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Cosmological relaxation models in which the relaxion is identified with the QCD axion, generically fail
to account for the smallness of the strong CP phase. We present a simple alternative solution to this
“relaxion CP problem” based on the Nelson-Barr mechanism. We take CP to be a symmetry of the UV
theory, and the relaxion to have no anomalous coupling with QCD. The nonzero vacuum expectation value
of the relaxion breaks CP spontaneously, and the resulting phase is mapped to the Cabibbo-Kobayashi-
Maskawa phase of the Standard Model. The extended Nelson-Barr quark sector generates the relaxion
“rolling” potential radiatively, relating the new physics scale with the relaxion decay constant. With no new
states within the reach of the LHC, our relaxion can still be probed in a variety of astrophysical and
cosmological processes, as well as in flavor experiments.
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I. INTRODUCTION

The large hierarchy between the electroweak (EW) scale
and the Planck scale, and the smallness of the strong CP
phase compared to the Cabibbo-Kobayashi-Maskawa
(CKM) phase are two of the main mysteries of modern
particle physics. In this paper, we solve the two problems in
a unified way by combining cosmological relaxation [1]
with the Nelson-Barr (NB) mechanism [2–4].
The key feature of cosmological relaxation is to make the

Higgs mass dependent on the cosmological evolution
of the relaxion. The relaxion is the pseudo-Nambu-
Goldstone boson of a spontaneously broken Abelian
symmetry Uð1Þclock that gets explicitly broken by two
sequestered sectors with exponentially hierarchical charges.
These sectors feed into the relaxion potential, generating
exponentially different periodicities. After the relaxion
dynamics is resolved, the ratio of the two periodicities is
related to the hierarchy between the EW scale and the UV
cutoff, where extra new physics stabilizing the Higgs mass is
expected.
The structure of the relaxion potential forces it to get

a vacuum expectation value (VEV), introducing a CP-
violating phase in the theory [1,5]. This property causes the

“relaxion CP problem”: the difficulty of identifying the
relaxion with the QCD axion, and connecting the strong CP
problem with the naturalness of the EW scale. In this paper,
we show that the relaxionCP problem turns into a blessing if
the large periodicity of the relaxion potential is generated via
an NB model, such as the ones described in Refs. [6,7].
Following the NB basic setup, we assume that the UV

theory preserves CP, and that the Uð1Þclock has zero QCD
anomaly. A discrete symmetry ensures that theCP-violating
phase, controlled by the relaxion VEV, is mapped into the
CKM phase, while the strong CP phase remains zero at tree
level. In order to keep the strongCP phase below the bounds
from measurements of the neutron dipole moment [8], the
NB sector should be feebly coupled to the source of CP
violation, so that radiative corrections are under control [7].
The NB relaxion solves the strong CP problem together

with the hierarchy problem by means of the dynamics of a
single light degree of freedom. This should be contrasted
with more conventional solutions of the hierarchy problem,
like supersymmetry or compositeness, where a tension with
CP observables is often present (see e.g., Refs. [9–12]), and
the strongCP problem is typically addressed by adding new
degrees of freedom disconnected from the Higgs sector.
Once the NB sector is specified, the relaxion potential

with large periodicity is computable, and the UV cutoff gets
connected to the relaxion decay constant. This provides a
unique interplay between the LHC phenomenology, bound-
ing the UV cutoff from below, and the low-energy
phenomenology of the relaxion itself. We show how the
LHC bounds together with a successful solution of the
strong CP problem imply that the spontaneous breaking of
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Uð1Þclock should happen at a high scale. As a consequence,
the NB relaxion phenomenology is generically pretty
elusive, even though a non-negligible relaxion-Higgs
mixing can be probed in astrophysical and cosmological
processes, and in flavor factories [5].
At the end of this paper, we discuss how the spontaneous

breaking of Uð1Þclock at a high scale poses a “relaxion
quality problem,” which is related to the theoretical
challenge of screening Planck-suppressed effects in order
to preserve the peculiar structure of the relaxion potential.

