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We investigate the nonperturbative features of ϕ4 theory in two dimensions, using Monte Carlo lattice
methods. In particular we determine the ratio f0 ≡ g=μ2, where g is the unrenormalized coupling, in the
infinite volume and continuum limit. Our final result is f0 ¼ 11.055ð24Þ.
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I. INTRODUCTION

ϕ4 theory plays an important role in quantum field theory
as it represents for example an extremely simplified model
for the Higgs sector of the Standard Model.
InD ¼ 2 dimensions the theory is super-renormalizable:

the coupling constant g has positive mass dimensions
½g� ¼ ½μ20�, where μ0 is the (bare) mass parameter of the
theory; this means that the ratio f ≡ g=μ2, where μ2 is a
renormalized squared mass in some given renormalization
scheme, is the only physically relevant dimensionless
parameter we have to consider. Thanks to the super-
renormalizability of the theory we can use the unrenormal-
ized coupling constant in the definition of f, since in any
case the renormalization of g amounts to a finite constant.
In this paper we determine the value of f ≡ g=μ2 at the

critical point, that is the value of f computed in the limit in
which both g and μ2 go to zero. We follow the renorm-
alization scheme used in [1,2], adopting the simulation
technique introduced in [3,4], namely the worm algorithm,
and we compute the ratio g=μ2 using the same strategy
implemented in [5]; we present an improvement in the
determination of the critical value f0, obtained thanks to the
gradient flow [6], a technique that allows us to reach
smaller values of the coupling g with respect to our
previous work [5].
In the following, after briefly describing the model and

the renormalization scheme chosen in order to extract μ2 at
fixed g in the infinite volume limit, we will recall the main
steps of the simulations, focusing on the application of the

gradient flow; we will then proceed to the continuum limit
extrapolation. In the end we will compare our results with
our previous determination of the same quantity, and we
will draw some conclusions.

II. LATTICE FORMULATION

Let us introduce the ϕ4 Lagrangian in the Euclidean
space,

LE ¼ 1

2
ð∂νϕÞ2 þ

1

2
μ20ϕ

2 þ g
4
ϕ4: ð1Þ

In D ¼ 2 the Euclidean action is

SE ¼
Z

d2xLE: ð2Þ

In order to obtain a dimensionless discretized action we
put the system on a two-dimensional lattice with spacing a
and linear size L≡ Na. By introducing the following
parametrization:

μ̂20 ¼ a2μ20; ĝ ¼ a2g; ð3Þ

we have

SE ¼
X
x

�
−
X
ν

ϕxϕxþν̂ þ
1

2
ðμ̂20 þ 4Þϕ2

x þ
ĝ
4
ϕ4
x

�
; ð4Þ

where ϕx�ν̂ are fields at neighbor sites in the�ν directions.
In the following we will omit the “hat” on top of lattice

parameters: all quantities will be expressed in lattice units;
i.e., they become dimensionful when multiplied by appro-
priate powers of the lattice spacing a.
Numerical simulations are necessarily performed at finite

values of a, L and of the bare parameters of the theory: to
obtain f0 we have to extrapolate our results to L → ∞
(infinite volume or thermodynamic limit) and to a → 0
(continuum limit).
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In order to approach the thermodynamic limit we fix g to a
givenvalue in lattice units, and this amounts to keep fixed the
lattice spacing a; we then simulate the system at several
values ofN ¼ L=a. For each value ofN we perform several
simulations searching for a value of μ20 such that a certain
condition is satisfied. This condition, whichwewill describe
in details later on, is conceived in such a way that by
extrapolating μ20ðg; L=aÞ to the infinite volume limit we get a
second order phase transition point in the plane ðg; μ20Þ.
As we discuss in [5], in order to safely go to the

continuum limit, we have to work out a renormalization
of the mass parameter, since μ20 in this limit diverges like
logðaÞ. Adhering to the same renormalization procedure
adopted in [1,2], we determine the renormalized squared
mass μ2 putting it equal to the solution, in the infinite
volume limit, of the equation

μ2 ¼ μ20 þ 3gAðμ2Þ; ð5Þ

where Aðμ2Þ is the only 1-particle-irreducible divergent
diagram in D ¼ 2, which on a N × N lattice is written as,

