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Effective field theory in the top sector: Do multijets help?
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Many studies of possible new physics employ effective field theory (EFT), whereby corrections to the
Standard Model take the form of higher-dimensional operators, suppressed by a large energy scale. Fits of
such a theory to data typically use parton-level observables, which limits the data sets one can use. In order
to theoretically model search channels involving many additional jets, it is important to include tree-level
matrix elements matched to a parton shower algorithm, and a suitable matching procedure to remove the
double counting of additional radiation. There are then two potential problems: (i) EFT corrections are
absent in the shower, leading to an extra source of discontinuities in the matching procedure; (ii) the
uncertainty in the matching procedure may be such that no additional constraints are obtained from
observables sensitive to radiation. In this paper, we review why the first of these is not a problem in practice
and perform a detailed study of the second. In particular, we quantify the additional constraints on EFT
expected from top pair plus multijet events, relative to inclusive top pair production alone.
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I. INTRODUCTION

The search for physics beyond the Standard Model
(BSM) is the most pressing problem in particle physics,
especially given the ongoing experimental program at the
Large Hadron Collider. To date, clear signatures of BSM
physics have remained elusive, although it is widely
suspected that the new physics may have something to
do with the nature of electroweak symmetry breaking and
thus affect the behavior of the recently discovered Higgs
boson or, due to its large Yukawa coupling with the former,
the top quark.

The lack of clear evidence for BSM physics thus far
motivates the use of effective field theory [1-6] (for a
comprehensive review see [7]), in which one characterizes
corrections to the SM Lagrangian by gauge-invariant
higher-dimensional operators built from the SM fields.
This has the advantage of being manifestly model inde-
pendent, but is only applicable if the lowest energy scale
associated with the new physics is above the typical
energies probed by the collider of interest. Given that this
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is likely to be a viable situation at the LHC, such techniques
have been widely used in the contexts of Higgs and
electroweak precision physics [8-56]. A priori, it is not
clear whether new physics will first show up in the behavior
of the Higgs boson rather than the top quark. Thus, a
number of more recent studies have looked at constraining
effective theory in the top quark sector [57-66] (see also
[67-82] for analyses using the alternative language of
anomalous couplings).

Ideally, one should attempt to constrain all possible
higher-dimensional operators, using all possible experi-
mental data. To this end, Refs. [83,84] have presented a
proof of principle that such global fits are possible (see also
Refs. [49,65,66,85-91] for related work in both the top and
Higgs sectors). In particular, the fit of Ref. [84] directly
constrained the coefficients of all (combinations of) oper-
ators affecting single and double top production and decay,
as well as associated production of a vector boson, using a
wide variety of data sets from the Tevatron and LHC (runs [
and II). These data sets were all corrected back to parton
level and compared with tree-level theory results, supple-
mented with NLO information using (bin-by-bin) K-factors.
There are many available data sets, however, which do not
admit such a simple theoretical description. A typical
example is an observable sensitive to multiple final-state
jets of QCD radiation, which cannot be accurately modeled
by available LO or NLO matrix elements. To this end,
one may employ parton shower algorithms to simulate
additional radiation, and many general-purpose codes are
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available. Furthermore, parton showers may be systemati-
cally matched to matrix elements calculated at next-to-
leading order in QCD perturbation theory [92-99], and to
algorithms which model the hadronization of final-state
quarks and gluons. Computations of this type for top-related
processes, including higher-dimensional operators, have
been recently presented in Refs. [39,66].

