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We study oscillations of Dirac neutrinos in background matter and a plane electromagnetic wave. First,
we find the new exact solution of the Dirac-Pauli equation for a massive neutrino with the anomalous
magnetic moment electroweakly interacting with matter under the influence of a plane electromagnetic
wave with the circular polarization. We use this result to describe neutrino spin oscillations in the external
fields in question. Then we consider several neutrino flavors and study neutrino spin-flavor oscillations in
this system. For this purpose we formulate the initial condition problem and solve it accounting for the
considered external fields. We derive the analytical expressions for the transition probabilities of spin-flavor
oscillations for different types of neutrino magnetic moments. These analytical expressions are compared
with the numerical solutions of the effective Schrodinger equation and with the findings of other authors.
In particular, we reveal that a resonance in neutrino spin-flavor oscillations in the considered external fields
cannot happen contrary to the previous claims. Finally, we briefly discuss some possible astrophysical

applications.
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I. INTRODUCTION

Nowadays it is commonly believed that neutrinos possess
nonzero masses and mixing between different flavor eigen-
states [1]. These properties of neutrinos result in transitions
between neutrino flavors, which are called neutrino flavor
oscillations [2]. Neutrino flavor oscillations are known to
happen even in vacuum, i.e., at the absence of external fields.

As constituents of the standard model, neutrinos can
interact with other fermions, which a background matter
is made of, by exchanging virtual W and Z bosons. This kind
of interaction, although it is quite weak, can significantly
influence the process of neutrino flavor oscillations resulting
in the resonance enhancement of the transition probability,
known as the Mikheyev-Smirnov-Wolfenstein (MSW) effect
[3]. The MSW effect is believed to be the most plausible
solution to the solar neutrino problem [4].

Despite neutrinos are electrically neutral particles, noth-
ing prevents them to have nonzero magnetic moments
[5,6], which are of a pure anomalous origin. Neutrino
magnetic moments result in the particle spin precession in
an external electromagnetic field. Thus, a left polarized
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neutrino, which exists in the standard model, can be trans-
formed to aright polarized particle, invisible to the detectors.
If this process happens within one neutrino generation, it is
called neutrino spin oscillations [5]. There is a possibility
for neutrinos to change both flavor and the polarization in an
external electromagnetic field. In this situation, these tran-
sitions are named neutrino spin-flavor oscillations. Neutrino
spin and spin-flavor oscillations were recently reviewed in
Ref. [7].

Neutrino spin-flavor oscillations were studied mainly in
a constant magnetic field, which is transverse with respect
to the neutrino motion. However, other nontrivial configu-
rations of the electromagnetic field, like an electromagnetic
wave are of interest. This interest is inspired, e.g., by the
suggestion in Refs. [8,9] to explore the neutrino evolution
in intense laser pulses. Note that the study on the develop-
ment of intense lasers in Ref. [10] was recognized by the
Nobel committee in 2018.

Neutrino spin and spin-flavor oscillations in matter and
an electromagnetic wave were previously discussed in
Refs. [11,12] Recently, we demonstrated in Ref. [13] that
the results of Ref. [11] are not applicable for the description
of spin-flavor oscillations. In the present work, we continue
the study of Ref. [13]. However, besides the neutrino
interaction only with a plane electromagnetic wave [13],
now we account for the electroweak interaction of neutrinos
with background matter. As in Ref. [13], here we suppose
that neutrinos are Dirac particles. Despite multiple models
for the neutrino mass generation predict that neutrinos are
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likely to be Majorana fermions [14], the nature of these
particles is still unclear [15].

This paper is organized as follows. We start in Sec. 11
with the basics of neutrino electrodynamics in background
matter. Then, in Sec. III, we find the new exact solution of
the wave equation for a single neutrino mass eigenstate
interacting with matter and a plane electromagnetic wave
with the circular polarization. The obtained results are
applied in Sec. IV to describe neutrino spin oscillations
in the considered external fields. Then, in Sec. V, we
study neutrino spin-flavor oscillations in matter and a
plane electromagnetic wave, with the diagonal magnetic
moments being greater than the transition one. The opposite
situation, when the transition magnetic moment is domi-
nant, is considered in Sec. VI. Some possible astrophysical
applications are also briefly discussed in Sec. VI. Finally,
in Sec. VII, we summarize our results.

II. NEUTRINO INTERACTION WITH
EXTERNAL FIELDS

In this section, we briefly recall how neutrinos can
interact with background matter and an external electro-
magnetic field. We consider these interactions both in
flavor and mass eigenstates bases.

Without loss of generality, we shall study the system of
two massive neutrinos (v,,v4) with a nonzero mixing. For
example, we can take that v, =v,, and vy =v,. These
neutrinos can electroweakly interact with background matter
consisting of electrons, protons, and neutrons. The back-
ground matter is supposed to be nonmoving and unpolarized.
Moreover, we shall take that neutrinos have nonzero mag-
netic moments and can interact with the external electro-
magnetic field F,, = (E, B).