Aðμ20Þ ¼
1

N2

XN−1

k1¼0

XN−1

k2¼0

1

4ðsin2 πk1
N þ sin2 πk2

N Þ þ μ20
: ð6Þ

As we stated before, this counterterm cancels the loga-
rithmic divergence ofμ20 in the continuum limit, and it should
be computed on an infinite lattice. As a matter of fact, for the
range of μ20 we have considered, the result for Aðμ20Þ at
N ¼ 1024 differs from the value at N → ∞ by a quantity
which is several order ofmagnitude smaller than the statistical
error we could attain, and to be on a safe side, in the recursive
procedure used to find μ2 [see Eq. (5)] we always evaluate
Aðμ20Þ on a lattice with linear extension N ¼ 2048.
The condition (5) is equivalent to the introduction of a

proper divergent mass-squared counterterm in the action.
We may finally extrapolate the quantity f≡g=μ2 to g→0 in
order to obtain f0, the critical value in the continuum limit.
Another useful parametrization of the action is the

following:

SE ¼ −β
X
x

X
ν

φxφxþν̂ þ
X
x

½φ2
x þ λðφ2

x − 1Þ2�

¼ SI þ SSite; ð7Þ

where the relations between ðμ20; gÞ and ðβ; λÞ are

ϕx ¼
ffiffiffi
β

p
φ; μ20 ¼ 2

1 − 2λ

β
− 4; g ¼ 4λ

β2
: ð8Þ

In Eq. (7) there is an interaction term between neighbor
sites, SI, with a coupling constant of strength β and a term
related to a single site, SSite.

A. Simulations

Now we outline the general computational strategy,
focusing in particular on the improvements with respect
to our previous work [5].
In our simulations we used the worm algorithm [3,4] and

used the lattice action given by (7). Operatively we fix a
value of λ and L=a and search for a value of β such that the
physical condition

mL ¼ L=ξ ¼ const ¼ z ð9Þ

is matched for a given and fixed value of z. Condition (9)
implies that the second moment correlation length ξ of the
system grows linearly with L: thus, when a=L → 0, we
arrive at the critical point, where the correlation length ξ
diverges if measured in units of the lattice spacing. We then
perform several simulations using different values of
N ≡ L=a; for each couple ðλ; NÞ we obtain a particular
value of βcðλ; NÞ such that the condition (9) is satisfied.
βcðλÞ is then obtained by extrapolating our results to
a=L → 0. As explained and numerically demonstrated in
[5], renormalization group arguments ensure us that for
small enough values of a=L we can extrapolate βcðλ; a=LÞ
linearly in a=L.
Using the relations in (8) we compute gðλ; βcÞ and

μ20ðλ; βcÞ. Then, using the renormalization condition (5),
we get the value of μ2ðgÞ and hence the ratio f ≡ g=μ2. This
procedure is repeated for several values of λ (and hence
of g) and finally, in order to obtain f0, we extrapolate our
results to g → 0.
We now focus on the condition (9). In this work we

introduce a slight modification in the procedure for the
computation of the mass parameter m: it is implicitly
defined by the condition

Rρ ≡Gρðτ; p�Þ
Gρðτ; 0Þ

¼ m2

p�2 þm2
; ð10Þ

where p� is the smallest momentum on the lattice. We
decide to compute the propagator Gρðτ; pÞ using the
gradient flow technique in the contest of scalar field theory
(see e.g., [6]). In particular, considering the action (7), we
introduce a new scalar field ρðx; τÞ depending on the space-
time index x and on the so-called flow-time τ. The flow-
time evolution equation of ρðx; τÞ is

∂
∂τ ρðx; τÞ ¼ ∂2ρðx; τÞ; ð11Þ

where ∂2 is the Laplace operator acting in the configura-
tions space. If we now impose the Dirichlet boundary
conditions, that is ρðx; 0Þ ¼ φx, it is easy to write the exact
solution, in the momentum space, for the propagator of the
field ρ at flow-time τ,
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Gρðτ; pÞ ¼ e−2τp
2

GðpÞ: ð12Þ

In this way we obtain a smearing effect of the original
fields, since the flow-time exponentially suppresses the
ultraviolet modes. To the total flow-time τ we can associate
a smearing radius rsm ¼ ffiffiffiffiffiffiffiffi

2dτ
p

, where d is the dimension-
ality of the space-time. For a certain value of τ, the
ultraviolet suppression effect of the flow-time helps us
to obtain values which are closer to the continuum limit. In
this way, at fixed λ, we expect to safely extrapolate
βcðλ; a=LÞ → βcðλ; 0Þ using not too large values of L=a
with a consequently reduction of both the computational
time and the statistical errors.
Some preliminary simulations convinced us to assume

