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In the MSSM extended by a complete vectorlike family, precise top, bottom and tau Yukawa coupling
unification can be achieved assuming SUSY threshold corrections which are typical for comparable
superpartner masses. Furthermore, the unification is possible with a large unified coupling, implying that
all three fermion masses can be simultaneously close to their IR fixed points. Assuming unified
Yukawa couplings of order one or larger, the preferred common scale of new physics (superpartners
and vectorlike matter) is in the 3 TeV to 30 TeV range, with larger couplings favoring smaller scales.
Splitting superpartner masses from masses of vectorlike fields, the preferred scales extend in both
directions. The multi-TeV scale for superpartners is compatible with and independently suggested by the
Higgs boson mass.
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I. INTRODUCTION

Values of some of the free parameters in the standard
model (SM) can be understood if they are related by
additional symmetries to other parameters. Gauge coupling
unification in the minimal supersymmetric extension of the
standard model (MSSM) is a well known example that
points to a larger symmetry of a grand unified theory
(GUT) at the scale where gauge couplings meet. Similarly,
embedding the particle content of the SM into GUT
multiplets offers a possibility to understand Yukawa cou-
plings and thus fermion masses from a unified Yukawa
coupling at the same scale. There are indications that at
least the masses of the third generation fermions (top quark,
bottom quark and tau lepton) can be understood in this way
as motivated by SO(10) symmetry [1–26].
However, the predictive power of Yukawa coupling

unification is reduced because other (so far unknown)
parameters also enter the determination of fermion masses.
In the MSSM, the crucial parameter is the ratio of vacuum
expectation values of the two Higgs doublets, tan β, that
sets the required top, bottom and tau Yukawa couplings
from their measured masses. Furthermore, there are sig-
nificant supersymmetric (SUSY) threshold corrections
[5–7,27] that, in the range of tan β favored by Yukawa

coupling unification, can comprise up to about half of the
bottom quark mass depending on superpartner masses.
Without knowing tan β and at least basic features of SUSY
spectrum, there is no sharp prediction for fermion masses.
Nevertheless, we can instead require that the third gen-
eration of fermion masses originate from a single Yukawa
coupling at the GUT scale and predict tan β and the SUSY
spectrum consistent with this assumption. This has been
done in a variety of scenarios [9–23] typically pointing to
certain hierarchies or relations among SUSY parameters.
The predictive power of Yukawa coupling unification

can be increased if the required electroweak (EW) scale
values of Yukawa couplings are close to the IR fixed points
of Yukawa couplings in a given model. This makes the
actual value of the unified Yukawa coupling unimportant,
effectively reducing the number of relevant model param-
eters to two: tan β and the SUSY threshold correction to the
bottom quark mass. Although such a possibility does not
work in the MSSM,1 we will see that it works very well
in the MSSM extended by a complete vectorlike family
(an exact copy of a SM family: q, ū, d̄, l, ē and corres-
ponding fields with conjugate quantum numbers).
We show that in the MSSM extended by a complete

vectorlike family (MSSMþ 1VF), precise top, bottom and
tau Yukawa coupling unification can be achieved with a
large unified coupling, implying that all three fermion
masses can be simultaneously close to their IR fixed points.*dermisek@indiana.edu
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1In the MSSM the top quark mass can be understood from the
IR fixed point value of the top Yukawa coupling [28–30].
However, it requires small tan β precluding Yukawa coupling
unification. For large tan β, the top Yukawa coupling is below the
IR fixed point and approaches it very slowly in the RG evolution.
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All three Yukawa couplings approach IR fixed points
rapidly from a large range of boundary conditions both
above and below the IR fixed point values. Furthermore,
the unification is possible assuming SUSY threshold
corrections which are typical for comparable superpartner
masses and thus no hierarchies or specific relations among
SUSY parameters are required. Assuming unified Yukawa
couplings of order one or larger, the preferred common
scale of new physics (superpartners and vectorlike matter)
is in the 3 TeV to 30 TeV range, with larger couplings
favoring smaller scales. Splitting superpartner masses from
masses of vectorlike fields, the preferred scales extend in
both directions. The required scale of new physics is to a
large extent driven by fitting the measure values of gauge
couplings [31] with fermion masses further constraining
the preferred range. However, due to the IR fixed point
behavior it is highly nontrivial that Yukawa couplings
point to a similar scale of new physics as gauge couplings.
Furthermore, the multi-TeV scale for superpartners is
compatible with and independently suggested by the
Higgs boson mass.
Enlarging the particle content of the model also results in

new parameters that cast a shadow on the predictivity of
Yukawa coupling unification. The fields in a vectorlike
family can have Yukawa couplings to Higgs doublets, they
can mix with SM families (we will not consider this
possibility) and they must have vectorlike masses to avoid
detection. However we will see that there are only three
parameters: the GUT scale, the scale of new physics
(superpartner masses and masses of vectorlike matter)
and tan β that are important for the EW scale values of
standard model Yukawa couplings while others affect the
EW scale values very little and are only needed for
precisely reproducing the measure values. Furthermore,
two of these parameters, the GUT scale and the scale of
new physics, are independently constrained by measured
values of gauge couplings.
We assume the common scale of new physics only for