When many final-state jets are required in a given
observable, one must systematically improve the output
of a parton shower by including higher order tree-level
matrix elements. A matching prescription is then needed to
avoid double counting of radiation included in both the
matrix elements and the shower, and different schemes
have been presented in Refs. [100—105]. The aim of such a
matching procedure, roughly speaking, is to ensure that jets
that are widely separated from others in a given event are
generated by the hard matrix elements, and those which are
approximately collinear with other jets are generated by
the parton shower. The separation between these two
regimes is specified by a matching scale Q, and this must
be carefully chosen so as to avoid discontinuities in
distributions relating to additional jet radiation: If it is
too small, matrix elements will be evaluated in momentum
regions in which they are becoming collinearly singular; it
is too large, the parton shower will be used in kinematic
regions where it fails to approximate higher order matrix
elements sufficiently accurately. Such discontinuities thus
represent a mismatch between how QCD radiation is
described by a parton shower and by exact matrix elements,
and is a problem even within the SM alone.

When higher-dimensional operators are added to the
SM, a second source of discontinuity arises. The operators
generate additional Feynman rules, including couplings to
quarks and gluons. Thus, rates for the emission of QCD
radiation become modified. If matrix elements in this
theory are matched to a parton shower, it follows that
widely separated jets (generated by the matrix elements)
will include the effect of the BSM physics, whereas those
which are not widely separated will be generated by a
parton shower which contains SM radiation only, leading to
a mismatch between the two descriptions. Naively, one may
expect this effect to be small: First of all, the higher-
dimensional operators are typically suppressed by a large
energy scale. Moreover, they contain momentum-depen-
dent numerators that tend to boost radiated particles to
higher transverse momenta, thus widely separated from
other particles. However, there is a more formal argument
one can give to explain why any additional discontinuity
resulting from the lack of EFT operators in the shower is
negligible relative to the SM effect, related to the fact that
emissions from EFT operators do not give rise to infrared
singularities. Although the ideas involved are well known
to a QCD audience, this argument is not well known in the
BSM literature, and thus we provide a detailed explanation
in this paper.

Armed with results for matrix elements containing
EFT corrections matched to a parton shower, one may
address, for a particular production process or observable
requiring such a theory description, whether or not useful
additional constraints on given operators can be obtained.
Our motivation here is extending the global EFT fits of
Refs. [83,84] to include particle-level observables, for
which a notable example is top quark pair production in
association with multiple jets. For this process to provide a
worthwhile new input to a global EFT fit, it is important to
check that useful additional constraints are obtained by
including radiation observables as well as those related to
the top particles alone.' We study this in detail for a number
of operators, whose coefficients are set to values consistent
with recent constraints, finding that indeed there is more
information to be gleaned by adding observables sensitive
to extra radiation.

The structure of the paper is as follows. In Sec. II, we
examine the role of effective theory corrections to the three-
gluon vertex, and argue that any additional discontinuity
when matching matrix elements and parton showers is
kinematically subleading to the existing SM discontinuity.
In Sec. III, we study a number of observables in top plus
multijet production, and examine in detail whether addi-
tional constraints can be obtained by using observables
sensitive to additional jet radiation, given the matching
uncertainties. Finally, we conclude in Sec. IV.

II. MATCHING EFFECTIVE THEORY MATRIX
ELEMENTS WITH PARTON SHOWERS

As discussed above, if one matches higher order tree-
level matrix elements containing higher-dimensional oper-
ators to a parton shower, BSM effects are included in the
matrix elements but not the shower. Information about the
BSM physics is then missing in additional jets that are
generated by the shower, rather than the matrix elements,
where the former are formally correct only in the collinear
limit. This in turn means that jets which are sufficiently
collinear to other jets (defined in terms of the matching
scale) in a given event are potentially missing BSM effects.
In this section, we review in detail why this is not actually a
problem in practice, due to the differing nature of SM and
BSM radiation in the collinear limit. Our presentation will
be similar to that of Refs. [106,107]. For illustrative
purposes, we consider the case of a gluon which branches
into a gluon pair, with momenta labeled as in Fig. 1. The
intermediate momentum p, = p;, + p,. has virtuality

t=p2 (1 - 2)E20°, (2.1)