The Lagrangian for the system of these neutrinos has the
form,

— . M/H/
L= Z v, [5“/13/”6,4 —myy _TFW/GMU
=ap
f,u’
—770(1—75) vy, (2'1)
where y* = (y%.7), v’ =i%'y*r%, and 6, =1[r,.7.)-

are the Dirac matrices. The mass matrix (m,y) and the
matrix of magnetic moments (M,;) are independent in
general. The matrix of the effective potentials of the
neutrino interaction with matter is diagonal in the flavor
basis: f;, = f,0,7. The explicit form of f, in the electro-
neutral matter can be obtained on the basis of the results of
Ref. [16] as

1 1
fug = \/EGF <ne - 2nn> s fl/'u.l/r = _EGans

(2.2)

where G = 1.17 x 107 GeV~2 is the Fermi constant and
n,, are the number densities of electrons and neutrons.

The nature of neutrinos can be revealed only if we
transform the flavor wave functions v; to the mass
eigenstates basis,

v, = Z Uﬁal//a’

a=1,2

(U,,) <cos€

sin 6

—ﬁn&), 23)

cosd

where 6 is the vacuum mixing angle, which is chosen in
such a way to diagonalize the mass matrix: (U,,)" (m;)
(Uyp) = m,S,,, where m, are the neutrino masses. The
neutrino mass eigenstates y,, a = 1, 2, are taken to be
Dirac particles. In general situation, the matrices of magnetic
moments (p,;,) = (U,,) (M) (Uy,) and neutrino interac-
tion with background matter (V ;) = (U,,)"(f1)(Uyy) are
nondiagonal in the mass eigenstates basis.

Using Eq. (2.3), we can rewrite the Lagrangian in
Eq. (2.1) in the following way:

_ . Ha v
L= Z Ya |:5ab<17”8” - ma) - TbF;waﬂ
ab=1,2
Va
- —ys)]wb- (2.4)

One can see that the Dirac equations for different mass
eigenstates, resulting from the Lagrangian in Eq. (2.4), are
coupled due to the presence of external fields.

III. SOLUTION OF THE DIRAC-PAULI
EQUATION

In this section, we study the evolution of a single
neutrino mass eigenstate in matter under the influence of
a plane electromagnetic wave. We write down the wave
equation for a massive neutrino in these external fields and
find its exact solution.

In this section, we neglect the mixing between different
neutrino types. Thus, using Eq. (2.4) and omitting the index
a there, we obtain the wave equation for a Dirac neutrino
with the nonzero mass m and the magnetic moment p,
interacting with nonmoving and unpolarized background
matter and with the external electromagnetic field, in the
form,

. 7 , vV
iy 0y =m =5 Fpot =27 (1=p) |y =0,

(3.1)
where y is the neutrino bispinor. The effective potential V
can be obtained basing on Egs. (2.2) and (2.3). We suppose
that a neutrino interacts with a plane electromagnetic wave.
Neglecting the dispersion of the wave, one gets that the
electric and magnetic fields, E and B, depend on ¢ — z.
If the wave propagates along the z-axis, one has that
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B = (B,.B,.,0), and E = (B,,-B,,0), where B, and B,
are linearly independent components of the magnetic field.
We rewrite Eq. (3.1) in the Hamilton form as

0 = |(a¥) 4 p iy = PEB) 4 3 (1= )|
(3.2)

where @ =%, p=179°, and X =y’ are the Dirac
matrices. If the density of background matter is constant,
we can gauge the term V/2 out: y — exp (—=iV#/2)y. It is
convenient to introduce the new variables uy = ¢t — z and
uy = t + z. Defining the derivatives with respect to u, and
uz as 0y and 03, one gets that Eq. (3.2) has the following
integrals:

—iViy =pry, 20y =y, (3.3)

where V| = (0,,0,,0) and p, = (p,.p,.0). Here we
assume that the background matter is uniform.
Then we look for the solution of Eq. (3.2) in the form,

v =exp (—-iVt/2 +ip x| —idus/2)wy, (3.4)
where w, = w(ug). The equation for y reads
. A
i(1—a,)0pyo = |(arpr) - 3 (I+a,)+pm
. Vo
+u(iyE - fEB) -1 lwo. (3.5)

Note that the matrix (1 — «.) is singular. Thus some of the
components of y, obey the algebraic rather than differ-
ential equations.

It is convenient to choose the Dirac matrices in the chiral
representation [17]. If we define w{ = (v, w2, w3, ws),
then only y, and w3 are independent and satisfy the
equations

) Api+m? VvV pi —m?
o —_|ZaL " C (2L
0¥z {212—\/2/4 2\ T vs) |
Vm(px+ipy)}

3

B, +iB,) +~
+{”( HiB) T v

. Apti+m> VvV pi —m?
1o {242—\/2/4*4 T via) |

. 14 m(px - ipy)
B,—-iB,) + —-———5-~ . 3.6
+{.“(x 1))"'2 /12_‘/2/4 5] ( )
After the separation the common factor in y, 5 as

A pr+m?
W23 = eXp <— S | V12,

3.7
22V (3.7)

one gets that the spinor v = v(uy) = (v, v,)T obeys the
equation,

idyv = (6*R)v, (3.8)

where ¢ are the Pauli matrices and

\% \% 2 02
R =uB + "PL (—l—pL o

- —— ———— |e.. 3.9
212-V?/4 4 /12—V2/4> < (39)
Here e, is the unit vector along the wave propagation.