simplicity. The results do not differ much as long as
superpartner masses and vectorlike masses are comparable.
Nevertheless, after presenting the main results, we will also
explore effects resulting from abandoning our simple
assumptions. We will consider the scale of superpartners
independent from vectorlike masses. Moreover, since the
assumption of a common scale for superpartners has an
impact on the predicted bottom quark mass, through SUSY
threshold corrections, wewill also consider splitting gaugino
masses from scalar masses. Furthermore, we will present
results in terms of the required SUSY correction to the
bottomquarkmass that could be used in a variety of scenarios
that are not approximated well by our assumptions.
Extensions of the SM or the MSSM with vectorlike

matter were previously explored in a variety of contexts.
Examples include studies of their effects on gauge cou-
plings [31,32–39] and on electroweak symmetry breaking

and the Higgs boson mass [40–42]. In addition, vectorlike
fermions are often introduced on purely phenomenological
grounds to explain various anomalies. Examples include
discrepancies in precision Z-pole observables [43–46] and
the muon g-2 anomaly [47,48] among many others. More
related to our study, the fast approach of Yukawa couplings
to the IR fixed points in asymptotically divergent models
was observed in Refs. [31,38,39,49] and the b − τ Yukawa
coupling unification in the MSSM with vectorlike matter
was recently discussed in Ref. [50].
This paper is organized as follows. In Sec. II, we discuss

model parameters and assumptions, provide approximate
formulas for the RG equations of Yukawa couplings and
SUSY threshold corrections and summarize details of the
numerical analysis. The main results and their discussion
are contained in Sec. III and we conclude in Sec. IV.

II. MODEL PARAMETERS, RG EQUATIONS
AND PROCEDURE

We start exploring predictions for top, bottom and
tau Yukawa couplings with the following set of model
parameters:

MG; M; tan β; ð1Þ

representing the GUT scale, the common mass of vector-
like matter and superpartners, M ≡MV ¼ MSUSY, and the
ratio of vacuum expectation values of the two Higgs
doublets, tan β ¼ vu=vd; together with

αG; ϵ; Y0; YV; ð2Þ

denoting the unified value of gauge couplings at the GUT
scale, the GUT scale threshold correction to gauge cou-
plings and the GUT scale boundary conditions for the
common Yukawa coupling of top, bottom and tau,

ytðMGÞ ¼ ybðMGÞ ¼ yτðMGÞ≡ Y0; ð3Þ

and the common Yukawa coupling of vectorlike matter. We
neglect Yukawa couplings of first two SM generations.
We define the GUT scale as the scale where α1 and α2

differ from α3 by equal amounts and we identify αG with α3
at this scale:

αG ¼ α3ðMGÞ;
α2ðMGÞ ¼ αGð1þϵÞ; α1ðMGÞ ¼ αGð1 − ϵÞ. ð4Þ

This is different than the common definition of the GUT
scale as the scale where α1ðMGÞ ¼ α2ðMGÞ. We prefer the
above definition since it places the GUT scale close to the
middle of the interval determined by scales where two
individual couplings meet rather than at the lower edge of
this interval as with the common definition. In addition, it is
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α3 that plays the most important role in the RG evolution of
Yukawa couplings. Nevertheless, this choice does not have
a significant effect on the presented results.
The RG evolution of the third generation Yukawa

couplings will be affected by possible Yukawa couplings
of vectorlike fields. Motivated by the possibility of embed-
ding the whole generation of SM fields into 16 dimensional
representation of SO(10) and assuming no mixing between
the third generation and vectorlike matter, there can be two
unified Yukawa couplings of vectorlike fields at the GUT
scale: Y for fields with the same quantum numbers as the
SM fields and Ȳ for fields with conjugate quantum
numbers. The Yukawa part of the superpotential can be
summarized as

W ⊃ Y016310H163 þ Y1610H16þ Ȳ 16 10H16; ð5Þ

where the third generation SM fields originate from 163, the
two Higgs doublets from 10H and the vectorlike fields from
16 and 16. Below the GUT scale, the Yukawa couplings of
individual fields will evolve according to their correspond-
ing RG equations. Labeling the additional couplings of
vectorlike fields, Y and Ȳ, with subscripts corresponding to
individual fields, the 1-loop RG equations for top, bottom
and tau Yukawa couplings are

dyt
dt

¼ yt
16π2

�
3y�t yt þ y�byb þ THu

−
16

3
g23 − 3g22 −

13

15
g21

�
;

ð6Þ
dyb
dt

¼ yb
16π2

�
3y�byb þ y�t yt þ THd

−
16

3
g23 − 3g22 −

7

15
g21

�
;

