usual, the scalar components of chiral supermul-
tiplets and fermionic components of vector super-
multiplets carry a tilde (e.g., Δ̃), except for the Higgs-
Higgsino sector where the tilde serves to identify the
fermion SUð2ÞL × SUð2ÞR bidoublets (e.g., H̃).

(2) Fundamental representations carry superscript indi-
ces, while antifundamental representations carry
subscript indices.

(3) SUð3ÞK and SUð2ÞK (anti-)fundamental indices are
denoted by k; k0; k1; k2… for K ¼ L, R, respectively,
while color indices are denoted by x; x0; x1; x2….

(4) Indices belonging to (anti-)fundamental representa-
tions of SUð3ÞF are denoted by i; j; k….

(5) If a field transforms both under gauge and global
symmetry groups, the index corresponding to the
global one is placed within the parentheses around
the field, while the indices corresponding to the
gauge symmetries are placed outside.

(6) Global symmetry groups will be indicated by f…g.

II. LEFT-RIGHT-COLOR-FAMILY UNIFICATION

In Glashow’s formulation of the trinified ½SUð3ÞL ×
SUð3ÞR × SUð3ÞC� ⋊ Z3 ⊂ E6 (LRC-symmetric) gauge
theory [12], three families of the fermion fields from the
SM are arranged over three 27-plet copies of the E6 group,
namely,

27i → ðLiÞlr ⊕ ðQi
LÞxl ⊕ ðQi

RÞrx
≡ ð3l; 3̄r; 1Þi ⊕ ð3̄l; 1; 3xÞi ⊕ ð1; 3r; 3̄xÞi;

while the Higgs fields responsible for a high-scale SSB are
typically introduced via, e.g., an additional27-plet. Here and
below, the left, right, and color SU(3) indices are denoted by
l, r, and x, respectively, while the fermion families are
labeled by an index i ¼ 1, 2, 3.
The SHUT model first presented in Ref. [39], in contrast

to the Glashow trinification, introduces the global family
symmetry SUð3ÞF, which acts in the generation space. In
this case, the light Higgs and lepton superfields, as well as
quarks and colored scalars, all are unified into a single
(27, 3)-plet under E6 × SUð3ÞF symmetry, i.e.,

ð27; 3Þ → ðLiÞlr ⊕ ðQi
LÞxl ⊕ ðQi

RÞrx
≡ ð3l; 3̄r; 1; 3iÞ ⊕ ð3̄l; 1; 3x; 3iÞ ⊕ ð1; 3r; 3̄x; 3iÞ:

The leptonic tritriplet superfield ðLiÞlr that unifies the SM
left- and right-handed leptons and SM Higgs doublets can
be conveniently represented as
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ðLiÞlr ¼

0
B@

H11 H12 eL
H21 H22 νL
ecR νcR ϕ

1
CA

i

: ð1Þ

Besides, the left-quark ðQi
LÞxl and right-quark ðQi

RÞrx
tritriplets are

ðQi
LÞxl ¼ ð uxL dxL Dx

L Þi;
ðQi

RÞrx ¼ ð ucRx dcRx Dc
Rx Þ⊤i: ð2Þ

In addition, the SHUT model also incorporates the adjoint
[namely, SUð3ÞL;R;C;F octet] superfields ΔL;R;C;F. The first
SSB step in the SHUT model SUð3ÞL;R;F → SUð2ÞL;R;F ×
Uð1ÞL;R;F is triggered at the GUT scale by the SUSY-
preserving vacuum expectation values (VEVs) in the scalar
components of the corresponding octet superfields, while
all the subsequent low-scale SSB steps are triggered by
VEVs in the leptonic tritriplet ðLiÞlr through the soft
SUSY-breaking operators.
Along this work, we will be focused on the symmetry-

breaking scheme shown in Fig. 1. There it can be seen that
an accidental global Uð1ÞB × Uð1ÞW symmetry (which is
marked in red and will be discussed in detail in the next
section) appears in the high-scale theory. As we will see,

although alternative breaking schemes are possible, this is
the one leading to the low-energy SM-like scenarios we find
most interesting. As we shall see in Sec. V, dimension-3
operators that softly break Uð1ÞW, and consequently its low-
energy descendants [which will be denoted below as
Uð1ÞS0;T0], are needed for a phenomenologically viable
low-scale fermion spectrum. Such interactions do not have
a perturbative origin from the high-scale theory and are
added to the effective theory that emerges once the heavy
degrees of freedom of the SHUT model are integrated out.

III. SUPERSYMMETRIC TRINIFICATION
WITH GLOBAL SUð3ÞF

This section contains a review of the SHUTmodel before
and after the T-GUT symmetry is broken spontaneously by
adjoint field VEVs. We here present the symmetries,
particle content, and interactions of the model at both
stages, in addition to showing how it addresses the short-
comings of previous T-GUTs.

A. Tritriplet sector

In the following, we consider the SHUT model—a
SUSY T-GUT theory based on the trinification gauge
group with an accompanying global SUð3ÞF-family sym-
metry, i.e.,

G333f3g ≡ ½SUð3ÞL × SUð3ÞR × SUð3ÞC�
⋊ ZðLRCÞ

3 × fSUð3ÞFg: ð3Þ

Here and below, curly brackets indicate global (nongauge)
symmetries. The minimal chiral superfield content (shown
in Table I) that can accommodate the SM (Higgs and
fermion) fields, is composed of three tritriplet representa-
tions of G333f3g, which we label as L, QL, and QR,
respectively [for their explicit relation to the SM field
content up to a possible mixing, see Eqs. (1) and (2)]. The

ZðLRCÞ
3 in Eq. (3) is realized on the chiral and vector

superfields as the simultaneous cyclic permutation within
fL;QL;QRg and fVL;VC;VRg sets, respectively, where
VL;R;C are the vector (super)fields for the respective gauge

SUð3ÞL;R;C groups. The ZðLRCÞ
3 symmetry enforces the

FIG. 1. The symmetry-breaking scheme in the SHUT model
studied in this work. The symmetry groups in red correspond to
the accidental symmetries of the high-scale theory. The global
accidental Uð1ÞW and, consequently, its low-energy counterparts
Uð1ÞS0;T0 discussed below are considered to be softly broken at
low-energy scales and thus are shown as crossed-out symmetry
groups.

TABLE I. Tritriplet chiral superfields in the SHUT model and
their quantum numbers.

Chiral supermultiplet fields

Superfield SUð3ÞL SUð3ÞR SUð3ÞC SUð3ÞF
Higgs-lepton ðLiÞlr 3l 3̄r 1 3i

Left quark ðQi
LÞxl 3̄l 1 3x 3i

Right quark ðQi
RÞrx 1 3r 3̄x 3i
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gauge couplings of the SUð3ÞL;R;C groups to unify, i.e.,
gL ¼ gR ¼ gC ≡ gU.
As mentioned previously, all fields in Table I can be

contained in a (27, 3) representation of E6 × SUð3ÞF. In
turn, the group E6 × SUð3ÞF is a maximal subgroup of E8,

E8 ⊃ E6 × SUð3ÞF; ð4Þ
where the (27, 3) fits neatly into the 248 irreducible
representation of E8 whose branching rule is given by

248 ¼ ð1; 8Þ ⊕ ð78; 1Þ ⊕ ð27; 3Þ ⊕ ð27; 3̄Þ: ð5Þ
Note, for clarity, that we are only considering represen-

tations of the subgroup ½SUð3Þ�4 of E8, which are chiral
rather than vectorlike, in agreement with the chiral fermion
content of the SM. In this work, we treat SUð3ÞF as a global
symmetry. While considerably simpler, the trinification
model with global SUð3ÞF can be viewed as the principal
part of the fully gauged version in the limit of a vanishingly
small family gauge coupling gF ≪ gU. In that case,
Goldstone bosons would become the longitudinal degrees
of freedom (d.o.f.) of massive SUð3ÞF gauge bosons instead
of remaining as massless scalars. Such a restricted model
can thus be a first step towards the fully gauged E8-inspired
version.
Considering only renormalizable interactions, the sym-

metry group G333f3g allows for just a single term in the
superpotential with the tritriplet superfields

W ¼ λ27εijkðLiÞlrðQj
LÞxlðQk

RÞrx; ð6Þ
where λ27 can be taken to be real without any loss of
generality, as any phase can be absorbed with a field
redefinition. As the light Higgs and lepton sectors are fully
contained in the single tritriplet L, this construction
provides an exact unification of Yukawa interactions of
the fundamental superchiral sector and the corresponding
scalar quartic couplings to a common origin, λ27.
The superpotential in Eq. (6) has an accidental Uð1ÞW ×

Uð1ÞB symmetry as we can perform independent phase
rotations on two of the tritriplets as long as we do a
compensating phase rotation on the third. We can arrange
the charges of the tritriplets under Uð1ÞW × Uð1ÞB as shown
in Table II, such that Uð1ÞB is identified as the symmetry
responsible for baryon number conservation. With this, we
have proton stability to all orders in perturbation theory.
The model with the superpotential in Eq. (6) also

exhibits an accidental symmetry under LR parity P. This
is realized at the superspace level as

ðLiÞst !P − ðL�
i Þts; ðQi

L;RÞxs !
P ðQ�

R;L iÞsx

Va
L;R;C !P − Va

R;L;C; ð7Þ

accompanied by

xμ !P xμ; θα !P iθ†α: ð8Þ
Here, α is the spinor index on the Grassman valued
superspace coordinate θ. Note that s and t in Eq. (7) label
both SUð3ÞL;R indices as such representations are swapped
under LR parity. At the Lagrangian level, the LR-parity
transformation rules become

ðL̃iÞst !P − ðL̃�
i Þts; ½ðLiÞst�α !P − i½ðL†

i Þts�α;
ðQ̃i

LÞxs !P ðQ̃�
RiÞsx; ½ðQi

L;RÞxs�α !
P
i½ðQ†

R;LiÞs
x�α;

Ga
L;R;Cμ !

P
Ga

R;L;Cμ ; ½λ̃aL;R;C�α!
P − i½λ̃aR;L;C†�α; ð9Þ

which can be verified by expanding out the components of
the superfields in Eq. (7). In this model, LR parity exists
already at the SU(3) level, unlike common SUð2ÞL ×
SUð2ÞR LR-symmetric realizations. Note also that there
exist the corresponding accidental right-color and color-left

parity symmetries due to the ZðLRCÞ
3 permutation symmetry

imposed in the SHUT model.
As mentioned in the Introduction, one of the main

drawbacks of a SUSY T-GUT (as well as any SUSY
GUT with very few free parameters) is the difficulty for
spontaneous breaking of high-scale symmetries. For exam-
ple, while the non-SUSY T-GUT in Ref. [36] has no
problem with SSB down to a LR-symmetric theory, when
including SUSY the additional relations between potential
and gauge couplings make it so that there is no minimum of
the potential allowing for that breaking. Moreover, even
when relaxing the family symmetry, any VEV in, e.g., L̃i

induces mass terms that mix the Li fermions with the
gauginos λ̃aL;R through D-term interactions of the type

LD ¼ −
ffiffiffi
2

p
gUðL̃�

i Þl1 rðTaÞl1 l2ðLiÞl2rλ̃aL: ð10Þ

This is a common problem in the previous T-GUT
realizations as the number of light fields would not be
enough to accommodate the particle content of the SM at
low energies. While it is possible to get around this issue by
adding extra Higgs multiplets to the theory and making
them responsible for the SSB, this significantly increases
the amount of light exotic fields that might be present at low
energies but are unobserved. Such theories typically con-
tain a very large number of free parameters and a fair
amount of fine-tuning, which significantly reduces their
predictive power.

TABLE II. Charge assignment of the tritriplets under the
accidental symmetries.

Uð1ÞW Uð1ÞB
L þ1 0
QL −1=2 þ1=3
QR −1=2 −1=3
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In the SHUT model, this issue is instead solved by the
inclusion of adjoint SUð3ÞL;R;C;F chiral supermultiplets,
ΔL;R;C;F. By triggering the first SSB, while preserving
SUSY, VEVs in scalar components of ΔL;R;F do not lead to
heavy would-be SM lepton fields. In addition, the scalar
and fermion components of ΔL;R;C are all automatically
heavy after the breaking and thus do not remain in the low-
energy theory.

B. SU(3) adjoint superfields

The addition of gauge-adjoint superfields is the main
feature preventing SM-like leptons from getting a GUT-
scale mass. As was briefly mentioned above, the gauge
and family SU(3) adjoints are motivated by the ð78; 1Þ and
ð1; 8Þ representations of E6 × SUð3ÞF [which can be
inspired by the branching rule of the 248 representation
in its embedding into E8 as shown in Eq. (5)]. Indeed, the
78 representation, in turn, branches as

78¼ð8;1;1Þ⊕ ð1;8;1Þ⊕ ð1;1;8Þ⊕ ð3;3; 3̄Þ⊕ ð3̄; 3̄;3Þ;
ð11Þ

under E6 ⊃ ½SUð3Þ�3. We include three gauge-adjoint chiral
superfields ΔL;R;C corresponding to ð8; 1; 1Þ, ð1; 8; 1Þ, and
ð1; 1; 8Þ in Eq. (11), respectively, as well as the family
SUð3ÞF adjoint ΔF (all listed in Table III). The trans-

formation rule for the ZðLRCÞ
3 symmetry in G333f3g of

Eq. (3) is now accompanied by the cyclic permutation
of fΔL;ΔC;ΔRg fields.
In order to keep the minimal setup, in this work we will

not consider the fields that correspond to ð3; 3; 3̄Þ and
ð3̄; 3̄; 3Þ from Eq. (11). In practice, they can be made very
heavy and only couple to the tritriplets via gauge
interactions.
By introducing the adjoint chiral superfields, we have to

add the following terms

W ⊃
X

A¼L;R;C

�
1

2
μ78Δa

AΔa
A þ 1

3!
λ78dabcΔa

AΔb
AΔc

A

�

þ 1

2
μ1Δa

FΔa
F þ

1

3!
λ1dabcΔa

FΔb
FΔc

F ð12Þ

to the superpotential in Eq. (6). Here,dabc¼2Tr½fTa;TbgTc�
are the totally symmetric SU(3) coefficients.
Note that bilinear terms are only present for the adjoint

superfields and not for the fundamental ones, as they are
forbidden by the T-GUT symmetry. This leads to the fact
that the VEVs of the adjoint scalars set the first scale where
the T-GUT symmetry is spontaneously broken, while all
subsequent breaking steps occur at scales given by the soft
parameters. In other words, the model is free of the so-
called μ problem.
We can pick the phase of ΔL;R;C;F to make μ78 and μ1

real, which makes λ78 and λ1 complex, in general. Notice
that the superpotential provides no renormalizable inter-
action terms between the adjoint superfields and the
tritriplets. The accidental Uð1ÞW × Uð1ÞB symmetry of
the tritriplet sector is not affected by ΔL;R;C;F as we can
take these fields simply to not transform under this
symmetry. The gauge interactions are parity invariant with
the following definitions for the transformation rules:

Δ̃a
L;R;C;F!P Δ̃�a

R;L;C;F; ½Δa
L;R;C;F�α!

P
i½Δ†a

R;L;C;F�α; ð13Þ

or, equivalently, Δa
L;R;C;F!

P Δ�a
R;L;C;F at the superfield level.

However, LR parity is not generally respected by the F -
term interactions unless λ78 and λ1 are real. In what follows,
we assume a real λ78, whereas the accidental LR parity can
be explicitly broken by the soft SUSY-breaking sector of
the theory, at or below the GUT scale.
Now, for illustration, let us discuss briefly the first

symmetry-breaking step, which determines the GUT scale
in the SHUT model (see Fig. 1). Equation (12) leads to a
scalar potential containing several SUSY-preserving min-
ima with VEVs that can be rotated to the eighth component
of Δ̃8

L;R;F. In particular, there is an SUð3ÞC and LR-parity-
preserving minimum with

hΔ̃a
L;Ri ¼

vL;Rffiffiffi
2

p δa8 with vL;R ¼ v≡ 2
ffiffiffi
6

p μ78
λ78

; vC ¼ 0;

ð14Þ

for the gauge adjoints, and

hΔ̃a
Fi ¼

vFffiffiffi
2

p δa8 with vF ¼ 2
ffiffiffi
6

p μ1
λ1

; ð15Þ

for the family adjoint, setting the GUT scale v ∼ vF.
The vacuum structure hΔ̃8

L;R;Fi ≠ 0 leads to the sponta-
neous breaking SUð3ÞL;R;F → SUð2ÞL;R;F × Uð1ÞL;R;F [see
Appendix A for the corresponding generators and U(1)
charges], resulting in the unbroken group

G32211f21g≡SUð3ÞC× ½SUð2ÞL×SUð2ÞR
×Uð1ÞL×Uð1ÞR�×fSUð2ÞF×Uð1ÞFg: ð16Þ

TABLE III. SU(3) adjoint chiral superfields in the SHUTmodel
and their representations.