Finally, using Eqs. (3.4) and (3.7), the general solution of
the wave Eq. (3.1) has the form,

Voo A A pt 4+ m?
Y = exp —lzl‘—l—lpJ_XJ_—lELQ—lEmuo u,

(3.10)
where
+V]2
: N (3.11)
U= —— , .
VN vy
_ (Patipy)vatmy,
—V]2

is the basis spinor. The normalization coefficient N is given
by the condition |u|> = 1.

IV. NEUTRINO SPIN OSCILLATIONS

Now we use the general solution of the Dirac-Pauli
equation, found in Sec. III, to describe neutrino spin
oscillations in a plane wave with the circular polarization.
We specify the initial condition and find the transition
probability. The obtained results are compared with pre-
vious findings of other authors.

Before we proceed, it is convenient to replace the total
wave function y in Eq. (3.10) by its projection to the
subspace of the linearly independent components v, 3,

1

vy =51 -ay. (4.1)
The basis spinor ii, which is the analogue of u in Eq. (3.11),
takes the form, " = (0, vy, v,, 0). This spinor is automati-
cally normalized to one if |v;|? + |v,|> = 1. The last
condition results from the unitary dynamics of » implied
by Eq. (3.8). The mean value of an operator O can be found
as (0) =yt 0.

In order not to encumber the presentation, we discuss the
situation of a neutrino propagating along an electromagnetic
wave, i.e., p;, = 0. This case is implemented if neutrinos
and an electromagnetic wave are emitted by the same source.
Then we consider a wave with the circular polarization,
ie., B, = Bjcos[gw(t —z)] and B, = Bysin [go(t — 7)),
where B, is the amplitude of the wave, w is its frequency,
and g = +1 is the sign factor corresponding to right or left
polarizations.
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The solution of Eq. (3.8) for a circularly polarized wave
has the form,
v = U_[cos(Qug) — i(en) sin(Qug)] vy, (4.2)

where

U, =exp(iosgwug/2), Q= \/(Rz +9@/2)* + (uBy)*,
(4.3)

and

1
n= 5 (ﬂBo,O, Rz + ga)/2), (44)

is the unit vector, R, is the z-component of the vector R
in Eq. (3.9), and v, is the initial spinor corresponding to
Uy = 0.

We suppose that, at uy = 0, only left polarized neutrinos
are presented in the space-time region outside the wave
propagation. Thus, we impose the condition X,ii = —ii on
the basis spinor # at u, = 0. The components of the spinor
vy are v1(0) = 1 and v,(0) = 0.

We are interested in the appearance of right polarized
particles after neutrinos interact with external fields. It is the
situation, which is implemented in neutrino spin oscilla-
tions: one looks for right polarized neutrinos in a beam
initially consisting of left particles of the same type. Using
Eq. (4.2), one obtains that the probability for L — R
transitions has the form,

2R2

1 . WB} .
P _r= EII/T(l + X)) = |n* = on sin” Qu.

(4.5)

In a general situation, P;_,z in Eq. (4.5) depends on
uy =t—z. We also note that this expression contains
the dependence on the quantum number A4 which does
not have a clear physical meaning yet. Hence, one should
express A in terms of the neutrino energy and momentum.
The Hamiltonian of Eq. (3.2) explicitly depends on ¢
and z. Thus the neutrino energy E and the momentum p,
along the wave propagation direction are not defined.
Nevertheless we can define the effective £ and p, as

1%
E—p, =2 03 = A+ 5 (4.6)
it =4 Y o (e'R
E+PZ— /g Oy/—ﬂm‘f'a“r 1}(0' )U.
(4.7)

Using Eq. (4.2), one gets that

v'(6*R)v = :|:<Rz +§>’
252

B
plw, uy) = 2goo'ugz0 sin?Quy,

(4.8)

where the signs =+ stay for initially left and right polarized
neutrinos. A right polarized neutrino corresponds to v} =
(0,1) in Eq. (4.2).

Finally, using Eqgs. (4.6)-(4.8), we have the energy of
left neutrinos as

V+ V—p\2 m?
EL:Tp+\/m2+<PZ+—p> zpz+2—+V,

and

V-p V—p\2 m?
Er = > +\/m2+<l’z— > ) %Pﬁ'gy
Zz

(4.10)

for right particles. The expansions in Egs. (4.9) and (4.10)
correspond to ultrarelativistic neutrinos with p, > m. One
can see that, in this case, the energies have the conventional
form. However, for nonrelativistic neutrinos, the effective
energies become time and z dependent.

The transition probability depends on the quantity R,
given in Eq. (3.9). Using Egs. (4.6) and (4.9), one gets that
R, has the following form for left neutrinos:

v 2 V(v 2\!
Ro=— (1o aa(—42) . (411)
T\ T2 ovia) T2\ o2

Basing on Egs. (4.5) and (4.11), the transition probability
can be rewritten as

2p2
W Bj .
Pl g = 920 sin?[Q(t — z)],

VIV m’\!' gwl|?
ox s[5 (g 5] e
Zz

Z

where we explicitly show the dependence on ¢ and z.