ð7Þ
dyτ
dt

¼ yτ
16π2

�
3y�τyτ þ THd

− 3g22 −
9

5
g21

�
; ð8Þ

where t ¼ lnQ=Q0, with Q being the RG scale, and

THu
≡ 3y�t yt þ 3Y�

UYU þ 3Ȳ�
DȲD þ Ȳ�

EȲE; ð9Þ

THd
≡ y�τyτ þ 3y�byb þ 3Ȳ�

UȲU þ 3Y�
DYD þ Y�

EYE; ð10Þ

represent the sums of Yukawa couplings squared of all
the fields that couple to the corresponding Higgs doublet.
Note that, because of conjugate quantum numbers, the
fields from 16 couple to Higgs doublets in a flipped way
compared to fields in 16. The conjugate down quark and
charged lepton from 16 couple to Hu while conjugate up
quark couples to Hd. The RG equations for Yukawa
couplings of vectorlike fields can be obtained from those
above with obvious replacements. We assume that all SM
singlets (right handed neutrinos) remain at the GUT scale
and thus do not contribute in the RG evolution to low
energies (assuming these fields to be present to an

intermediate scale would not have a qualitative impact
on presented results). Furthermore, for simplicity and also
not to favor contributions to the top or bottom Yukawa
couplings in the RG evolution, we assume Y ¼ Ȳ ≡ YV at
the GUT scale.
We will see that the three parameters in Eq. (1) are the

most important for the EW scale values of standard model
Yukawa couplings while those in Eq. (2) affect the EW scale
values very little and are only needed for precisely repro-
ducing the measured values. Identifying MSUSY with the
scale of vectorlike matter, MV , is only done for simplicity
and the results do not differ much as long as these two scales
are comparable (after presenting the main results, we will
explore the effects of splitting MSUSY from MV). Similarly,
the assumption of a common scale of vectorlike matter does
not have a significant impact on the predicted fermion
masses. A split spectrum of vectorlike matter (e.g., the
spectrum obtained from the RG evolution starting with a
unified vectorlike mass term at the GUT scale, MV1616)
would result in logarithmic threshold corrections to the third
generation Yukawa couplings.2 Unless the splitting is
significant these effects are small and can be easily com-
pensated for by small changes in other model parameters.
Thus we will not consider these possibilities.
However, the assumption of a common scale for super-

partners has a significant impact, especially on the pre-
dicted bottom quark mass, through finite SUSY threshold
corrections [5–7,27]. We match the SM top, bottom and tau
Yukawa couplings to those in the MSSMþ 1VF at the
MSUSY scale:

yt;SMðMSUSYÞ ¼ ytðMSUSYÞ sin βð1þ ϵtÞ; ð11Þ
yb;SMðMSUSYÞ ¼ ybðMSUSYÞ cos βð1þ ϵbÞ; ð12Þ
yτ;SMðMSUSYÞ ¼ yτðMSUSYÞ cos βð1þ ϵτÞ; ð13Þ

where ϵt;b;τ are SUSY threshold corrections. Typically
dominant contributions are from gluino-stop loops for
the top quark,

ϵt ≃
2α3
3π

Mg̃μ cot βIðm2
t̃;1; m

2
t̃;2;M

2
g̃Þ; ð14Þ

gluino-sbottom and chargino-stop loops for the bottom
quark,

ϵb ≃
2α3
3π

Mg̃μ tan βIðm2
b̃;1
; m2

b̃;2
;M2

g̃Þ

þ y2t
16π2

Atμ tan βIðm2
t̃;1; m

2
t̃;2; μ

2Þ; ð15Þ

2The impact of the assumption of a common vectorlike mass at
the EW scale versus the GUT scale on gauge couplings in this
scenario was studied in Ref. [31]. The common mass at the GUT
scale leads to an improvement in gauge coupling unification.
However the difference is not dramatic.
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and bino-stau loops for the tau lepton,

ϵτ ≃
α1
4π

MB̃μ tan βIðm2
τ̃;1; m

2
τ̃;2;M

2
B̃
Þ; ð16Þ

where subscripts 1 and 2 label two mass eigenstates of
corresponding scalars and

Iða; b; cÞ≡ ab lnða=bÞ þ bc lnðb=cÞ þ ac lnðc=aÞ
ða − bÞðb − cÞða − cÞ : ð17Þ

The SUSY threshold corrections for the top Yukawa
coupling are small in the large tan β region characteristic for
Yukawa coupling unification. The corrections are also
small for the tau Yukawa coupling since they are propor-
tional to α1. However, for the bottom Yukawa coupling,
they are of order 1% × tan β and typically in the 30%–40%
range assuming comparable superpartner masses. In the
limit where all superpartner masses are equal, given by
MSUSY, the chargino correction is an order of magnitude
smaller than the gluino correction for A-terms as large as
MSUSY.

3 In addition,whether the chargino correction adds to
or subtracts from the gluino correction depends on the
relative sign of the A-term and gluino mass and thus, for
simplicity we assume zero A-terms when presenting main
results. In the limit of degenerate superpartner masses the
loop function also simplifies, IðM2;M2;M2Þ ¼ 0.5 M−2.
Finally, electroweak symmetry breaking requires μ2 ≃
−m2

Hu
and the typical result from the RG flow over few

orders ofmagnitude in the energy scale ism2
Hu

≃−m2
t̃L
−m2

t̃R
,

see e.g., Ref. [42]. Thus, the typical expectation is μ ≃
� ffiffiffi

2
p

MSUSY with either sign. With these assumptions and
simplifications the approximate formulas for the SUSY
threshold corrections are