Chiral supermultiplet fields

Superfield SUð3ÞL SUð3ÞR SUð3ÞC SUð3ÞF
Left adjoint Δa

L 8a 1 1 1
Right adjoint Δa

R 1 8a 1 1
color adjoint Δa

C 1 1 8a 1
Family adjoint Δa

F 1 1 1 8a
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LR parity also remains unbroken since vL ¼ v�R, which is
true as long as λ78 is taken to be real.
By making the shift

Δa
L;R → Δa

L;R þ vffiffiffi
2

p δa8; Δa
F → Δa

F þ
vFffiffiffi
2

p δa8 ð17Þ

and substituting μ78 ¼ λ78v
2
ffiffi
6

p , μ1 ¼ λ1vF
2
ffiffi
6

p in the superpotential,

we obtain

W⊃
X
B¼L;R

�
λ78v

2
ffiffiffi
2

p
�
daa8þ

1

2
ffiffiffi
3

p
�
Δa

BΔa
Bþ

1

3!
λ78dabcΔa

BΔb
BΔc

B

�

þλ1vF
2

ffiffiffi
2

p
�
daa8þ

1

2
ffiffiffi
3

p
�
Δa

FΔa
Fþ

1

3!
λ78dabcΔa

FΔb
FΔc

F

þ λ78v

4
ffiffiffi
6

p Δa
CΔa

Cþ
1

3!
λ78dabcΔa

CΔb
CΔc

Cþconst: ð18Þ

The quadratic terms in the superpotential vanish for
Δ4;5;6;7

L;R;F , since daa8 ¼ −1=ð2 ffiffiffi
3

p Þ for a ¼ 4, 5, 6, 7, meaning
that these fields receive no F -term contribution to their
masses (contrary to the other components of ΔL;R and
ΔF, which receive GUT-scale masses m2

Δ ∼ λ278v
2 and

λ21v
2
F, respectively). While the global Goldstone bosons

Re½Δ̃4;5;6;7
F � are present in the physical spectrum, the gauge

ones become the longitudinal polarization states of the
heavy gauge bosons related to the breaking G333 → G32211.
The presence of massless scalar degrees of freedom can

only be avoided in the extended model with the gauged
family symmetry. It is clear, however, that even in the case
of an approximately global SUð3ÞF with gF ≪ gU there are
no massless Goldstones in the spectrum (provided that the
accidental symmetries are softly broken at low energies),
but a set of relatively light family gauge bosons very
weakly interacting with the rest of the spectrum.
By performing the shifts in Eq. (17) in the D-terms, we

obtain

Da
B ⊃ −ifabcΔ̃b †

B Δ̃c
B → −i

vffiffiffi
2

p fa8bðΔ̃b
B − Δ̃b †

B Þ

− ifabcΔ̃b †
B Δ̃c

B;

for B ¼ L;R, leading to the universal GUT-scale mass term
m2 ¼ 3g2Uv

2=4 for the gauge adjoints Im½Δ̃4;5;6;7
L;R �, while

Δ̃4;5;6;7
F have no D-term contributions [or a small one in the

case of approximately global SUð3ÞF with gF ≪ gU].
Hence, all components of the gauge adjoints and Δ̃1;2;3;8

F
receive masses of order GUT scale and are integrated out in
the low-energy EFT. The remaining Δ̃4;5;6;7

F , on the other
hand, receive a much smaller mass from the soft SUSY-
breaking sector (and strongly suppressedD-terms) and stay
in the physical spectrum of the EFT. In what follows, we

shall denote by Hi
F the superfields containing Im½Δ̃4;5;6;7

L;R �
and by Gi

F the superfields containing Re½Δ̃4;5;6;7
L;R �.

C. LR-symmetric SUSY theory

In this section we describe the details of the super-
symmetric theory left after the adjoint fields acquire VEVs.
As shown in the previous section, all components of the
gauge-adjoint chiral superfields receive masses of the order
of the GUT scale [OðvÞ] in the vacuum given by Eq. (17).
This means that to study the low-energy predictions of the
theory, we need to integrate out ΔL;R;C, as well as
components 1, 2, 3, and 8 of ΔF.
For the gauge sector of the SHUT model, hΔ̃L;Ri

naturally triggers an SUð3ÞL;R → SUð2ÞL;R × Uð1ÞL;R
breaking also for the tritriplets (whose interactions with
Δ̃L;R are mediated via Va

L;R gauge bosons). For the global
SUð3ÞF sector, there is no coupling of Δ̃F to the tritriplets
and, thus, the SUð3ÞF symmetry remains intact (or approxi-
mate in the case of gF ≪ gU) in the tritriplet sector, resulting
in G32211f3g rather than G32211f21g. Integrating out ΔL;R;C,
and components 1, 2, 3, and 8 of ΔF, therefore leaves us
with a supersymmetric theory based on the symmetry
group G32211f3g, with a chiral superfield content given
by Δ4–7

F and by the branching of L, QL, and QR.
Writing the trinification tritriplets in terms of G32211f3g

representations, one gets

ðLiÞlr ¼

0
B@

H11 H12 eL
H21 H22 νL
ecR νcR ϕ

1
CA

i

; ð19Þ

ðQi
LÞxl ¼ ð uxL dxL Dx

L Þ
i;

ðQi
RÞrx ¼ ð ucRx dcRx Dc

Rx Þ
⊤i; ð20Þ

where the vertical and horizontal lines denote the separation
of the original tritriplets into SU(2) doublets and singlets
after the first SSB step. We will refer to the lepton and
quark SUð2ÞL;R doublets as EL;R and qL;R. With this, we
find that the most general superpotential consistent with
G32211f3g is

W ¼ εijkfy1ϕiDL
jDR

k þ y2ðHiÞLRðqLjÞLðqRkÞR
þ y3ðEL

iÞLðqLjÞLDR
k þ y4ðER

iÞRDL
jðqRkÞRg: ð21Þ

Note, in this effective SUSY LR theory one could naively
add a mass term like εijμ̃Hi

FG
i
F [which is symmetric under

SUð2ÞF × Uð1ÞF but not under full SUð3ÞF] between the
massless components of the family adjoint superfield Hi

F
and the massless superfield Gi

F containing the Goldstone
bosons. Such an effective μ-term is matched to zero at tree
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level at the GUT scale. Due to SUSY nonrenormalization
theorems [57], in the exact SUSY limit this term cannot be
regenerated radiatively at low energies, so μ̃ is identically
zero and was not included in the superpotential given by
Eq. (21). So, the resulting superpotential contains only
fundamental superfields coming from L, QL, and QR and is
indeed invariant under SUð3ÞF.
In the GUT-scale theory, a complex λ78 would be the

only source of LR-parity violation. In the low-energy
theory this should lead to y3 ≠ y�4. Otherwise, y3 ¼ y�4
and after the matching is performed we can always make
any y1;2;3;4 real by field redefinitions. The same argument
applies for the equality of the corresponding LR gauge
couplings for SUð2ÞL;R × Uð1ÞL;R symmetries.
Since we now have an effective LR-symmetric SUSY

model with a Uð1ÞL;R symmetry, there is a possibility of
having gauge kinetic mixing. The Uð1ÞL;R D-term con-
tribution to the Lagrangian is given by

L⊃
1

2
ðχDLDRþD2

LþD2
RÞ−κðDL−DRÞþXLDLþXRDR;

ð22Þ

where the terms proportional to κ are the Fayet-Iliopoulos
terms, while the D-terms and the expressions for XL;R are
shown in Appendix D 3 b.
The values of the parameters fy1;2;3;4; gC; gL;R; g0L;R; χ; κg

in the LR-symmetric SUSY theory are determined by the

values of the parameters fλ27; λ78; gU; vg in the high-scale
trinification theory at the GUT-scale boundary through a
matching procedure.2 Regarding the RG evolution of the
couplings, we note that the only dimensionful parameter in
the effective theory is the Fayet-Iliopoulos parameter κ.
This means that βκ ∝ κ so that if κ ¼ 0 at the matching
scale (which is true, at least, at tree level), then κ will
remain zero throughout the RG flow yielding no sponta-
neous SUSY breaking. Thus, we stick to the concept of soft
SUSY breaking in what follows.

IV. SOFTLY BROKEN SUSY

In this section we describe the details of adding
soft SUSY-breaking terms before the SHUT symmetry
is broken spontaneously by adjoint field VEVs. One
of the most important results is treated in Sec. IV B,
where it is shown that the symmetry breakings below
the GUT scale are triggered solely by the soft SUSY-
breaking sector. This, in turn, allows for a strong hierarchy
between the GUT scale and the scale of the following
VEVs.

A. The soft SUSY-breaking Lagrangian

The soft SUSY-breaking scalar potential terms respect-
ing the imposed G333f3g symmetry are bilinear and trilinear
interactions given by

VG
soft ¼

�
m2

27ðL̃iÞlrðL̃�
i Þlr þm2

78Δ̃
�a
L Δ̃a

L þ
�
1

2
b78Δ̃a

LΔ̃a
L þ c:c

�
þ dabc

�
1

3!
A78Δ̃a

LΔ̃b
LΔ̃c

L þ
1

2
C78Δ̃�a

L Δ̃b
LΔ̃c

L þ c:c:

�

þ ½AGΔ̃a
LðTaÞl1l2ðL̃�

i Þl1 rðL̃iÞl2 r þ AḠΔ̃a
RðTaÞr2r1ðL̃�

i Þlr1ðL̃iÞlr2 þ c:c:� þ ðZðLRCÞ
3 permutationsÞ

�

þ ½A27εijkðQ̃i
LÞxlðQ̃j

RÞrxðL̃kÞlr þ c:c:�; ð23Þ

for the gauge adjoints and pure tritriplet terms, and

VF
soft ¼ m2

1Δ̃
�a
F Δ̃a

F þ
�
1

2
b1Δ̃a

FΔ̃a
F þ c:c

�
þ dabc

�
1

3!
A1Δ̃a

FΔ̃b
FΔ̃c

F þ
1

2
C1Δ̃�a

F Δ̃b
FΔ̃c

F þ c:c:

�

þ ½AFΔ̃a
FðTaÞijðL̃�

i ÞlrðL̃jÞlr þ c:c:þ ðZðLRCÞ
3 permutationsÞ� ð24Þ

for the family adjoint. All parameters here are assumed to
be real for simplicity. We note that, although trilinear terms
with the gauge singlets (such as Δ̃�

FΔ̃FΔ̃F above) are not in
general soft, due to the family symmetry and the fact thatP

adaab ¼ 0, the dangerous tadpole diagrams do indeed
cancel and do not lead to quadratic divergences.

The terms in Eqs. (23) and (24), which account for themost
general soft SUSY-breaking scalar potential consistent with
G333f3g and real parameters, also respect the accidental
Uð1ÞW × Uð1ÞB symmetry of the original SUSY theory.
However, accidental LR parity is, in general, softly broken
as long asAG ≠ AḠ, and this breaking can then be transmitted
to the other sectors of the effective theory radiatively (e.g., via
RG evolution and radiative corrections at thematching scale).
The only dimensionful parameters entering in the tree-

level tritriplet masses come from soft SUSY-breaking

2Before adding soft SUSY-breaking interactions, ΔF is com-
pletely decoupled from the fundamental sector when taking
SUð3ÞF to be global, meaning that λ1 and vF do not enter in
the matching conditions.
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parameters, such that the corresponding scalar fields
receive masses of the order of the soft SUSY-breaking
scale. The full expressions are given in Appendix B, from
which we notice that positive squared masses require

jAG;Ḡjv ∼ jAFjvF ∼ jA1jvF

∼m2
soft ⇒

8<
:

jAG;Ḡ;Fj ≲ m2
27
v ∼ m2

soft
v ;

jA1j ≲ m2
1

vF
:

ð25Þ

For more details, see Appendix B 1 a.
Note that the AF-term in the soft sector introduces small

SUð3ÞF violating [but SUð2ÞF × Uð1ÞF preserving] effects
on the interactions in the effective theory once hΔ̃Fi ≠ 0.
Consider, for example, effective quartic interactions
between components of L̃ that come from two AF trilinear
vertices connected by an internal Δ̃1;2;3

F or Δ̃8
F propagator.

The value of this diagram is ∼iA2
F=λ

2
1v

2
F neglecting the

external momentum in the propagator. Using Eq. (25), we
see that this diagram behaves as ½msoft=v�4.
The possible fermion soft SUSY-breaking terms are the

Majorana mass terms for the gauginos and the Dirac mass

terms between the gauginos and the fermion components of
ΔL;R;C, namely,

Lfermion
soft ¼

�
−
1

2
M0λ̃

a
Lλ̃

a
L −M0

0λ̃
a
LΔa

L þ c:c:

þ ðZðLRCÞ
3 permutationsÞ

�
: ð26Þ

From the transformation rules in Eqs. (7) and (13) it follows
that LR parity is not respected by Lfermion

soft unless M0
0 ¼ 0.

B. Vacuum in the presence of soft
SUSY-breaking terms

Here we show how the scalar potential changes in the
presence of soft SUSY-breaking interactions. In particular,
how soft SUSY-breaking terms trigger a VEV in ðL̃3Þ33 ≡
ϕ̃3 of the same order as the soft SUSY-breaking scale.
With hΔ8

L;R;Fi≡ 1ffiffi
2

p vL;R;F and hϕ̃3i≡ 1ffiffi
2

p vφ being the

VEVs present, our potential evaluated in the vacuum is
given by

Vvac¼
�
1

2
m2

27−
1ffiffiffi
6

p ðAGvLþAḠvRþAFvFÞ
�
v2φþ

1

12
g2Uv

4
φþ

�
1

2
ðm2

78þb78Þv2L−
1ffiffiffi
6

p
�
1

3!
A78þ

1

2
C78

�
v3L

þ1

2
v2L

�
1

2
ffiffiffi
6

p λ78vL−μ78

�
2

þðvL→vRÞ
�
þ1

2
ðm2

1þb1Þv2F−
1ffiffiffi
6

p
�
1

3!
A1þ

1

2
C1

�
v3F: ð27Þ

As all other fields (that do not acquire VEVs) only enter
in bilinear combinations, it suffices to consider the above
terms to solve the conditions for vanishing first derivatives
of the scalar potential. We retain the notation v ¼
2

ffiffiffi
6

p
μ78=λ78 for the VEVs of Δ̃8

L;R in the absence of soft
terms. Assuming that the soft terms are much smaller than
the GUT scale, i.e., msoft ≪ v, we can approximately solve
the extremum conditions for vL;R;φ by Taylor expanding
them to the leading order in soft terms. Doing so, we find

v2φ ≈
3

g2U

�
−m2

27 þ
ffiffiffi
2

3

r
ðAG þ AḠÞvþ

ffiffiffi
2

3

r
AFvF

�
;

vL;R ≈ vþ 24

λ78

�
−
m2

78 þ b78
v

þ
ffiffiffi
3

2

r �
1

3!
A78 þ

1

2
C78

�

þ 1ffiffiffi
6

p AG;Ḡ

�
vφ
v

�
2
�
; ð28Þ

where in the top equation we see that the ϕ̃3 VEV is of the
order of the soft SUSY-breaking scale. In other words, the
ϕ̃3 VEV cannot be triggered unless soft terms are intro-
duced. As is described in Sec. IVA, the soft trilinear

couplings AG;Ḡ, A78, and C78 need to be≲m2
27=v for having

positive squared masses.
Adding the soft terms shifts the values of the VEVs vL;R

described in Sec. III B by a relative amount behaving as

∼
�
msoft

v

�
2

: ð29Þ

Furthermore, we note that the presence of vφ slightly
affects the equality of vL;R,

vL − vR ≈
4

ffiffiffi
6

p

λ78

�
vφ
v

�
2

ðAG − AḠÞ; ð30Þ

as long as AG ≠ AḠ. The relative difference between vL;R,
therefore, behaves as

∼
hmsoft

v

i
4
: ð31Þ

That is, although the VEVs of Δ̃L;R are shifted by the soft
terms, the effect is very small, if not negligible, for
msoft ≪ v.
With a nonzero vφ ∼msoft ≪ v, the symmetry is further

broken as
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Uð1ÞL × Uð1ÞR × fUð1ÞF × Uð1ÞWg

!hϕ̃
3i
Uð1ÞLþR × fUð1ÞS × Uð1ÞS0 g; ð32Þ

where Uð1ÞLþR consists of simultaneous Uð1ÞL;R phase
rotations by the same phase. Uð1ÞS and Uð1ÞS0 are also
simultaneous Uð1ÞL;R phase rotations, but with opposite
phase, which is compensated by an appropriate Uð1ÞF and
Uð1ÞW transformation, respectively. All generators are
presented in Appendix A.
In the limit of vanishingly small AF → 0 in Eq. (24), the

model exhibits an exact global SUð3ÞF0 × SUð3ÞF00 sym-
metry as we could then perform independent SU(3)-family
rotations on ðL;QL;RÞ and ΔF. With nonzero vφ and vF, we
would in this case end up with Goldstone fields built up out
of ϕ̃1;2 and Re½Δ̃4;5;6;7

F � from the spontaneous breaking of
SUð3ÞF0 and SUð3ÞF00 , respectively. With AF ≠ 0 the
SUð3ÞF0 × SUð3ÞF00 symmetry softly breaks to the familiar
SUð3ÞF. This causes ϕ̃1;2 and Re½Δ̃4;5;6;7

F � to arrange
themselves into one pure Goldstone and one pseudo-
Goldstone SUð2ÞF doublet (the mass of the latter is
proportional to AF). Since vφ ≪ vF, the pure Goldstone
is mostly Re½Δ̃4;5;6;7

F � [it has a small Oðvφ=vÞ admixture of
ϕ̃1;2, while the pseudo-Goldstone mode is mostly ϕ̃1;2

containing an Oðvφ=vÞ amount of Re½Δ̃4;5;6;7
F �].