Now let us consider the quasiclassical approximation.
In this limit, a neutrino moves along a trajectory, which is
a straight line z = fft, where ff = p./E is the neutrino
velocity. We can represent the transition probability in
Eq. (4.12) in the following way:
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©2By(1-p)*
T () (),
Xsin2<\/u233(1—ﬂ)2 +yr5a-p] )
(4.13)
since
m2 -1
;(p%+2—p§) (1—ﬁ)z§. (4.14)

The expression for P;_,r in Eq. (4.13) coincides with the
result of Ref. [11], where the neutrino spin evolution in
matter under the influence of a plane electromagnetic wave
was treated within the quasiclassical approach from the
very beginning.

V. SPIN-FLAVOR OSCILLATIONS: GREAT
DIAGONAL MAGNETIC MOMENTS

Now we turn to the study of neutrino spin-flavor
oscillations. Here we are interested in the situation of great
diagonal magnetic moments. Basing on the results of
Sec. 1V, we derive the analytical transition probability
for this type of oscillations.

Using Eq. (2.4), we obtain the system of coupled Dirac
equations for the neutrino mass eigenstates y,, a = 1, 2,

iatl//a = Hal//a + Vlllbv a ?é b’
\%4
M, = =i(aV) + fm, + i (i7E ~ FEB) + 2 (1= 7).
\%
V= u(irE - pZB) + 5 (1-7°), (5.1)

where V, =V, and p, = p,, fora=1,2, V=V,,, and
U = pi, 1s the transition magnetic moment.

We shall analyze the system in Eq. (5.1) in the approxi-
mation when pu, > p. There are multiple models of the
neutrino magnetic moments generation. Some of the
models predict the diagonal magnetic moments y, propor-
tional to the neutrino masses m,,. In these cases, the value of
u is suppressed because of the Glashow-Iliopoulos-Maiani
(GIM) mechanism [6].

Moreover, we suppose that |V, | > V. If we study v, —
v, . oscillations, then, using Egs. (2.2) and (2.3), we get that

1

= V2Gg( n,sin?0 —=n, |,
2
1

= V2Gg (necoszﬁ -5 nn> ,

V= &ne sin 26.

7 (5.2)

Basing on Eq. (5.2), one gets that the condition |V,| > V is
satisfied if either n, > n, or @ < 1. The former case is
implemented in a neutron rich environment like a neutron
star. The latter situation takes place if we study v, — v,
oscillations since, as found in Ref. [18], § = 0,3 = 0.15 is
much less than both 85 = 0.6 [19] and G,ry = (0.75 +
0.85) [20].

We are interested in spin-flavor oscillations of the type
VgL = Ugr, 1.€., when both flavor and the polarization are
changed. If the above approximations are satisfied, we can
derive the analytical expression for the transition probability
for vy — v, oscillations. Indeed, if we neglect V
in Eq. (5.1), the neutrino spin evolves independently within
each mass eigenstate, as described in Sec. I'V. The transitions
between different neutrino flavors are solely owing to the
vacuum neutrino mixing. As in Sec. IV, here we consider a
neutrino beam propagating along the electromagnetic wave.

To describe the evolution of neutrinos, we use the
approach developed in Ref. [21], where the initial condition
problem is solved. The initial conditions corresponding
to vg — ver are the following. Since there are no right
polarized neutrinos initially, we choose v,z(z,0) =
vsr(2,0) = 0. The wave functions of left polarized neu-
trinos should be chosen like v, (z,0) = 0 and v (z.0) ~
exp(ip.z). Such a choice of the initial condition for
vp1.(z, 0) corresponds to a broad wave packet. The arbitrary
initial wave packets are discussed in Ref. [13]. Here the
spin projections are defined using the operators (1 £ X.)/2.

The projected wave functions of mass eigenstates, given
in Eq. (4.1), which satisfy the system in Eq. (5.1), have the
form,

Fa(z.t) = Y exp(—iEqt +1p.2)agitys.
s=L,R

= (0.0,7.45.0). (5.3)
where the index s = L, R corresponds to initially left or
right polarized neutrinos and the energies E,; are given
by Egs. (4.9) and (4.10) with the replacements m — m,, and
V — V,. Since we neglect V in Eq. (5.1), the coefficients
a,, are constant and entirely fixed by the initial condition.
Using Eq. (2.3), we get that a;;, = sin@ and a,;, = cos 0.
Moreover a;,g =0 since there are no right polarized
particles initially.

To describe the evolution of the spinors v§“> in Eq. (5.3),
we use the quasiclassical approximation from the very
beginning, i.e., we suppose that z = ft, where = 2p./
(E;L + E5 ) is the center of inertia velocity. Using
Eq. (4.2), we get that the components of v, evolve as

%) (1) = expligw(1 = B)/2]{cos[Qu(1 - p)1]

—inl@ sin[Q, (1 = B)1]},
09 (1) = =i\ exp[~ig(1 - B)t/2)

x sin[Q, (1 — B)1], (5.4)
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where the quantities €2, and ni”z) are the natural generaliza-

tions of the corresponding parameters given in Egs. (4.3) and
(4.4) with the replacements m—m,, 4 — u,, and V-V,
there. The evolution of vl(f ) is not important since there are
not right polarized neutrinos initially.