II. THE RELAXION AND ITS CP PROBLEM

We first review the relaxion mechanism. The relaxion
potential gets contributions from two different sectors: the
“rolling” and the “backreaction”

Vroll ¼ μ2ðϕÞH†HþλHðH†HÞ2− r2rollΛ4
H cos

ϕ

F
; ð1Þ

Vbr ¼ −M2
brH

†H cos
ϕ

f
− r2brM

4
br cos

ϕ

f
; ð2Þ

where H is the Standard Model (SM) Higgs doublet, ϕ is
the relaxion, and we defined μ2ðϕÞ ¼ κΛ2

H − Λ2
H cos ϕ

F.
F (f) is the “large” (“small”) periodicity of the rolling
(backreaction) sector, ΛH is the UV cutoff of the Higgs
effective theory, and Mbr parametrizes the mass threshold
controlling the backreaction potential. We also introduced
the coefficient κ ≲ 1 in front of the UV threshold to the
Higgs mass, and the coefficients rroll, rbr which account for
the possible differences between the Higgs-dependent and
Higgs-independent contributions in the relaxion potential.
Both coefficients satisfy rroll, rbr ≳ 1=4π. The lower bound
on rroll can easily be seen by closing the Higgs loop in the
Higgs-dependent contributions in Eq. (1), while we refer to
Refs. [5,13,14] for a discussion on how an analogous
bound is obtained for the backreaction sector.
During inflation, the relaxion rolls down the potential

from some initial value ϕ≲ ϕc ≈ −jF cos−1 κj, such that
μ2ðϕÞ > 0. While rolling down, the relaxion dissipates
energy through Hubble friction, and when ϕ≳ϕc, μ2ðϕÞ<0
and the EW symmetry is broken.
In the EW broken phase, the backreaction potential Vbr

generates wiggles, allowing the relaxion to stop where the
Higgs mass is at its measured value (see Ref. [1] for further
details). This requirement gives an upper bound on the
amplitude of the Higgs-independent contribution to the
backreaction potential, which can be translated into an
upper bound on the backreaction scale

Mbr ≲ v
rbr

≲ 4πv: ð3Þ

If the above condition is fulfilled, the relaxion stops at
ϕ0 ¼ hϕi, where jμðϕ0Þj ¼ mh, and one gets

sin
ϕ0

f
∼ sin

ϕ0

F
∼Oð1Þ; ð4Þ

∂ϕV ¼ 0 ⇒
ΛH

Λbr
∼
�

F
r2rollf

�
1=4

; ð5Þ

where Λbr ¼
ffiffiffiffiffiffiffiffiffiffi
Mbrv

p
is the backreaction scale. Equation (5)

shows that a large ratio between the Higgs bare mass ΛH
and Λbr can be achieved from a large ratio of the
periodicities F=f.
The clockwork mechanism [15–17] gives a calculable

example where F=f≫1. This construction introduces
Nþ1 spontaneously broken Abelian symmetries at different
sites of amoose diagram.The different sites are connected by
ϵ-suppressed operators, breaking explicitlyN of the Abelian
symmetries. The clockwork potential reads

Vclock ¼
XN
j¼0

−m2jΦjj2 þ g2clockjΦjj4 þ ΔVclock; ð6Þ

ΔVclock ¼ −
XN−1

j¼0

½ϵΦ†
jΦ3

jþ1 þ H:c:�; ð7Þ

where the symmetry-breaking scale is f ¼ m=gclock. By
taking jϵj ≪ g2clock ∼ 1, the radial modes can be decoupled,
and we can write an effective action for the angular modes πj
by settingΦj ¼ fffiffi

2
p eiπj=f. The ϵ-suppressed operators induce

massesm2
j ≈ ϵf2 forN angularmodes, stabilizing theirVEVs

at the origin. At the bottom of the spectrum, we are left with a
singleNambu-Goldstone bosonϕ, which nonlinearly realizes
the Uð1Þclock symmetry: πj → πj þ 1

3j
fα, ϕ → ϕþ fα.

Since the overlap of ϕ with the site j is suppressed by
hπjjϕi ≈ 1=3j, introducing an explicit breaking ofUð1Þclock
at the site j generates a potential for ϕ with periodicity of
order 3jf. The desired hierarchy between the periodicities
of the relaxion potential is then achieved by putting the
backreaction sector at the zeroth site, and the rolling sector
at the Nth site. All in all, we get F=f ≈ 3N .
As shown in Ref. [1], there are constraints on the Hubble

parameter arising from, 1) the condition that classical rolling
of the relaxion dominates over quantum fluctuations and 2)
the requirement that the relaxion vacuum energy density is
small compared to the total vacuum energy density. Together
these conditions lead to a bound on the UV cutoff scale [18]

ΛH≲
�
MPl

rroll

�
1=2

·

�
Λ4
br

f

�
1=6

≲109 GeV ·

�
1=4π
rroll

�
1=2

·

�
109 GeV

f

�
1=6

·

�
Λbr

mh

�
2=3

;

ð8Þ
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where to obtain the second inequality, we saturated both the
upper bound on Λbr and the lower bound on rroll.
Equation (4) is at the origin of the relaxion CP problem.