"It is worth bearing in mind that there are good reasons for
using a particle-level description even for inclusive top quark
measurements, rather than parton level: Such a comparison
will be less sensitive to assumptions made in the unfolding step
in the latter.
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FIG. 1. A gluon emerges from a scattering amplitude, before
branching into two gluons, with angular separation 6.

where

E E
g=—b=1-=¢

22
L E, (2.2)

is the fraction of the energy of parton a that is carried by
parton b. Given that this virtuality is small as 0 — 0, we
may treat parton a as being approximately on shell in the
collinear limit. We can then consider the amplitude for
emission of a gluon from the leg p,, which will be given by

M (ppopes-)
=" (pa)e(py)e (Pe)Viiais (PasPo- P )M (Pas ).
(2.3)

where M, is the amplitude before the gluon branching, {a; }
are adjoint indices of the gluons, and the ellipses denote all
momenta and color degrees of freedom associated with
partons that are suppressed in Fig. 1. Furthermore, e* is the
polarization vector of parton i, and V,,!;2;} the three-gluon
vertex. We may write the latter as

V1203

H1H2H3 (Pl,szpS)

aaas aaas

= VSM,ﬂ,,,ZM (P1.P2.03) + VBSM,y|y2ﬂ3 (P1.p2.p3), (2.4)
where the first term on the right-hand side is the Standard
Model component (coming purely from the QCD
Lagrangian), and the second term collects the additional
contributions arising from higher-dimensional operators. To
this end let us consider the following three-gluon operator:

O6 = faa0, G G G, (2.5)
where G;}U is the gluon field strength tensor. We may also
consider the associated Lagrangian

Co 1

LG — F? OG?

(2.6)

where A is the new physics scale, and C; an unknown
coefficient. The effect of this Lagrangian is to generate new
interactions involving the gluon field and, in particular, to
modify the Feynman rule for the three-gluon vertex. Explicit
results for the two terms on the right-hand side of Eq. (2.4)
are then

ayaas

VSM.u,uzm(pl’ P2, P3)
= gsfalaza3[(p1 - p2>;43’7;4]/42 + (pS - pl)ﬂznﬂlﬂ3

+ (Pz - p3)ﬂ1”ﬂ2#3} (27)

and

aaxas
VBSM,mﬂzm (p17 P2, p3)

Cq
= Ffa'am [Py P2y Py = Py P2y Py

+ (21~ P2) P3js s + (P1 - P3) P2y Msps

+ (pZ : p3)p1[ﬂ3'7;42]/4]]a (28)

where the square brackets in the subscripts denote anti-
symmetrization of indices.

In constructing the squared amplitude in the SM, one need
only include diagrams in which the radiated gluon p; lands
on the leg p, on both sides of the final-state cut. From
Eq. (2.3), the sum of all such diagrams, summed over all
final-state polarizations and averaged over the polarization
of the branching parton p,,, is (in four spacetime dimensions)

|M:1li?(pbﬂ Pes )|2
1
:§|Mf,""'(pa, I

xS [ (pa)e (p)e" () Vit (Pae i )P
pols

(2.9)

In order to evaluate this expression, one may choose an
explicit basis of polarization vectors for each parton,
e(p;) € {e, €}, pointing in and out of the scattering
plane, respectively. One may then use the dot products
[106,107]

61»“-6;?1:6?“‘-65-’“:—1, ei,-“-ej?“‘zej-’“t-pj:O, (2.10)
as well as

ey - pp = —z(1 = 2)E,0.

e p.~(1-2z)E,0, €M pp~—zE,0  (2.11)
and
Pa*Pb = PaPc=—Pb" Pe o A =DE0 (2.12)

2 ’

to obtain
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FIG. 2. A gluon is emitted from parton leg i and lands on leg j in the conjugate amplitude: (a) the case i = j; (b) the case i # j.