ϵt ≃
ffiffiffi
2

p
α3

3π
sgnðμÞ cot β; ð18Þ

ϵb ≃
ffiffiffi
2

p
α3

3π
sgnðμÞ tan β; ð19Þ

ϵτ ≃
ffiffiffi
2

p
α1

8π
sgnðμÞ tan β; ð20Þ

fromwhich the typical sizes can be readily obtained. For any
specific SUSY breaking scenario the SUSY corrections
could be evaluated precisely. However, the above formulas
should be a good approximation in large regions of the
parameter space of scenarios with both high and low
mediation scales of SUSY breaking. In addition to the main
results assuming a common scale of superpartners we will

explore the impact of splitting gaugino masses from scalar
masses. Furthermore, wewill also present results in terms of
the required SUSY correction to the bottom quark mass that
could be used in a variety of scenarios that are not
approximated well by our assumptions.
In the numerical study we use 3-loop RG equations for

gauge couplings and 2-loop RG equations for the third
generation Yukawa couplings and Yukawa couplings of
vectorlike fields [34,51–56]. All the particles above the EW
scale are integrated out at their corresponding mass scales.
The complete set of SUSY threshold corrections to the third
generation Yukawa couplings (for which the approximate
formulas can be found above) is included at the MSUSY

scale [5–7,27,57] with the assumption that μ ¼ −
ffiffiffi
2

p
MSUSY

(we will see that only the negative sign is consistent with
Yukawa coupling unification assuming comparable super-
partner masses). When fitting the central values of gauge
couplings and fermion masses we use as an input:
α−1EMðMZÞ¼ 127.955, sin2θW¼0.2312, α3ðMZÞ ¼ 0.1181,
mt¼173.1GeV, mbðmbÞ¼4.18GeV and mτ ¼ 1.777GeV,
where mt and mτ are pole masses [58].

III. RESULTS

The evolution of top, bottom and tau Yukawa couplings
in the MSSMþ 1VF are shown in Fig. 1 for αG ¼ 0.2 and
three universal boundary conditions for all Yukawa cou-
plings, Y0 ¼ YV . We see that the IR fixed point is very
effective for all three Yukawa couplings since their EW
scale values are barely distinguishable even in the zoomed-
in plot. In addition, for the Y0 ¼ 3 case, we show how little
the predicted values change for order one changes in the
other GUT scale parameters: the changes in the RG
evolution resulting from varying YV between 4 and 2 are
indicated by shaded regions and from varying αG in the
�30% range around αG ¼ 0.2 by dashed lines.

A. IR fixed point predictions for top,
bottom and tau Yukawa couplings

The top and bottom Yukawa couplings run to fixed ratios
with respect to gauge couplings and thus their values at low
energies are almost entirely given by the values of gauge
couplings. The approximate formula for the top Yukawa
coupling can be obtained from

dy2t =α
dt

¼ 0; ð21Þ

where

α≡ α3 þ
9

16
α2 þ

13

80
α1 ð22Þ

is the combination of gauge couplings, αi ¼ g2i =4π, appear-
ing in the RG equation for yt, Eq. (6). If we assume that all
Yukawa couplings have the same boundary condition, then

3For very large A-terms the chargino correction can be
comparable to gluino correction or even dominate. The region
of the parameter space in the MSSM where gluino and chargino
corrections almost cancel leading to successful Yukawa coupling
unification was explored in Refs. [9–12].
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the only difference in the RG evolution of up-type (coupling
toHu) and down-type (coupling toHd) couplings of quarks
is due to hypercharge, see Eqs. (6)–(7), and the contribution
of yτ in the THd

affecting down-type Yukawa couplings.
Both of these effects are small, resulting only in tiny
differences at low energies. This is the reason why the
EW scale values of top and bottom Yukawa couplings in
Fig. 1 are almost identical.4 Neglecting lepton Yukawa
couplings and differences from hypercharge, the IR fixed
point value for the top Yukawa coupling, obtained from
Eq. (21) and the 1-loop RG equation for top Yukawa
coupling Eq. (6), is given by:

sq
4π

y2t;IR ¼ 16

3
αþ 2π

α

dα
dt

; ð23Þ

where sq is the number of y�y factors of large up-type quark
Yukawa couplings. In our case sq ¼ 13. Inserting the 1-loop
RG equations for gauge couplings, dαi=dt ¼ ðbi=2πÞα2i ,

with the beta function coefficients bi ¼ ð53=5; 5; 1Þ corre-
sponding to the MSSMþ 1VF, we find

y2t;IR
4π

¼ 16

39
αþ 1

α

�
1

13
α23 þ

45

208
α22 þ

53

400
α21

�
: ð24Þ

For αG > 0.2 this approximation differs from the precise
numerical value by about 2%. Furthermore, the formula can
be improved by including 2-loop terms in dα=dt. Including
just the dominant 2-loop term, proportional to α33, from the
RGequation ofα3, results in the extra term,178α33=ð39αÞ, on
the right-hand side of Eq. (24). Such an approximation
agrees with the precise numerical value within 0.5%.
Including all 2-loop gauge terms in dα=dt leads to a formula
that agrees with the numerical result within 0.1%.
These findings indicate that 1-loop RG equations for top