C. Masses in presence of soft SUSY-breaking terms

The inclusion of soft SUSY-breaking interactions results
in nonzero masses for the fundamental scalars contained in
the L, QL, and QR superfields as well as for the gauginos.
By construction, the soft SUSY-breaking parameters are
small in comparison to the GUT scale, i.e., msoft ≪ v,
which means that the heavy states in the SUSY theory
discussed in Sec. III will remain heavy and only those that
were massless will receive contributions whose size is
relevant for the low-energy EFT.
The masses of the fundamental scalars are purely

generated in the soft SUSY-breaking sector. Furthermore,
for a vacuum where only adjoint scalars acquire VEVs as in
Eq. (17), there is no mixing among the components of the
fundamental scalars corresponding to the physical eigen-
states at the first breaking stage shown in Fig. 1.
The Higgs-slepton masses (no summation over the

indices is implied) read

m2
ðL̃iÞlr ¼ m2

27 þ 2½AGvðT8Þll
þ AḠðT8Þrr þ AFvFðT8Þii�; ð33Þ

while the corresponding squark masses are given by

m2
ðQ̃i

LÞl
¼ m2

27 þ 2½AGvðT8Þll þ AFvFðT8Þii�;
m2

ðQ̃i
RÞr

¼ m2
27 þ 2½AḠvðT8Þrr þ AFvFðT8Þii�: ð34Þ

In Table IX of Appendix B we show the masses for each
fundamental scalar component in the LR-parity symmetric
limit corresponding to AG ¼ AḠ, for simplicity.
Moreover, the H̃F mass is given by

m2
H̃F

≃ 2m2
1 þOðm4

soft=v
2
FÞ: ð35Þ

The exact expressions for scalar fields’ squared masses can
be found in Table X of Appendix B.
The massless superpartners of the gauge bosons asso-

ciated with the unbroken symmetries also acquire soft-scale
masses. In particular, they mix with the chiral adjoint
fermions via Dirac terms whose strength,M0

0 in Eq. (26), is
also of the order msoft. Typically, for minimal Dirac-
gaugino models, the ad hoc introduction of adjoint chiral
superfields has the undesirable side effect of spoiling the
gauge couplings’ unification. However, in the model
studied in Refs. [58,59], this problem is resolved by
evoking trinification as the natural embedding for the
required adjoint chiral scalars needed to form Dirac mass
terms with gauginos. With this point in mind, we want to
note that the SHUT model, with softly broken SUSYat the
GUT scale, is on its own a Dirac-gaugino model and a
possible high-scale framework for such a class of models.
The mass matrix for the adjoint fermions in the basis

fλ̃1;2;3L;R ;Δ1;2;3
L;R ; λ̃8L;R;Δ8

L;Rg is then

Mλ̃;Δ¼

0
BBBBB@

M0 M0
0 0 0

M0
0

vλ78ffiffi
6

p þμ78 0 0

0 0 M0 M0
0

0 0 M0
0

vλ78ffiffi
6

p −μ78

1
CCCCCA
: ð36Þ

We denote the resulting mass eigenstates as fT L;R; T L;

R⊥;SL;R;S⊥
L;Rg, where SL;R and T L;R are the light (soft-

scale) adjoint fermions while S⊥
L;R and T ⊥

L;R denote the
heavy (GUT-scale) ones. Note that, due to a small mixing,
both the low- and high-scale gauginos are essentially
Majorana-like. Indeed, the mass of the former ones are
approximately given by M0, while the high-scale adjoint
fermionsT ⊥

L;R andS
⊥
L;R get theirmasses fromF -terms being

approximately equal to ðMλ̃;Δ̃Þ22 and ðMλ̃;Δ̃Þ44, respectively.
The same effect is observed for the gluinos g̃a whose

masses, in the limit M0 ∼M0
0 ≪ v ∼ μ78, are equal to M0

for the light states and μ78 for the heavy states. There is also
an SUð2ÞF-doublet fermion HF that acquires a mass of the
order of soft SUSY-breaking scale msoft. Note that HF as
well as its superpartner H̃F receive D-term contributions if
SUð3ÞF is gauged. Finally, the chiral fundamental fermions
are massless at this stage.
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V. PARTICLE MASSES AT LOWER SCALES:
A QUALITATIVE ANALYSIS

In this section we give a short overview of the low-
energy limits of the SHUT model, i.e., the spectrum after
ϕ̃3, ϕ̃2, and ν̃1R acquire VEVs. In particular, we investigate
whether the SM-extended symmetry, GSM × Uð1ÞT ×
Uð1ÞT0 as represented at the bottom of Fig. 1, leaves
enough freedom to realize the SM particle spectrum.
Note that SU(2) (anti-)fundamental indices are denoted
with lowercase letters for the remainder of the text, rather
than with uppercase letters.

A. Color-neutral fermions

Once the SUð2ÞR × SUð2ÞF symmetries are broken, the
tridoublet H̃fl

r and the bidoublet h̃lr are split into three
distinct generations of SUð2ÞL doublets. We will then
rename them as H̃fl

r¼1 ≡ H̃fl
u , h̃lr¼1 ≡ h̃lu, H̃fl

r¼2 ≡ H̃fl
d ,

and h̃lr¼2 ≡ h̃ld, such that

H̃i
u ¼

�
H̃i0

u

H̃iþ
u

�
H̃i

d ¼
�
H̃i−

d

H̃i0
d

�
Ei
L ¼

�
eiL
νiL

�

h̃u ¼
�
H̃30

u

H̃3þ
u

�
h̃d ¼

�
H̃3−

d

H̃30
d

�
EL ¼

�
e3L
ν3L

�
; ð37Þ

where i ¼ 1, 2, and where their scalar counterparts follow
the same notation but without and with tildes, respectively.
From this we can build mass terms for the charged lepton
and charged Higgsinos as

LC ¼ ð e1L e2L e3L H̃1−
d H̃2−

d H̃3−
d ÞMC

× ð e1R e2R e3R H̃1þ
u H̃2þ

u H̃3þ
u ÞT þ c:c: ð38Þ

Let us start by classifying all possible electroweak (EW)
Higgs doublet and complex-singlet bosons, whose VEVs
may have a role in the SM-like fermion mass spectrum.
There are three types of Higgs doublets distinguished in
terms of their Uð1ÞY × Uð1ÞT charges and one possibility
for complex singlets (and their complex conjugates). In
particular, we can have
(1) (1, 1): H2

u, hu, H�1
d , Ẽ�2

L , Ẽ�
L, with VEVs denoted as

• type.
(2) (1, 5): H1

u, H�2
d , h�d, with VEVs denoted as ⋆ type.

(3) ð1;−3Þ: Ẽ�1
L , with VEVs denoted as � type.

(4) ð0;−4Þ: S̃1;2, with VEVs denoted as ⋄ type.
Note that the doublets in each line can mix, in particular, in
the last line the two complex singlets emerge from the
mixing ðϕ̃�1; ν̃2R; ν̃

3
RÞ ↦ ðS̃1; S̃2;GsÞ induced by the third

breaking step in Fig. 1, with Gs being a complex Goldstone
boson.3

According to the quantum numbers shown in Table VIII
of Appendix A, the matrix MC has the structure

MC ∼

0
BBBBBBBBBBBB@

0 ⋆ ⋆ 0 0 0

⋆ • • 0 0 0

⋆ • • 0 0 0

⋆ • • 0 0 0

• 0 0 0 0 0

• 0 0 0 0 0

1
CCCCCCCCCCCCA

; ð39Þ

where the symbols denote the type of VEVs contributing to
the entry. In this case, the rank of the matrixMC is at most
three, which means that, while we may be able to identify
the correct patterns for the masses of the charged leptons in
the SM, there will be massless charged Higgsinos remain-
ing in the spectrum after EWSB, which is in conflict with
phenomenology. The mass terms are forbidden by the
Uð1ÞT0 symmetry, which remains unbroken after EWSB,
and the latter is independent of the number of Higgs
doublets involved.
In order to get a particle content consistent with the SM,

one needs to break the Uð1ÞW symmetry, thus avoiding the
remnant Uð1ÞT0 symmetry. The most general Uð1ÞW violat-
ing terms after hΔ8

L;R;Fi (obeying all other symmetries) are

V=Wsoft ¼ εff0εll0ε
rr0 ðAHhϕH

lf
r hl

0
r0 ϕ̃

f0 þ AhEEhlrẼ
fl0
L Ẽf0

Rr0

þAhEEH
fl
r Ẽ

f0l0
L ẼRr0 þ ĀhEEH

fl
r Ẽ

f0
Rr0 Ẽ

l0
LÞ þ c:c:; ð40Þ

with Aijk ≪ v. The charged lepton mass matrix now reads

MC ∼

0
BBBBBBBBBBBB@

0 ⋆ ⋆ 0 ⋄ ⋄
⋆ • • ⋄ ♦ ♦

⋆ • • ⋄ ♦ ♦

⋆ • • ⋄ ♦ ♦

• � � ♦ ⋄ ⋄
• � � ♦ ⋄ ⋄

1
CCCCCCCCCCCCA

; ð41Þ

where♦ labels entries related to the ν̃1R VEVand can thus be
well above the EWscale.We nowhave amassmatrix of rank
6, which means that no charged leptons and Higgsinos are
left massless after EWSB. Note that before the EW sym-
metry is broken there are three massless lepton doublets, as
the matrix in (41) with only ♦-type entries has rank 3, in
accordance with the SM. Furthermore, due to large ♦-type
entries, the structure of MC allows for three exotic lepton
eigenstates heavier than the EW scale. Similarly, in the
neutrino sector, no massless states remain after EWSB.
We see from the structure of Eq. (41) that, while the

maximal amount of light SUð2ÞL Higgs doublets is nine,
the minimal low-scale model needs at least two Higgs

3The breaking SUð2ÞR × SUð2ÞF × Uð1ÞLþR × Uð1ÞS →
Uð1ÞY × Uð1ÞT gives rise to six Goldstone bosons, three gauge
and three global ones, where the former are Im½ν̃1R�;Re½ẽ1R�, and
Im½ẽ1R�, while the latter ones are Im½ϕ̃2� and Gs.
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doublets, one of the ⋆ type and one of the • type, for the
rank of the matrix to remain at six. Note also that the low-
scale remnant of the family symmetry, Uð1ÞT, is nonuni-
versal in the space of fermion generations. As such, the
various generations of Higgs bosons couple differently to
different families of the SM-like fermions, offering a
starting point for a mechanism explaining the mass and
mixing hierarchies among the charged leptons. In addition,
with the only tree-level interaction among fundamental
multiplets arising from the high-scale term LiQj

LQ
k
Rϵijk, the

masses for all leptons must be generated at loop level,
providing a possible explanation for the lightness of the
charged leptons observed in nature.
To see this, we write the allowed lepton Yukawa terms

(omitting the heavy vectorlike lepton contributions)

−LY ¼ Πa
ijlLiHaeRj þ c:c: ð42Þ

Note that the equation above is written in terms of Dirac
spinors rather than left-handed Weyl spinors (such that the
charges for all right-handed spinors in Table VI should be
conjugated). Also, to match conventional notation, the left-
handed spinor EL is here denoted as lL.
For the case of the three Higgs doublets being H1

u, H2
u

and H2
d� (which is one of the possible scenarios enabling

the Cabbibo mixing at tree level, as shown in the following
subsection), the charged lepton mass form reads

Me¼
1ffiffiffi
2

p

0
B@

0 v1Π1
12þvdΠ3

12 v1Π1
13þvdΠ3

13

v1Π1
21þvdΠ3

21 v2Π2
22 v2Π2

23

v1Π1
31þvdΠ3

31 v2Π2
32 v2Π2

33

1
CA;

where v1, v2, and vd is the VEV of H1
u; H2

u, and H2
d�,

respectively. The Yukawa couplings Πa
ij are generated

radiatively, by a higher-order sequential matching of the
EFT to the high-scale SHUT theory at each of the breaking
steps (tree-level matching yields Πa

ij ¼ 0).
With this form, and with Πa

ij as free parameters, there is
enough freedom to reproduce the pattern of charged SM-like
lepton masses. However, whether or not it can be derived in
terms of the high-scale SHUT parameters remains to be seen
after the RG evolution and the calculations of the radiative
threshold corrections have been carried out.
Finally, consider the neutrino sector of the model

composed of 15 neutral leptons emerging from the leptonic
tritriplet ðLiÞlr after the EWSB,

ΨN ¼ fϕ1ϕ2ϕ3ν1Rν
2
Rν

3
Rν

1
Lν

2
Lν

3
LH̃

10
d H̃20

d H̃30
d H̃10

u H̃20
u H̃30

u g:

Note, in this first consideration we ignore the adjoint (chiral
superfields Δa

L;R;F and neutral gaugino λ̃aL;R) sectors for the
sake of simplicity, while they should be included in a
complete analysis of the neutrino sector involving the RG
running and the radiative threshold corrections at every
symmetry-breaking scale. The corresponding 15 × 15mass
form with all the Dirac and Majorana terms allowed after
the EWSB

LN ¼ ΨNMNΨ⊤
N ð43Þ

has the following generic structure

MN ¼

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 0 0 ⊗ ⊗ 0 0 0 0 ∨ ∨ 0 ∨ ∨
0 × × × 0 0 0 ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨
0 × ∪ × 0 0 0 ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨
0 × × × 0 0 0 ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨
⊗ 0 0 0 0 0 ∨ ∨ ∨ ∨ 0 0 ∨ 0 0

⊗ 0 0 0 0 0 ∨ ∨ ∨ ∨ 0 0 ∨ 0 0

0 0 0 0 ∨ ∨ 0 0 0 0 0 0 0 0 0

0 ∨ ∨ ∨ ∨ ∨ 0 0 0 0 0 0 0 ⊗ ⊗
0 ∨ ∨ ∨ ∨ ∨ 0 0 0 0 0 0 0 ⊗ ⊗
0 ∨ ∨ ∨ ∨ ∨ 0 0 0 0 0 0 0 ⊗ ⊗
∨ ∨ ∨ ∨ 0 0 0 0 0 0 0 0 ⊗ 0 0

∨ ∨ ∨ ∨ 0 0 0 0 0 0 0 0 ⊗ 0 0

0 ∨ ∨ ∨ ∨ ∨ 0 0 0 0 ⊗ ⊗ 0 0 0

∨ ∨ ∨ ∨ 0 0 0 ⊗ ⊗ ⊗ 0 0 0 0 0

∨ ∨ ∨ ∨ 0 0 0 ⊗ ⊗ ⊗ 0 0 0 0 0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

;
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where the symbol ∪ denotes the only Majorana bilinear
below the hϕ̃3i scale, × represents the Majorana bilinears
below the hϕ̃2i and hν̃1Ri scales, ⊗ denotes the Dirac
bilinears below hϕ̃2i and hν̃1Ri scales, and ∨ denotes the
Dirac bilinears at the lowest EWSB scale. For mass terms
receiving contributions from more than one symmetry-
breaking scale, only the highest scale is displayed in the
matrix above. Note that all bilinears with both fields having
zero charge under all U(1) groups are referred to as
Majorana bilinears and not just combinations consisting
of a field with itself.
Despite of the absence of tree-level Yukawa interaction

for the leptonic tritriplet ðLiÞlr at the GUT scale, the
Majorana mass terms in the upper-left 3 × 3 block of the
mass form are generated at tree level at the intermediate
matching hϕ̃3i, hϕ̃2i, and hν̃1Ri scales due to interactions
with gauginos, while all other Majorana and Dirac terms
are generated radiatively, either at one- or two-loop level.
With this structure, and with the hierarchy of scales
presented in Sec. VI, there are solutions with three sub-
eV neutrino states. Two of these states are present for a
wide range of parameter values, while a third light state, in
the considered simplistic approach, typically requires a
tuned suppression of one or more entries in the lower-right
8 × 8 block. Whether this can be obtained with less fine-
tuning, when including the full set of neutral states coming
from the adjoint superfields, remains to be seen once the
full RG evolution and matching has been carried out.

B. Quark sector

In the absence of the accidental Uð1ÞT0 symmetry, the
low-energy limit of the SHUT model also offers good
candidates for SM quarks without massless states after
EWSB. To see this we first note that once ϕ̃3 develops a
VEV at the second SSB stage shown in Fig. 1, two
generations of D quarks mix and acquire mass terms of

the form mDD
f
LD

f0
R εff0 , with mD ¼ OðmsoftÞ ≫ MEW.