|Mn+l (pb’ Pes )|2

4C, P 1 -
- Agz[ ‘= tz(1-2)
t z -z
CGZ(l—Z)Egg2 Cs 223(1—Z)3E§5'4
A2 2 A2 4

X |Mi" (Pas )P (2.13)

The terms in the first line are recognizable as the usual QCD
splitting function P,,(z) describing the probability for a
gluon to branch into two gluons. The first term in the second
line arises from interference of the BSM contribution with
the SM and is suppressed by the inverse square of the new
physics scale. The second term in the second line is quadratic
in the new physics and would mix with potential dimension-
eight effects in the effective theory expansion; thus it is
formally of higher order and can be neglected. It is only the
interference term that constitutes those BSM corrections that
are missing in the collinear region. However, upon studying
this term, we see explicitly that it contains a factor of 6 and,
hence, is formally kinematically suppressed in the collinear
limit. From Eq. (2.1), the prefactor in Eq. (2.13) is O(072),
and thus the SM term contains the well-known collinear
enhancement of QCD radiation. The BSM interference term
(including the prefactor) is O(6°) and will be negligible
provided that the matching scale between matrix elements
and the parton shower is chosen to be sufficiently small. Put
another way, any additional source of discontinuity in jet-
related distributions coming from the absence of BSM
corrections in the shower is kinematically suppressed
relative to the discontinuity already present in the SM.
Given the above discussion, one may ponder whether it
is possible to nevertheless include the BSM interference
contribution in Eq. (2.13) in the gluon branching proba-
bility, despite the fact that this corresponds (eventually) to
resumming a subleading contribution. However, such a
procedure would be formally incorrect. In general, the
radiated gluon may be emitted from parton leg i and land
on leg j in the conjugate amplitude. Above, we have
considered only contributions for which i = j, as shown
in Fig. 2(a). This is correct for the SM: Such contributions, as
we have seen above, are O(672), whereas diagrams with

i = j[Fig.2(b)] are O(#°). Itis incomplete, however, for the
BSM interference contributions. Diagrams with i = j and
i# j are both of the same kinematic order [O(6")].
Therefore, all of them must be included to ensure a
gauge-invariant result, so it makes no sense to resum only
a subset of them.

Above we have examined only the operator of Eq. (2.5).
However, the kinematic suppression that we have observed
will be fully general, including operators that affect other
parton branchings, involving (anti)quarks in addition to
gluons. This follows from the fact that any dimension-six
operator appears in the Lagrangian with a dimensionless
coefficient C; and an inverse power of the new physics scale,
A~2. For the Lagrangian to have the correct dimension, the
momentum space Lagrangian must contain two powers of
momentum, which combine with A to make a dimensionless
ratio. We can see this explicitly in the example of the three-
gluon operator given above: The BSM vertex of Eq. (2.8)
contains two additional powers of momentum relative to the
SM result of Eq. (2.7). When evaluating the graph of Fig. 1,
there is only one momentum scale available, namely, the
virtuality of the branching parton, p2. Thus, the higher-
dimensional operator must contribute an interference term

2 11— E2 92
~%~7Z< AZQ) G (2.14)
where we have used Eq. (2.1). This is indeed observed
in Eq. (2.13).

We have so far seen that the effects of higher-dimensional
operators are negligible in the collinear region and thus
should not significantly contribute to discontinuities in jet-
related kinematic distributions when matching parton show-
ers (based on enhanced collinear radiation) to matrix
elements. However, this is not the full story. Parton shower
algorithms also include the effects of wide-angle soft
radiation, by e.g., explicit angular ordering or the choice
of evolution variable [106,107]. The above dimensional
argument applies also in this case: For soft, but not
necessarily collinear, emissions, the only momentum scale
that can combine with the new physics scale in the BSM
vertex for the radiated parton is the virtuality of the emitting
parton. This remains small if the emitted parton is soft.
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Indeed, looking at the interference term in Eq. (2.13), we see
that this vanishes as z — 0 or z — 1, corresponding to the
two limits in which either parton a or parton b is soft. There
is thus no soft singularity from the BSM part, mirroring the
lack of collinear singularity. Furthermore, the fact that the
virtuality of the emitting parton is the only relevant scale that
can combine with the new physics scale in the soft or
collinear region means that the above discussion is fully
general and applies to all QCD dimension-six operators.