Having jμðϕ0Þj ¼ mh at the stopping point implies ϕ0 ≈ F.
Therefore, a phase θN ≡ ϕ0

F ∼Oð1Þ is induced at the Nth

site of the clockwork. This gives also a phase θ0 ≡ ϕ0

f ∼
Oð1Þ at the zeroth site. Therefore, if the relaxion is
identified with the QCD axion, and the backreaction
potential is generated through an anomaly of Uð1Þclock
with QCD, we have Λbr ∼ ðvΛ3

QCDÞ1=4 and θ0 induces a
QCD θ angle of Oð1Þ, which is experimentally excluded.
To generateVbr viaQCD, the relaxion dynamics should be

modified in order to circumvent Eq. (4). This is the approach
followed in Ref. [1], and more recently in Refs. [22,23].
A trivial solution of the relaxion CP problem is instead to
assume Uð1Þclock to be anomaly free with respect to QCD,
and to generate the backreaction potential otherwise.
However, the strongCP problemwould remain unaddressed,
reducing the appeal of the original relaxion proposal [24].
We show here a third type of solution which assumes CP

to be a symmetry of the UV theory, and Uð1Þclock to be
anomaly free. The rolling potential is generated by an NB
sector like the one presented in Refs. [6,7], the phase θN is
mapped into the CKM phase, and the strong CP problem is
solved without modifying the standard relaxion dynamics.
As a small drawback, the backreaction sector becomes less
minimal: it requires extra states below 4πv, and rbr in
Eq. (2) to be small enough to suppress the Higgs-inde-
pendent wiggles. We provide an example backreaction
sector in the Appendix B (see also Refs. [1,13,14,25]).

III. THE NELSON-BARR RELAXION

We now present a simple implementation of the NB
relaxion. The NB sector is borrowed from Ref. [6],

LNB ¼ ½yψi ΦN þ ỹψi Φ�
N �ψuci þ μψψc þ H:c:; ð9Þ

and all couplings are real in our basis. The SM up sector,
LYu ¼ Yu

ijHQiucj þ H:c:, gets extended by two additional
vector-like Weyl fermions, ψ and ψc, in the fundamental
and antifundamental of SUð3ÞC, and with opposite hyper-
charges �2=3. The single complex scalar that breaks CP
spontaneously in the NB model of Ref. [6] is here identified
with ΦN at the Nth site of the clockwork moose diagram.
TheUð1ÞN gets explicitly broken by the interactions ofΦN .
The structure of the renormalizable couplings of ΦN in

Eq. (9) is enforced by a Z2 symmetry under which ΦN , ψ ,
and ψc are charged. This discrete symmetry forbids
operators like ΦNψψ

c and HQψc, and is spontaneously
broken by the VEV of ΦN .
In our minimal setup, the rolling potential for the

relaxion ϕ is generated from Eq. (9). Matching to the
potential in Eq. (1), we get

ΛH∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yψi ỹ

ψ
j ðYu†YuÞij

q
4π

f; rroll∼
4πgclock

ffiffiffiffiffiffiffiffiffiffi
yψk ỹ

ψ
k

p
yψi ỹ

ψ
j ðYu†YuÞij

: ð10Þ

In the presence of the backreaction potential, the relaxion
stops where θN ∼Oð1Þ, as dictated by Eq. (4). Setting ΦN

to its VEV, we can define Bi ¼ fffiffi
2

p ðyψi eiθN þ ỹψi e
−iθN Þ. The

4 × 4 mass matrix of the up quarks at tree level is

Mu ¼
� ðμÞ1×1 ðBÞ1×3
ð0Þ3×1 ðvYuÞ3×3

�
; ð11Þ

so that, even though the above mass matrix is complex,
we find θ̄QCD ¼ ArgðdetðMdÞÞ þ Argðμ · detðvYuÞÞ ¼ 0.
Integrating out the heavy quarks for μ2 þ BiB�

i ≫ v2, we
find the effective 3 × 3 mass squared of the SM up quark
sector:

½Mu
effM

u†
eff �ij ∼ v2Yu

ikY
u�
jk −

v2Yu
ikB

�
kBlYu�

jl

μ2 þ jBj2 : ð12Þ

A phase in the unitary matrix VL
u , diagonalizing the matrix

in Eq. (12), would lead to a phase in the CKM matrix
VCKM ¼ VL†

u VL
d . One can show that δCKM vanishes in the

limit jy⃗ψ × ⃗ỹψ j=jy⃗ψ þ ⃗ỹψ j2 ≪ 1. To ensure δCKM ∼Oð1Þ,
we take yψi ∼ ỹψi ∼ yψ for all i, and μ < jBij ∼ jyψ jf. In the
limit where μ ≪ jBij, one of the eigenvalues of the matrix
in Eq. (12) is suppressed by μ2=jBij2, and can possibly
account for the hierarchy in quark masses. However, the
resulting mass eigenstate should not be smaller than
the up mass. We thus get a rough lower bound for μ:ffiffiffiffiffiffiffiffiffiffiffi
mu=v

p jBj ≤ μ. For concreteness, we assume below that
μ ∼ jBij.
We next discuss the corrections to θ̄QCD beyond the tree-

level approximation discussed. The leading corrections
were classified in Ref. [7], and are coming from either
radiative corrections or from higher-dimension operators.
A detailed analysis of the different contributions can be
found in the Appendix. The experimental bound on θ̄QCD
translates into an upper bound on yψi and ỹψi :

Δθ̄UVQCD ≲ 10−10 ⇒ jyψi j ∼ jỹψi j≲ 10−2; 10−4: ð13Þ

The two bounds above depend on the flavor structure
assumed: the weaker [stronger] applies to models with
minimal flavor violation (MFV) [quasidiagonal] structure.
In MFV-like models, flavor violation arises from the SM
Yukawas or yψi , ỹ

ψ
i (see e.g., Refs. [26,27]).

Note that, in addition to the contributions to the strong
CP and CKM phases at the renormalizable level, integrat-
ing out the vector-like pair will also generate dimension-six
CP-violating operators that contribute, for instance, to
electric or chromoelectric dipole moments. These operators
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will however be suppressed by the mass of the fermion,
which is larger than theOðTeVÞ bound on the scale of such
operators [28].
In our construction, the cutoff of the Higgs sector is

much smaller than the one of the clockwork theory,
ΛH ≪ Λf. However, our analysis does not include
higher-dimensional operators arising at the IR threshold
ΛH. A proper estimation of these effects would require a
concrete UV completion of the NB relaxion, embedding the
Higgs IR threshold, ΛH, in a full model of supersymmetry
(SUSY) or compositeness. These UV completions are
challenging, and beyond the scope of this work (see
Refs. [29–31] for attempts at relaxion UV completions,
and also Refs. [7,32,33] for SUSY or composite UV
complete NB models).
Within our simple model, the radiative contributions to

Δθ̄QCD of the new states at ΛH can be subleading with
respect to the ones considered here if the interactions with
the clockwork chain are suppressed enough. A better
solution would be to modify the NB construction by
softening the breaking of Uð1Þclock (see e.g., Ref. [13]).
With such a construction, one could possibly achieve
ΛH ∼ Λf, suppressing the higher-dimensional operators
at ΛH as much as the ones we considered here. We leave
this matter for future investigations, and focus here on the
simplest possible model, where we introduce an explicit
breaking of the Uð1ÞN , like in Eq. (9), which leads to the
“quadratically divergent” rolling potential of Eq. (10).
Finally, let us mention that despite the fact that CP is a

good symmetry in our Lagrangian, the Oð1Þ spontaneous
CP violation in Eq. (9) and the fact that relaxion breaks
CPT spontaneously while rolling can lead to successful
baryogenesis models [34,35].

IV. PHENOMENOLOGY

We now assess the parameter space of the NB relaxion,
and study its phenomenology. In our minimal setup, the
rolling potential is generated from the NB sector at the Nth
site. This implies that the cutoff ΛH is related to the scale f.
Taking Eq. (10) at face value, given a lower bound on the
new physics scaleΛH ≳ 5 TeV, and the upper bound on the
explicit breaking of the Uð1ÞN in Eq. (13), we get

fmin ¼ ð107; 109Þ GeV ·

�
ΛH

5 TeV

�
·
ð10−2; 10−4Þffiffiffiffiffiffiffiffiffiffi

yψ ỹψ
p ; ð14Þ

where the weaker (stronger) lower bound is related to
models with MFV (quasidiagonal) flavor structure. From
now on, we focus on the MFV parameter space, presented
in Fig. 1, and leave the discussion on the quasidiagonal case
for the Appendix A.
The mass of the relaxion is controlled by the

backreaction scale mϕ ≈ Λ2
br=f, so that the upper bound in

Eq. (3) gives an upper bound on the relaxion mass:

mmax
ϕ ¼ 20 MeV · 5 TeV

ΛH
·

ffiffiffiffiffiffiffi
yψ ỹψ

p
10−2

. The constraint in Eq. (8),
coming from a successful relaxion cosmology, gives
instead a lower bound on the relaxion mass: mmin