Then, at the third breaking stage, the ν̃1R and ϕ̃2 VEVs
trigger a mixing between the R-type quarks Di

R and diR

0
BBBBBBBBBB@

d1R
D2

R

D3
R

D1
R

d2R
d3R

1
CCCCCCCCCCA

¼

0
BBBBBBBBBB@

1 0 0 0 0 0

0 a1 a2 0 0 0

0 a3 a4 0 0 0

0 0 0 a5 a6 a7
0 0 0 a8 a9 a10
0 0 0 a11 a12 a13

1
CCCCCCCCCCA

0
BBBBBBBBBB@

d1
R

d2
R

D1
R

d3
R

D2
R

D3
R

1
CCCCCCCCCCA
; ð44Þ

where the parameters a1–a13 are not all independent as the
matrix is unitary. At the classical level, and with
hϕ̃3i ¼ hϕ̃2i ¼ hν̃1Ri, the parameters are given by

a1;3;4;12 ¼ −a2;9 ¼
1ffiffiffi
2

p ; a5;8;11 ¼
1ffiffiffi
3

p ;

a6 ¼ 0; a7 ¼ −
ffiffiffi
2

3

r
; a10;13 ¼

1ffiffiffi
6

p ;

while the corresponding expressions for general hϕ̃3i, hϕ̃2i,
hν̃1Ri are too extensive to be presented here.
Defining the components of the SUð2ÞL quark doublets

as Q1;2
L ≡ ðu1;2L ; d1;2L ÞT and qL ≡ ðu3L; d3LÞT, we can con-

struct the Lagrangian for the SM-like quarks as

Lquarks ¼ ð u1L u2L u3L ÞMu

0
B@

u1R
u2R
u3R

1
CA

þ ð d1L d2L d3L ÞMd

0
B@

d1
R

d2
R

d3
R

1
CAþ c:c: ð45Þ

With the different possibilities found for the Higgs sector,
the most generic structure for Mu and Md matrices obey
the following patterns:

Mu ∼

0
@

� • •

• ⋆ ⋆
• ⋆ ⋆

1
A; Md ∼

0
B@

0 • ⋆
⋆ � •

⋆ � •

1
CA: ð46Þ

In order for all quarks to gain a mass after EWSB, the
matrices in Eq. (46)must be of rank 3.As such, the low-scale
limit of the SHUT model requires, at least, two Higgs
doublets, where both •- and ⋆-type ones are present. In
contrast to charged leptons, for which the contributions arise
solely from effectiveYukawa couplings, in Eq. (46) there are
allowed tree-level bilinears for the SM-like quarks.
Next, let us consider the possible flavor structure in the

low-scale limit. At the classical level, we have Cabbibo
mixing with a minimum of three Higgs doublets. For a
realistic mass spectrum, it is also required to incorporate RG
effects as well as loop-induced threshold corrections, which
make the Yukawa couplings different from each other. Take
for example the three Higgs doublet model with two up-type
Higgs doublets H1

u and H2
u and a down-type Higgs doublet

H2
d. In the classical limit of the theory, this corresponds to

Mu ¼ λ27ffiffiffi
2

p

0
B@

0 0 −v2
0 0 v1
v2 −v1 0

1
CA;

Md ¼ λ27ffiffiffi
2

p

0
B@

0 0 − 1ffiffi
3

p vd

0 0 0

vd 0 0

1
CA; ð47Þ

where v1;2;d are the corresponding Higgs VEVs and where
λ27 is the high-scale Yukawa coupling. With this, the
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Cabbibo angle satisfies tan θC ¼ v1
v2
and results in the quark

mass spectrum

m2
c;t ¼

1

2
λ227ðv12 þ v22Þ;

m2
b ¼ 3m2

s ¼
1

2
λ227v

2
d; m2

u;d ¼ 0; ð48Þ

i.e., the lowest-order contributions to the particle spectrum
imply a degeneracy of charm- and top-quark masses, while
strange and bottom quark masses squared are related with a
factor 3.
When radiative corrections are considered as well, the

mass forms become more involved. Indeed, for an effective
quark Yukawa Lagrangian the allowed terms (omitting, for
simplicity, the heavy vectorlike quark Yukawa terms)

−Lq
Y ¼ Γa

ijqLiHadRj þ Δa
ijqLiH̃auRj þ c:c:

written again in terms of Dirac fermions rather than left-
handed Weyl fermions, and where the tilde on the Higgs
doublet refers to H̃l ¼ εll

0
H�

l0 and not it being a Higgsino, as
in the other parts of the paper. With the three Higgs
doublets again beingH1;2

u andH2�
d , we have the mass forms

Mu ≈
1ffiffiffi
2

p

0
B@

0 v2Δ2
12 v2Δ2

13

v2Δ2
21 v1Δ1

22 þ vdΔ3
22 v1Δ1

23 þ vdΔ3
23

v2Δ2
31 v1Δ1

32 þ vdΔ3
32 v1Δ1

33 þ vdΔ3
33

1
CA;

Md ≈
1ffiffiffi
2

p

0
B@

0 v2Γ2
12 v1Γ1

13 þ vdΓ3
13

v1Γ1
21 þ vdΓ3

21 0 v2Γ2
23

v1Γ1
31 þ vdΓ3

31 0 v2Γ2
33

1
CA;

ð49Þ

where the zeros are put in as a good approximation since
the corresponding Yukawa terms come from higher-loop
contributions that are generated only at the Uð1ÞT break-
ing scale.
Let us estimate whether the radiative corrections can be

sufficiently large to correct for the degeneracy in Eq. (48).
As a demonstration, we will consider the largest mass
discrepancy, namely, the degeneracy between the top and
charm mass whose tree-level value is proportional to λ27.
The key idea here is that λ27 ∼Oð10−2Þ, which readily
generates a viable charm mass but leaves the top quark 2
orders of magnitude lighter than its measured value. To lift
such a degeneracy, one needs an order Oð1Þ correction to
Δ1

32 while leaving Δ2
13 ≲Oð10−2Þ. To have an estimate for

these radiative corrections, we can start with an instance of
the mass forms Mu;d, with textures as in Eq. (49), that
reproduce measured quark masses and mixing angles
[60,61], e.g.,

Mu¼

0
B@

0 −7.287 0.636

−0.0013−0.159−i0.521−0.0016−i0.005
0.124 −171.944 0.00011

1
CAGeV;

Md¼

0
B@

0 −0.013 0.055
−0.0006 0 0.013

2.814 0 0.188

1
CAGeV: ð50Þ

Keeping in mind that v21 þ v22 þ v2d ¼ ð246 GeVÞ2, we then
get an idea of what the values forΔ1

32 andΔ2
13 need to be. In

particular, we see that the magnitude of Δ1
32 has to be larger

than 0.7.
The one-loop dominating contributions4 for the Yukawa

couplings Δ1
32 and Δ2

13 are illustrated in Fig. 2. When a
propagator in the loop becomes heavier than the renorm-
alization scale, thus integrated out, we generate a threshold
correction. For illustration purposes we will choose this
scale to be either the gluino or the squark mass.
At this scale, the squark (gluino) propagators are

resummed such that the masses are given by their MS
values at the gluino (squark) mass scale, which should be
some function of quartic couplings, soft parameters, and
VEVs. We also have that y41;42 are approximately equal toffiffiffi
2

p
gS, with αS ∼ 0.03 at the hϕ̃3i scale, such that the two

FIG. 2. Diagrams contributing to the one-loop matching con-
ditions for Yukawa interactions with the upper diagram repre-
senting the dominant contributing to the top-quark mass and the
lower one a correction to the charm mass.

4Which diagrams that dominate depends on the specific
parameter point and the details of the RG evolution. However,
the gauge coupling for SUð3ÞC is larger than any other gauge
coupling in the model at all scales, and as such the diagram with
the gluino propagator dominates over diagrams with other
gauginos, unless the gluino would be significantly heavier.
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diagrams only differ when it comes to one of the couplings
and possibly by a mass difference for the squarks in the
loop. The analytic expression for both diagrams, in the zero
external momentum limit, is given by

2iαSZm3

3πðm2
2 −m2

3Þ
�m2

3 logðm
2
1

m2
3

Þ
m2

3 −m2
1

−
m2

2 logðm
2
1

m2
2

Þ
m2

2 −m2
1

�
; ð51Þ

with

Z ¼ λ162hν̃1Ri; fm1;m2;m3g ¼ fmũ3L
;mũ2RD̃

3
L
;mg̃g ð52Þ

for the top diagram in Fig. 2, and with

Z ¼ λ70hν̃1Ri; fm1;m2;m3g ¼ fmũ1L
;mũ3RD̃

1
L
;mg̃g ð53Þ

for the bottom diagram. Note that the result is finite also in
the limit of degenerate masses and has the form

iαSZ
3πmg̃

: ð54Þ

In what follows we will consider the case where the
intermediate symmetries are simultaneously broken by
the VEVs

hϕ̃3i ∼ hϕ̃2i ∼ hν̃1Ri ∼ 8.8 × 1010 GeV; ð55Þ

consistent with Sec. VI and with couplings as specified in
Appendix D.
The magnitude of the dominant contributions to the top-

and charm-Yukawa couplings are shown for a selection of
gluino and squark masses in Tables IV and V, respectively.
Here we have, for example, a scenario with squark masses
at the TeV scale, offering an interesting phenomenological
probe to be studied in the context of LHC searches, or
alternatively, a scenario where both the gluino and squark
masses in the top diagram are closely degenerate.
Interestingly enough, we see that radiative corrections to
the charm quark are subleading if at least one squark
propagator is heavy enough and close to the hϕ̃3i scale.
With the examples provided we see that a hierarchy in the
squark sector is reflected as a hierarchy in the radiative
Yukawa couplings, necessary for the phenomenological

viability of the model. Note that for the degenerate scenario
Δ1

32 ¼ 2.8 × 108 GeVðλ162=mg̃Þ, which means that a viable
correction to the top-quark mass requires the ratio
λ162=mg̃ ∼Oð10−8 GeV−1Þ. This means that, depending
on the details of the renormalization procedure that may
enhance or suppress the quartic coupling λ162, an appro-
priate choice of the free gluino mass parameter will in
principle make it possible to naturally lift the top-charm
mass degeneracy in the right direction.
The required parameter values for compatible couplings

at the EW scale remains unknown until the full RG
evolution and sequential matching of all couplings in the
model has been carried out, which is a subject of a further
much more involved and dedicated study. What we can say
at this point is that there do exist parameter space points
with a potential of reproducing the correct hierarchy
between the top and charm masses.

VI. ESTIMATING THE SCALES OF THE THEORY

In this section we estimate the symmetry-breaking scales
of the model, i.e., the GUT scale hΔ̃8

L;R;Fi ∼ v, and the
intermediate scales hϕ̃3i, hϕ̃2i, and hν̃1Ri, by forcing the
unified gauge coupling at the GUT scale to evolve such that
it reproduces the measured values of the SUð3ÞC ×
SUð2ÞL × Uð1ÞY gauge couplings at the EW scale. This
is done through a matching and running procedure, where
the gauge couplings are matched at tree-level accuracy and
evolved with one-loop RG equations, as a first step before
matching at one-loop in future work. At each breaking
scale, fermions obtaining a mass from the associated VEV
are integrated out, giving rise to four intermediate energy
ranges of RG evolution with different β functions. We will
refer to these regions as

region I∶ μ ∈ ½hϕ̃3i; v�;
region II∶ μ ∈ ½hϕ̃2i; hϕ̃3i�;
region III∶ μ ∈ ½hν̃1Ri; hϕ̃2i�;
region IV∶ μ ∈ ½mZ; hν̃1Ri�: ð56Þ

The symmetry alone does not dictate the structure of the
scalar mass spectrum, and we will therefore have to make
assumptions about what scalars are to be integrated out at
each matching scale. However, by studying the extreme

TABLE IV. Order of magnitude of the radiative correction to
the top-quark Yukawa coupling (first column) and of the
parameters contributing to the one-loop function (51) (second
to fifth columns). Masses are expressed in GeV.

Δ1
32

λ162 mg̃ mũ3L
mũ2R;D

3
L

1 10−2 108 103 103

1 10−2 106 106 106

TABLE V. Order of magnitude of the radiative correction to the
charm-quark Yukawa coupling (first column) and of the param-
eters contributing to the one-loop function (51) (second to fifth
columns). Masses are expressed in GeV.

Δ2
13

λ70 mg̃ mũ1L
mũ3R;D

2
L

10−5 10−2 108 1010 103

10−6 10−2 106 1010 106
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cases we will show that the soft SUSY-breaking scale
(which we associate with the scale of the largest tritriplet
VEV, hϕ̃3i) is bounded from below by roughly 1011 GeV,
independent of the scalar content.
With the β functions and matching conditions presented

in Appendix C, we may set up a system of equations with
three known values, the SM couplings at the Z-mass scale,
and five unknown quantities, α−1g ðvÞ, logðhϕ̃3i=vÞ,
logðmZ=hϕ̃2iÞ, logðhϕ̃2i=hϕ̃3iÞ, and logðhν̃1Ri=hϕ̃2iÞ,

α−1gC ðmZÞ ¼ α−1g ðvÞ − bIIgC
2π

log

�hϕ̃2i
hϕ̃3i

�

−
bIIIgC
2π

log

�hν̃1Ri
hϕ̃2i

�
−
bIVgC
2π

log

�
mZ

hν̃1Ri
�
; ð57Þ

α−1gL ðmZÞ ¼ α−1g ðvÞ − bIgL;R
2π

log

�hϕ̃3i
v

�

−
bIIgL
2π

log

�hϕ̃2i
hϕ̃3i

�
−
bIIIgL
2π

log

�hν̃1Ri
hϕ̃2i

�

−
bIVgL
2π

log

�
mZ

hν̃1Ri
�
; ð58Þ

α−1g̃Y ðmZÞ ¼
5

3
α−1g ðvÞ þ bIVg̃Y

2π
log

�hν̃1Ri
mZ

�

−
1

2π
log

�hϕ̃3i
v

��
bIgL;R þ

2

3
bIg̃L;R

�

−
1

2π
log

�hϕ̃2i
hϕ̃3i

��
bIIgR þ

1

3
bIIg̃LþR

�

−
1

2π
log

�hν̃1Ri
hϕ̃2i

��
bIIIgR þ

1

3
bIIIg̃LþR

�
; ð59Þ

with the following known parameters at the mZ scale
(∼91.2 GeV) [62]:

α−1gC ðmZÞ ∼ 8.5;

α−1gL ðmZÞ ¼ sin2ðθWÞ · 128 ∼ 29.6;

α−1g̃Y ðmZÞ ¼ cos2ðθWÞ · 128 ∼ 98.4: ð60Þ

As we have more than three unknowns, the scales cannot be
solved for uniquely, but are functions of logðhϕ̃2i=hϕ̃3iÞ
and logðhν̃1Ri=hϕ̃2iÞ. If we take, for example, the scenario of
having no hierarchies between these three scales,

hϕ̃3i ∼ hϕ̃2i ∼ hν̃1Ri ∼msoft; ð61Þ

we end up with the following values

msoft ∼ 8.8 × 1010 GeV;

v ∼ 4.9 × 1017 GeV;

α−1g ðvÞ ∼ 31.5; ð62Þ

where hence the unified gauge coupling satisfies the
perturbativity constraint, the GUT scale is below MPlanck,
and the soft scale is well separated from both the GUT scale
and the EW scale. Note that while the hierarchy between
the GUT scale and the soft SUSY-breaking scale is stable
with respect to radiative corrections, the hierarchy between
the EW scale and the soft SUSY-breaking scale needs to be
finely tuned.
Let us investigate whether the introduction of a hierarchy

between hϕ̃3i, hϕ̃2i, and hν̃1Ri can lower the soft scale hϕ̃3i.
By solving for hν̃1Ri in Eq. (57) and inserting all known
values, we have the equation

hν̃1Ri ¼ mZ exp

�
20.69 −

1

19
log

�hϕ̃3i
hϕ̃2i

�
½4bIIgC − 9bIIgL

þ 3bIIgR þ bIIg̃LþR
� − 1

19
log

�hϕ̃3i
hϕ̃2i

�

× ½4bIIIgC − 9bIIIgL þ 3bIIIgR þ bIIIg̃LþR
�
�
: ð63Þ

The b values will vary depending on the scalar field content
with the extreme values presented in Appendix C. To
minimize the argument of the exponential (and thereby
minimizing the value of hν̃1Ri), we should maximize the
values of bII;IIIgC , bII;IIIgR , and bII;IIIg̃LþR

, while minimizing bII;IIIgL .
This occurs when including all scalars apart from the left-
handed doublets Q1;2;3

L , E1;2;3
L , and H3, in both regions II

and III. In that case, the values are

bII;IIIgC ¼ −
13

3
; bII;IIIgL ¼ −

2

3
;

bII;IIIgR ¼ 4

3
; bII;IIIg̃LþR

¼ 40

3
: ð64Þ

When ranging over various hierarchies using the b values in
(64), we see that the scale of hν̃1Ri decreases as the hierarchy
between hϕ̃2i and hϕ̃3i increases. The soft scale hϕ̃3i, on
the other hand, is minimized when it is equal to hν̃1Ri, i.e.,
when there are no hierarchies, as shown in Fig. 3 (left), by
which we conclude that Eq. (62) is in fact the optimal
scenario in the sense that it provides the strongest hierarchy
between the GUT scale and the soft SUSY-breaking scale.
In Fig. 3 (right), we show the evolution of the gauge
couplings for this scenario.
It is important to mention that these scales are obtained

from gauge couplings evolved to one-loop accuracy but
matched at tree-level, where one-loop matching conditions
could introduce significant corrections, due to the many
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fields involved, as indicated in Ref. [63]. As the resulting
scales could be sensitive to potentially significant threshold
corrections, we are careful not to draw any strong con-
clusions at this point.
Furthermore, there is a possibility for lowering the soft

scale by relaxing the Z3 symmetry at the GUT scale, with
gauge unification instead happening at the E6 level. In fact,
as was demonstrated in [64], a nonuniversal gauge coupling
at the GUT-breaking scale may arise from corrections to the
gauge kinetic terms induced by dimension 5 operators,
emerging due to higher-dimensional E6 representations.
This would also open up the possibility for the emergence
of new gauge bosons at, or at least close to, the TeV scale.
We leave the question about a significance of such effects
and its phenomenological implications for a further study.

VII. SUMMARY

Here, we would like to summarize the basic features of
the left-right-color-family (LRCF)-symmetric SHUT
theory considered in this paper:
(1) In contrast to previous GUT-scale formulations based

on gauge trinification, all three fermion generations
are unified into a single (27, 3)-plet of SUð3ÞF × E6,
and no copies of any fundamental E6 representations
are required for its consistent breaking down to the
gauge symmetry of the SM. The considered
SUð3ÞF × E6 symmetry can be embedded into E8,
motivating the addition of ð1; 8Þ and ð78; 1Þ multip-
lets corresponding to four SU(3)-octet representa-
tions. The gauge couplings are enforced to unify by
means of a cyclic permutation symmetryZ3 acting on
the trinification subgroup of the LRCF symmetry in
the same way as in Glashow’s formulation.

(2) The chiral-adjoint sector Δa
F ¼ ð1; 8Þ and Δa

L;R;C ⊂
ð78; 1Þ is necessary for a consistent breaking of the
LRCF symmetry down to the SM gauge symmetry
in the softly broken SUSY formulation of the theory
while none of the adjoint fields remain at the EW
scale. In our model, the fields developing VEVs at
lower energies (the tritriplets) happen to have the
mass terms of OðmsoftÞ, while the fields whose
VEVs spontaneously break the high-scale SHUT
LRCF symmetry (the adjoints) have their GUT-scale
mass term in the superpotential. Hence, our model
does not exhibit an analog of the μ problem in the
minimal supersymmetric standard model.

(3) With the first symmetry breaking being triggered at
the GUT scale by VEVs in the adjoint (octet) scalars,
mass terms in the fundamental (L;QL;QR tritriplet)
sector are forbidden. This means that the SM-like
quarks and leptons remain massless until EWSB.