In this section, we have reviewed in detail the fact that
additional radiation produced by EFT operators is not
associated with collinear singularities and thus does not
lead to SM-like discontinuities when matching tree-level
matrix elements with a parton shower. However, in order to
obtain meaningful constraints from observables requiring
such a theory description, it is important to examine
whether or not deviations due to EFT corrections lead to
significant new information, in light of the theoretical
uncertainties due to the matching procedure. This is the
subject of the following section.

III. RESULTS

As discussed above, the aim of our study is to ascertain
whether or not jet observables in top production provide
additional constraints on new physics (as described using
EFT), relative to observables only involving the top quarks
(for similar analyses of BSM QCD multijet production, see
[108]). To this end, we must first examine the matching
uncertainty affecting how the jets are modeled.

A. Effect of dimension-six operators on jet radiation

In this section, we present a number of example
distributions, including EFT effects consistent with current
constraints on operator coefficients [84]. Results are
obtained as follows. We implement EFT operators in a
FeynRules [109] model file and interface this with
MadGraph5 aMC@NLO [110] for the generation of tree-
level events containing top pairs with up to 2 jets. These are
matched to the parton shower Pythia 8 [111], using the
default MadGraph MLM-based matching scheme [112],
with a central matching scale Q = 30 GeV. Our default
choice for the renormalization and factorization scales is
the top mass, fn, = Mo = My, and we use the parton
distributions of Ref. [113]. We cluster all visible final-state
particles into jets using the anti-k; algorithm [114] with jet
radius R = 0.4, as implemented in FastJet [115]. We
consider only the dilepton final state and require both
leptons to be isolated from hadronic activity, defined via the
requirement that the total transverse momentum with a
cone of radius AR = 0.3 around the lepton satisfies p7>"® <
0.1 x py,, where pr; is the transverse momentum of the
lepton. We remove the isolated leptons and any b-tagged
jets from the list of final-state jets and particles, so as to
consider only jets originating from additional radiation.

There are six combinations of dimension-six EFT
operators affecting top quark pair production at tree level
in the SMEFT (see e.g., [116]), for which we use the
Warsaw basis of Ref. [6]. Four of these are four-fermion
operators, for which we choose the representative example

C, _ - -
0,= A—; (ay*u + dy*d)(ty,t) (3.1)
in what follows (n.b. this consists of a sum of operators
appearing in Ref. [6]). Here u, d, and ¢ are the up, down, and
top quark fields, respectively. The remaining two operators
are a correction to the three-gluon vertex

C
O =3 fancGy' GGy (32)
[where Gﬁ,/ is the gluon field strength tensor and f ¢ the

structure constants of the SU(3) gauge group], and the
chromomagnetic moment operator

(3.3)

Cw, - .
OuG = /Cz (qO-MDTAu)gaGﬁw
where o** is a fermionic spin generator, and 7* an SU(3)
generator. The combinations

.. C;
C; = " (3.4)
have already been significantly constrained by global
analyses of top quark data. Motivated by the analysis of
Ref. [84], we take as representative constraints

C,=125TeV2, ~ C;=045TeV?2,

Cio =C3% =0.64 TeV~2. (3.5)

In Fig. 3, we show the distribution of the transverse
momentum pr, of the hardest top pzmicle,3 together with
the invariant mass m,; of the top quark pair. Note that the
former differs from the top transverse momentum used in
the fit of Ref. [84], which used data corrected back to
parton level, where extra radiation had been accounted for
in the unfolding process. For such data sets (which mimic
the 2 — 2 scattering process), the transverse momentum

’The interference of the top pair production amplitude con-
taining the gluon operator of Eq. (3.2) with the corresponding
SM amplitude vanishes, such that this operator contributes at
quadratic, and thus dimension eight, level only. This leads some
people to disregard this operator, but a different school of
thought is that it should be included as the leading contribution
of this operator to the given process. We choose to follow the
latter approach.