ϕ ¼
2 × 10−6 eV · ð ΛH

5 TeVÞ5=2 · 10−2ffiffiffiffiffiffiffi
yψ ỹψ

p . The three constraints above

explain the boundaries of the allowed triangle in Fig. 1. The
maximal allowed decay constant fmax ¼ 3 × 1010 GeV ·

ð 10−2ffiffiffiffiffiffiffi
yψ ỹψ

p Þ3=7 is achieved for mmin
ϕ ¼ mmax

ϕ . The available

parameter space shrinks for smaller
ffiffiffiffiffiffiffiffiffiffi
yψ ỹψ

p
until

fmax ≈ fmin. This happens for
ffiffiffiffiffiffiffiffiffiffi
yψ ỹψ

p
∼ 10−9, which can

be taken as the minimal amount of Uð1ÞN breaking in
our setup.
Through the backreaction sector, a relaxion-Higgs mixing

is generated.Themixing angle, sin θ ≈ 7 × 10−7 f
GeV ·

m2
ϕ

GeV2, is
plotted in Fig. 1 where the exclusion band for sin θ ≳ 10−10

accounts for astrophysical probes [36–39], and flavor experi-
ments [40]. More details are given in the Appendix C.
Another interesting feature of our setup is the changing of

δCKM ≈ hϕi=F during the relaxion rolling. However, this
would hardly lead to observable effects, unless the flavor
suppressionof theSMCPviolation is somehow reduced [41].

V. QUALITY PROBLEMS

The spontaneous breaking of the global Uð1Þclock at a
high scale introduces a “relaxion quality problem,” which
shares some similarities with the “axion quality problem”

FIG. 1. The white region shows the allowed parameter space of
the Nelson-Barr relaxion. The contours indicate the number of
clockwork sites (black dashed), the relaxion-Higgs mixing (red
dot-dashed), and the minimal dimension of the Planck-suppressed
operators that should be forbidden (thin blue). The green-shaded
region combines constraints from astrophysics [36–39], extraga-
lactic background light [5], and flavor-violating kaon decays [40].
The upper left grey region is ruled out by the bound in Eq. (8).
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discussed in Ref. [42]. The basic issue is that gravity is not
expected to respect any global symmetry, as suggested by
many theoretical arguments [43–47]. As a consequence,
gravity-induced higher-dimensional operators would
generically break the Uð1Þclock, generating a potential for
the relaxion. The most dangerous gravity contributions to

the potential are the ones controlled by operators like Φ4þΔ
0

MΔ
Pl
,

with Δ ≥ 1 (see Ref. [48] for an early discussion on the
quality problem of the clockwork construction). These

operators generate ΔVgrav ∼
f4þΔ

MΔ
Pl
cos Δϕf , which, being in-

dependent of the Higgs VEV, should be smaller than
the backreaction potential in Eq. (2) in order for the
relaxion mechanism to work. [49] By imposing ΔVgrav ≲
Vbr together with Eq. (3) and Eq. (14), we get Δ≳
½4 log

Λbr
f

log f
MPl

� ≈ 2, which implies that gravity-induced operators

up to dimension six should be forbidden. This is a generic
problem of every relaxion model with a high decay
constant f. Since imposing gauged ZN symmetries on
the gravity theory seems challenging in the clockwork
setup, the only way of addressing this problem would be to
build a UV completion where the Uð1Þclock is an accidental
symmetry emerging in the infrared. This last possibility has
been explored in the context of clockwork constructions in
Refs. [17,51].
The NB sector can also be affected by gravity-induced

higher-dimensional operators. These operators evade our
power counting because they are not controlled by powers of
yψ , and they break MFV, leading to dangerous contributions
to θ̄QCD. If dimension-five operators are forbidden, the effects
of dimension-six operators are already small enough for
f ∼ 109 GeV to guarantee a successful NB mechanism.
Raising f would exacerbate the problem, making it

necessary to embed the NB construction in a gauge theory
where the CP-violating phase arises from a condensate (see
e.g., Refs. [33,52,53]).

