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We study oscillations of Dirac neutrinos in background matter and a plane electromagnetic wave. First,
we find the new exact solution of the Dirac-Pauli equation for a massive neutrino with the anomalous
magnetic moment electroweakly interacting with matter under the influence of a plane electromagnetic
wave with the circular polarization. We use this result to describe neutrino spin oscillations in the external
fields in question. Then we consider several neutrino flavors and study neutrino spin-flavor oscillations in
this system. For this purpose we formulate the initial condition problem and solve it accounting for the
considered external fields. We derive the analytical expressions for the transition probabilities of spin-flavor
oscillations for different types of neutrino magnetic moments. These analytical expressions are compared
with the numerical solutions of the effective Schrödinger equation and with the findings of other authors.
In particular, we reveal that a resonance in neutrino spin-flavor oscillations in the considered external fields
cannot happen contrary to the previous claims. Finally, we briefly discuss some possible astrophysical
applications.
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I. INTRODUCTION

Nowadays it is commonly believed that neutrinos possess
nonzero masses and mixing between different flavor eigen-
states [1]. These properties of neutrinos result in transitions
between neutrino flavors, which are called neutrino flavor
oscillations [2]. Neutrino flavor oscillations are known to
happen even in vacuum, i.e., at the absence of external fields.
As constituents of the standard model, neutrinos can

interact with other fermions, which a background matter
is made of, by exchanging virtualW andZ bosons. This kind
of interaction, although it is quite weak, can significantly
influence the process of neutrino flavor oscillations resulting
in the resonance enhancement of the transition probability,
known as theMikheyev-Smirnov-Wolfenstein (MSW) effect
[3]. The MSW effect is believed to be the most plausible
solution to the solar neutrino problem [4].
Despite neutrinos are electrically neutral particles, noth-

ing prevents them to have nonzero magnetic moments
[5,6], which are of a pure anomalous origin. Neutrino
magnetic moments result in the particle spin precession in
an external electromagnetic field. Thus, a left polarized

neutrino, which exists in the standard model, can be trans-
formed to a right polarized particle, invisible to the detectors.
If this process happens within one neutrino generation, it is
called neutrino spin oscillations [5]. There is a possibility
for neutrinos to change both flavor and the polarization in an
external electromagnetic field. In this situation, these tran-
sitions are named neutrino spin-flavor oscillations. Neutrino
spin and spin-flavor oscillations were recently reviewed in
Ref. [7].
Neutrino spin-flavor oscillations were studied mainly in

a constant magnetic field, which is transverse with respect
to the neutrino motion. However, other nontrivial configu-
rations of the electromagnetic field, like an electromagnetic
wave are of interest. This interest is inspired, e.g., by the
suggestion in Refs. [8,9] to explore the neutrino evolution
in intense laser pulses. Note that the study on the develop-
ment of intense lasers in Ref. [10] was recognized by the
Nobel committee in 2018.
Neutrino spin and spin-flavor oscillations in matter and

an electromagnetic wave were previously discussed in
Refs. [11,12] Recently, we demonstrated in Ref. [13] that
the results of Ref. [11] are not applicable for the description
of spin-flavor oscillations. In the present work, we continue
the study of Ref. [13]. However, besides the neutrino
interaction only with a plane electromagnetic wave [13],
now we account for the electroweak interaction of neutrinos
with background matter. As in Ref. [13], here we suppose
that neutrinos are Dirac particles. Despite multiple models
for the neutrino mass generation predict that neutrinos are
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likely to be Majorana fermions [14], the nature of these
particles is still unclear [15].
This paper is organized as follows. We start in Sec. II

with the basics of neutrino electrodynamics in background
matter. Then, in Sec. III, we find the new exact solution of
the wave equation for a single neutrino mass eigenstate
interacting with matter and a plane electromagnetic wave
with the circular polarization. The obtained results are
applied in Sec. IV to describe neutrino spin oscillations
in the considered external fields. Then, in Sec. V, we
study neutrino spin-flavor oscillations in matter and a
plane electromagnetic wave, with the diagonal magnetic
moments being greater than the transition one. The opposite
situation, when the transition magnetic moment is domi-
nant, is considered in Sec. VI. Some possible astrophysical
applications are also briefly discussed in Sec. VI. Finally,
in Sec. VII, we summarize our results.

II. NEUTRINO INTERACTION WITH
EXTERNAL FIELDS

In this section, we briefly recall how neutrinos can
interact with background matter and an external electro-
magnetic field. We consider these interactions both in
flavor and mass eigenstates bases.
Without loss of generality, we shall study the system of

two massive neutrinos ðνα; νβÞ with a nonzero mixing. For
example, we can take that να ≡ νμ;τ and νβ ≡ νe. These
neutrinos can electroweakly interact with backgroundmatter
consisting of electrons, protons, and neutrons. The back-
groundmatter is supposed to be nonmoving and unpolarized.
Moreover, we shall take that neutrinos have nonzero mag-
netic moments and can interact with the external electro-
magnetic field Fμν ¼ ðE;BÞ.
The Lagrangian for the system of these neutrinos has the

form,

L ¼
X

λλ0¼α;β

ν̄λ

�
δλλ0 iγμ∂μ −mλλ0 −

Mλλ0

2
Fμνσ

μν

−
fλλ0

2
γ0ð1 − γ5Þ

�
νλ0 ; ð2:1Þ

where γμ ¼ ðγ0; γÞ, γ5 ¼ iγ0γ1γ2γ3, and σμν ¼ i
2
½γμ; γν�−

are the Dirac matrices. The mass matrix ðmλλ0 Þ and the
matrix of magnetic moments ðMλλ0 Þ are independent in
general. The matrix of the effective potentials of the
neutrino interaction with matter is diagonal in the flavor
basis: fλλ0 ¼ fλδλλ0 . The explicit form of fλ in the electro-
neutral matter can be obtained on the basis of the results of
Ref. [16] as

fνe ¼
ffiffiffi
2

p
GF

�
ne −

1

2
nn

�
; fνμ;ντ ¼ −

1ffiffiffi
2

p GFnn;