or bottom Yukawa couplings would be sufficient for precise
predictions far below the GUT scale. However, in order to
obtain the precise value of α3 (and thus the IR fixed point
ratio for Yukawa couplings) the 2-loop terms in the RG
equations of gauge couplings are needed. The fast approach
of the top Yukawa coupling to the IR fixed point from a
large range of boundary conditions for αG and common
Yukawa coupling is visualized in Fig. 2 (left). In just about
six orders of magnitude of RG running, the top Yukawa
coupling is very close to the IR fixed point (dashed lines) and
the IR fixed point is reached before the EW scale for any
αG > 0.1 and Y0 > 0.5. The plotted IR fixed point relation
between the top Yukawa coupling and gauge couplings
includes 2-loop gauge terms in dα=dt. Since the IR fixed
point value is effectively shared by large Yukawa couplings
of a given type, the Eq. (23) remains a very good approxi-
mation as long as Y0 is comparable to YV .
It is instructive to compare different definitions of the IR

fixed point of the top Yukawa coupling. The original
definition, referred to as the IR stable fixed point or
Pendleton-Ross fixed point [59], corresponds to Eq. (21)
with α replaced by α3 and using 1-loop beta function for α3.
In our model, it would be Eq. (24) with α1;2 set to zero.
However, it was realized that in practice such a value is not
reached by the top Yukawa coupling in the SM (or MSSM)
starting with a large boundary condition, because of a slow
approach. Instead, a quasi fixed point was introduced as a
value that is reached starting from large boundary conditions
at the GUT scale [60] (for a discussion, see also Ref. [61]).
Solving the 1-loop RG equations for the top Yukawa and
gauge couplings we find

y2t ðQÞ ¼ y2t ðMGÞEðQÞ
1þ sqy2t ðMGÞ

8π2

RMG
Q EðQ0ÞdQ0

; ð25Þ

where EðQÞ ≡ ð1 þ β3 lnðMG=QÞÞ16=3b3ð1 þ β2 lnðMG=
QÞÞ3=b2ð1 þ β1 lnðMG=QÞÞ13=15b1 with βi ≡ αGbi=2π.
Taking the limit of ytðMGÞ → ∞ we get the formula for
the quasi fixed point

3 3.5 4 4.5 5
0.2

0.4

0.6

0.8

1.0

1.2

log10 E [GeV]

y τ
,y

b
,y

t

2 4 6 8 10 12 14 16

0.5

1.0

1.5

2.0

2.5

3.0

log10 E [GeV ]

y τ
,y

b
,y

t

tan = 30–45

Y0 1

Y0 2

Y0 3

FIG. 1. RG evolution of yt (blue), yb (orange) and yτ (green) in
the MSSMþ 1VF for αG ¼ 0.2 assuming three universal boun-
dary conditions for allYukawa couplings,Y0 ¼ YV . For theY0 ¼ 3
the RG evolution is also shown for varying YV between 4 and 2
(shaded ranges) and varying αG in the �30% range around αG ¼
0.2 (dashed lines). No thresholds from superpartners or vectorlike
matter are assumed. The dashed lines and shaded regions at low
energies show the evolution of yt (black), yb (upper gray) and yτ
(lower gray) obtained from the measured fermion masses for tan β
between 30 and 45 assuming that all superpartners and Higgs
bosons except the SM-like one are at the corresponding RG scale.
The inset zooms in on the region at low energies. The blue highlight
shows the range ofM required by yt for thevariations of αG andYV .

4Similarly, since vectorlike quark Yukawa couplings have
almost identical RG equations to the top and bottom Yukawa
couplings up to hypercharge contributions, assuming the same
boundary conditions their RG evolution will be almost identical.
Thus, we do not include them in Fig. 1. For the same reason, the
RG evolution of vectorlike lepton Yukawa couplings is almost
identical to that of the tau Yukawa coupling. The IR fixed point
discussion for top, bottom, and tau Yukawa couplings below
equally applies to the corresponding vectorlikeYukawa couplings.
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y2t ðQÞ ¼ 8π2EðQÞ
sq

RMG
Q EðQ0ÞdQ0 : ð26Þ

As mentioned, in the SM or the MSSM the difference
between Eqs. (26) and (21) is significant because of the slow
approach to the IR fixed point and Eq. (26) is an excellent
approximation of the IR fixed point value of the top Yukawa
coupling. In the MSSMþ 1VF, the IR fixed point is
approached very rapidly and the approximations based on
Eq. (21) using 1-loop RG equations for gauge couplings and
Eq. (26) agree at 0.1% level for αG > 0.2. However, Eq. (26)
is not a good approximation to the precise numerical value
since 2-loop effects are sizable in the MSSMþ 1VF. Since
2-loop or higher order terms can be incorporated in Eq. (21),
this remains an excellent approximation of the IR fixed point.
As already mentioned, the evolution of the bottom

Yukawa coupling is almost identical to the top Yukawa.
Numerically, far away from the GUT scale, yb is typically
about 0.5% smaller than yt. This remains to be the case also
if Y0 ≠ YV . However, the tau Yukawa coupling does not
run to the IR fixed point characterized by a fixed ratio with
respect to gauge couplings, but rather to the trivial IR
fixed point.
From Eq. (8) and Fig. 1 we see that the tau Yukawa

coupling is driven to smaller values by large quark Yukawa
couplings that couple toHd. The contributions of α2 and α1
gauge couplings and lepton Yukawa couplings are much
smaller, especially far below the GUT scale. Since the
quark Yukawa couplings are driven to the IR fixed point set
by gauge couplings, most importantly by α3, also the tau
Yukawa coupling is almost entirely determined by values of