Basing on Egs. (2.3), (5.3), and (5.4), we derive the right
polarized wave function v (z,1)=(1+X.)[cosOy, (z,1)—
sinfy,(z,t)]/2 in the following form:

vIi(z,1) = sin@cos Oexp(ip.z) (0,0, exp(—iE;L 1) U(le) (1)
— exp(=iEy 1)v}3 (1), 0). (5.5)

Now, using Eq. (5.5), one obtains the probability for
transitions vy, — Vg in the form,

Py—ar (1) = |vr (2. 1)
— sin?(20) B (Ay = Ay)? + A Aysin(®)
(5.6)
where
A ([ l’laBO(l _ﬁ)
VIRBR (1= BP + [+ 2 (1P
X sin <\/ﬂ§B(2)(1 -+ {% + %(1 —B)} 2t>,
(5.7)

is the amplitude of spin oscillations within one mass
eigenstate, ® = @, + (V| — V,)/2is the phase of neutrino
flavor oscillations accounting for the matter contribution,
®,,. = dm?/4p. is the phase of neutrino oscillations in
vacuum, and 5m? = m? — m3. To derive Eq. (5.7) we use the
analogues of Egs. (4.11) and (4.14).

One can see that Egs. (5.6) and (5.7) are the generalization
of the corresponding expressions obtained in Ref. [13] for
|

I . .
Eul”/(l - az)uas = ’ULS/UM =

2 a_g (l}lE ﬂZB)ubs

Then we adopt the quasiclassical approximation, in which
0y = (1=p)7'0,, where B is the mean velocity of the
neutrino wave packet, defined in Sec. V.

In this section, we consider the situation when y, < p.
It means that the components of the vector n,, which
defines the neutrino spin evolution, have the following

\%4
—Uu /(1 — ]/S)ubs = 5 <1)ZS/21)17S2 +

the situation when neutrinos interact not only with a plane
electromagnetic wave but also with the background matter.

VI. SPIN-FLAVOR OSCILLATIONS: GREAT
TRANSITION MAGNETIC MOMENT

In this section, we continue to study spin-flavor oscil-
lations. However, unlike the case considered in Sec. V, we
discuss the situation of the great transition magnetic moment.

If 4 > u,, we cannot neglect VV in Eq. (5.1). It means that
a,s in Eq. (5.3) is no longer constant. Analogously to
Ref. [13] we suppose that a,, = a,,(t — z). Our main goal
is to find the behavior of a,,. Moreover, in the analogue of
Eq. (5.3), we shall use the total wave function y,, rather
than the projection ¥ ,,. Hence we look for the solution of
Eq. (5.1) in the form,

= Z eXp lEasl+1pz ) as(
s=L,R

_Z)uus' (61)

We consider neutrinos propagating along the wave in
Eq. (6.1). Since a,, is time dependent for both s =L
and s = R, we should account for the time evolution of the
basis spinors u,; g. For this purpose we choose two linearly
independent initial spinors v, for a = 1, 2, v, = (1,0)T
and vog = (0, 1)T, which contribute to Eq. (4.2).
Substituting Eq. (6.1) to Eq. (5.1) and taking into
account that ~exp (—iE ¢+ ip.z)u,, is the solution of
the diagonal part of the system in Eq. (5.1), i.e., without V,
one gets the equation for the coefficients a,, in the form,

1— Z ul (1= o), 00a,,
Y L.R
1
= E 'Vubsabs exp[ (Eas’ - Ebs) ] (62)
s=L,R

Using Eq. (3.11), we obtain the following mean values:

T _
Voy Vos = 5ss’ ’

/’“)Zs’ (6*B)vy,,

ma mb
*, . 6.3
Ga=Val20y = Vy2us 1”’”‘) (63)

values: nx =0 and n = 1. We can use Eq. (4.2) to
compute the mean values of the spinors v,, in Eq. (6.3)
assuming that the electromagnetic wave has the circular
polarization. Then we define the effective wave function
WT=(ag,a1,as.a1), which obeys the Schrodinger
equation,
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d¥
i— = HY,
Var
0 0 0 uBy(1 — el
0 0 Bo(1 — p)eiht Velt't
H— B A H 0( ﬂ)e e (64)
0 uBy(1 — p)e i 0 0
uBy(1 — B)ei! Ve 't 0 0
|
Here \% \%
U= diag{exp [i <¢>_ - %) t] ,
sm? _ _
~ _V.— — 3V, -V
& 2p. Va—go(l-p), exp i(d>+ +714 2) t],
m? _ -
~ - . \% \%
Ny, TV =h), exp | - <¢+ +— Z 2) t]’
ém? -
/N —_— 3V - V
P~ 2 + V=V, (6.5) exp |—i <q)_ _ %) t] } (6.6)

where we take that neutrinos are ultrarelativistic particles.
Let us introduce the new wave function ¥ =

(dir,aL, @, ds ) as ¥ = U, where

Here ®, = ®,,. + (1 — f)gw/2. The wave function ¥
obeys the equation

v . .
i— =HY,
t
o_ -t 0 0 uBy(1 = p)
3 . 0 @, +3VY2 yB(1-p 1%
H=UHU- iU = R Vﬂ )V (6.7)
0 uBo(1-p) —®, - 0
1By(1=p) 1% 0 —o_ + 32N

One can see that the effective Hamiltonian H in Eq. (6.7)
generalizes the analogous effective Hamiltonian derived
in Ref. [13] for the nonzero interaction of neutrinos
with background matter. Moreover, if set (1 — ) — 1 and
o — 01in Eq. (6.7), we reproduce the effective Hamiltonian
for neutrino spin-flavor oscillations in matter under the
influence of a transverse magnetic field derived in Ref. [22]
using the relativistic quantum mechanics approach.