ð2:2Þ

where GF ¼ 1.17 × 10−5 GeV−2 is the Fermi constant and
ne;n are the number densities of electrons and neutrons.
The nature of neutrinos can be revealed only if we

transform the flavor wave functions νλ to the mass
eigenstates basis,

νλ ¼
X
a¼1;2

Uλaψa; ðUλaÞ ¼
�
cos θ − sin θ

sin θ cos θ

�
; ð2:3Þ

where θ is the vacuum mixing angle, which is chosen in
such a way to diagonalize the mass matrix: ðUλaÞ†ðmλλ0 Þ
ðUλ0bÞ ¼ maδab, where ma are the neutrino masses. The
neutrino mass eigenstates ψa, a ¼ 1, 2, are taken to be
Dirac particles. In general situation, the matrices of magnetic
moments ðμabÞ ¼ ðUλaÞ†ðMλλ0 ÞðUλ0bÞ and neutrino interac-
tionwith backgroundmatter ðVabÞ ¼ ðUλaÞ†ðfλλ0 ÞðUλ0bÞ are
nondiagonal in the mass eigenstates basis.
Using Eq. (2.3), we can rewrite the Lagrangian in

Eq. (2.1) in the following way:

L ¼
X

ab¼1;2

ψ̄a

�
δabðiγμ∂μ −maÞ −

μab
2

Fμνσ
μν

−
Vab

2
γ0ð1 − γ5Þ

�
ψb: ð2:4Þ

One can see that the Dirac equations for different mass
eigenstates, resulting from the Lagrangian in Eq. (2.4), are
coupled due to the presence of external fields.

III. SOLUTION OF THE DIRAC-PAULI
EQUATION

In this section, we study the evolution of a single
neutrino mass eigenstate in matter under the influence of
a plane electromagnetic wave. We write down the wave
equation for a massive neutrino in these external fields and
find its exact solution.
In this section, we neglect the mixing between different

neutrino types. Thus, using Eq. (2.4) and omitting the index
a there, we obtain the wave equation for a Dirac neutrino
with the nonzero mass m and the magnetic moment μ,
interacting with nonmoving and unpolarized background
matter and with the external electromagnetic field, in the
form,�

iγμ∂μ −m −
μ

2
Fμνσ

μν −
V
2
γ0ð1 − γ5Þ

�
ψ ¼ 0; ð3:1Þ

where ψ is the neutrino bispinor. The effective potential V
can be obtained basing on Eqs. (2.2) and (2.3). We suppose
that a neutrino interacts with a plane electromagnetic wave.
Neglecting the dispersion of the wave, one gets that the
electric and magnetic fields, E and B, depend on t − z.
If the wave propagates along the z-axis, one has that
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B ¼ ðBx; By; 0Þ, and E ¼ ðBy;−Bx; 0Þ, where Bx and By

are linearly independent components of the magnetic field.
We rewrite Eq. (3.1) in the Hamilton form as

i∂tψ ¼
�
−iðα∇Þ þ βmþ μðiγE − βΣBÞ þ V

2
ð1 − γ5Þ

�
ψ ;

ð3:2Þ
where α ¼ γ0γ, β ¼ γ0, and Σ ¼ γ5γ0γ are the Dirac
matrices. If the density of background matter is constant,
we can gauge the term V=2 out: ψ → exp ð−iVt=2Þψ . It is
convenient to introduce the new variables u0 ¼ t − z and
u3 ¼ tþ z. Defining the derivatives with respect to u0 and
u3 as ∂0 and ∂3, one gets that Eq. (3.2) has the following
integrals:

−i∇⊥ψ ¼ p⊥ψ ; 2i∂3ψ ¼ λψ ; ð3:3Þ
where ∇⊥ ¼ ð∂x; ∂y; 0Þ and p⊥ ¼ ðpx; py; 0Þ. Here we
assume that the background matter is uniform.
Then we look for the solution of Eq. (3.2) in the form,

ψ ¼ exp ð−iVt=2þ ip⊥x⊥ − iλu3=2Þψ0; ð3:4Þ
where ψ0 ¼ ψ0ðu0Þ. The equation for ψ0 reads

ið1 − αzÞ∂0ψ0 ¼
�
ðα⊥p⊥Þ −

λ

2
ð1þ αzÞ þ βm

þ μðiγE − βΣBÞ − V
2
γ5
�
ψ0: ð3:5Þ

Note that the matrix ð1 − αzÞ is singular. Thus some of the
components of ψ0 obey the algebraic rather than differ-
ential equations.
It is convenient to choose the Dirac matrices in the chiral

representation [17]. If we define ψT
0 ¼ ðψ1;ψ2;ψ3;ψ4Þ,

then only ψ2 and ψ3 are independent and satisfy the
equations

i∂0ψ2 ¼
�
λ

2

p2⊥ þm2

λ2 − V2=4
−
V
4

�
1þ p2⊥ −m2

λ2 − V2=4

��
ψ2

þ
�
μðBx þ iByÞ þ

V
2

mðpx þ ipyÞ
λ2 − V2=4

�
ψ3;

i∂0ψ3 ¼
�
λ

2

p2⊥ þm2

λ2 − V2=4
þ V

4

�
1þ p2⊥ −m2

λ2 − V2=4

��
ψ3

þ
�
μðBx − iByÞ þ

V
2

mðpx − ipyÞ
λ2 − V2=4

�
ψ2: ð3:6Þ

After the separation the common factor in ψ2;3 as

ψ2;3 ¼ exp

�
−i

λ

2

p2⊥ þm2

λ2 − V2=4
u0

�
v1;2; ð3:7Þ

one gets that the spinor v ¼ vðu0Þ ¼ ðv1; v2ÞT obeys the
equation,

i∂0v ¼ ðσ�RÞv; ð3:8Þ
where σ are the Pauli matrices and

R ¼ μBþ V
2

mp⊥
λ2 − V2=4

−
V
4

�
1þ p2⊥ −m2

λ2 − V2=4

�
ez: ð3:9Þ

Here ez is the unit vector along the wave propagation.
Finally, using Eqs. (3.4) and (3.7), the general solution of

the wave Eq. (3.1) has the form,

ψ ¼ exp

�
−i

V
2
tþ ip⊥x⊥ − i

λ

2
u3 − i

λ

2

p2⊥ þm2

λ2 − V2=4
u0

�
u;

ð3:10Þ
where

u ¼ 1ffiffiffiffi
N

p

0
BBBBB@

ðpx−ipyÞv1−mv2
λþV=2

v1
v2

− ðpxþipyÞv2þmv1
λ−V=2

1
CCCCCA; ð3:11Þ

is the basis spinor. The normalization coefficient N is given
by the condition juj2 ¼ 1.