gauge couplings far below the GUT scale. However, as
characteristic for a trivial fixed point, the value of the tau
Yukawa depends also on αG and how far below the GUT
scale it is evaluated. This can be seen in Fig. 2 (right). The
tau Yukawa coupling approaches the same value very fast
(similar to the top Yukawa coupling) from a large range of
boundary conditions of Yukawa couplings, but the value is
slightly different for different αG.
An insight to the general behavior of yτ can be obtained

from the RG equation of lnðy2τ=y2t Þ where we neglect
everything except quark Yukawa couplings and α3 and
approximate all quark Yukawa couplings by the top
Yukawa fixed point value. Assuming universal GUT scale
boundary conditions for Yukawa couplings and using the
solution of the 1-loop RG equation of α3, we get

y2τðMZÞ
y2t ðMZÞ

∼
1

½1þ ðαG=2πÞ lnðMG=MZÞ�132=39
: ð27Þ

As anticipated, the ratio of y2τ to quark Yukawa couplings
squared (or to gauge couplings) is decreasing for larger αG
and further away from the GUT scale it is evaluated.5

So far we have not included the threshold effects from
superpartners or vectorlike matter, the same particle content
is assumed all the way to the EW scale. As a result, the
gauge couplings do not reproduce the measured values
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FIG. 2. The RG flow of the top Yukawa coupling (left) and tau Yukawa coupling (right) in the α3-yt;τ planes for boundary conditions at
MG ¼ 3 × 1016 GeV: αG ¼ 0.1, 0.2, 0.3 and Y0 ¼ 0.5, 1, 2, 3, assuming YV ¼ Y0. The three black arrows on each line indicate values
of α3 and yt;τ at 1014 GeV, 1012 GeV and 1010 GeV. The last (red) arrow on each line indicates the values at theMZ scale where the RG
evolution ends. Dashed lines in (a) correspond to the IR fixed point relation between the top Yukawa coupling and gauge couplings
given in Eq. (23) including 2-loop gauge terms in dα=dt.

5The formula above is just a very rough approximation
intended for the illustration of general behavior of yτ. It is not
suitable as an approximation of the actual value of yτ at the
EW scale. The effects of other gauge couplings and lepton
Yukawa couplings in the RG flow are not negligible.
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exactly. This is intentional since we want to infer the scale
of superpartners and vectorlike matter from the IR fixed
point values of Yukawa couplings. In order to do this, with
dashed lines and shaded regions at low energies in Fig. 1,
we plot the evolution of yt (black), yb (upper gray) and yτ
(lower gray) obtained from themeasured fermionmasses for
tan β between 30 and 45 assuming that all superpartners and
Higgs bosons except the SM-like one are at the correspond-
ing RG scale. They are obtained from Eqs. (11)–(13) by
identifying theMSUSY scale with the RG scale.6 For the top
quark, the whole region of tan β ≳ 10 is essentially the same
line and thus the top quark IR fixed point is the most
restrictive on the scale of superpartners and vectorlike
matter. The range of M required by the top quark mass
for the abovementioned variations of GUT scale parameters
is indicated by the vertical shaded band.
Interestingly, the multi-TeV range ofM suggested by the

top quark mass coincides with the range already suggested
by the gauge couplings [31] and is also compatible with the
Higgs boson mass. In addition, predicted values of the
bottom and tau Yukawa couplings in this energy range are
within gray shaded regions indicating that the resulting

bottom and tau masses will not be far from measured values
for tan β ∼ 40.

B. Fits to low energy observables
and the scale of new physics

The next step is to determine the region of model
parameters leading to exact Yukawa coupling unification
while still keeping a high degree of universality in model
parameters M ≡MSUSY ¼ MVF. One of the fermion
masses can always be reproduced precisely for some value
of tan β. Since the tau mass receives only small corrections
from superpartners and is known the most precisely we
choose to fix tan β to obtain the central value of mτ. In
Fig. 3 we then plot the contours of predicted mt and mb in
the Y0-αG plane along which the measured central values,
�1% and �2% ranges are obtained. All three gauge
couplings are fit to their central values for the values of
MG, M and ϵ plotted with dashed lines in (a). Contours of
constant tan β required to fit mτ are shown in (b). Since mb
is the most sensitive to SUSY spectrum, in (b) we also
indicate values of ϵb that would be required to obtain the
measured value of mb everywhere in the Y0-αG plane.
From Fig. 3 we see that the third generation Yukawa

couplings successfully unify for values of model param-
eters near the crossing of the solid lines corresponding to
central values of top and bottom masses. Note, the current
experimental uncertainty for the top quark mass is about
half of the shaded region while for the bottom quark
it coincides with the shaded range. In this plot YV is

(a) (b)

FIG. 3. Contours of predicted mt (blue) and mb (orange) in the Y0-αG plane for fixed YV ¼ 2. Solid lines correspond to the measured
central values, shaded areas represent�1% ranges and dotted lines correspond to�2% ranges. Themτ and all three gauge couplings are
fit to the measured central values everywhere in the plane for the values of input parameters plotted with dashed lines: ϵ,MG andM in (a)
and tan β in (b). In (b) we also show contours of constant ϵb that would be required to obtain the measured value of mb.