(4) In the SHUT model, all possible tree-level masses
for fermions come from a single term in the super-
potential, LiQj

LQ
k
Rϵijk. As we have seen, only two

generations of would-be SM quarks get such con-
tributions to their masses. As such, the model offers
a starting point for a mechanism explaining the mass
hierarchies of the SM, where, for example, the
charged leptons are all light as they have no allowed
tree-level masses and instead attain their masses
radiatively (i.e., via loop-induced threshold correc-
tions). Also, with three Higgs doublets at low
energies, the model has Cabbibo quark mixing at
tree level, while radiatively generated (and RG
evolved) Yukawa interactions open the possibility
of reproducing the complete structure.

FIG. 3. (Left) Figure showing that the hϕ̃3i scale is minimized when there is no hierarchy between the soft scales, i.e., where both lines
meet in the lower-right corner. The purple (solid) line corresponds to VEVs for which the gauge couplings run down to the measured
standard model values. The gray (dashed) line corresponds to the case of no hierarchy between the VEVs. Hence, the optimal choice
corresponds to hϕ̃3i ∼ hϕ̃2i ∼ hν̃1Ri and as such the scalar content in the intermediate regions will not affect the running of the gauge
couplings. (Right) RG evolution of the gauge couplings for the scenario where there is no hierarchy between the three intermediate
scales. To match the gauge couplings measured at the EW scale, the soft scale ends up at 8.8 × 1010 GeV and the GUT scale at
4.9 × 1017 GeV, i.e., we end up with a distinct hierarchy between all three scales.

JOSÉ E. CAMARGO-MOLINA et al. PHYS. REV. D 99, 035041 (2019)

035041-16



(5) The symmetry-breaking scales below the GUT scale
(including the EW scale) are fully determined by the
dynamics of the soft SUSY-breaking interactions
and are thus naturally protected from the GUT-scale
radiative corrections. A particularly relevant multi-
stage symmetry-breaking scheme in the SHUT
theory down to the SM-like gauge effective theory
has been shown in Fig. 1.

(6) The LRCF-symmetric theory contains an accidental
Uð1ÞB baryon symmetry, by which the proton
remains stable to all orders in perturbation theory.
Other accidental Uð1ÞW and LR-parity symmetries
can be (softly) broken in the low-energy EFT
ensuring there are no massless charged leptons
below the EWSB scale and allowing the breaking
of SUð2ÞR and SUð2ÞL symmetries at different
energy scales, respectively.

(7) The smallest possible hierarchy between theEWscale
and the soft scale, and the largest possible hierarchy
between the soft scale and the GUT scale, occurs as
the VEVs of ϕ̃3, ϕ̃2, and ν̃1R are all put at the same
scale. For this scenario, the soft scale ends up at∼9 ×
1010 GeV and the GUT scale at ∼5 × 1017 GeV.
However, these numbers do not take into account
potentially large one-loop threshold corrections.

(8) While our estimates have shown a potential agree-
ment with the SM particle spectrum, and, in par-
ticular, the possibility to lift the top-charm mass
degeneracy via quantum effects, it is not less true
that the large hϕ̃3i, hϕ̃2i, and hν̃1Ri VEVs introduce
fine-tuning in the scalar sector in order to satisfy the
requirement of light Higgs doublets and possibly
light squarks. We have pointed out that to solve this
issue we need to relax the Z3 symmetry and transfer
the unification of gauge interactions to the E6 level,
which is left for a future work.

Given the above properties, the SHUT model offers
interesting new possibilities for deriving the structure and
parameters of the SM from the GUT-scale physics. This is a
good motivation for investigations of this model, its multi-
scale symmetry-breaking patterns, loop-level matching, and
RG flow. Among the first natural steps would be to uncover
someof the features of the simplest SM-like low-energyEFTs
in a symmetry-based study without invoking the full-fledged
radiative analysis of the SHUT theory. The EFT scenarios
studied in this work pave the ground for further phenom-
enological studies of trinification-based GUTs and move
beyond the most common issues of such theories in the past.
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APPENDIX A: SYMMETRY-BREAKING
SCHEMES AND CHARGES

In this Appendix we provide a summary of the SSB
scheme from the high-scale GUT symmetry down to that of
the SM.

1. Breaking path and generators

The breaking path from the GUT symmetry down to a
LR-symmetric effective theory reads

½SUð3ÞC × SUð3ÞL × SUð3ÞR� ⋊ ZðLRCÞ
3 × fSUð3ÞF × Uð1ÞW × Uð1ÞBg

!v;vF SUð3ÞC × ½SUð2ÞL × SUð2ÞR × Uð1ÞL × Uð1ÞR� × fSUð2ÞF × Uð1ÞF × Uð1ÞW × Uð1ÞBg

!hϕ̃
3i
SUð3ÞC × ½SUð2ÞL × SUð2ÞR� × Uð1ÞLþR × fSUð2ÞF × Uð1ÞS × Uð1ÞS0 × Uð1ÞBg≡ G3221f21g; ðA1Þ
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where global symmetries (including the accidental ones)
are indicated by f� � �g. The generators of the U(1) groups
after the GUT SSB are

T8
L; T8

R; T8
F; TW; TB; ðA2Þ

whereas after the hϕ̃3iVEV we have

TLþR ¼ T8
L þ T8

R; TS ¼ T8
L − T8

R − 2T8
F;

TS0 ¼ T8
L − T8

R þ 2ffiffiffi
3

p TW; ðA3Þ

with normalization factors conveniently chosen to provide
integer charges for leptons and scalar bosons.
Note that, according to the discussion in Sec. IVA the

LR parity can be explicitly broken in the soft SUSY-
breaking sector and is therefore absent in the effective
theory.
We may also place a VEV in ϕ̃2 and ν̃1R. In such a case the

breaking scheme takes the form

G3221f21g !hν̃1Ri;hϕ̃2i
SUð3ÞC × SUð2ÞL × Uð1ÞY

× fUð1ÞT × Uð1ÞT0 × Uð1ÞBg; ðA4Þ

where the generators of Uð1ÞY, Uð1ÞT, and Uð1ÞT0 read

TY ¼ −
1ffiffiffi
3

p ðTLþR þ
ffiffiffi
3

p
T3
RÞ;

TT ¼ T3
R þ 1

3
ffiffiffi
3

p TS −
2

3
T3
F;

TT0 ¼ TS0 þ
1

3
TS −

2ffiffiffi
3

p T3
F: ðA5Þ

2. Quantum numbers

In this section we present the representations and charges
of the light states after each breaking step. We consider as
light states all fields that are decoupled from the GUT scale
after the first SSB step.
In what follows, the Higgs bidoublets are referred to as

H1;2;3, the singlet Higgs-lepton fields denoted as ϕ1;2;3 and
the lepton doublets as E1;2;3

L;R , while the quark multiplets split

TABLE VI. Field content and quantum numbers of the LR-symmetric EFT after Δ̃L;R;F VEVs in Eq. (A1). Here and below, f…gacc
denote the accidental symmetries. The charges for Uð1ÞL, Uð1ÞR and Uð1ÞF are to be rescaled with a factor 1=ð2 ffiffiffi

3
p Þ.

Fermion Boson SUð3ÞC SUð2ÞL SUð2ÞR fSUð2ÞFg Uð1ÞL Uð1ÞR fUð1ÞFg fUð1ÞBgacc fUð1ÞWgacc
φ φ̃ 1 1 1 1 −2 2 −2 0 1

ϕf ϕ̃f 1 1 1 2f −2 2 1 0 1

El
L Ẽl

L 1 2l 1 1 1 2 −2 0 1

Efl
L Ẽfl

L
1 2l 1 2f 1 2 1 0 1

ERr ẼRr 1 1 2r 1 −2 −1 −2 0 1

Ef
Rr Ẽf

Rr
1 1 2r 2f −2 −1 1 0 1

h̃lr hlr 1 2l 2r 1 1 −1 −2 0 1

H̃fl
r Hfl

r 1 2l 2r 2f 1 −1 1 0 1

qxLl q̃xLl 3x 2l 1 1 −1 0 −2 1=3 −1=2

Qxf
Ll Q̃xf

Ll
3x 2l 1 2f −1 0 1 1=3 −1=2

qrRx q̃rRx 3x 1 2r 1 0 1 −2 −1=3 −1=2
Qfr

Rx Q̃fr
Rx

3x 1 2r 2f 0 1 1 −1=3 −1=2
Bx
L B̃x

L 3x 1 1 1 2 0 −2 1=3 −1=2
BRx B̃Rx 3x 1 1 1 0 −2 −2 −1=3 −1=2

Dxf
L D̃xf

L
3x 1 1 2f 2 0 1 1=3 −1=2

Df
Rx D̃f

Rx
3x 1 1 2f 0 −2 1 −1=3 −1=2

g̃a Gμa
C 8a 1 1 1 0 0 0 0 0

T i
L Gμi

L
1 3i 1 1 0 0 0 0 0

T i
R Gμi

R
1 1 3i 1 0 0 0 0 0

SL;R Gμ8
L;R

1 1 1 1 0 0 0 0 0

Hf
F H̃f

F
1 1 1 2f 0 0 −1 0 0
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TABLE VII. Field content and quantum numbers of the LR-symmetric EFT after φ̃ VEV as in Eq. (A1). The charges for Uð1ÞLþR,
Uð1ÞS, and Uð1ÞS0 are to be rescaled with a factor

ffiffiffi
3

p
=2.

Fermion Boson SUð3ÞC SUð2ÞL SUð2ÞR fSUð2ÞFg Uð1ÞLþR fUð1ÞSg fUð1ÞS0 gacc fUð1ÞBgacc
φ φ̃ 1 1 1 1 0 0 0 0

ϕf ϕ̃f 1 1 1 2f 0 −2 0 0

El
L Ẽl

L 1 2l 1 1 1 1 1 0

Efl
L Ẽfl

L
1 2l 1 2f 1 −1 1 0

ERr ẼRr 1 1 2r 1 −1 1 1 0

Ef
Rr Ẽf

Rr
1 1 2r 2f −1 −1 1 0

h̃lr hlr 1 2l 2r 1 0 2 2 0

H̃fl
r Hfl

r 1 2l 2r 2f 0 0 2 0

qxLl q̃xLl 3x 2l 1 1 −1=3 1 −1 1=3

Qxf
Ll Q̃xf

Ll
3x 2l 1 2f −1=3 −1 −1 1=3

qrRx q̃rRx 3x 1 2r 1 1=3 1 −1 −1=3
Qfr

Rx Q̃fr
Rx

3x 1 2r 2f 1=3 −1 −1 −1=3
Bx
L B̃x

L 3x 1 1 1 2=3 2 0 1=3

BRx B̃Rx 3x 1 1 1 −2=3 2 0 −1=3

Dxf
L D̃xf

L
3x 1 1 2f 2=3 0 0 1=3

Df
Rx D̃f

Rx
3x 1 1 2f −2=3 0 0 −1=3

g̃a Gμa
C 8a 1 1 1 0 0 0 0

T i
L Gμi

L
1 3i 1 1 0 0 0 0

T i
R Gμi

R
1 1 3i 1 0 0 0 0

SL;R Gμ8
L;R

1 1 1 1 0 0 0 0

Hf
F H̃f

F
1 1 1 2f 0 −2 0 0

TABLE VIII. Field content and quantum numbers after the ν̃1R and ϕ̃2 VEVs as in Eq. (A4). The charge for Uð1ÞT is to be rescaled with
a factor −1=6 and the charge for Uð1ÞT0 with a factor −1=

ffiffiffi
3

p
.

Fermion Boson SUð3ÞC SUð2ÞL Uð1ÞY fUð1ÞTg fUð1ÞT0 gacc fUð1ÞBgacc
ϕ1 ϕ̃1 1 1 0 4 2 0

ϕ2;φ ϕ̃2; φ̃ 1 1 0 0 0 0

E1l
L Ẽ1l

L 1 2l −1=2 3 0 0

E2l
L ; E

l
L Ẽ2l

L ; Ẽ
l
L 1 2l −1=2 −1 −2 0

e1R ẽ1R 1 1 1 6 0 0

ν1R ν̃1R 1 1 0 0 0 0

e2;3R ẽ2;3R
1 1 1 2 −2 0

ν2;3R ν̃2;3R
1 1 0 −4 −2 0

H̃1l
u H1l

u 1 2l 1=2 5 −2 0

H̃1l
d H1l

d 1 2l −1=2 −1 −2 0

H̃2l
u ; h̃

l
u H2l

u ; hlu 1 2l 1=2 1 −4 0

H̃2l
d ; h̃

l
d H2l

d ; h
l
d 1 2l −1=2 −5 −4 0

Qx1
Ll Q̃x1

Ll 3x 2l 1=6 3 3 1=3

(Table continued)
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up into Q1;2;3
L;R and D1;2;3

L;R , where Q are the 3 × 2 blocks and
D the 3 × 1 blocks. The superscript 1, 2, 3 is the generation
number. Whenever convenient we will adopt a simplifying
notation according to

H3 → h; ϕ3 → φ;

E3
L;R → EL;R; D3

L;R → BL;R;

Q3
L;R → qL;R; X1;2 → Xf; ðA6Þ

where f is a family index running over the first two
generations, with X representing any of such SUð2ÞF
doublets.
The quantum numbers of the light eigenstates after the v

and vF VEVs are given in Table VI, while those of themodel
after ϕ̃3 VEVare shown in Table VII. In Table VIII we show
the charges of the SM-like EFT after the ν̃1R and ϕ̃2 VEVs
whichmay either occur simultaneously or at separate scales.
Note that the hφiVEV enables mixing between the first and
second generations of singlet (s)quarks. For example, it
allows fermion mass terms of the form mDD

f
LD

f0
R εff0 .

APPENDIX B: PARTICLE MASSES IN THE
HIGH-SCALE THEORY

1. Scalar spectra and minimization conditions

The extremizing conditions obtained after taking the first
derivatives of the scalar potential of the SHUT model can
be solved, e.g., with respect to the soft parameters m2

78 and
m2

1 from where we obtain

m2
78 ¼ −b78 þ

v
12

ð
ffiffiffi
6

p
A78 þ 3

ffiffiffi
6

p
C78 − vλ278Þ

þ
ffiffiffi
6

p

4
vλ78μ78 − μ278;

m2
1 ¼ −b1 þ

vF
12

ð
ffiffiffi
6

p
A1 − vFλ21Þ þ

ffiffiffi
6

p

4
vFλ1μ1 − μ21: ðB1Þ

The minimization conditions are then used in the Hessian
matrix whose eigenvalues corresponding to the fundamen-
tal and adjoint scalar sectors are shown in Tables IX and X,

TABLE VIII. (Continued)

Fermion Boson SUð3ÞC SUð2ÞL Uð1ÞY fUð1ÞTg fUð1ÞT0 gacc fUð1ÞBgacc

Qx2
Ll ; q

x
Ll Q̃x2

Ll ; q̃
x
Ll

3x 2l 1=6 −1 1 1=3

u1Rx ũ1Rx 3x 1 −2=3 0 3 −1=3
d1Rx d̃1Rx 3x 1 1=3 6 3 −1=3

u2;3Rx ũ2;3Rx
3x 1 −2=3 −4 1 −1=3

d2;3Rx d̃2;3Rx
3x 1 1=3 2 1 −1=3

Dx1
L D̃x1

L 3x 1 −1=3 2 1 1=3

Dx2
L ;Bx

L D̃x2
L ; B̃x

L 3x 1 −1=3 −2 −1 1=3

D1
Rx D̃1

Rx 3x 1 1=3 2 1 −1=3
D2

Rx;BRx D̃2
Rx; B̃Rx 3x 1 1=3 −2 −1 −1=3

g̃a Gμa
C 8a 1 0 0 0 0

T i
L Gμi

L
1 3i 0 0 0 0

T �
R Gμ�

R
1 1 �2 0 0 0

T 0
R Gμ0

R
1 1 0 0 0 0

SL;R Gμ8
L;R

1 1 0 0 0 0

H1
F H̃1

F 1 1 0 4 2 0

H2
F H̃2

F 1 1 0 0 0 0

TABLE IX. Scalar masses squared in the SHUT model for
fields in the fundamental (tritriplet) representation of the
½SUð3Þ�3 × SUð3ÞF symmetry.

d.o.f. ðmassÞ2 Scalar components

8 m2
27 −

1ffiffi
6

p ðAGvþ 2AFvFÞ ν̃ð3ÞR ; ẽð3ÞR ; ν̃ð3ÞL ; ẽð3ÞL
2 m2

27 −
1ffiffi
6

p ð4AGvþ 2AFvFÞ ϕ̃ð3Þ

8 m2
27 þ 1ffiffi

6
p ð2AGv − 2AFvFÞ Hð3Þ

11 ; H
ð3Þ
21 ; H

ð3Þ
12 ; H

ð3Þ
22

4 m2
27 −

1ffiffi
6

p ð4AGv − AFvFÞ ϕ̃ð1;2Þ

16 m2
27 −

1ffiffi
6

p ðAGv − AFvFÞ ν̃ð1;2ÞR ; ẽð1;2ÞR ; ν̃ð1;2ÞL ; ẽð1;2ÞL
16 m2

27 þ 1ffiffi
6

p ð2AGvþ AFvFÞ Hð1;2Þ
11 ; Hð1;2Þ

21 ; Hð1;2Þ
12 ; Hð1;2Þ

22

24 m2
27 þ 1ffiffi

6
p ðAGv − 2AFvFÞ ũð3ÞL ; d̃ð3ÞL ; ũð3ÞR ; d̃ð3ÞR

12 m2
27 −

1ffiffi
6

p ð2AGvþ 2AFvFÞ D̃ð3Þ
L ; D̃ð3Þ

R
48 m2

27 þ 1ffiffi
6

p ðAGvþ AFvFÞ ũð1;2ÞL ; d̃ð1;2ÞL ; ũð1;2ÞR ; d̃ð1;2ÞR
24 m2

27 −
1ffiffi
6

p ð2AGv − AFvFÞ D̃ð1;2Þ
L ; D̃ð1;2Þ

R
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respectively. Note that, for simplicity, we use the LR-
symmetric case with AḠ ¼ AG.
The branching rule for a fundamental representation of