IV. NEUTRINO SPIN OSCILLATIONS

Now we use the general solution of the Dirac-Pauli
equation, found in Sec. III, to describe neutrino spin
oscillations in a plane wave with the circular polarization.
We specify the initial condition and find the transition
probability. The obtained results are compared with pre-
vious findings of other authors.
Before we proceed, it is convenient to replace the total

wave function ψ in Eq. (3.10) by its projection to the
subspace of the linearly independent components ψ2;3,

ψ → ψ̃ ¼ 1

2
ð1 − αzÞψ : ð4:1Þ

The basis spinor ũ, which is the analogue of u in Eq. (3.11),
takes the form, ũT ¼ ð0; v1; v2; 0Þ. This spinor is automati-
cally normalized to one if jv1j2 þ jv2j2 ¼ 1. The last
condition results from the unitary dynamics of v implied
by Eq. (3.8). The mean value of an operator Ô can be found
as hÔi ¼ ψ̃†Ô ψ̃ .
In order not to encumber the presentation, we discuss the

situation of a neutrino propagating along an electromagnetic
wave, i.e., p⊥ ¼ 0. This case is implemented if neutrinos
and an electromagnetic wave are emitted by the same source.
Then we consider a wave with the circular polarization,
i.e., Bx ¼ B0 cos ½gωðt − zÞ� and By ¼ B0 sin ½gωðt − zÞ�,
where B0 is the amplitude of the wave, ω is its frequency,
and g ¼ �1 is the sign factor corresponding to right or left
polarizations.

SPIN-FLAVOR OSCILLATIONS OF DIRAC NEUTRINOS … PHYS. REV. D 99, 035027 (2019)

035027-3



The solution of Eq. (3.8) for a circularly polarized wave
has the form,

v ¼ Uz½cosðΩu0Þ − iðσnÞ sinðΩu0Þ�v0; ð4:2Þ

where

Uz¼ expðiσ3gωu0=2Þ; Ω¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRzþgω=2Þ2þðμB0Þ2

q
;

ð4:3Þ

and

n ¼ 1

Ω
ðμB0; 0; Rz þ gω=2Þ; ð4:4Þ

is the unit vector, Rz is the z-component of the vector R
in Eq. (3.9), and v0 is the initial spinor corresponding to
u0 ¼ 0.
We suppose that, at u0 ¼ 0, only left polarized neutrinos

are presented in the space-time region outside the wave
propagation. Thus, we impose the condition Σzũ ¼ −ũ on
the basis spinor ũ at u0 ¼ 0. The components of the spinor
v0 are v1ð0Þ ¼ 1 and v2ð0Þ ¼ 0.
We are interested in the appearance of right polarized

particles after neutrinos interact with external fields. It is the
situation, which is implemented in neutrino spin oscilla-
tions: one looks for right polarized neutrinos in a beam
initially consisting of left particles of the same type. Using
Eq. (4.2), one obtains that the probability for L → R
transitions has the form,

PL→R ¼ 1

2
ψ̃†ð1þ ΣzÞψ̃ ¼ jv2j2 ¼

μ2B2
0

Ω2
sin2Ωu0: ð4:5Þ

In a general situation, PL→R in Eq. (4.5) depends on
u0 ¼ t − z. We also note that this expression contains
the dependence on the quantum number λ which does
not have a clear physical meaning yet. Hence, one should
express λ in terms of the neutrino energy and momentum.
The Hamiltonian of Eq. (3.2) explicitly depends on t

and z. Thus the neutrino energy E and the momentum pz
along the wave propagation direction are not defined.
Nevertheless we can define the effective E and pz as

E − pz ¼ 2iψ̃†∂3ψ̃ ¼ λþ V
2
; ð4:6Þ

Eþ pz ¼ 2iψ̃†∂0ψ̃ ¼ λ
m2

λ2 − V2=4
þ V

2
þ 2v†ðσ�RÞv:

ð4:7Þ

Using Eq. (4.2), one gets that

v†ðσ�RÞv ¼ �
�
Rz þ

ρ

2

�
;

ρðω; u0Þ ¼ 2gω
μ2B2

0

Ω2
sin2Ωu0; ð4:8Þ

where the signs � stay for initially left and right polarized
neutrinos. A right polarized neutrino corresponds to vT0 ¼
ð0; 1Þ in Eq. (4.2).
Finally, using Eqs. (4.6)–(4.8), we have the energy of

left neutrinos as

EL ¼ V þ ρ

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ

�
pz þ

V − ρ

2

�
2

s
≈ pz þ

m2

2pz
þ V;

ð4:9Þ

and

ER ¼ V − ρ

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ

�
pz −

V − ρ

2

�
2

s
≈ pz þ

m2

2pz
;

ð4:10Þ

for right particles. The expansions in Eqs. (4.9) and (4.10)
correspond to ultrarelativistic neutrinos with pz ≫ m. One
can see that, in this case, the energies have the conventional
form. However, for nonrelativistic neutrinos, the effective
energies become time and z dependent.
The transition probability depends on the quantity Rz

given in Eq. (3.9). Using Eqs. (4.6) and (4.9), one gets that
Rz has the following form for left neutrinos:

Rz ¼ −
V
4

�
1 −

m2

λ2 − V2=4

�
≈
V
2

�
V
pz

þ m2

2p2
z

�−1
: ð4:11Þ

Basing on Eqs. (4.5) and (4.11), the transition probability
can be rewritten as

PL→R ¼ μ2B2
0

Ω2
sin2½Ωðt − zÞ�;

Ω ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2B2

0 þ
�
V
2

�
V
pz

þ m2

2p2
z

�−1
þ gω

2

�
2

s
; ð4:12Þ

where we explicitly show the dependence on t and z.
Now let us consider the quasiclassical approximation.