The solution of the Schrodinger equation in Eq. (6.7)
results in the algebraic characteristic equation of the forth
order, which implies quite cumbersome expressions for
eigenvalues and eigenvectors. That is why we again suppose
that V < |V,|, as in Sec. V, to proceed with the analytical
solution. The validity of this approximation will be dis-
cussed below.

In this case, the evolution of ¥ can be represented in the
form,

B(r) = exp (-iEd (U @ USHP(0),  (6.8)
ag::l£2
where
V,=-V
552=i 1 2+CQ12,

Q. - \/ P =2+ (02 +792) (69)

are the eigenvalues of the Hamiltonian A in Eq. (6.7)
and
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0
i \/91 +O V2| (11 .
1 — —_ )
29, szl/i<10>++vl/2
0
0
By(1-§)
U- — Q+@, +V,/2| ~ae vz
! 2Q 1 ’
0
1
— Q+d_-V,/2 0
2 2Q, 0 ’
By (1-P)
Qr0_—V,/2
__uBy(1-p)
SHTO_—V,/2
Q,+®_—V,/2 0
U =4 /— = 21— , 6.10
2 \/ 292 0 ( )
1

are the eigenvectors.

Equation (6.8) should be supplied with the initial
condition of the form,

¥T(0) = (0,sin 0,0, cos ), (6.11)

which means that there are only neutrinos of the type v
initially. Using Eqgs. (6.8)—(6.11), one gets that the coef-
ficients a; o are expressed in the following way:

B - \%
ar(t)= —iu(l —pB)exp {i <CI>_ ——2> t} cos@sin 1,
Q, 2

B _ 1%
anp (1) = =222 (1 = B)exp {—i <<1>+ +71> t] sin@sinQ, .

(6.12)

The values of a; »; are not important for our purposes since
we are interested in spin-flavor oscillations when both
flavor and helicity change.

Basing on Eqs. (2.3), (6.1), and (6.12), the neutrino wave
function v,g(z,1) = cos Oy r(z,t) — sin Owog (2, t) reads

Var(z, 1) = exp(ip.z)[cos O exp(—iE rt)ar (1) — sin @ exp(—iErt)a (1)|vr

2 2
my+m;  gw

= —1exp <—1 [pz + ap

Z

29 iz
X |:COS exp( 12

where vy is the constant bispinor satisfying |vg|> = 1 and
EZI/R = LR.

The probability for transitions vg — v.g is derived
using Eq. (6.13) as

P/iL—»aR(t) = |V(1R(Z’ t)|2

= {[Az - A1]2 + 4A1A2$in2< l

V-V,
t )
)

(6.14)
where
_ inQ, 1
A, = uBy(1 = )sin2 221l
Q
_ inQ,
Ay = uBy(1 — ﬁ)coszasnz2 2t (6.15)

2

are the amplitudes of the transitions y/(; 1) 2. r) <> W(2R).(1.L)
in matter under the influence of an electromagnetic wave.
The analogue of A, , for the constant transverse magnetic

fields was introduced in Ref. [23].

+5-(1 —B)] + ipz2>ﬂBo(1 -h)

\% in Q¢ \% in Q¢
i 2t> SH;z 2 _ sin20exp <—i1t> SIn25 :|I/R,

(6.13)

2 Q

The behavior of the transition probability in Eq. (6.14) is
shown in Fig. 1(a) for v,;, — v oscillations channel versus
the distance z & ¢ passed by the neutrino beam. We suppose
that the electromagnetic wave has the following character-
istics: By = 10'® G and @ = 103 s~!. The neutrino energy
and the transition magnetic moment are taken to be E, =
p. = 1keV and yu = 107", where py is the Bohr mag-
neton. As mentioned in Ref. [13], these parameters can
model neutrino spin-flavor oscillations in the vicinity of a
highly magnetized pulsar. To estimate the mean velocity of
neutrinos  we assume that the neutrino masses are on the
level of 1 eV [24].

The motivation for the choice of the matter density value
in Fig. 1 is the following. We can consider neutrino spin-
flavor oscillations in the vicinity of a compact astrophysical
object surrounded by an accretion disk. For example,
properties of a gamma-ray burst (GRB) can be explained
by the matter accretion to a central object. In this model of
GRB, the matter density of a hydrogen plasma in the inner
part of an accretion disk can reach 10%® cm™ [27] or be
even higher [28]. Such values of n, are close to these used
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FIG. 1.

influence of the electromagnetic wave with B, =
The parameters of neutrinos are ém> = 2.5 x 1073