*We extract the top particles from the Monte Carlo event
record, such that they correspond to the individual top jets before
showering and decay.
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(a) The transverse momentum of the hardest top particle, for both the SM only and including separately the operators of

Egs. (3.1)—(3.3), with coefficients set as in Eq. (3.5); (b) similar results for the top pair invariant mass.

distributions of the top and antitop quarks will be equal.
When extra radiation is involved, the symmetry between the
top and antitop pr distributions is broken, and one may
choose whether to isolate the transverse momentum of the
top quark (rather than antitop) or to take the hardest top
particle. A reason to use the latter is that it should be more
sensitive to details of the additional radiation, given that it
amplifies the recoil of the top (or antitop) against the extra
jets. By contrast, the invariant mass distribution is more
stable against radiative corrections.

In each panel of Fig. 3, the orange and red bands depict
the (renormalization and factorization) scale and matching
scale uncertainties associated with the SM result. We see in
both cases that the matching uncertainty is smaller than the
other scale variation, suggesting that modeling of additional
radiation is well under control. Both the gluon and four-
fermion operators show a shape difference with respect to
the SM, albeit slight in the former case given that the gluon
operator is already rather well constrained. Nevertheless, it
is difficult to gauge the statistical significance of the
deviation from the SM by eye alone, and a much more
quantitative description will be provided in the following
section. The effect of the four-fermion operator in the p7,
spectrum is sizable at large transverse momenta, as
expected given that EFT operators often boost final-state
particles, as they contain extra momenta to offset the
inverse new physics scale A=2. For four-fermion operators,
one may understand the enhancement as effectively arising
from the lack of a SM propagator factor 1/¢>. Furthermore,
the transverse momentum of the hardest top particle
should be particularly sensitive to the nature of additional

radiation, as discussed above. Deviations are less evident,
as expected, in the invariant mass spectrum, although there
is still a deviation from the SM, which is worth quantifying
further. Note that the dipole operator has a very similar
shape to the SM contribution (as noted in Ref. [58]), but
nevertheless leads to a change in overall normalization that
is still compatible with current constraints.

In Fig. 4 we show the transverse momenta of the first
and second hardest additional jets, using the same con-
ventions as Fig. 3. Again we see that the matching
uncertainty is smaller than the other scale uncertainties
and that there are potentially statistically significant
deviations from the SM. It is interesting, however, to
note that the effect of the four-fermion operator is much
smaller than for the transverse momentum spectrum of the
hardest top particle at high p;. This can be at least partly
explained from the fact that top pair production at the
LHC is dominated by the gluon channel. Thus, when only
the four-fermion operator is switched on, most of the
additional radiation will be purely SM-like. Another
feature of Fig. 4 is that the dipole operator of Eq. (3.3)
leads to a normalization change of the jet radiation profile
but not a significant shape change. It thus mirrors the
properties already observed for top-related observables in
Ref. [58], that the shape of kinematic distributions
involving the dipole operator is highly similar to the
SM alone. Thus, we see that the transverse momenta of
the additional jets are, in principle, useful for distinguish-
ing the dipole and three-gluon operators while providing
complementary information to those observables (such as
m,;) that also constrain four-fermion operators.
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(a) The transverse momentum of the first hardest additional jet, for both the SM only and including separately the operators of

Egs. (3.1)-(3.3), with coefficients set as in Eq. (3.5); (b) similar results for the second hardest additional jet.