In this limit, a neutrino moves along a trajectory, which is
a straight line z ¼ βt, where β ¼ pz=E is the neutrino
velocity. We can represent the transition probability in
Eq. (4.12) in the following way:
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PL→RðtÞ¼
μ2B2

0ð1−βÞ2
μ2B2

0ð1−βÞ2þ½V
2
þ gω

2
ð1−βÞ�2

×sin2
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2B2
0ð1−βÞ2þ

�
V
2
þgω

2
ð1−βÞ

�
2

s
t

!
;

ð4:13Þ

since

V
2

�
V
pz

þ m2

2p2
z

�−1
ð1 − βÞ ≈ V

2
: ð4:14Þ

The expression for PL→R in Eq. (4.13) coincides with the
result of Ref. [11], where the neutrino spin evolution in
matter under the influence of a plane electromagnetic wave
was treated within the quasiclassical approach from the
very beginning.

V. SPIN-FLAVOR OSCILLATIONS: GREAT
DIAGONAL MAGNETIC MOMENTS

Now we turn to the study of neutrino spin-flavor
oscillations. Here we are interested in the situation of great
diagonal magnetic moments. Basing on the results of
Sec. IV, we derive the analytical transition probability
for this type of oscillations.
Using Eq. (2.4), we obtain the system of coupled Dirac

equations for the neutrino mass eigenstates ψa, a ¼ 1, 2,

i∂tψa ¼ Haψa þ Vψb; a ≠ b;

Ha ¼ −iðα∇Þ þ βma þ μaðiγE − βΣBÞ þ Va

2
ð1 − γ5Þ;

V ¼ μðiγE − βΣBÞ þ V
2
ð1 − γ5Þ; ð5:1Þ

where Va ≡ Vaa and μa ≡ μaa for a ¼ 1, 2, V ≡ V12, and
μ≡ μ12 is the transition magnetic moment.
We shall analyze the system in Eq. (5.1) in the approxi-

mation when μa ≫ μ. There are multiple models of the
neutrino magnetic moments generation. Some of the
models predict the diagonal magnetic moments μa propor-
tional to the neutrino massesma. In these cases, the value of
μ is suppressed because of the Glashow-Iliopoulos-Maiani
(GIM) mechanism [6].
Moreover, we suppose that jVaj ≫ V. If we study νe →

νμ;τ oscillations, then, using Eqs. (2.2) and (2.3), we get that

V1 ¼
ffiffiffi
2

p
GF

�
nesin2θ −

1

2
nn

�
;

V2 ¼
ffiffiffi
2

p
GF

�
necos2θ −

1

2
nn

�
;

V ¼ GFffiffiffi
2

p ne sin 2θ: ð5:2Þ

Basing on Eq. (5.2), one gets that the condition jVaj ≫ V is
satisfied if either nn ≫ ne or θ ≪ 1. The former case is
implemented in a neutron rich environment like a neutron
star. The latter situation takes place if we study νe → ντ
oscillations since, as found in Ref. [18], θ≡ θ13 ¼ 0.15 is
much less than both θ⊙ ¼ 0.6 [19] and θATM ¼ ð0.75 ÷
0.85Þ [20].
We are interested in spin-flavor oscillations of the type

νβL → ναR, i.e., when both flavor and the polarization are
changed. If the above approximations are satisfied, we can
derive the analytical expression for the transition probability
for νβL → ναR oscillations. Indeed, if we neglect V
in Eq. (5.1), the neutrino spin evolves independently within
eachmass eigenstate, as described in Sec. IV. The transitions
between different neutrino flavors are solely owing to the
vacuum neutrino mixing. As in Sec. IV, here we consider a
neutrino beam propagating along the electromagnetic wave.
To describe the evolution of neutrinos, we use the

approach developed in Ref. [21], where the initial condition
problem is solved. The initial conditions corresponding
to νβL → ναR are the following. Since there are no right
polarized neutrinos initially, we choose ναRðz; 0Þ ¼
νβRðz; 0Þ ¼ 0. The wave functions of left polarized neu-
trinos should be chosen like ναLðz; 0Þ ¼ 0 and νβLðz; 0Þ∼
expðipzzÞ. Such a choice of the initial condition for
νβLðz; 0Þ corresponds to a broad wave packet. The arbitrary
initial wave packets are discussed in Ref. [13]. Here the
spin projections are defined using the operators ð1� ΣzÞ=2.
The projected wave functions of mass eigenstates, given

in Eq. (4.1), which satisfy the system in Eq. (5.1), have the
form,

ψ̃aðz; tÞ ¼
X
s¼L;R

exp ð−iEastþ ipzzÞaasũas;

ũTas ¼ ð0; vðaÞs1 ; v
ðaÞ
s2 ; 0Þ; ð5:3Þ

where the index s ¼ L;R corresponds to initially left or
right polarized neutrinos and the energies Eas are given
by Eqs. (4.9) and (4.10) with the replacementsm → ma and
V → Va. Since we neglect V in Eq. (5.1), the coefficients
aas are constant and entirely fixed by the initial condition.
Using Eq. (2.3), we get that a1L ¼ sin θ and a2L ¼ cos θ.
Moreover a1;2R ¼ 0 since there are no right polarized
particles initially.
To describe the evolution of the spinors vðaÞs in Eq. (5.3),

we use the quasiclassical approximation from the very
beginning, i.e., we suppose that z ¼ β̄t, where β̄ ¼ 2pz=
ðE1L þ E2LÞ is the center of inertia velocity. Using
Eq. (4.2), we get that the components of vaL evolve as

vðaÞL1 ðtÞ ¼ exp½igωð1 − β̄Þt=2�fcos½Ωað1 − β̄Þt�
− inðaÞz sin½Ωað1 − β̄Þt�g;

vðaÞL2 ðtÞ ¼ −inðaÞx exp½−igωð1 − β̄Þt=2�
× sin½Ωað1 − β̄Þt�; ð5:4Þ
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where the quantities Ωa and nðaÞx;z are the natural generaliza-
tions of the corresponding parameters given in Eqs. (4.3) and
(4.4) with the replacements m→ma, μ → μa, and V → Va

there. The evolution of vðaÞR is not important since there are
not right polarized neutrinos initially.
Basing on Eqs. (2.3), (5.3), and (5.4), we derive the right

polarized wave function ναRðz;tÞ¼ð1þΣzÞ½cosθψ1ðz;tÞ−
sinθψ2ðz;tÞ�=2 in the following form:

νTαRðz; tÞ ¼ sin θ cos θ expðipzzÞð0; 0; expð−iE1LtÞvð1ÞL2 ðtÞ
− expð−iE2LtÞvð2ÞL2 ðtÞ; 0Þ: ð5:5Þ

Now, using Eq. (5.5), one obtains the probability for
transitions νβL → ναR in the form,

PβL→αRðtÞ ¼ jναRðz; tÞj2

¼ sin2ð2θÞ
�
1

4
ðA1 − A2Þ2 þ A1A2sin2ðΦtÞ

�
;

ð5:6Þ
where

AaðtÞ ¼
μaB0ð1 − β̄Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2aB2
0ð1 − β̄Þ2 þ ½Va

2
þ gω

2
ð1 − β̄Þ�2

q

× sin

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2aB2

0ð1 − β̄Þ2 þ
�
Va

2
þ gω

2
ð1 − β̄Þ

�
2

s
t

!
;

ð5:7Þ
is the amplitude of spin oscillations within one mass
eigenstate,Φ ¼ Φvac þ ðV1 − V2Þ=2 is thephase of neutrino
flavor oscillations accounting for the matter contribution,
Φvac ¼ δm2=4pz is the phase of neutrino oscillations in
vacuum, and δm2 ¼ m2

1 −m2
2. To derive Eq. (5.7) we use the

analogues of Eqs. (4.11) and (4.14).
One can see that Eqs. (5.6) and (5.7) are the generalization

of the corresponding expressions obtained in Ref. [13] for

the situation when neutrinos interact not only with a plane
electromagnetic wave but also with the background matter.

VI. SPIN-FLAVOR OSCILLATIONS: GREAT
TRANSITION MAGNETIC MOMENT

In this section, we continue to study spin-flavor oscil-
lations. However, unlike the case considered in Sec. V, we
discuss the situation of thegreat transitionmagneticmoment.
If μ ≫ μa, we cannot neglect V in Eq. (5.1). It means that

aas in Eq. (5.3) is no longer constant. Analogously to
Ref. [13] we suppose that aas ¼ aasðt − zÞ. Our main goal
is to find the behavior of aas. Moreover, in the analogue of
Eq. (5.3), we shall use the total wave function ψas rather
than the projection ψ̃as. Hence we look for the solution of
Eq. (5.1) in the form,

ψa ¼
X
s¼L;R

exp ð−iEastþ ipzzÞaasðt − zÞuas. ð6:1Þ

We consider neutrinos propagating along the wave in
Eq. (6.1). Since aas is time dependent for both s ¼ L
and s ¼ R, we should account for the time evolution of the
basis spinors uaL;R. For this purpose we choose two linearly
independent initial spinors v0 for a ¼ 1, 2, v0L ¼ ð1; 0ÞT
and v0R ¼ ð0; 1ÞT, which contribute to Eq. (4.2).
Substituting Eq. (6.1) to Eq. (5.1) and taking into

account that ∼ exp ð−iEastþ ipzzÞuas is the solution of
the diagonal part of the system in Eq. (5.1), i.e., without V,
one gets the equation for the coefficients aas in the form,

i
1

2

X
s¼L;R

u†as0 ð1 − αzÞuas∂0aas

¼ 1

2

X
s¼L;R

u†as0Vubsabs exp½iðEas0 − EbsÞt�: ð6:2Þ

Using Eq. (3.11), we obtain the following mean values:

1

2
u†as0 ð1 − αzÞuas ¼ v†as0vas ¼ v†

0s0v0s ¼ δss0 ;

μ

2
u†as0 ðiγE − βΣBÞubs ¼ μv†as0 ðσ�BÞvbs;

V
4
u†as0 ð1 − γ5Þubs ¼

V
2

�
v�as02vbs2 þ

ma

λa − Va=2
mb

λb − Vb=2
v�as01vbs1

�
: ð6:3Þ

Then we adopt the quasiclassical approximation, in which
∂0 ¼ ð1 − β̄Þ−1∂t, where β̄ is the mean velocity of the
neutrino wave packet, defined in Sec. V.
In this section, we consider the situation when μa ≪ μ.

It means that the components of the vector na, which
defines the neutrino spin evolution, have the following

values: nðaÞx ¼ 0 and nðaÞz ¼ 1. We can use Eq. (4.2) to
compute the mean values of the spinors vas in Eq. (6.3)
assuming that the electromagnetic wave has the circular
polarization. Then we define the effective wave function
ΨT¼ða1R;a1L;a2R;a2LÞ, which obeys the Schrödinger
equation,
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i
dΨ
dt

¼ HΨ;

H ¼

0
BBBBB@

0 0 0 μB0ð1 − β̄Þeiϕ2t

0 0 μB0ð1 − β̄Þeiϕ1t Veiϕ
0t

0 μB0ð1 − β̄Þe−iϕ1t 0 0

μB0ð1 − β̄Þe−iϕ2t Ve−iϕ
0t 0 0

1
CCCCCA: ð6:4Þ

Here

ϕ2 ≈
δm2

2pz
− V2 − gωð1 − β̄Þ;

ϕ1 ≈
δm2

2pz
þ V1 þ gωð1 − β̄Þ;

ϕ0 ≈
δm2

2pz
þ V1 − V2; ð6:5Þ

where we take that neutrinos are ultrarelativistic particles.
Let us introduce the new wave function Ψ̃T ¼

ðã1R; ã1L; ã2R; ã2LÞ as Ψ ¼ UΨ̃, where

U ¼ diag

�
exp

�
i

�
Φ− −

V1 þ V2

4

�
t

�
;

exp

�
i

�
Φþ þ 3V1 − V2

4

�
t

�
;

exp

�
−i
�
Φþ þ V1 þ V2

4

�
t

�
;

exp

�
−i
�
Φ− −

3V2 − V1

4

�
t

��
: ð6:6Þ

Here Φ� ¼ Φvac � ð1 − β̄Þgω=2. The wave function Ψ̃
obeys the equation

i
dΨ̃
dt

¼ H̃ Ψ̃;