The transition probabilities for v,; — v, oscillations in the electroneutral hydrogen plasma with n, = 10 cm™>
10'® G and @ = 10" 57! versus the distance z = f3¢ traveled by the neutrino beam.
eV2 [25],0 =0.15[18], p, = 1 keV, and g = 10~y [26]. (a) The approximate
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under the

transition probability in Eq. (6.14) corresponding to the case V = 0 in & in Eq. (6.7). (b) The transition probability in Eq. (6.16) based
on the numerical solution of Eq. (6.7) with V # 0. Red and blue lines are the upper envelope function and the averaged transition
probability. The insets in panels (a) and (b) show P, _, (z) at 0 <z < 150 m.
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FIG. 2. The transition probabilities for v,;, — v, oscillations in the electroneutral hydrogen plasma when particles interact with the

electromagnetic wave having BO
neutrinos are ém? = 7.59 x 107>

Eq. (6.16), which is based on the numerical solution of Eq. (6.7) with V # 0. (a) n, = 10* cm™3; and (b) n, =

10'® G and @ = 10" s~! versus the distance z = j3¢ passed by the neutrino beam. The parameters of
eV2[29],0 = 0.6 [19], p, = 1 keV, and p = 107" ug. These transition probabilities correspond to

10?7 cm~3. Red and blue

lines are the upper envelope functions and the averaged transition probabilities. The green line in panel (a) is the lower envelope

function.

in our simulations (especially see Fig. 2 below). Note that
this model of GRB predicts a high neutrino emissivity by
an accretion disk [27,28].

The function P, _,, (z) is a rapidly oscillating one. It is
the typical feature of a neutrino system which experiences
spin-flavor oscillations in matter and an electromagnetic field
with different oscillations frequencies induced by matter and
an electromagnetic field; cf. Refs. [13,21]. That is why, here,
we show only the upper envelope function and the averaged
transition probability. The upper envelope function is built
using the spline interpolation of the maxima of P, _,, (z).

The transition probability P,  _, (z) is shown only in the
inset in Fig. 1(a) for small z.

One can see in Fig. 1(a) that the transition probability
for the considered oscillations channel reaches only a
tiny value ~1073. This fact can be explained by the great
value of @, for v,; — v, oscillations, which is about 2
orders of magnitude greater than other entries in A in
Eq. (6.7). Hence Q, > uBy(1-pf) and A;, <1 in
Eq. (6.15).

Now we compare the exact solution, given in Egs. (6.14)
and (6.15), of the approximate effective Schrodinger
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Eq. (6.7), where we put V = 0, with the numerical solution of
the exact Eq. (6.7). Should one have the solution ¥'(7) =
(9,.9,,¥;,¥,) of Eq. (6.7), supplied with the initial
condition in Eq. (6.11), the transition probability for vg —
V,r oscillations can be found as

Py (t) = |cos 0, (1) — sin 0F;(1)[*. (6.16)
Equation (6.16) can be verified with help of Egs. (6.6)
and (6.13).

In Fig. 1(b), we show the transition probability for
v, — v;p oscillations based on Eq. (6.16) calculated
using the numerical solution of Eq. (6.7) with V # 0.
The transition probability P, _, (z) corresponds to the
same parameters of the neutrino system and the external
fields, which are used in Fig. 1(a). Comparing Figs. 1(a)
and 1(b), one can see that the upper envelope function,
depicted by the red line, and the averaged transition
probability, shown by the blue line, oscillate near the mean
values ~2 x 107> and ~1073 respectively. Despite the
frequencies of this oscillation are different, the mean values
of the upper envelope function and the averaged transition
probability are practically the same. Thus the exact solution
in Eqgs. (6.14) and (6.15) of the approximate Schrédinger
Eq. (6.7) with V =0 represents a qualitatively correct
description of v,; — v,g oscillations.

Now we consider v,;, — v, oscillations channel. In this
situation, we cannot neglect V in Eq. (6.7) since § = 0, =
0.6 is not small. That is why Eqgs. (6.14) and (6.15) are not
applicable and we have to use the numerical solution of
Eq. (6.7) from the very beginning.

InFig. 2(a), we show the transition probability P, ., (2),
the upper and lower envelope functions, and the averaged
transition probability. The values of the parameters of the
external fields and the neutrino system, except 5m? and 6, are
the same as in Fig. 1. One can see in Fig. 2(a) that the
averaged transition probability oscillates near 5% value. It is
much greater than in Fig. 1(a). This feature can be explained
by the fact that all the entries of H in Eq. (6.7) are of the same
order of magnitude for v,;, — v,z oscillations unlike the
V., — Vg channel, in which ®,,. is dominant.

InFig. 2(b), wedepict P, _,, . (z) forlower matter density
n, = 10?7 cm™3, which is very close to the value in the inner
part of an accretion disk predicted by the model of GRB in
Ref. [28]. The transition probability in this case reproduces
the result in Ref. [13], where spin-flavor oscillations v,; —
v,r were described at the absence of the matter contribution.
Comparing Figs. 2(a) and 2(b), one can see that the lower
matter density is, the higher transition probability is. Thus,
one does not expect the appearance of a resonance in neutrino
spin-flavor oscillations in matter under the influence of a
plane electromagnetic wave, as claimed in Ref. [11]. The
highest transition probability can be observed when neu-
trinos do not interact with background matter.