In Fig. 5, we show the rapidity of the top quark and of the
hardest additional jet (similar results are obtained for the
second hardest jet). The results are consistent with previous
plots: The effect of the dipole operator is to change the
normalization of the SM contribution but not the shape.
The four-fermion operator again has a smaller effect,
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although it becomes marginally more pronounced at higher
absolute rapidities, due to the fact that the parton luminosity
then diminishes the gluon initiated channel.

To summarize, we have seen that EFT contributions to
observables sensitive to additional radiation in top pair
production indeed lead to deviations from the SM, and of
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(a) The rapidity of the top quark, for both the SM only and including separately the operators of Egs. (3.1)—(3.3), with

coefficients set as in Eq. (3.5); (b) similar results for the hardest additional jet.
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FIG. 6. Scatter plots showing the transverse momentum of the hardest additional jet vs (a) the transverse momentum of the hardest top

particle and (b) the top pair invariant mass.

300 T

p =041

250

200

150

pT.jy [GeV]

0 i i i i i

0 100 200 300 400 500 600

ijt [GGV]
(@)

300 T T

p =017

250

— 200

PT.j>

0 i i i i i i
300 400 500 600 700 800 900 1000

myz [GeV)
(b)

FIG. 7. Scatter plots showing the transverse momentum of the second hardest additional jet vs (a) the transverse momentum of the

hardest top particle and (b) the top pair invariant mass.

comparable size to those observables (e.g., top transverse
momentum and the top pair invariant mass) that are already
used in EFT fits in the top sector. Furthermore, these
deviations survive against the matching and scale uncer-
tainties associated with the SM results. How much dis-
criminating power these extra observables have depends on
the amount of data collected in coming years but also on
whether the additional jet observables are highly correlated
with the top quark kinematics. We explore these issues in
the following section.

B. Distinguishing power of jet observables

Above, we have seen that EFT operators significantly
affect additional jet radiation in top pair production, such
that observables involving this radiation can potentially
provide useful additional constraints in global fits of top
quark EFT to data. In order to check whether or not this is
realized, however, we must examine the degree of corre-
lation between observables involving the jet radiation and
those involving the top particles alone. There is clearly
some degree of correlation, given that the top and antitop

will recoil against additional radiation. However, it may
well be the case that certain top observables are less
correlated with radiation properties than others. This is
then useful information for choosing optimal (i.e., the most
complementary) sets of observables with which to con-
strain new physics.

In Fig. 6, we show two-dimensional scatter plots of the
pr of the first hardest jet, and either the p; of the hardest
top particle or the top pair invariant mass. All results are
calculated in the SM only. In each plot, we also show the
Pearson correlation coefficient p. We see that the transverse
momentum of the hardest top particle is more correlated
with the properties of the hardest jet than the top pair
invariant mass is, as expected given that the latter observ-
able is more stable to higher order corrections. In the case
of the invariant mass, the correlation coefficient is less than
0.5, suggesting that indeed the additional jet radiation is
capable of providing significant complementary informa-
tion relative to top properties alone. Similar plots are shown
in Fig. 7 for the second hardest jet. Unsurprisingly, the top
properties are less sensitive to the second hardest jet than
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they are to the first hardest jet. Again, we see that the
invariant mass provides the most complementary informa-
tion to the properties of the jet radiation.

Let us now turn to the question of how sensitivity to new
physics is affected by the inclusion of jet radiation
observables. To estimate the gain in sensitivity, we perform
a binned hypothesis test using two-dimensional distribu-
tions based on pairs of observables discussed above (in
principle, three-dimensional distributions carry even more
shape information but suffer from poor statistics). Our
hypothesis test is based on the modified frequentist CL;
method [117]. We take the signal hypothesis (s) to be each
dimension-six operator in turn. The background hypothesis
(b) is the SM only, and we generate (pseudo)data corre-
sponding to the background, before calculating the binned
log-likelihood ratio