H̃ ¼ U†HU − iU† _U ¼

0
BBBBBB@

Φ− − V1þV2

4
0 0 μB0ð1 − β̄Þ

0 Φþ þ 3V1−V2

4
μB0ð1 − β̄Þ V

0 μB0ð1 − β̄Þ −Φþ − V1þV2

4
0

μB0ð1 − β̄Þ V 0 −Φ− þ 3V2−V1

4

1
CCCCCCA
: ð6:7Þ

One can see that the effective Hamiltonian H̃ in Eq. (6.7)
generalizes the analogous effective Hamiltonian derived
in Ref. [13] for the nonzero interaction of neutrinos
with background matter. Moreover, if set ð1 − β̄Þ → 1 and
ω → 0 in Eq. (6.7), we reproduce the effective Hamiltonian
for neutrino spin-flavor oscillations in matter under the
influence of a transverse magnetic field derived in Ref. [22]
using the relativistic quantum mechanics approach.
The solution of the Schrödinger equation in Eq. (6.7)

results in the algebraic characteristic equation of the forth
order, which implies quite cumbersome expressions for
eigenvalues and eigenvectors. That is why we again suppose
that V ≪ jVaj, as in Sec. V, to proceed with the analytical
solution. The validity of this approximation will be dis-
cussed below.

In this case, the evolution of Ψ̃ can be represented in the
form,

Ψ̃ðtÞ ¼
X
a¼1;2
ζ¼�

exp ð−iEðζÞ
a tÞðUðζÞ

a ⊗ UðζÞ†
a ÞΨ̃ð0Þ; ð6:8Þ

where

EðζÞ
1;2 ¼ �V1 − V2

4
þ ζΩ1;2;

Ω1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμB0Þ2ð1 − β̄Þ2 þ

�
Φ� � V1;2

2

�
2

s
; ð6:9Þ

are the eigenvalues of the Hamiltonian H̃ in Eq. (6.7)
and
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Uþ
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω1 þΦþ þ V1=2

2Ω1

s 0
BBB@

0

1
μB0ð1−β̄Þ

Ω1þΦþþV1=2

0

1
CCCA;

U−
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω1 þΦþ þ V1=2

2Ω1

s 0
BBB@

0

− μB0ð1−β̄Þ
Ω1þΦþþV1=2

1

0

1
CCCA;

Uþ
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 þΦ− − V2=2

2Ω2

s 0
BBB@

1

0

0
μB0ð1−β̄Þ

Ω2þΦ−−V2=2

1
CCCA;

U−
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 þΦ− − V2=2

2Ω2

s 0
BBB@

− μB0ð1−β̄Þ
E2þΦ−−V2=2

0

0

1

1
CCCA; ð6:10Þ

are the eigenvectors.

Equation (6.8) should be supplied with the initial
condition of the form,

Ψ̃Tð0Þ ¼ ð0; sin θ; 0; cos θÞ; ð6:11Þ

which means that there are only neutrinos of the type νβL
initially. Using Eqs. (6.8)–(6.11), one gets that the coef-
ficients a1;2R are expressed in the following way:

a1RðtÞ¼−i
μB0

Ω2

ð1− β̄Þexp
�
i

�
Φ− −

V2

2

�
t

�
cosθsinΩ2t;

a2RðtÞ¼−i
μB0

Ω1

ð1− β̄Þexp
�
−i
�
ΦþþV1

2

�
t

�
sinθ sinΩ1t:

ð6:12Þ

The values of a1;2L are not important for our purposes since
we are interested in spin-flavor oscillations when both
flavor and helicity change.
Basing on Eqs. (2.3), (6.1), and (6.12), the neutrino wave

function ναRðz; tÞ ¼ cos θψ1Rðz; tÞ − sin θψ2Rðz; tÞ reads

ναRðz; tÞ ¼ expðipzzÞ½cos θ expð−iE1RtÞa1RðtÞ − sin θ expð−iE2RtÞa2RðtÞ�νR
¼ −i exp

�
−i
�
pz þ

m2
1 þm2

2

4pz
þ gω

2
ð1 − β̄Þ

�
þ ipzz

�
μB0ð1 − β̄Þ

×

�
cos2θ exp

�
−i

V2

2
t

�
sinΩ2t
Ω2

− sin2θ exp

�
−i

V1

2
t

�
sinΩ1t
Ω1

�
νR; ð6:13Þ

where νR is the constant bispinor satisfying jνRj2 ¼ 1 and
ΣzνR ¼ νR.
The probability for transitions νβL → ναR is derived

using Eq. (6.13) as

PβL→αRðtÞ ¼ jναRðz; tÞj2

¼
�
½A2 −A1�2 þ 4A1A2sin2

�
V1 − V2

4
t

��
;

ð6:14Þ
where

A1 ¼ μB0ð1 − β̄Þsin2θ sinΩ1t
Ω1

;

A2 ¼ μB0ð1 − β̄Þcos2θ sinΩ2t
Ω2

; ð6:15Þ

are the amplitudes of the transitions ψ ð1;LÞ;ð2;RÞ ↔ ψ ð2;RÞ;ð1;LÞ
in matter under the influence of an electromagnetic wave.
The analogue of A1;2 for the constant transverse magnetic
fields was introduced in Ref. [23].