SUð3ÞA, A ¼ L;R;F when it is broken down to SUð2ÞA ×
Uð1ÞA reads

3 → 21 ⊕ 1−2; ðB2Þ

where, up to an overall normalization factor, the subscripts
represent the Uð1ÞA charge. Therefore, after the SSB, the
eigenstates shown in Table IX form representations of the
G32211f21g symmetry given in Eq. (16) and transform as
singlets, doublets, bidoublets, and tridoublets under the
SUð2ÞL;R;F symmetries, as schematically represented by the
blocks in Eq. (19).5 The LR parity discussed in Sec. III A
yields identical masses for the SUð2ÞL and SUð2ÞR eigen-
states at the trinification SSB scale.
The adjoint scalars Δ̃a

A¼L;R;F are complex octets whose
branching rule is given by

8 → 30 ⊕ 21 ⊕ 2−1 ⊕ 10; ðB3Þ

where the complex octet is a reducible representation, while
its real and imaginary parts are the irreducible representa-
tions. As such, we end up with two real triplets, two real
singlets, and two complex doublets and their complex

conjugates after the SSB. Each broken SU(3) symmetry
provides four Goldstone degrees of freedom giving rise to
twelve Goldstone bosons in total, out of which eight
correspond to breaking of the local symmetries and four
of them correspond to breaking of the global family
symmetry. While the triplet mass eigenstates, 30, can be
written as

T̃ A ≡ 1ffiffiffi
2

p

0
B@

Re½Δ̃1
A� − iRe½Δ̃2

A�ffiffiffi
2

p
Re½Δ̃3

A�
Re½Δ̃1

A� þ iRe½Δ̃2
A�

1
CA;

T̃ 0
A ≡ 1ffiffiffi

2
p

0
B@

Im½Δ̃1
A� − iIm½Δ̃2

A�ffiffiffi
2

p
Im½Δ̃3

A�
Im½Δ̃1

A� þ iIm½Δ̃2
A�

1
CA; ðB4Þ

the two real singlets 10 read

S̃A ≡ Re½Δ̃8
A�; S̃0

A ≡ Im½Δ̃8
A�: ðB5Þ

Finally, there are two complex doublets from the real part of
Δ̃a

L;R;F, transforming as 2−1 and 21

G̃A ≡ 1ffiffiffi
2

p
�
−Re½Δ̃6

A� − iRe½Δ̃7
A�

Re½Δ̃4
A� þ iRe½Δ̃5

A�

�
;

G̃�
A ¼ 1ffiffiffi

2
p

�
−Re½Δ̃6

A� þ iRe½Δ̃7
A�

Re½Δ̃4
A� − iRe½Δ̃5

A�

�
; ðB6Þ

and two complex doublets from the imaginary part of
Δ̃a

L;R;F, transforming as 2−1 and 21

HA ≡ 1ffiffiffi
2

p
�
−Im½Δ̃6

A� − iIm½Δ̃7
A�

Im½Δ̃4
A� þ iIm½Δ̃5

A�

�
;

H�
A ¼ 1ffiffiffi

2
p

�
−Im½Δ̃6

A� þ iIm½Δ̃7
A�

Im½Δ̃4
A� − iIm½Δ̃5

A�

�
; ðB7Þ

respectively, where the subscript −1 stands for the doublet
with negative T8 eigenvalue.

a. Scalar mass spectrum

It is possible to write the minimization conditions in a
convenient way by recasting the scalar masses. In particu-
lar, the fundamental scalar masses can be collectively
written as

m2
φ̃i
¼ m2

27 þ ci1AGvþ ci2AFvF; ðB8Þ
where ci1;2 are constants with index i running over all
fundamental scalar eigenstates. For simplicity, the soft
SUSY-breaking parameters and the family-breaking VEV
can be redefined in terms of a dimensionless parameter
times a common scale v as follows:

TABLE X. Scalar masses squared in the SHUT model for fields
in the adjoint representations of the SUð3ÞL;R;C;F symmetries.

d.o.f. ðmassÞ2 Label

12 0 G̃L;R;F

3
ffiffi
3
2

q
vF
2
ð3λ1μ1þA1Þ T̃ F

1 vF
12
ð2vFλ21−3

ffiffiffi
6

p
λ1μ1−

ffiffiffi
6

p
A1Þ S̃F

1 −2b1þvF
12
ð ffiffiffi

6
p

λ1μ1þ3
ffiffiffi
6

p
A1Þ S̃0

F

4 −2b1þvF
12
ð2 ffiffiffi

6
p

λ1μ1−vFλ21þ2
ffiffiffi
6

p
A1Þ HF

3 −2b1þvF
12
ð5 ffiffiffi

6
p

λ1μ1þ2vFλ21−
ffiffiffi
6

p
A1Þ T̃ 0

F

6
ffiffi
3
2

q
v
2
ð3λ78μ78þA78þ3C78Þ T̃ L;R

8 v
12
ð−vλ278þ3

ffiffiffi
6

p
λ78μ78þ

ffiffiffi
6

p
A78þ3

ffiffiffi
6

p
C78Þ Re½Δ̃1;…;8

C �
2 v

12
ð2vλ278−3

ffiffiffi
6

p
λ78μ78−

ffiffiffi
6

p
A78−3

ffiffiffi
6

p
C78Þ S̃L;R

2 −2b78þ
ffiffi
6

p
12
vðλ78μ78þ3A78þC78Þ S̃0

L;R

8 −2b78þ3
4
g2Uv

2þv2
12
λ278þ

ffiffi
6

p
6
vðλ78μ78þA78þC78Þ HL;R

8 −2b78−v2
12
λ278þ

ffiffi
6

p
12
vð3λ78μ78þA78þ3C78Þ Im½Δ̃1;…;8

C �
6 −2b78þv2

6
λ278þ

ffiffi
6

p
12
vð5λ78μ78−A78þ5C78Þ T̃ 0

L;R

5The family SUð3ÞF triplets are also split up into SUð2ÞF
doublets, containing the first and second generations, and singlets
corresponding to the third generation.
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vF ¼ βv; m2
27 ¼ α27v2; AG ¼ σGv; AF ¼ σFv;

ðB9Þ

where, in the limit of low-scale SUSY breaking,
α27; σG; σF ≪ 1, and β ∼Oð1Þ such that both gauge and
family SSBs occur simultaneously at the GUT scale.
Equation (B9) allows one to rewrite the scalar masses in
terms of the common scale v

m2
φ̃i
¼ v2ðα27 þ ci1σG þ ci2βσFÞ≡ v2ωφ̃i

; ðB10Þ

such that ωφ̃i
≪ 1. As the expression for the fundamental

scalar masses contains three independent parameters, we
may characterize the entire spectrum by the following three
definitions:

ωH̃ð3Þ ≡ ξ; ω
Ẽð1;2Þ
L;R

≡ δ; ωH̃ð1;2Þ ≡ κ; ðB11Þ

where the dimensionless parameters ξ, δ, and κ can span the
entire spectrum by laying in the interval of zero to one, as
the common mass scale is chosen to be the largest scale
in the model, i.e., the GUT scale v. With this, we can recast
the scalar mass terms in the resulting EFT as

m2
H̃ð3Þ ¼ v2ξ; m2

H̃ð1;2Þ ¼ v2κ;

m2

Ẽð3Þ
L;R

¼ v2ðδþ ξ − κÞ; m2

Ẽð1;2Þ
L;R

¼ v2δ;

m2
ϕ̃ð3Þ ¼ v2ð2δþ ξ − 2κÞ; m2

ϕ̃ð1;2Þ ¼ v2ð2δ − κÞ;

m2

Q̃ð3Þ
L;R

¼ 1

3
v2ðδþ 3ξ − κÞ; m2

Q̃ð1;2Þ
L;R

¼ 1

3
v2ðδþ 2κÞ;

m2

D̃ð3Þ
L;R

¼ 1

3
v2ð4δþ 3ξ − 4κÞ; m2

D̃ð1;2Þ
L;R

¼ 1

3
v2ð4δ − κÞ:

ðB12Þ

Using Eq. (B12), the general set of conditions necessary to
set the positivity of the fundamental scalar mass spectrum
reads

κ > 0 ∧
��

κ

2
≤ δ ≤ κ ∧ ξ > −2δþ 2κ

�

∨ðδ > κ ∧ ξ > 0Þ
�
: ðB13Þ

Following the same procedure, we may redefine the
parameters of the adjoint sector in terms of the GUT
SSB scale v as follows:

b1 ¼ τ1v2;

b78 ¼ τ78v2;

μ1 ¼ α1v;

μ78 ¼ α78v;

A1 ¼ σ1v;

A78 ¼ σ78v;

C78 ¼ θ78v:

ðB14Þ

Substituting Eqs. (B14) in Table X and, similar to
Eq. (B10), choosing

ωT̃ F
≡ ηF; ωHF

≡ ρF; ωT̃ 0
F
≡ η0F; ωT̃ L;R

≡ η;

ωH̃L;R
≡ ρ; ωΔ̃0

C
≡ ϑ; ðB15Þ

where now ωφ̃i≠HF
∼Oð1Þ, since only HF does not contain

large F - and D-term contributions. Solving the system of
equations with respect to σ1; τ1;α1; σ78; τ78; α78, we obtain

m2
T̃ F

¼ ηFv2;

m2
T̃ 0

F
¼ η0Fv

2;

m2
S̃F

¼ 1

6
v2ðβ2λ21 − 2ηFÞ;

m2
S̃0
F
¼ 1

6
v2ðβ2λ21 − 2η0F þ 8ρFÞ;

m2
HF

¼ ρFv2;

m2
Δ̃C

¼ 1

12
v2ð4η − λ278Þ;

m2
T̃ L;R

¼ ηv2;

m2
T̃ 0

L;R
¼ 1

4
v2ðλ278 þ 6g2U þ 12ϑ − 8ρÞ;

m2
S̃L;R

¼ 1

6
v2ðλ278 − 2ηÞ;

m2
S̃0
L;R

¼ 1

12
v2ðλ278 − 18g2U − 12ϑþ 24ρÞ;

m2
HL;R

¼ ρv2;

m2
Δ̃0

C
¼ ϑv2: ðB16Þ

The scalar field components of the gauge and family
adjoint sectors are treated separately. Noting that ρF ≪ 1,
the general stability condition for the masses of the family
sector read

ρF ≥ 0 ∧
�
η0F > 4ρF ∧ x > 2η0F − 8ρF ∧ ηF <

x
2

�
; ðB17Þ

where we have defined β2λ21 ≡ x > 0. Finally, the positivity
conditions for the gauge sector are

η > 0 ∧ 2η < y < 4η ∧ ϑ > 0

∧ 1

24
ðz − yþ 12ϑÞ < ρ <

1

8
ðyþ 6zþ 12ϑÞ; ðB18Þ

where we have defined λ278 ≡ y > 0 and g2U ≡ z > 0. When
conditions (B13), (B17), and (B18) are simultaneously
satisfied, the tree-level vacuum of the SHUT model is
stable.
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2. Fermion masses

The masses of the fermions that originate from the
gauge-adjoint sector are somewhat more complicated. For
the sake of simplicity, we use a shortened notation and
show the exact expressions for the fermion masses squared
in Table XI.
In particular, we parametrize the octet masses by X8

C, Y
8
C,

and Z8
C, where the number in the superscript denotes the

representation under the symmetry labeled in the subscript.
The explicit form of such parameters reads

X8
C ¼ 4M2

0 þ 2M02
0 þ μ278; ðB19Þ

Y8
C ¼ 4M02

0 ð2M0 þ μ78Þ2; ðB20Þ

Z8
C ¼ ðμ278 − 4M2

0Þ2: ðB21Þ

The singlet and triplet fermion masses depend on the X1;3
L;R,

Y1;3
L;R, and Z1;3

L;R parameters, which are given by

X1;3
L;R ¼ ½2v2λ278 ∓ 4

ffiffiffi
6

p
vλ78μ78 þ 12ð4M2

0 þ 2M02
0 þ μ278Þ�;

ðB22Þ

Y1;3
L;R ¼ ½�2

ffiffiffi
6

p
vλ78μ78 − v2λ278 − 6ð4M2

0 þ 2M02
0 þ μ278Þ�2;

ðB23Þ

Z1;3
L;R ¼ 192½3M04

0 � 2M0M02
0 ð

ffiffiffi
6

p
vλ78 ∓ 6μ78Þ

þ 2M2
0ðv2λ278 ∓ 2

ffiffiffi
6

p
vλ78μ78 þ 6μ278Þ�: ðB24Þ

For the new doublet fermions, the mass eigenstates are
written in terms of X2

L;R, Y
2
L;R, and Z2

L;R, which read

X2
L;R ¼ 96M2

0 þ 48M02
0 þ 36v2g2U þ v2λ278

− 4
ffiffiffi
6

p
vλ78μ78 þ 24μ278; ðB25Þ

Y2
L;R ¼ v4λ478 − 8

ffiffiffi
6

p
v3λ378μ78 þ 24v2λ278ð4M02

0

− 8M2
0 þ 3v2g2U þ 6μ278Þ; ðB26Þ

Z2
L;R ¼ 96f6½4M02

0 þ ðμ78 − 2M0Þ2�½3v2g2U
þ ðμ78 þ 2M0Þ2� þ

ffiffiffi
6

p
vλ78ð6v2g2UM0

− 8M0M02
0 þ 8M2

0μ78 − 4M02
0 μ78

− 3v2g2Uμ78 − 2μ378Þg: ðB27Þ

Note that the doublets H̃A, which are the left-handed Weyl
fermions defined to transform as 21, form mass terms of the
form mH̃AH̃

0
A with H̃0

A being also the left-handed Weyl
fermions transforming as 2−1.

TABLE XI. Fermion masses squared and left singular eigenvectors in the SHUT model. The cθR and sθR
coefficients denote the cosine and sine of the 2 × 2 mixing angles for the representation R. Here, ϱ1;2;3;4 and ϱ̄1;2;3;4
are coefficients that parametrize a unitary mixing. The fermion masses, for a given irreducible representation R and
gauge group L;R;C are determined in terms of the XR

A, Y
R
A, and ZR

A coefficients, with explicit expressions given in
Eqs. (B19)–(B27).

No. of Weyl spinors ðmassÞ2 Fermionic components

81 0 ϕð1;2;3Þ; H̃ð1;2;3Þ; Eð1;2;3Þ
L;R ;Qð1;2;3Þ

L;R ; Dð1;2;3Þ
L;R

1 1
6
ðv2Fλ21 − 2

ffiffiffi
6

p
vFλ1μ1 þ 6μ21Þ Δ8

F ≡ SF

3 1
6
ðv2Fλ21 þ 2

ffiffiffi
6

p
vFλ1μ1 þ 6μ21Þ Δ1;2;3

F ≡ T F

4 1
24
ðv2Fλ21 − 4

ffiffiffi
6

p
vFλ1μ1 þ 24μ21Þ Δ4;5;6;7

F ≡ H̃F

8 1
2
ðX8

C −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y8
C þ Z8

C

q
Þ cθ8 λ̃

a
C − sθ8Δ

a
C ≡ g̃a

8 1
2
ðX8

C þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y8
C þ Z8

C

q
Þ sθ8 λ̃

a
C þ cθ8Δ

a
C ≡ g̃a⊥

2 1
24
ðX1

L;R −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y1
L;R þ Z1

L;R

q
Þ cθ1 λ̃

8
L;R − sθ1Δ

8
L;R ≡ SL;R

2 1
24
ðX1

L;R þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y1
L;R þ Z1

L;R

q
Þ sθ1 λ̃

8
L;R þ cθ1Δ

8
L;R ≡ S⊥

L;R

6 1
24
ðX3

L;R −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y3
L;R þ Z3

L;R

q
Þ cθ3 λ̃

1;2;3
L;R − sθ3Δ

1;2;3
L;R ≡ T L;R

6 1
24
ðX3

L;R þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y3
L;R þ Z3

L;R

q
Þ sθ3 λ̃

1;2;3
L;R þ cθ3Δ

1;2;3
L;R ≡ T ⊥

L;R

8 1
48
ðX2

L;R −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y2
L;R þ Z2

L;R

q
Þ ϱ1Δ4;6

L;R þ ϱ2Δ5;7
L;R þ ϱ3λ̃

4;6
L;R þ ϱ4λ̃

5;7
L;R ≡ H̃1;2

L;R

8 1
48
ðX2

L;R þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y2
L;R þ Z2

L;R

q
Þ ϱ̄1Δ4;6

L;R þ ϱ̄2Δ5;7
L;R þ ϱ̄3λ̃

4;6
L;R þ ϱ̄4λ̃

5;7
L;R ≡ H̃1;2⊥

L;R
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3. Gauge boson masses

The gauge bosons of the SUð3ÞC group remain massless
and are identified with the SM gluons, whereas the massive
gauge bosons are generated upon the SSB of the SUð3ÞL;R
symmetries. The covariant derivative of the GUT symmetry
reads

Dμ ¼ ∂μ1L ⊗ 1R ⊗ 1C − igU
X8
a¼1

½Gμa
L Ta

L ⊗ 1R ⊗ 1C

þ Gμa
R Ta

R ⊗ 1L ⊗ 1C þ Gμa
C Ta

C ⊗ 1L ⊗ 1R�; ðB28Þ

whereGμa
L are the gauge fields of the SUð3ÞL symmetry that

cyclically transform into Gμa
R and Gμa

C by means of Z3

permutations. Considering the gauge-breaking VEVs
hΔ̃c

L;Ri ¼ δc8v, the relevant kinetic terms that couple the
vector and scalar fields evaluated in the vacuum of the
theory are given by

jDμhΔ̃b
L;Rij2 ¼

3

4
g2Uv

2
X7
a¼4

ημνG
μa
L;RG

νa
L;R: ðB29Þ

Therefore, there are eight massive gauge bosons in the
model that transform as complex 21 representations of
SUð2ÞL;R × Uð1ÞL;R whose charge eigenstates read

Gμ
L;R ≡ 1ffiffiffi

2
p

�Gμ5
L;R þ iGμ4

L;R

Gμ7
L;R þ iGμ6

L;R

�
; ðB30Þ

with mass m2
G ¼ 3

4
g2Uv

2. In addition to the unbroken color
sector, the remaining gauge bosons are also massless at the
SHUT SSB scale.

APPENDIX C: GAUGE COUPLINGS: β
FUNCTIONS AND MATCHING CONDITIONS

In general, the one-loop β function for a gauge coupling
is given by [65]

βðgiÞ ¼ −
g3i

ð4πÞ2
�
11

3
C2ðGÞ −

4

3
κS2ðFÞ −

1

3
S2ðSÞ

�

≡ big3i
ð4πÞ2 ; ðC1Þ

where κ ¼ 1=2 for Weyl fermions, C2ðGÞ ¼ N is the
Casimir index, S2ðFÞ is the Dynkin index for a fermion,
and S2ðSÞ is the Dynkin index for a complex scalar. The
one-loop β function for the gauge coupling of a U(1) theory
reads

βðg̃iÞ ¼
g̃3i

12π2

�
κ
X
f

Q2
f þ

1

4

X
s

Q2
s

�
≡ big̃3i

ð4πÞ2 : ðC2Þ

where again κ is equal to 1=2 for Weyl fermions, and where
Qf and Qs are, respectively, the charges for all fermions
and scalars in the theory.
Rewriting the gauge couplings in terms of the inverse of

the structure constants, α−1 ¼ 4π=g2, the solutions of (C1)
and (C2) read

α−1i ðμ2Þ ¼ α−1i ðμ1Þ −
bi
2π

log

�
μ2
μ1

�
; ðC3Þ

where the bi coefficients are dependent on the number of
particles and respective charges of a given EFT. Below, we
specify such information for each of the four regions and
provide the corresponding results for the one-loop β
functions.