To highlight the difference between our results and the
findings of Ref. [11] we present the transition probability
for vpg — Vg, which can be derived on the basis of
Eq. (21) in Ref. [11]. It has the form,

(l) _ luzB(Z)(l__B)z
VgL —VaR /423%(1 _ﬁ)2 + AZ

X sin2<\/,uzB(2)(1 -p)?+ Azt),

GFne

V2

where take into account that, for v, — v, & oscillations
channel, A(¢) = (1 +cos20)/2 [30] and f, —f, =

V2Ggn,; cf. Eq. (2.2).

One can see in Eq. (6.17) that the amplitude of the
transition probability would become ~1 if A = 0. This fact
contradicts to out results both in Egs. (6.14) and (6.15)
and the numerical simulations shown in Figs. 1 and 2. This
inconsistency can be accounted for by the incorrect
generalization of the Bargmann-Michel-Telegdi equation
for the description of neutrino spin-flavor oscillations. In
general situation, when one studies spin-flavor oscillations
of Dirac neutrinos, an effective Schrodinger equation
cannot have a 2 x 2 Hamiltonian. Typically, in this kind
of problems, one deals with the system of 4 differential
equations, e.g., as in Eq. (6.4) or Eq. (6.7).

P

A="—A0)

+%(1 i (6.17)

VII. CONCLUSION

In the present work, we have studied neutrino spin and
spin-flavor oscillations in matter under the influence of a
plane electromagnetic wave with the circular polarization.
Neutrinos are supposed to be massive Dirac particles with
nonzero mixing between different neutrino flavors, and
possessing arbitrary matrix of magnetic moments. We have
started in Sec. II with reminding the basic features of
neutrino interaction with background matter and an electro-
magnetic field.

In Sec. III, we have found the new exact solution of the
Dirac-Pauli equation for a massive neutrino with a nonzero
magnetic moment interacting with matter under the influence
a plane electromagnetic wave. Previously, the solution of
the wave equation for a Dirac fermion with an anomalous
magnetic moment interacting with a plane electromagnetic
wave in vacuum, i.e., at the absence of the electroweak
background matter, was known (see, e.g., Ref. [31]).

In Sec. IV, we have applied the solution obtained in
Sec. III for the description of neutrino spin oscillation in the
considered external fields. We have studied the process
U, — LR, that is the neutrino spin precession within one
neutrino mass eigenstate. The probability P;_y for tran-
sitions of this kind has been derived. We have demonstrated
that, in the quasiclassical approximation, the expression for
P;_r in Eq. (4.13) coincides with the result of Ref. [11],
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where the neutrino spin evolution in the external fields was
studied within the quasiclassical approach from the very
beginning.

Then, we have turned to the consideration of spin-flavor
oscillations. For this purpose we have formulated the initial
condition problem. This approach for the description of
neutrino flavor and spin-flavor oscillations in constant
external fields has been developed in Ref. [21] earlier.

First, in Sec. V, we have discussed the case of great
diagonal magnetic moments. This situation takes place
when a transition magnetic moment is suppressed by the
GIM mechanism. If one considers the v, — v, oscillations
channel, i.e., relatively small vacuum mixing angle, we
can find the analytical transition probability for spin-
flavor oscillations of neutrinos with great diagonal mag-
netic moments in matter and an electromagnetic wave;
cf. Egs. (5.6) and (5.7). However, the situation of great
diagonal magnetic moments is not very interesting from
the point of view of phenomenology since the GIM
mechanism is valid if u, ~ m, [6]. It makes u, to be very
small for reasonable neutrino masses [24]. Therefore
A, < 1in Eq. (5.7) and, hence, Pp g < 1 in Eq. (5.6).

We have also considered the case of the great transition
magnetic moment in Sec. VI. In this situation, we have
derived the effective Schrodinger Eq. (6.7) and have found
its exact solution for the v, — v, oscillations channel
neglecting V in Eq. (6.7). Comparing Eqgs. (6.14) and
(6.15), as well as Egs. (5.6) and (5.7), with the analogous
transition probability derived in Ref. [11], one can see that
the results of Ref. [11] are not applicable for the description
of neutrino spin-flavor oscillations in the considered external
fields. The reason for the discrepancy of our results and those

in Ref. [11] has been analyzed in Sec. VI. Then, we have
examined the numerical solution of Eq. (6.7) and revealed
that the obtained exact solution qualitatively describes v,; —
v oscillations.

Finally, basing on Egs. (6.7) and (6.16), we have numeri-
cally studied v,;, — v,g oscillations in matter with different
densities. The transition probabilities have been plotted in
Fig. 2. One can see in Fig. 2 that, if one accounts for the high
matter density in neutrino spin-flavor oscillation in a plane
electromagnetic wave, it diminishes the averaged transition
probability. Thus one does not expect the appearance of
a resonance in spin-flavor oscillations in the considered
external fields, predicted in Ref. [11].

At the end of this section, we mention that described
neutrino spin-flavor oscillations in background matter and
a plane electromagnetic wave can take place in the vicinity
of a highly magnetized compact astrophysical object,
emitting intense electromagnetic radiation, being sur-
rounded by dense matter, and being a source of neutrinos.
It can be, e.g., a pulsar with a dense accretion disk. The
estimates of the parameters of the neutrino system and the
external fields, corresponding to the implementation of
these spin-flavor oscillations in astrophysical media, are
given in Ref. [13] and Sec. VI.
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