6Note that these do not represent RG evolutions of Yukawa
couplings in any model (neither in the MSSM nor in the SM), but
rather evolutions of the combination of model parameters that
have to match Yukawa couplings in the MSSMþ 1VF at the
correct scale of new physics in order to obtain measured fermion
masses. We use the crossing point of the RG evolution of this
quantity and the corresponding Yukawa coupling in the MSSMþ
1VF to infer M.
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fixed to 2. Different choices of YV would slowly move the
region where top and bottom quark masses are correctly
reproduced up and down in the plane. Alternatively, we can
use YV to fit the central value of the top quark mass
everywhere in the plane. Contours of the predicted bottom
quark mass with all other observables fit to central values
are shown in Fig. 4. We also show contours of the required
YV and a subset of other model parameters. Those not
shown have similar values as in Fig. 3.

Perhaps more interesting than the Yukawa coupling
unification itself is the fact that the unification is possible
with large boundary conditions for both gauge and Yukawa
couplings. It means that the EW scale values are very
insensitive to the boundary conditions due to the IR fixed
point behavior discussed above. This can also be inferred
from the large size of the parameter space leading to the top
quark mass in 1% or 2% ranges around the central value in
Fig. 3. Moreover, from the shaded range of the bottom
quark mass in Fig. 4 we see that for Yukawa couplings
larger than one, the preferred range of superpartners and
vectorlike matter is 3 TeV to 30 TeV, with larger couplings
favoring smaller scales of new physics. This mass range is
also compatible with the Higgs boson mass.
Another interesting feature is that the required SUSY

correction to mb in the whole plotted plane is in the range
that is generically achieved with comparable values of
SUSY parameters. Thus, no extreme regions of SUSY
parameters are required to simultaneously obtain all three
fermion masses correctly. This is important, since due to the
IR fixed point nature, there are no other parameters that can
affect the fermion masses significantly.
Splitting gaugino and scalar masses can actually be used

to fit the bottom quark mass everywhere in the plane.
Defining R̃ parameter as the ratio of gaugino masses and
scalar masses and still, for simplicity, assuming that scalar
masses are the same as vectorlike quark and lepton masses,
this is illustrated in Fig. 5which shows themodel parameters
required to fit the central values of all three gauge couplings
and three fermion masses everywhere in the Y0-αG plane.
We see that splitting gaugino and scalarmasses by less than a
factor of two is sufficient to get all three fermion masses at

(a) (b)

FIG. 5. Contours of constant values of model parameters required to fit the central values of three gauge couplings and third generation
fermion masses in the Y0-αG plane. Parameters mostly related to gauge couplings are shown in (a) and those mostly related to fermion
masses are shown in (b). The R̃ is the ratio of gaugino masses and scalar masses with scalar masses set to MV .

FIG. 4. Similar to Fig. 3 but with the top quark mass also fit to
the measured central value everywhere in the plane for values of
YV indicated by the dashed blue lines.
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central values from the unified Yukawa coupling every-
where in the plane. No extreme regions of SUSYparameters
or large hierarchies are required.
Finally, let us explore the effects of splitting the common

scale of superpartners, MSUSY, from the common scale of
vectorlike masses, MVF. These effects are generically very
mild unless the level of splitting is huge. Even an order of
magnitude changes inMSUSY orMVF have only a tiny impact
onmt, at most a few percent effect onmb and of order 10%
effect on mτ when other parameters are fixed. Instead of
showing this we can use the ratio MSUSY=MV as a free
parameter and see how other parameters have to compensate
for this change in order to fit fermion masses. In Fig. 6 we
plot the predicted mb in the MSUSY=MV-αG plane together
with contours of model parameters required to fit the central
values of top and tau masses in addition to gauge couplings.
In these plotswe fixYV ¼ 1. Larger values ofYV would shift
themb contour slightly up and smaller values slightly down.
The position of the correct bottom quark mass for different
YV can be easily estimated by comparing with Fig. 4. For
guidance, the edge of the shaded gray area in Fig. 6(a)
corresponds to the contour of the measured central value of
mb for YV ¼ 2.5 (and requires Y0 ≃ 3.5). Inside the gray
shaded region the Y0 required to fit the central value of the
bottom quark mass grows rapidly. The gray solid line in the
bottom left corner corresponds to themeasured central value
ofmb for YV ¼ 0.5. We show these additional contours only
in Fig. 6(a) since the model parameters displayed there are

driven mostly by gauge couplings and depend negligibly on
YV .

7 The parameters shown in Fig. 6(b) are mostly related to
fermion masses and would be affected by changing YV .
We see that predictions for fermion masses indeed do not

depend much on how the scale of superpartners is split from
vectorlike masses. Exact Yukawa coupling unification can
be achieved in large ranges of MSUSY and MV for slightly
different values of unified gauge and Yukawa couplings.
BothMSUSY andMV are preferred in a multi-TeV range that
starts from about 2 TeV for large values of Y0, YV and αG.
Furthermore, the required MSUSY and MV are somewhat
anti-correlated: smaller MSUSY prefers larger MV and vice
versa. These finding aremostly driven by fitting themeasure
values of gauge couplings [31], with fermion masses further
constraining the preferred range. Lowering Yukawa cou-
plings to 1, the range of MV extends to about 8 TeV for
αG > 0.2 and up to about 45 TeV for αG ¼ 0.1whileMSUSY
can be an order of magnitude smaller or larger depending on
αG. For any αG > 0.2 either superpartners or vectorlike
matter is expected within 3 TeV. Further decreasing the
Yukawa couplings (or αG) requires larger scales of new