VI. CONCLUSIONS

The main lesson of this work is that combining the
relaxion mechanism with the NB construction leads to two
positive outcomes: (i) the “relaxion CP problem,” induced
by the Oð1Þ CP phase of the relaxion vacuum expectation
value, is solved; (ii) the relaxion CP phase becomes the
origin of the CKM phase. Our model serves as an existence
proof of the NB relaxion setup, focusing on the simplest
possible implementation, which captures some generic
features of the construction. We showed how the NB sector
provides the relaxion “rolling” potential, connecting the
relaxion decay constant with the cutoff scale, where new
physics stabilizing the Higgs mass is expected. Within our
setup, the cosmological evolution of the relaxion is kept as
minimal as in the original proposal [1]. This should be
contrasted with other proposals to solve the relaxion CP

problem, which either require the relaxion potential to be
modified after inflation [1], or the classical evolution of the
relaxion to be overcome by its large quantum fluctuations
[22]. A feeble coupling between the NB sector and the
relaxion seems necessary in order to guarantee the success of
the construction. This makes the relaxion detection chal-
lenging, even though signatures are expected for maximal
backreaction scales in astrophysical, cosmological and flavor
observables. Breaking theUð1Þclock at a high scale introduces
the challenge of protecting the entire construction from
Planck-suppressed operators. It would be interesting to see
if any of these problems can be ameliorated inmore elaborate
versions of the NB relaxion, which include supersymmetry
or compositeness to stabilize the UV cutoff (see Refs. [7,33]
for a discussion on the NBmechanism in these frameworks).
The NB construction is deeply connected to the SM flavor
structure. It is then interesting to embed the NB relaxion in a
full model of flavor à la Froggatt-Nielsen [54]; this was
presented in Ref. [25].
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APPENDIX A: RADIATIVE STABILITY
OF NELSON-BARR

We comment here on the radiative stability of the NB
construction we presented. Dangerous radiative corrections
can be parametrized in a shift of the mass matrix of the up
sector, which we schematically write asMu → Mu þ ΔMu,
where ΔMu ≪ Mu is

ΔMu ≡
� ðδμÞ1×1 ðδBÞ1×3
ðvδYψcÞ3×1 ðvδYuÞ3×3

�
; ðA1Þ

and its contribution to θ̄QCD reads

Δθ̄QCD ≈ Im½TrððMuÞ−1ΔMuÞ�: ðA2Þ

There are three different types of contributions:

δθ̄1 ¼ Im½μ−1δμ�; ðA3Þ

δθ̄2 ¼ −ImfTr½μ−1BðYuÞ−1δYψc �g; ðA4Þ

δθ̄3 ¼ ImfTr½ðYuÞ−1δYu�g: ðA5Þ
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By promoting the couplings yψi , ỹ
ψ
j , and μ to spurions, one

can see from Table I that there is a (set of) charge
assignment(s) of three Uð1Þ’s, acting nontrivially on ΦN
and the vector-like fermions. By assuming that the full
theory respects the same selection rules, we can parametri-
cally estimate by spurion counting the leading-order con-
tributions to θ̄QCD.
We first estimate the contributions from integrating out

the clockwork scalar chain. Inspecting Table I, we conclude
that the Oðyψ ỹψ Þ contributions to Eq. (A3) should be
proportional to Im½yψi ỹψ�i hΦNi2 þ yψ�i ỹψi hΦ�

Ni2� ¼ 0, where
we have used the fact that our Lagrangian is invariant under
the interchange ðyψi ;ΦNÞ ↔ ðỹψi ;Φ�

NÞ. The contributions to
Eqs. (A4) and (A5) similarly vanish at the same order, and
no misalignment can be produced to get a nonzero phase.
Our spurion analysis is in agreement with the explicit

computation of Refs. [6,7], which shows that the first
dangerous loop corrections in this model are controlled by
Higgs-portal operators likeH†HΦ2

N . These are generated at
one loop in our setup, together with the rolling potential for
the relaxion, only after integrating out the heavy quarks. As
a consequence, the leading contributions to Eqs. (A3)–(A5)
arise at two loops, and their sum scales as

Δθ̄clockQCD ∼
ðyψ ỹψÞ2
256π4

jhΦNij2
m2

sin ð2θNÞ; ðA6Þ

where m is the mass of the radial mode in the clockwork
construction. The upper bound on θ̄QCD translates into an
upper bound on the explicit breaking of the Uð1ÞN :