The behavior of the transition probability in Eq. (6.14) is
shown in Fig. 1(a) for νeL → ντR oscillations channel versus
the distance z ≈ t passed by the neutrino beam. We suppose
that the electromagnetic wave has the following character-
istics: B0 ¼ 1018 G and ω ¼ 1013 s−1. The neutrino energy
and the transition magnetic moment are taken to be Eν ≡
pz ¼ 1 keV and μ ¼ 10−11μB, where μB is the Bohr mag-
neton. As mentioned in Ref. [13], these parameters can
model neutrino spin-flavor oscillations in the vicinity of a
highly magnetized pulsar. To estimate the mean velocity of
neutrinos β̄ we assume that the neutrino masses are on the
level of 1 eV [24].
The motivation for the choice of the matter density value

in Fig. 1 is the following. We can consider neutrino spin-
flavor oscillations in the vicinity of a compact astrophysical
object surrounded by an accretion disk. For example,
properties of a gamma-ray burst (GRB) can be explained
by the matter accretion to a central object. In this model of
GRB, the matter density of a hydrogen plasma in the inner
part of an accretion disk can reach 1026 cm−3 [27] or be
even higher [28]. Such values of ne are close to these used
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in our simulations (especially see Fig. 2 below). Note that
this model of GRB predicts a high neutrino emissivity by
an accretion disk [27,28].
The function PνeL→ντRðzÞ is a rapidly oscillating one. It is

the typical feature of a neutrino system which experiences
spin-flavor oscillations inmatter and an electromagnetic field
with different oscillations frequencies induced bymatter and
an electromagnetic field; cf. Refs. [13,21]. That is why, here,
we show only the upper envelope function and the averaged
transition probability. The upper envelope function is built
using the spline interpolation of the maxima of PνeL→ντRðzÞ.

The transition probability PνeL→ντRðzÞ is shown only in the
inset in Fig. 1(a) for small z.
One can see in Fig. 1(a) that the transition probability

for the considered oscillations channel reaches only a
tiny value ∼10−3. This fact can be explained by the great
value of Φvac for νeL → ντR oscillations, which is about 2
orders of magnitude greater than other entries in H̃ in
Eq. (6.7). Hence Ω1;2 ≫ μB0ð1 − β̄Þ and A1;2 ≪ 1 in
Eq. (6.15).
Now we compare the exact solution, given in Eqs. (6.14)

and (6.15), of the approximate effective Schrödinger

(a) (b)

FIG. 1. The transition probabilities for νeL → ντR oscillations in the electroneutral hydrogen plasma with ne ¼ 1029 cm−3 under the
influence of the electromagnetic wave with B0 ¼ 1018 G and ω ¼ 1013 s−1 versus the distance z ¼ β̄t traveled by the neutrino beam.
The parameters of neutrinos are δm2 ¼ 2.5 × 10−3 eV2 [25], θ ¼ 0.15 [18], pz ¼ 1 keV, and μ ¼ 10−11μB [26]. (a) The approximate
transition probability in Eq. (6.14) corresponding to the case V ¼ 0 in H̃ in Eq. (6.7). (b) The transition probability in Eq. (6.16) based
on the numerical solution of Eq. (6.7) with V ≠ 0. Red and blue lines are the upper envelope function and the averaged transition
probability. The insets in panels (a) and (b) show PνeL→ντRðzÞ at 0 < z < 150 m.

(a) (b)

FIG. 2. The transition probabilities for νeL → νμR oscillations in the electroneutral hydrogen plasma when particles interact with the
electromagnetic wave having B0 ¼ 1018 G and ω ¼ 1013 s−1 versus the distance z ¼ β̄t passed by the neutrino beam. The parameters of
neutrinos are δm2 ¼ 7.59 × 10−5 eV2 [29], θ ¼ 0.6 [19], pz ¼ 1 keV, and μ ¼ 10−11μB. These transition probabilities correspond to
Eq. (6.16), which is based on the numerical solution of Eq. (6.7) with V ≠ 0. (a) ne ¼ 1029 cm−3; and (b) ne ¼ 1027 cm−3. Red and blue
lines are the upper envelope functions and the averaged transition probabilities. The green line in panel (a) is the lower envelope
function.
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Eq. (6.7),whereweputV ¼ 0, with the numerical solution of
the exact Eq. (6.7). Should one have the solution Ψ̃TðtÞ ¼
ðΨ̃1; Ψ̃2; Ψ̃3; Ψ̃4Þ of Eq. (6.7), supplied with the initial
condition in Eq. (6.11), the transition probability for νβL →
ναR oscillations can be found as

PβL→αRðtÞ ¼ j cos θΨ̃1ðtÞ − sin θΨ̃3ðtÞj2: ð6:16Þ

Equation (6.16) can be verified with help of Eqs. (6.6)
and (6.13).
In Fig. 1(b), we show the transition probability for

νeL → ντR oscillations based on Eq. (6.16) calculated
using the numerical solution of Eq. (6.7) with V ≠ 0.
The transition probability PνeL→ντRðzÞ corresponds to the
same parameters of the neutrino system and the external
fields, which are used in Fig. 1(a). Comparing Figs. 1(a)
and 1(b), one can see that the upper envelope function,
depicted by the red line, and the averaged transition
probability, shown by the blue line, oscillate near the mean
values ≈2 × 10−3 and ≈10−3 respectively. Despite the
frequencies of this oscillation are different, the mean values
of the upper envelope function and the averaged transition
probability are practically the same. Thus the exact solution
in Eqs. (6.14) and (6.15) of the approximate Schrödinger
Eq. (6.7) with V ¼ 0 represents a qualitatively correct
description of νeL → ντR oscillations.
Now we consider νeL → νμR oscillations channel. In this

situation, we cannot neglect V in Eq. (6.7) since θ≡ θ⊙ ¼
0.6 is not small. That is why Eqs. (6.14) and (6.15) are not
applicable and we have to use the numerical solution of
Eq. (6.7) from the very beginning.
InFig. 2(a),we show the transitionprobabilityPνeL→νμRðzÞ,

the upper and lower envelope functions, and the averaged
transition probability. The values of the parameters of the
external fields and the neutrino system, except δm2 and θ, are
the same as in Fig. 1. One can see in Fig. 2(a) that the
averaged transition probability oscillates near 5% value. It is
much greater than in Fig. 1(a). This feature can be explained
by the fact that all the entries of H̃ in Eq. (6.7) are of the same
order of magnitude for νeL → νμR oscillations unlike the
νeL → ντR channel, in which Φvac is dominant.
In Fig. 2(b), we depictPνeL→νμRðzÞ for lowermatter density

ne ¼ 1027 cm−3, which is very close to the value in the inner
part of an accretion disk predicted by the model of GRB in
Ref. [28]. The transition probability in this case reproduces
the result in Ref. [13], where spin-flavor oscillations νeL →
νμR were described at the absence of the matter contribution.
Comparing Figs. 2(a) and 2(b), one can see that the lower
matter density is, the higher transition probability is. Thus,
one does not expect the appearance of a resonance in neutrino
spin-flavor oscillations in matter under the influence of a
plane electromagnetic wave, as claimed in Ref. [11]. The
highest transition probability can be observed when neu-
trinos do not interact with background matter.