1

where the sum is over bins i; s; and b; are the expected
number of signal and background values, respectively; and
d; is the number of observed events. The confidence levels
for excluding the s + b and b-only hypotheses are

CLs+b = Ps+b(q > QObs)v CLb = Pb(q > QObS)' (37)

These represent, respectively, the probability that the test
statistic ¢ would be greater than that observed in the data,
given the hypothesized number of signal and background
events s + b or background-only events b. In practice, we
numerically evaluate these p-values by generating a large
number of Monte Carlo pseudo-experiments, with CL
being the fraction of pseudo-experiments that generate at
least as many events as observed in the data. A signal
hypothesis is regarded as excluded at the 95% confidence
level if CL;,=CL,,,/(1 —CL,) <0.05.

To judge the usefulness of observables sensitive to
additional jet radiation, we take observables X €
{m, pr,} and calculate the CL, in two cases: (i) using
X alone and (ii) using X in combination with the transverse
momentum of the first hardest jet, pr ; . We then examine
the ratio

CLS(X’ pT.j])
—— (3.8)
CL,(X)

which measures the “improvement” due to including the
extra radiation. We choose pr ; as a particular example, but
similar results are obtained by choosing other radiation
observables. Given that the dipole and gluon operators of
Egs. (3.2) and (3.3) appear, from Figs. 3-5, to be the
hardest to distinguish from the SM, we will focus on these.

Results for each operator are shown in Fig. 8, where to
obtain the luminosity scale on the horizontal axis, we have
multiplied all cross sections by a factor of 6%, correspond-
ing to a typical event selection efficiency for dileptonic top
pair events. We see in both cases that using the additional
jet radiation leads to a significant improvement in the CL.
More improvement is obtained when adding the radiation
to the invariant mass distribution rather than the p; of the
hardest top, as expected given that the former is less
correlated with the radiation. More improvement is seen
for the gluon operator, presumably due to the fact that this
leads to a significant shape change with respect to the SM,
whereas the dipole operator does not.

We did not present results for the four-fermion operator
of Eq. (3.1). The negative interference in some kinematic
regions means that distributions involving this operator
sometimes undershoot and sometimes overshoot the SM, as
can be clearly seen in Figs. 3-5. This in turn leads to
cancellations in the log-likelihood ratio of Eq. (3.6), so this
is not the best quantity to use to measure the advantage
of using additional information. One could instead use e.g.,
;(2 values, although it is, in any case, already clear from
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Figs. 3-5 that the four-fermion operator typically leads to
much larger deviations from the SM subject to current
constraints, thereby rendering the analysis of this section
less relevant.

IV. CONCLUSION

In this paper, we have considered the issue of whether
observables relating to additional jet radiation in top pair
production provide a useful input to global fits of EFT in the
top sector. In the absence of NLO QCD corrections to pro-
cesses containing EFT operators, the best way of describ-
ing such observables is to use higher order tree-level matrix
elements interfaced with a parton shower. One may then
worry about potential discontinuities arising from the fact
that radiation generated by the matrix elements includes
BSM effects, whereas radiation generated by the shower
does not. We have reviewed in Sec. II why this is not a
problem in practice, due to the fact that the new physics
contributions do not generate soft or collinear singularities.

We then studied top pair production generated at tree level
with up to two additional jets, matched to a parton shower.
The matching uncertainty was found to be smaller than
the factorization and renormalization scale uncertainty.

Furthermore, deviations from the SM due to EFT operators
could be observed in a number of kinematic distributions,
including those associated with additional jet radiation. We
quantified this in Sec. IIIB by looking at the relative
improvement in the CL; for the EFT signal plus SM
background, when using the p; of the hardest additional
jet in addition to the top pair invariant mass or p; of the
hardest top particle. We saw significant improvements,
suggesting that indeed multijet observables can provide
highly useful complementary information to inclusive top
observables alone. The inclusion of such observables in
global EFT fits is in progress.
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