Δθ̄clockQCD ≲ 10−10 ⇒ jyψ j ∼ jỹψ j≲ 10−2: ðA7Þ

We now consider the effects of higher-dimensional
operators. The leading-order higher-dimensional operators
generated at the cutoff scale of the clockwork theory,
Λf ∼ 4πf, are

LUV ⊃
ỹψ�j
16π2

�
yψi αijμ

Φ2
N

f2
ψψc þ βkjμ

ΦN

f2
HQkψ

c

þyψi γklij
Φ2

N

f2
HQkucl

�
þ H:c:; ðA8Þ

and other operators are obtained by interchanging
ðyψi ;ΦNÞ ↔ ðỹψi ;Φ�

NÞ. The first operator induces a con-
tribution to θ̄QCD which can be directly estimated through
Eq. (A3)

Δθ̄UVQCD ∼
αij
16π2

ðyψi ỹψj − yψj ỹ
ψ
i Þ

jhΦNij2
f2

sin ð2θNÞ; ðA9Þ

and we again assumed the UV Lagrangian to be invariant
under the interchange ðyψi ;ΦNÞ ↔ ðỹψi ;Φ�

NÞ. In realiza-
tions of MFV [26], the coefficient αij is either proportional
to the identity or to powers of ðYu†YuÞij. In either case, the

contribution to Δθ̄UVQCD in Eq. (A9) vanishes. Higher powers

in ðYd†YdÞij might lead to violations of this scaling [27,55],
but will be highly suppressed. An analogous reasoning
applies to the operators controlled by β and γ, so that the
contribution to Δθ̄UVQCD at leading order in yψ½i ỹ

ψ
j� identically

vanishes. The first nonzero contribution is then of order
Oðy4ψÞ, and hence suppressed compared to the generic case
as in Eq. (A7).
Notice that the other two operators in Eq. (A8) give

contributions of the same order as the ones from Eq. (A9)
only because the factors ðYuÞ−1β and ðYuÞ−1γ, in
Eqs. (A4) and (A5), do not lead to any enhancement
in MFV scenarios. More generally, this enhancement is
not present in a large class of flavor models where the
couplings of the first two generations are suppressed,
resulting in quasidiagonal textures. This is the case in
various Uð2Þ models, in Uð1Þ horizontal models, and in
models where the flavor puzzle is addressed through
hierarchies in the anomalous dimensions (for a discus-
sion, see e.g., Refs. [55–61] and references therein). In
this class of models, the contributions of order Oðy2ψ Þ,
such as the ones in Eq. (A9), do not vanish, resulting in
the stronger bound yψ ≲ 10−4.
The clockwork intersite coupling in Eq. (7) of the main

text, implies that all the scalar VEVs of the clockwork chain
break the Z2 symmetry spontaneously. Additional contri-
butions obtained by replacing, in Eq. (A8), ΦN → Φi with
0 < i < N do not, however, add new complex phases.
Consequently, these do not change our power counting.
There are possible new contributions that arise through
mixing of the NB fields with the ones on the first site,
where the backreaction sector lies. However, these are
suppressed by powers of ∼ϵN , and thus can be safely
neglected.
Finally, there can be a model-dependent contribution to

θ̄QCD arising from the spontaneous CP violation in the
backreaction sector. This turns out to be harmless for small
enough backreaction scales. An explicit example is dis-
cussed in the next section.

TABLE I. Charges of the spontaneously broken Z2 and the
spurion charge assignment for the three broken Uð1Þ symmetries
controlling the radiative corrections.

Z2 Uð1ÞN Uð1Þψ Uð1Þμ
ΦN − −1 0 0
ψ − 0 1 0
ψc − 0 −1 1
yψi þ 1 −1 0
ỹψi þ −1 −1 0
μ þ 0 0 −1
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APPENDIX B: THE BACKREACTION SECTOR

We complete the relaxion part of the construction by
introducing an example of a working backreaction sector,
which acts as a proof of concept for the NB relaxion idea.
Here, we present a modified version of the familon model
that was presented in Refs. [5,13], and we refer to Ref. [25],
where another similar example was recently presented.
The backreaction Lagrangian consists of the following

interaction terms:

L ⊃ −Y1

Φ0

ΛFN
LHN − Y2

Φ0

ΛFN
LcH†N

−mLLLc −mDNNc −
mNc

2
NcNc þ H:c:; ðB1Þ

where Φ0 is the clockwork scalar at the first site, L has the
same quantum numbers as the SM lepton doublet, N is an
SM singlet fermion, and ðLc; NcÞ are in the conjugate
representation with respect to ðL;NÞ. ΛFN is a scale
associated with the Froggatt-Nielsen [54] UV completion,
and the backreaction sector is kept invariant under the Z2

transformation by taking L and Lc to beZ2 odd. Expanding
around the clockwork scalar VEV, the relevant Lagrangian
terms are

Lbr ¼ −y1eiϕ=fLHN − y2eiϕ=fLcH†N

−mLLLc −mDNNc −
mNc

2
NcNc þ H:c:; ðB2Þ

where
ffiffiffi
2

p
y1 ¼ Y1f=ΛFN and

ffiffiffi
2

p
y2 ¼ Y2f=ΛFN.