To highlight the difference between our results and the
findings of Ref. [11] we present the transition probability
for νβL → ναR, which can be derived on the basis of
Eq. (21) in Ref. [11]. It has the form,

PνβL→ναRðtÞ ¼
μ2B2

0ð1 − β̄Þ2
μ2B2

0ð1 − β̄Þ2 þ Δ2

× sin2
	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2B2
0ð1 − β̄Þ2 þ Δ2

q
t


;

Δ ¼ δm2

4pz
AðθÞ − GFneffiffiffi

2
p þ gω

2
ð1 − β̄Þ; ð6:17Þ

where take into account that, for νeL → νμ;τR oscillations
channel, AðθÞ ¼ ð1þ cos 2θÞ=2 [30] and fνe − fνμ;τ ¼ffiffiffi
2

p
GFne; cf. Eq. (2.2).
One can see in Eq. (6.17) that the amplitude of the

transition probability would become ∼1 if Δ ¼ 0. This fact
contradicts to out results both in Eqs. (6.14) and (6.15)
and the numerical simulations shown in Figs. 1 and 2. This
inconsistency can be accounted for by the incorrect
generalization of the Bargmann-Michel-Telegdi equation
for the description of neutrino spin-flavor oscillations. In
general situation, when one studies spin-flavor oscillations
of Dirac neutrinos, an effective Schrödinger equation
cannot have a 2 × 2 Hamiltonian. Typically, in this kind
of problems, one deals with the system of 4 differential
equations, e.g., as in Eq. (6.4) or Eq. (6.7).

VII. CONCLUSION

In the present work, we have studied neutrino spin and
spin-flavor oscillations in matter under the influence of a
plane electromagnetic wave with the circular polarization.
Neutrinos are supposed to be massive Dirac particles with
nonzero mixing between different neutrino flavors, and
possessing arbitrary matrix of magnetic moments. We have
started in Sec. II with reminding the basic features of
neutrino interaction with background matter and an electro-
magnetic field.
In Sec. III, we have found the new exact solution of the

Dirac-Pauli equation for a massive neutrino with a nonzero
magneticmoment interactingwithmatter under the influence
a plane electromagnetic wave. Previously, the solution of
the wave equation for a Dirac fermion with an anomalous
magnetic moment interacting with a plane electromagnetic
wave in vacuum, i.e., at the absence of the electroweak
background matter, was known (see, e.g., Ref. [31]).
In Sec. IV, we have applied the solution obtained in

Sec. III for the description of neutrino spin oscillation in the
considered external fields. We have studied the process
νL → νR, that is the neutrino spin precession within one
neutrino mass eigenstate. The probability PL→R for tran-
sitions of this kind has been derived. We have demonstrated
that, in the quasiclassical approximation, the expression for
PL→R in Eq. (4.13) coincides with the result of Ref. [11],
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where the neutrino spin evolution in the external fields was
studied within the quasiclassical approach from the very
beginning.
Then, we have turned to the consideration of spin-flavor

oscillations. For this purpose we have formulated the initial
condition problem. This approach for the description of
neutrino flavor and spin-flavor oscillations in constant
external fields has been developed in Ref. [21] earlier.
First, in Sec. V, we have discussed the case of great

diagonal magnetic moments. This situation takes place
when a transition magnetic moment is suppressed by the
GIM mechanism. If one considers the νe → ντ oscillations
channel, i.e., relatively small vacuum mixing angle, we
can find the analytical transition probability for spin-
flavor oscillations of neutrinos with great diagonal mag-
netic moments in matter and an electromagnetic wave;
cf. Eqs. (5.6) and (5.7). However, the situation of great
diagonal magnetic moments is not very interesting from
the point of view of phenomenology since the GIM
mechanism is valid if μa ∼ma [6]. It makes μa to be very
small for reasonable neutrino masses [24]. Therefore
Aa ≪ 1 in Eq. (5.7) and, hence, PβL→αR ≪ 1 in Eq. (5.6).
We have also considered the case of the great transition

magnetic moment in Sec. VI. In this situation, we have
derived the effective Schrödinger Eq. (6.7) and have found
its exact solution for the νe → ντ oscillations channel
neglecting V in Eq. (6.7). Comparing Eqs. (6.14) and
(6.15), as well as Eqs. (5.6) and (5.7), with the analogous
transition probability derived in Ref. [11], one can see that
the results of Ref. [11] are not applicable for the description
of neutrino spin-flavor oscillations in the considered external
fields. The reason for the discrepancy of our results and those

in Ref. [11] has been analyzed in Sec. VI. Then, we have
examined the numerical solution of Eq. (6.7) and revealed
that the obtained exact solution qualitatively describes νeL →
ντR oscillations.
Finally, basing on Eqs. (6.7) and (6.16), we have numeri-

cally studied νeL → νμR oscillations in matter with different
densities. The transition probabilities have been plotted in
Fig. 2. One can see in Fig. 2 that, if one accounts for the high
matter density in neutrino spin-flavor oscillation in a plane
electromagnetic wave, it diminishes the averaged transition
probability. Thus one does not expect the appearance of
a resonance in spin-flavor oscillations in the considered
external fields, predicted in Ref. [11].
At the end of this section, we mention that described

neutrino spin-flavor oscillations in background matter and
a plane electromagnetic wave can take place in the vicinity
of a highly magnetized compact astrophysical object,
emitting intense electromagnetic radiation, being sur-
rounded by dense matter, and being a source of neutrinos.
It can be, e.g., a pulsar with a dense accretion disk. The
estimates of the parameters of the neutrino system and the
external fields, corresponding to the implementation of
these spin-flavor oscillations in astrophysical media, are
given in Ref. [13] and Sec. VI.
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