1. Region I

As discussed in Sec. IV C, all components of the
fundamental scalars and fermions remain in the spectrum
after the breaking of the T-GUT symmetry. In this region,
the fermion sector also contains two adjoint triplets T L;R,
two adjoint singlets SL;R, and one adjoint octet in color g̃a.
Here adjoint triplets, doublets, and singlets refers to triplet,
doublet, and singlet representations coming from an SU(3)
octet. Heavy states, with masses the size of the T-GUT
scale, are marked with a symbol ⊥ in Table XI of
Appendix B and are integrated out. For the adjoint
doublets, on the other hand, there is no distinct hierarchy
between H̃L;R; H̃

†
L;R and their heavy counterparts and can

hence all be excluded from the spectrum.
With this, there is a total of 18 fermions and 18 scalars in

the fundamental (or antifundamental) representation of
SUð3ÞC, 18 fermions and 18 scalars in the fundamental
and antifundamental representation of SUð2ÞL and SUð2ÞR,
one fermion and no scalars in the adjoint representation of
SUð3ÞC, and one fermion and no scalars in the adjoint
representation of SUð2ÞL and SUð2ÞR, resulting in

bIgC ¼ 0 and bIgL;R ¼ 3; ðC4Þ

with bi defined as βðgiÞ≡ big3i
ð4πÞ2. Here gC is the gauge

coupling for SUð3ÞC and gL;R is the gauge coupling
for SUð2ÞL × SUð2ÞR.
For the Uð1ÞL × Uð1ÞR coupling, g̃L;R, the β function is

calculated using the charges in Table VI of Appendix A.
With this we obtain

bIg̃L;R ¼ 9: ðC5Þ

2. Region II

In region II, the adjoint scalars are integrated out, in
addition to DL;R in the second and third generation, which
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are the only fermions able to form a Dirac mass at this
stage. When it comes to the fundamental scalars, there are
no clear hierarchies in the spectrum, so here we will instead
present the possible extreme values.
As apparent from Eqs. (C1) and (C2), the extreme values

for each b occur for the minimal and maximal number of
scalars, respectively. The maximal b values are hence
obtained when keeping all fundamental scalars, while
the minimal b values correspond to keeping only Hf,
Ẽf
R, and ϕ̃f. The latter scenario cannot be further reduced,

as Hf is required to remain as it contains the minimal
amount of Higgs SUð2ÞL doublets required for Cabbibo
mixing at tree-level (H1;2

u and H2
d), while Ẽf

R and ϕ̃f are
required as they are involved in the breaking scheme down
to the SM.
With this, the b values lie in the following intervals:

−
19

3
≤ bIIgC ≤ −

10

3
; −

2

3
≤ bIIgL ≤

5

3
;

−
1

3
≤ bIIgR ≤

5

3
;

31

3
≤ bIIg̃LþR

≤
46

3
; ðC6Þ

where hence the upper bound corresponds to the maximal
field content and the lower bound to the minimal field
content.

3. Region III

In region III, the fermion spectrum remains the same,
while for the scalar sector we once again investigate the
extreme values. The maximal field content is still to keep all
fundamental scalars, while for the minimal field content we
may now remove Ẽ2

L, as SUð2ÞF is broken and only Ẽ1
L is

involved in the breaking scheme down to the SM.
With this, all b values are identical to those in region II,

apart from the lower bound of bg̃LþR

−
19

3
≤ bIIIgC ≤ −

10

3
; −

2

3
≤ bIIIgL ≤

5

3
;

−
1

3
≤ bIIIgR ≤

5

3
;

59

6
≤ bIIIg̃LþR

≤
46

3
; ðC7Þ

where again the upper bound corresponds to the maximal
field content and the lower bound to the minimal field
content.

4. Region IV

In region IV, the minimal field content corresponds to
integrating out all scalars apart from three Higgs doublets,
e.g., H1;2

u and H2
d and the field responsible for breaking the

Uð1ÞT symmetry, e.g., ϕ̃1. A minimum of two Higgs
doublets are required to remain in order for all SM particles
to gain a mass, while a third is needed for getting the
appropriate Cabbibo mixing at tree level, as discussed in
Sec. V B.

Among the fermions, D1;2;3
L D1;2;3

R , ν1;2;3R , ϕ1;2;3, and all
Higgsinos are integrated out, as they can form massive
states without the Higgs VEV. This can be seen from
Table VIII of Appendix A [with Uð1ÞT0 broken]. The
remainder of the fundamental fermions are kept in the
spectrum. Regarding the adjoints, both the octets g̃a and
the triplets T i

L; T
�
R are integrated out, resulting in

bIVgC ¼ −7 and bIVgL ¼ −
17

6
; ðC8Þ

where gL is the gauge coupling for SUð2ÞL.
For Uð1ÞY, the charges in Table VIII of Appendix A

result in

bIVg̃Y ¼ 43

6
; ðC9Þ

where g̃Y is the gauge coupling for Uð1ÞY.

5. Matching conditions

The gauge couplings unification condition at the GUT
scale reads

α−1g̃L;RðvÞ ¼ α−1gL;RðvÞ ¼ α−1g ðvÞ; ðC10Þ

with the charges in Table VI of Appendix A.
At the soft scale, the gauge coupling matching conditions

are obtained by finding the gauge boson mass eigenstates
after the VEVs hϕ̃2i, hϕ̃3i, and hν̃1Ri, respectively, by
expanding our old basis in terms of the new one, e.g.,
fG3

R; BL; BRg in terms of fBLþR;…g.6 With this we have

α−1g̃LþR
ðhϕ̃3iÞ ¼ α−1g̃L ðhϕ̃3iÞ þ α−1g̃R ðhϕ̃3iÞ ðC11Þ

at the hϕ̃3i scale, and

α−1g̃Y ðhν̃1RiÞ ¼ α−1gR ðhν̃1RiÞ þ
1

3
α−1g̃LþR

ðhν̃1RiÞ ðC12Þ

at the hν̃1Ri scale, while the matching at the hϕ̃2i scale is
trivial, α−1g̃LþR

ðhϕ̃2iÞ ¼ α−1g̃LþR
ðhϕ̃2iÞ.

Finally, at the Z-boson mass scale, the matching con-
ditions between the electromagnetic coupling, the hyper-
charge coupling, and the SUð2ÞL coupling are already well
known,

α−1g̃Y ¼ cos2θWα−1EM and α−1g̃L ¼ sin2θWα−1EM; ðC13Þ

where θW is the weak mixing angle, sin2ðθWÞ ∼
0.2312 [62].

6Here, G3
R is the gauge boson corresponding to the third

generator of SUð2ÞR, BL;R are the gauge bosons for Uð1ÞL;R, and
BLþR is the gauge boson for Uð1ÞLþR.
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APPENDIX D: LAGRANGIAN OF THE
LR-SYMMETRIC EFFECTIVE THEORY

The field content of the EFT is derived from the mass
spectrum after the T-GUT symmetry breaking. As a general
rule, the light fields, i.e., those with a mass scale much
smaller than the GUT scale v, are kept in the EFT spectrum,
whereas those with masses of the same order of magnitude
as v are integrated out.
The light field components and their group transforma-

tions under the LR symmetry obtained after v and vF VEVs
[see Eq. (A1)] are shown in Table VI, where we use the
notation given in Eq. (A6).

1. The scalar potential of the LR-symmetric
effective model

The scalar potential of the effective LR-symmetric
theory generated after the T-GUT breaking can be sum-
marized by

VLR ¼ V2 þ V3 þ V4; ðD1Þ
where V2, V3, and V4 denote the quadratic, cubic, and
quartic scalar self-interactions, respectively. For simplicity,
we will suppress color indices in VLR and, for all those
terms that can be written from LR-parity transformations on
the fields, we will show them within square brackets as
P̂LR½� � ��. Note that here we use this notation for both the
cases of invariance or not under LR parity. For instance,
while for the LR-parity-symmetric case we should preserve
the couplings, for the LR-parity-broken case we should also
read m → m̄; A → Ā; λ → λ̄ whenever LR-parity transfor-
mation is applied.
We start by writing the scalar mass terms

V2 ¼m2
HH

� r
f lH

f l
r þm2

hh
� r
l hlr þm2

ϕϕ̃
�
fϕ̃

f þm2
φφ̃

�φ̃

þm2
ΔH̃

�
FfH̃

f
F þ P̂LR½m2

EẼ
�
Lf lẼ

f l
L þm2

EẼ
�
L lẼ

l
L

þm2
QQ̃

�l
LfQ̃

f
L l þm2

qq̃� lL q̃L l þm2
DD̃

�
LfD̃

f
L þm2

BB̃
�
LB̃L�;

whereas the trilinear interactions are expressed as

V3 ¼ εff0 fP̂LR½A1Q̃
f r
R hlrQ̃

f0
L l þ A2D̃

f
Rφ̃D̃

f0
L �

þ P̂LR½A3q̃rRH
f l
r Q̃f0

L l þ A4B̃Rϕ̃
f0D̃f

L

þ A5B̃RQ̃
f
L lẼ

f0 l
L þ A6D̃

f
RQ̃

f0
L lẼ

l
L

þ A7D̃
f
Rq̃L lẼ

f0 l
L þ c:c:�g: ðD2Þ

Due to a large number of possible contractions of four
scalar fields in the effective LR-symmetric model, we will
employ a condensed notation to express the scalar quartic
self-interactions. We describe below the five possible types
of terms.
For the first type, which we denote “sc1,” we consider

terms with one reoccurring index, where we define the

reoccurring index as an index possessed by all four fields.
For such a combination there are three possible contrac-
tions, out of which two of them are linearly independent. In
particular, we have

Vsc1 ⊃ λk1D̃
�
Lxf0D̃

xf0
L H�r

flH
fl
r þ λk2D̃

�
Lxf0D̃

xf
L H�r

flH
f0l
r

≡ λk1–k2D̃
�
Lf0D̃

f0
LH

�r
flH

fl
r ; ðD3Þ

where color indices are suppressed in the condensed form.
For terms with two reoccurring indices, denoted as “sc2,”

no matter if they are SU(2) indices or SU(3) indices,7 there
are four linearly independent contractions that read

Vsc2 ⊃ λn1Ẽ
�
L l0 f0Ẽ

l0 f0
L Q̃� l

L x fQ̃
x f
L l þ λn2Ẽ

�
L l0 f0Ẽ

l0 f
L Q̃� l

L x fQ̃
x f0
L l

þ λn3Ẽ
�
L l0 f0Ẽ

l f0
L Q̃� l0

L x fQ̃
x f
L l þ λn4Ẽ

�
L l0 f0Ẽ

l f
L Q̃� l0

L x fQ̃
x f0
L l

≡ λn1–n4Ẽ
�
L l0 fẼ

l0 f
L Q̃� l

L f0Q̃
f0
L l: ðD4Þ

The third type involves terms with two reoccurring indices
[either SU(2) or SU(3) indices] but identical fields. We
denote this case as “sc3” and observe that there are only
two linearly independent terms of the form

Vsc3 ⊃ λj1D̃
�
L x0 f0D̃

x0 f0
L D̃�

L x fD̃
x f
L þ λj2D̃

�
L x0 f0D̃

x f0
L D̃�

L x fD̃
x0 f
L

≡ λj1–j2D̃
�
L f0D̃

f0
L D̃

�
L fD̃

f
L; ðD5Þ

where color contractions are once again implicit.
For terms with three reoccurring indices and identical

fields, labeled as “sc4,” there are four linearly independent
combinations that we write as

Vsc4 ⊃ λm1
H� r0

f0 l0H
f0 l0
r0 H� r

f lH
f l
r þ λm2

H� r0
f0 l0H

f0 l0
r H� r

f lH
f l
r0

þ λm3
H� r0

f0 l0H
f l0
r0 H

� r
f lH

f0 l
r þ λm4

H� r0
f0 l0H

f0 l
r0 H

� r
f lH

f l0
r

≡ λm1–m4
H� r0

f0 l0H
f0 l0
r0 H� r

f lH
f l
r : ðD6Þ

Note that the case with three reoccurring indices and
different fields does not exist and the only case with one
reoccurring index and identical fields is the one involving
the gauge singlet ϕf.
Finally, the fifth type (“sc5”) involves terms without

reoccurring indices or terms with one reoccurring index but
four identical fields such as

Vsc5 ⊃ λih� rl hlrϕ̃
�
fϕ̃

f þ λjϕ̃
�
f0ϕ̃

f0 ϕ̃�
fϕ̃

f: ðD7Þ

Note that, for ease of notation, we assume that combina-
torial factors were absorbed by various λi and λi–j.

7The two types coincide since for SU(2) the three combina-
tions reduce down to two, using that εijεkl ¼ δki δ

l
j − δliδ

k
j , while

for SU(3) there are only two possible contractions to begin with,
and no Levi-Civita tensor to impose a reduction.
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We will then consider five different scenarios organized according to the type of index contractions as described in detail
in Eqs. (D3)–(D7),

V4 ¼ Vsc1 þ Vsc2 þ Vsc3 þ Vsc4 þ Vsc5: ðD8Þ

The first contribution reads

Vsc1 ¼ λ1–2q̃� lL q̃L lq̃�R rq̃
r
R þ λ3–4B̃

�
LB̃LB̃

�
RB̃R þ λ5–6H� r

f0 lH
f0 l
r ϕ̃�

fϕ̃
f þ λ7–8Ẽ�

L f0 lẼ
f0 l
L Ẽ� r

R fẼ
f
R r þ P̂LR½λ9–10q̃� lL q̃L lQ̃

�
R f rQ̃

f r
R

þ λ11–12B̃
�
LB̃LD̃�

R fD̃
f
R þ λ13–14q̃� lL q̃L lD̃

�
L fD̃

f
L þ λ15–16Q̃

� l
L fQ̃

f
L lB̃

�
LB̃L þ λ17–18q̃� lL q̃L lB̃

�
LB̃L þ λ19–20q̃� lL q̃L lD̃

�
R fD̃

f
R

þ λ21–22Q̃
� l
L fQ̃

f
L lB̃

�
RB̃R þ λ23–24Q̃

� l0
L fQ̃

f
L l0h

� r
l hlr þ λ25–26q̃� lL q̃L lB̃

�
RB̃R þ λ27–28q̃� l

0
L q̃L l0H� r

f lH
f l
r þ λ29–30q̃� l

0
L q̃L l0h� rl hlr

þ λ31–32D̃�
L f0D̃

f0
LH

� r
f lH

f l
r þ λ33–34q̃� lL q̃L lẼ

�
L f l0Ẽ

f l0
L þ λ35–36Q̃

� l
L fQ̃

f
L lẼ

�
L l0 Ẽ

l0
L þ λ37–38q̃� lL q̃L lẼ

�
L l0 Ẽ

l0
L

þ λ39–40Q̃
� r
R f0Q̃

f0
R rẼ

�
L f lẼ

f l
L þ λ41–42D̃�

L f0D̃
f0
L Ẽ

�
L f lẼ

f l
L þ λ43–44D̃�

R f0D̃
f0
R Ẽ

�
L f lẼ

f l
L þ λ45–46Q̃

� l
L f0Q̃

f0
L lϕ̃

�
fϕ̃

f

þ λ47–48D̃�
L f0D̃

f0
L ϕ̃

�
fϕ̃

f þ λ49–50h� rl0 h
l0
r Ẽ�

L f lẼ
f l
L þ λ51–52D̃�

L fD̃
f
LẼ

�
L f lẼ

f l
L þ λ53–54H� r

f l0H
f l0
r Ẽ�

L lẼ
l
L

þ λ55–56h� rl0 h
l0
r Ẽ

�
L lẼ

l
L þ λ57–58B̃

�
LB̃LD̃�

L fD̃
f
L þ λ59–60Ẽ�

L f0 lẼ
f0 l
L ϕ̃�

fϕ̃
f þ λ61–62ϕ̃

fHf0 l
r Ẽ�

L f0 lẼ
� r
R f

þ ðλ63–64h� rl0 Hf l0
r Ẽ�

L f lẼ
l
L þ λ65–66h� rl0 H

f l0
r Q̃� l

L fq̃L l þ λ67–68Ẽ�
L f l0 Ẽ

l0
Lq̃

� l
L Q̃f

L l þ λ69–70D̃�
L f0Q̃

f0
L lẼ

� r
R fH

f l
r

þ λ71–72D̃�
L f0Q̃

f0
L lẼ

f l
L ϕ̃�

f þ λ73–74B̃LQ̃
f
R rD̃

�
L fq̃

�
R r þ c:c:Þ� þ Vgen

sc1 ; ðD9Þ

with Vgen
sc1 corresponding to the interactions generated only after the matching procedure, i.e., not directly obtained by

expansion of the Lagrangian of the original theory, and given by

Vgen
sc1 ¼ P̂LR½δ1–2Q̃�l

L f0Q̃
f0
L lH̃

�
F fH̃

f
F þ δ3–4D̃�

L f0D̃
f0
L H̃

�
F fH̃

f
F þ δ5–6Ẽ�

L f0 lẼ
f0 l
L H̃�

F fH̃
f
F� þ δ7–8H� r

f0 lH
f0 l
r H̃�

F fH̃
f
F:

The effective quartic interactions with two reoccurring indices are given by

Vsc2 ¼ λ75–78Q̃
� l
L f0Q̃

f0
L lQ̃

�
R f rQ̃

f r
R þ λ79–82D̃�

L f0D̃
f0
L D̃

�
R fD̃

f
R þ λ83–86h� r

0
l0 hl

0
r0H

� r
f lH

f l
r þ P̂LR½λ75–78Q̃� l

L f0Q̃
f0
L lD̃

�
L fD̃

f
L

þ λ87–90Q̃
� l
L f0Q̃

f0
L lD̃

�
R fD̃

f
R þ λ91–94q̃� l

0
L q̃L l0Q̃

� l
L fQ̃

f
L l þ λ95–98Q̃

� l0
L f0Q̃

f0
L l0H

� r
f lH

f l
r þ λ99–102Q̃

� l
L f0Q̃

f0
L lẼ

�
L f l0Ẽ

f l0
L

þ λ103–106H� r
f0 l0H

f0 l0
r Ẽ�

L f lẼ
f l
L �:

The third contribution, which accounts for identical multiplets and two reoccurring indices, has the form

Vsc3 ¼ λ107–108h� r
0

l0 hl
0
r0h

� r
l hlr þ P̂LR½λ101–102q̃� l0L q̃L l0 q̃� lL q̃L lþλ109–110D̃�

L f0D̃
f0
L D̃

�
L fD̃

f
Lþλ111–112Ẽ�

L f0 l0Ẽ
f0 l0
L Ẽ�

L f lẼ
f l
L �;

while the fourth scenario, where identical fields with three reoccurring indices are considered, reads

Vsc4 ¼ λ113–116H� r0
f0 l0H

f0 l0
r0 H� r

f lH
f l
r þ P̂LR½λ117–120Q̃� l0

L f0Q̃
f0
L l0Q̃

� l
L fQ̃

f
L l�:

Finally, for those terms that contain only one independent type of contraction, we have
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Vsc5 ¼ λ121h� rl hlrϕ̃
�
fϕ̃

f þ λ122H� r
f lH

f l
r φ̃�φ̃þ λ123h� rl hlrφ̃�φ̃þ λ124Ẽ

�
L lẼ

l
LẼ

� r
R ẼRr þ λ125ϕ̃

�
f0ϕ̃

f0 ϕ̃�
fϕ̃

f þ λ126ϕ̃
�
fϕ̃

fφ̃�φ̃

þ λ127φ̃
�φ̃φ̃�φ̃þ P̂LR½λ128φ̃hlrẼ�

L lẼ
� r
R þ λ129D̃�

L fB̃LB̃
�
RD̃

f
R þ λ130Q̃

� l
L fq̃L lq̃�R rQ̃

f r
R þ λ131B̃

�
LB̃LB̃

�
LB̃L

þ λ132B̃
�
LB̃LH� r

f lH
f l
r þ λ133D̃�

L fD̃
f
Lh

� r
l hlr þ λ134B̃

�
LB̃Lh� rl hlr þ λ135q̃�R rq̃

r
RẼ

�
L f lẼ

f l
L þ λ136Q̃

�
R f rQ̃

f r
R Ẽ�

L lẼ
l
L

þ λ137q̃�R rq̃
r
RẼ

�
L lẼ

l
L þ λ138D̃�

L fD̃
f
LẼ

�
Lf lẼ

f l
L þ λ139D̃�

L fD̃
f
LẼ

�
L lẼ

l
L þ λ140B̃

�
LB̃LẼ

�
L lẼ

l
L þ λ141B̃

�
RB̃RẼ�

L f lẼ
f l
L

þ λ142D̃�
R fD̃

f
RẼ

�
L lẼ

l
L þ λ143B̃

�
RB̃RẼ

�
L lẼ

l
L þ λ144q̃� lL q̃L lϕ̃

�
fϕ̃

f þ λ145Q̃
� l
L fQ̃

f
L lφ̃

�φ̃þ λ146q̃� lL q̃L lφ̃
�φ̃þ λ147B̃

�
LB̃Lϕ̃

�
fϕ̃

f

þ λ148D̃�
L fD̃

f
Lφ̃

�φ̃þ λ149B̃
�
LB̃Lφ̃

�φ̃þ λ150Ẽ
�
L l0 Ẽ

l0
LẼ

�
L f lẼ

f l
L þ λ151Ẽ

�
L l0 Ẽ

l0
LẼ

�
L lẼ

l
L þ λ152Ẽ

�
L lẼ

l
LẼ

� r
R fẼ

f
R r

þ λ153Ẽ
�
L lẼ

l
Lϕ̃

�
fϕ̃

f þ λ154Ẽ�
Lf lẼ

f l
L φ̃�φ̃þ λ155Ẽ

�
L lẼ

l
Lφ̃

�φ̃þ ðλ156Ẽ�
L f lẼ

l
Lφ̃

�ϕ̃f þ λ157Ẽ�
L f lϕ̃

fhlrẼ
� r
R

þ λ158H
f l
r Ẽ� r

R fẼ
�
L lφ̃þ λ159Ẽ�

L f lẼ
l
LB̃

�
LD̃

f
L þ λ160φ̃

�ϕ̃fD̃�
L fB̃L þ λ161D̃�

L fB̃Lq̃�lL Q̃
f
L l þ λ162B̃

�
Lq̃L lẼ

� r
R fH

f l
r

þ λ163B̃
�
LQ̃

f
L lẼ

� r
R fh

l
r þ λ164B̃

�
Lq̃L lẼ

� r
R hlr þ λ165B̃

�
Lq̃L lẼ

f l
L ϕ̃�

f þ λ166B̃
�
LQ̃

f
L lẼ

l
Lϕ̃

�
f þ λ167B̃

�
Lq̃L lẼ

l
Lφ̃

�

þ λ168B̃
�
LD̃

f
LẼ

� r
R fẼR r þ λ169D̃�

L fq̃L lẼ
� r
R Hf l

r þ λ170D̃�
L fQ̃

f
L lẼ

� r
R hlr þ λ171D̃�

L fq̃L lẼ
f l
L φ̃�

þ λ172D̃�
L fQ̃

f
L lẼ

l
Lφ̃

� þ c:c:Þ� þ Vgen
sc5 :

Here, the terms generated after the breaking are

Vgen
sc5 ¼ λ173h� rl Hf l

r ϕ̃�
fφ̃þ λ174Ẽ�

L f lẼ
l
LẼ

� r
R Ẽf

R r þ δ9h� rl hlrH̃
�
F fH̃

f
F þ δ10H̃

�
F f0H̃

f0
F H̃

�
F fH̃

f
F þ δ11φ̃

�φ̃H̃�
F fH̃

f
F

þ δ12ϕ̃
�
f0 ϕ̃

f0H̃�
F fH̃

f
F þ P̂LR½λ175h� rl Hf l

r D̃�
L fB̃L þ λ176φ̃

�ϕ̃fQ̃� l
L fq̃L l þ λ177B̃

�
LD̃

f
LẼ

�
L f lẼ

l
L þ λ178Ẽ�

L f lẼ
l
Lq̃

�
R rQ̃

f r
R

þ δ13q̃� lL q̃L lH̃
�
F fH̃

f
F þ δ14B̃

�
LB̃LH̃

�
F fH̃

f
F þ δ15Ẽ

�
L lẼ

l
LH̃

�
F fH̃

f
F�:

2. The fermion sector of the LR-symmetric EFT

The part of the Lagrangian of the effective LR-symmetric theory that involves purely quadratic fermion interactions as
well as the Yukawa terms reads

Lfermi ¼ LM þ LYuk: ðD10Þ

For the mass terms we have

LM ¼ P̂LR

�
1

2
mSLSLSL þ

1

2
mT L

T i
LT

i
L þ c:c:

�
þ P̂LR

�
1

2
mg̃g̃ag̃a þmLRSLSR þ 1

2
mHH�

F fH
f
F

�
; ðD11Þ

while for the Yukawa ones we write for convenience

LYuk ¼ L3c þ L2c þ L1c þ LS þ LT þ Lg̃; ðD12Þ

where the first three terms, which involve only the fields from the fundamental representations of the trinification group,
denote three, two, and one SU(2) contractions, respectively, whereas the last ones describe the Yukawa interactions of the
singlet S, triplet T , and octet g̃a fermions.
The terms with three SU(2) contractions are given by

L3c ¼ εff0 ðP̂LR½y1Qf r
R hlrQ

f0
L l� þ P̂LR½y2q̃rRH̃f l

r Qf0
L lþy3Q̃

f r
R h̃lrQ

f0
L l þ y4qrRH

f l
r Qf0

L l þ c:c:�Þ; ðD13Þ

those with two SU(2) contractions are written as

L2c¼ εff0P̂LR½y5B̃RQ
f
LlE

f0 l
L þy6D̃

f
RQ

f0
LlE

l
Lþy7D̃

f
RqLlE

f0 l
L þy8BRQ̃

f
LlE

f0 l
L þy9D

f
RQ̃

f0
LlE

l
Lþy10D

f
Rq̃LlE

f0 l
L þy11BRQ

f
LlẼ

f0 l
L

þy12D
f
RQ

f0
LlðẼLÞlþy13D

f
RqLlẼ

f0 l
L þc:c:�; ðD14Þ

and for those with one SU(2) contraction we have
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L1c ¼ εff0 ðP̂LR½y14Df
Rφ̃D

f0
L � þ P̂LR½y15B̃Rϕ

fDf0
Lþy16D̃

f
Rϕ

f0BL þ y17D̃
f
RφD

f0
L þ y18BRϕ̃

fDf0
L þ c:c:�Þ: ðD15Þ

The part of the Lagrangian involving the singlets SL;R reads

LS ¼ P̂LR½y19Q̃� l
L fSLQ

f
L l þ y20q̃� lL SLqL l þ y21D̃

�
L fSLD

f
L þ y22B̃

�
LSLBL þ y23H� r

f lSLH̃
f l
r þ y24h� rl SLh̃

l
r

þ y25Ẽ
�
L f lSLE

f l
L þ y26Ẽ

�
L lSLEl

L þ y27ϕ̃
�
fSLϕ

f þ y28φ̃�SLφþ yH�
F fSLH

f
F þ y29Ẽ

�
L f lSRE

f l
L

þ y30B̃
�
LSRBL þ y31D̃

�
L fSRD

f
L þ y32Q̃

� l
L fSRQ

f
L l þ y33q̃� lL SRqL l þ y34Ẽ

�
L lSREl

L þ c:c:�; ðD16Þ
while those interactions that couple to T i

L;R read

LT ¼ P̂LR½ðσiÞll0 ðy35Q̃� l0
LfT

i
LQ

f
L l þ y36q̃� l

0
L T i

LqL lþy37H� r
f lT

i
LH̃

f l0
r þ y38h� rl T i

Lh̃
l0
rþy39Ẽ�

Lf lT
i
LE

f l0
L þ y40Ẽ

�
L lT

i
LE

l0
L þ c:c:Þ�:

ðD17Þ
Finally, the Yukawa interactions involving gluinos are given by

Lg̃ ¼ P̂LR½y41Q̃� l
L fT

ag̃aQf
L l þ y42q̃� lL Tag̃aqL l þ y43D̃�

L fT
ag̃aDf

L þ y44B̃
�
LTag̃aBL þ c:c:�: ðD18Þ

3. The gauge sector of the LR-symmetric EFT

In this section, we consider interactions involving the gauge bosons of the effective SHUT-LR model. For ease of
reading, we separate those into the gauge-scalar (gs), gauge-fermion (gf), and pure-gauge (pg) interaction types,

Lgauge ¼ Lgs þ Lgf þ Lpg; ðD19Þ
where Eqs. (D21)–(D23) of Appendix D 3 a can be employed to write

Lgs¼ðDμφ̃Þ�ðDμφ̃ÞþðDμϕ̃Þ�fðDμϕ̃ÞfþðDμhÞ†rl ðDμhÞlrþðDμHÞ†rflðDμHÞflr þημνP̂LR½ðDνẼLÞ†l ðDμẼLÞlþðDνẼLÞ†flðDμẼLÞfl

þðDνq̃LÞ†lðDμq̃LÞlþðDνQ̃LÞ†lf ðDμQ̃LÞflþðDνB̃LÞ†ðDμB̃LÞþðDνD̃LÞ†fðDμD̃LÞf�;
Lgf¼ iφ†σ̄μDμφþ iϕ†

fσ̄μðDμϕÞfþ ih̃†rl σ̄μðDμh̃Þlrþ iH̃†r
fl σ̄μðDμH̃Þflr þP̂LR½iE†

Llσ̄μðDμELÞl

þiE†
Lflσ̄μðDμELÞflþ iq†lL σ̄μðDμqLÞlþiQ†l

Lfσ̄μðDμQLÞfl þ iB†
Lσ̄μD

μBLþ iD†
Lfσ̄μðDμDLÞf�

þ
X
A¼L;R

½iS†
Aσ̄μ∂μSAþ iT i†

A σ̄μðDμT AÞi�þ ig̃a†σ̄μðDμg̃Þaþc:c:;

Lpg¼−
1

4

� X
A¼L;R

ðBμν
A BAμνþFμνi

A Fi
AμνÞþGμνaGa

μνþBμν
L BRμν

�
: ðD20Þ

a. Covariant derivatives and field strengths

The covariant derivatives of the LR-symmetric effective model can be written in a compact matrix form as follows:

DμðH; hÞ ¼ ð1L ⊗ 1R∂μ − igLA
μ i
L τi ⊗ 1R − igRA

μ i
R τi ⊗ 1Lþig0LYLB

μ
L1L ⊗ 1R þ ig0RYRB

μ
R1L ⊗ 1RÞðH; hÞ;

P̂LR½DμðEL; ELÞ� ¼ P̂LR½ð1L∂μ − igLA
μ i
L τiþig0LYLB

μ
L1L þ ig0RYRB

μ
R1LÞðEL; ELÞ�;

Dμðϕ;φÞ ¼ ð∂μ þ ig0LYLB
μ
L þ ig0RYRB

μ
RÞðϕ;φÞ;

P̂LR½DμðQL; qLÞ� ¼ P̂LR½ð1C ⊗ 1L∂μ − igCG
μ a
C Ta ⊗ 1L−igLA

μ i
L τi ⊗ 1C þ ig0LYLB

μ
L1C ⊗ 1LÞðQL; qLÞ�;

P̂LR½DμðDL;BLÞ� ¼ P̂LR½ð1C∂μ − igCG
μ a
C Taþig0LYLB

μ
L1CÞðDL;BLÞ�; ðD21Þ

DμT A ¼ ð1adjL;R∂μ − igL;RA
μ i
L;Rτ

i
adjÞT A; Dμg̃ ¼ ð1adjC ∂μ − igCG

μ a
C Ta

adjÞg̃; ðD22Þ

where summation is assumed over each pair of repeated indices, YA is the Uð1ÞA hypercharge, and 1A and 1adjA are the
identity matrices with the same dimensions of the fundamental and adjoint representations, respectively. The field strength
tensors of the Uð1ÞA, SUð2ÞA, and SUð3ÞC gauge symmetries are given by
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Bμν
A ¼ ∂μBν

A − ∂νBμ
A; Fμν i

A ¼ ∂μAν i
A − ∂νAμ i

A þ gAεijkA
μ j
A Aνk

A ; Gμνa ¼ ∂μGνa
C − ∂νGμa

C þ gCfabcG
μb
C Gνc

C : ðD23Þ

b. Abelian D-terms

The Uð1ÞL;R D-terms of the LR-symmetric theory read

DL ¼ 1

ð1 − χ2

4
Þ

�
−
1

2
χðXR − κÞ þ XL þ κ

�
; DR ¼ 1

ð1 − χ2

4
Þ

�
−
1

2
χðXL þ κÞ þ XR − κ

�
;

XL ¼ H� r
f lH

l f
r − 2ϕ̃�

fϕ̃
f þ Ẽ�

L f lẼ
f l
L − 2Ẽ� r

R fẼ
f
R r − Q̃� l

L fQ̃
f
L l þ 2D̃�

L fD̃
f
L;

XR ¼ −H� r
f lH

l; f
r þ 2ϕ̃�

fϕ̃
f þ 2Ẽ�

L f lẼ
f l
L − Ẽ� r

R fẼ
f
R r þ Q̃�

R f rQ̃
f r
R − 2D̃�

R fD̃
f
R;

with f ¼ 1, 2, 3.
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