After integrating out the leptons at one loop, a back-
reaction potential for the relaxion is generated

Vbr ∼
y1y2mLm2

DmNc

ð4πMÞ2 H†H cos

�
ϕ

f

�
; ðB3Þ

where M≈maxfmL;mN;mNcg. The demand for Mbr<4πv
is then translated to a bound on the masses mL, mN ,
mNc < 4πv.
As was discussed in Ref. [5], the contribution to the

strong CP phase, generated by this sequestered sector,
arises at least at two-loop order, and is further suppressed
by ∼Λ4

br=v
4. Furthermore, for a sub-GeV relaxion mass, as

in our construction, the contribution to the neutron electric
dipole moment is below near-future sensitivity [5].

APPENDIX C: MORE DETAILS
ON THE PHENOMENOLOGY

Through the backreaction sector, a relaxion-Higgs mixing
is generated. The mixing angle controls the relaxion phe-
nomenology. Within our range of parameters, the relaxion is
always long lived on detector scales and can be probed in
different processes which we now describe in turn.

A relevant constraint arises from the flavor-violating
invisible decay of the kaon. This is bounded at the
90% C.L. to be BRðKþ → π þ ϕÞ < 7.3 × 10−11 by com-
bined data from the E787 and E949 experiments [40].
Astrophysical constraints arise from energy loss arguments
for the SN1987A supernova. As first proposed in Ref. [36],
we require the cooling rate into the relaxion to be less than
6 × 1055 GeV=s. We neglect possible uncertainties coming
from themodeling of the neutrino emission from the collapse
(see Refs. [62–64]). This bound suffers also from large
systematical uncertainties due to the poorly known param-
eters of the supernova, like its temperature, its core radius,
and the neutron density (we fix them, following Ref. [65], to
T ¼ 60 MeV, Rcore ¼ 10 km, and ρn ¼ 3 × 1014 g=cm3).
A more recent analysis [39] addressed these uncertainties,
strengthening the robustness of this bound.
Further bounds can be derived from the cooling rate of the

Sun, horizontal branch stars, and red giants [38,66]. The late
decays of the relaxion can also affect the diffuse extra-
galactic background light, first computed in Ref. [5]. All
these bounds together exclude already all the regions where
sin θ ≳ 10−10. Present fifth-force experiments [67–71] do
not have the sensitivity to probe a sub-eV mediation with
mixing with the SM Higgs smaller than 10−15.
We finally present, for completeness, the allowed param-

eter space for the NB relaxion when the Wilson coefficients
of the higher-dimensional operators inEq. (A8) donot satisfy

FIG. 2. The white region shows the allowed parameter space of
the Nelson-Barr relaxion. The different contour lines indicate the
number of clockwork sites (black dashed), the relaxion-Higgs
mixing (red dot-dashed), and the minimal dimension of the
Planck-suppressed operators that should be forbidden (thin blue).
The green-shaded region combines constraints from astrophysics
[36–39], extragalactic background light [5], and flavor-violating
kaon decays [40].
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MFV, but have quasidiagonal texture. The upper bound
on the spurions yψi and ỹψj is 2 orders of magnitude stronger
in this case, resulting in a higher decay constant,
109 GeV · ΛH

5 TeV · 10−4ffiffiffiffiffiffiffi
yψ ỹψ

p ≲ f ≲ 2 × 1011 GeV · ð 10−4ffiffiffiffiffiffiffi
yψ ỹψ

p Þ3=7.

The mass range of the NB relaxion is then 2 × 10−4 eV·

ð ΛH
5 TeVÞ5=2 · 10−4ffiffiffiffiffiffiffi

yψ ỹψ
p ≲mϕ ≲ 0.2 MeV · 5 TeV

ΛH
·

ffiffiffiffiffiffiffi
yψ ỹψ

p
10−4

. The avail-

able parameter space is presented in Fig. 2.
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