(a) (b)

FIG. 6. Contours of predicted mb (orange) in the MSUSY=MV-αG plane for fixed YV ¼ 1. Solid line corresponds to the measured
central value, shaded area represent�1% range and dotted lines correspond to�2% range. Themt,mτ and all three gauge couplings are
fit to the measured central values everywhere in the plane for the values of input parameters plotted with dashed lines:MG,M and ϵ in (a)
and Y0 and tan β in (b). In (b) we also show contours of constant ϵb that would be required to obtain the measured value ofmb. The edge
of the shaded gray area in (a) corresponds to the contour of measured central value of mb for YV ¼ 2.5 (that requires Y0 ≃ 3.5) and the
gray solid line in the bottom left corner corresponds to mb for YV ¼ 0.5.

7Note, however, that large Yukawa couplings result in an
improvement of gauge coupling unification. The required GUT
scale threshold correction is significantly smaller than without
extra Yukawa couplings [31]. The improvement is mostly the
result of contributions of Yukawa couplings to α1 and α2 over
the whole range of RG evolution and depends very little on the
boundary conditions as long as they are large.
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physics. However, in this limit, the understanding of the
third generation fermionmasses as IR fixed points gradually
fades away. We should keep in mind, however, that these
results assume the typical SUSY corrections resulting from
comparable SUSY spectrum and different assumptions
about soft SUSY breaking terms or the μ-term could shift
the preferred range of model parameters as indicated (by ϵb)
in Fig. 6(b) and previous figures.

IV. CONCLUSIONS

We have found that in the MSSM extended by a complete
vectorlike family, precise top, bottom and tau Yukawa
coupling unification can be achieved with a large unified
coupling, implying that all three fermion masses can be
simultaneously close to their IR fixed points. All three
Yukawa couplings approach IR fixed points rapidly from a
large range of boundary conditions both above and below their
IR fixed point values. Furthermore, the unification is possible
assuming SUSY threshold corrections which are typical for
comparable superpartner masses and thus no hierarchies or
specific relations among SUSY parameters are required.
The simplest scenario assumes a common scale of new

physics (superpartner masses and masses of vectorlike
fermions). This scale, together with the GUT scale and
tan β are the most important parameters determining the EW
scale values of the top, bottom and tau Yukawa couplings
while others affect the EW scale values very little, as a result
of the IR fixed point behavior, and are only needed for
precisely reproducing the measure values. For unified
Yukawa couplings of order one or larger, the preferred scale
of superpartners and vectorlike matter is in the 3 TeV to
30 TeV range, with larger couplings favoring smaller scales
of new physics. The required scale of new physics and the
GUT scale are to a large extent driven by fitting the measure
values of gauge couplings [31] with fermion masses further
constraining the preferred range. Due to the IR fixed point
behavior it is highly non-trivial that Yukawa couplings point
to a similar scale of new physics as gauge couplings.
Furthermore, the multi-TeV scale for superpartners is
independently suggested by the Higgs boson mass.
Abandoning the simple assumption of a common scale

of new physics, the results do not differ much as long as
superpartner masses and vectorlike masses remain compa-
rable.BothMSUSY andMV are preferred in amulti-TeV range
that starts from about 2 TeV for large values of unified

Yukawa couplings and αG. LoweringYukawa couplings to 1,
the range ofMV extends to about 8 TeV for αG > 0.2 and up
to about 45 TeV for αG ¼ 0.1 whileMSUSY can be an order
of magnitude smaller or larger depending on αG. For any
αG > 0.2 either superpartners or vectorlike matter is
expected within 3 TeV. Further decreasing the Yukawa
couplings (or αG) requires larger scales of new physics.
However, in this limit, the understanding of the third
generation fermion masses as IR fixed points gradually
fades away.
The above motivation for the scale of superpartners and

vectorlike matter is based completely on the measured
values of the third generation fermion masses together with
gauge couplings and does not take into account any biases
related to naturalness of EW symmetry breaking. It
coincides with the only hint for the scale of superpartners
we have so far (the Higgs boson mass). Not assuming any
specific SUSY breaking/mediation model, many scenarios
with basic features similar to those we considered are
sufficiently complex that the needed hierarchy between
the EW scale and the scale of new physics does not
require model parameters to be selected with any special
care [62,63].
Although the preferred scale of superpartners and vector-

like matter is in a multi-TeV range, any of the new particles
can be within the reach of the LHC since the prediction for
a Yukawa or gauge coupling depends on a weighted geo-
metric mean of masses of particles contributing in its RG
evolution. Based on the RG evolution, vectorlike leptons
and both MSSM and vectorlike sleptons are expected at the
bottom of the spectrum. Similarly, extra Higgs bosons
resulting from the two Higgs doublets may be light. Thus,
in addition to the usual searches for either vectorlike matter
or heavy Higgs bosons, combined signatures of both
sectors are of particular importance since the sensitivity
for some of those extends to several TeV [64,65].
The model we consider is certainly more complex than

the MSSM. Nevertheless, it offers a simple understanding
of gauge and the third generation Yukawa couplings in
terms of scales of new physics.
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