the condition zρ ¼ mL ¼ 1 and to fix the value of τ such
that at different a=L values the smearing radius is equal to
L=4. In this way we take advantage of the smearing effect
of the gradient flow and take under control finite volume
effects. In Fig. 1 we show the extrapolation of βc at
λ ¼ 0.25: the red line (upper one) is the extrapolation
obtained by fixing zρ ¼ 1, while the blue line (lower one) is
obtained by fixing z ¼ 4 (see [5]). We used this small series
of simulations as a test of our procedure: our old result (see
Table II of [5]) is βcðλ ¼ 0.25Þ ¼ 0.6586276ð98Þ, while
the new one is βcðλ ¼ 0.25Þ ¼ 0.6586246ð19Þ. Note that
the two results are perfectly compatible, although the new
one has a much smaller statistical error and has been
obtained by using lattice with much smaller extension (the
biggest lattice in this test has L=a ¼ 256 to be compared
with L=a ¼ 768 of [5]). As one can see, the new results
(triangular points) are much closer to the infinite volume
limit respect to the old ones. For example, for L=a ¼ 80,
the difference βcð∞Þ − βcð80Þ is almost 3 times smaller for
the new simulation.

In order to fully appreciate the advantages of using the
gradient-flow definition of z, two considerations have to be
taken into account:
(1) At a fixed value of λ the behavior of βðλ; LÞ for large

L is expected to be linear, as it can be deduced from
finite size scaling arguments and as it is very well
confirmed numerically (see e.g., [5]). For small L,
corrections to scaling terms are obviously expected.
Numerical evidence show us that, using the gradient-
flow definition of z, we obtain a faster approach to
linear scaling: this allow us to use smaller lattices to
linearly, but safely, extrapolate βcðλÞ to the infinite
volume limit, with a considerable gain in computa-
tional time.

(2) In order to obtain zρ ¼ 1 we tune βðLÞ at fixed λ.
The corresponding z computed without using the
gradient-flow is a very smooth function of L that can
be analytically computed by using Eq. (12). In
particular, it is easy to see that for zρ ¼ 1, corre-
sponding to our choice, the “previous” value of z is a
number approximately equal to 1.9. In [5] it was
observed that the statistical error on βcðλ; LÞ, with a
given number of samples, grows as z decreases: in
fact, with the choice z ¼ 1 we obtained a flatter
extrapolation to the infinite volume limit but with
too big errors, while the choice z ¼ 4 needed greater
lattices (and therefore much more computational
time), but gives smaller statistical errors. Within this
context the choice zρ ¼ 1 corresponds to an effective
value z ≃ 1.9 In this way, we have the advantage of
an earlier approach to the infinite volume limit with
a statistical error which is about a quarter of what
we would have obtained by using z ¼ 1 without
gradient-flow.

In order to obtain the extrapolation at λ → 0, we perform
our simulations for the coupling values λ ¼ 0.005, 0.004,
0.003, 0.002, 0.001, 0.00075, 0.0005. At fixed value of λ
we simulate the system for several values of L=a, namely:
L=a ¼ 32, 40, 48, 56, 72, 80, 96, 112, 128, 144, 192, 256,
320, 384. Only for λ ¼ 0.005, 0.0005 we added simulations
at L=a ¼ 448, 512. The number of thermalization sweeps
for all our simulations is several hundreds times the
autocorrelation time of (9). We keep under control the
autocorrelation time of our observables using a Python
program described in [7], based on [8]. We perform 1000
worm-sweeps between two consecutive measurements and
the numbers of measurements varies from 104–105, accord-
ing to L and λ.

III. RESULTS

In Table I we report the infinite volume results at the
several λwe simulate. These results are obtained performing
a linear extrapolation in which the smallest values of L are
excluded. All the extrapolations give a final χ2=d:o:f ∼ 1.

FIG. 1. Comparison between our previous results (lower set of
points) and the new ones at λ ¼ 0.25. See text for a description of
the results.
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Two values of λ, namely λ ¼ 0.002, 0.005, are in
common with our previous work on the same subject
[5]; in particular these were the smallest λ values, and
therefore the most critical, reached in that work. We note
quite a big discrepancy between the old and the new values
of fðλÞ. We exclude that this is due to a failure of our
procedure, because the result we obtain at λ ¼ 0.25 (this
result has been obtained just for a check and not used for
the final extrapolation) is perfectly compatible with the old
one in [5]. We decide anyway to reanalyze our old data, and
it came out that just for these two values of λ we under-
estimated the autocorrelation time of the relevant observ-
able, and therefore the statistical error associated to the
measure. The reanalysis of the old data does not change, if
not marginally, the conclusions of [5], nor it invalidates the
results in the present work, that we carefully checked.
We finally extrapolate fðλÞ → f0 as λ → 0 by using

three functional forms,

gaðλÞ ¼ flin0 þ a1λ ð13Þ

gbðλÞ ¼ fquad0 þ b1λþ b2λ2 ð14Þ

gcðλÞ ¼ flog0 þ c1λþ c2λ2 þ c3λ logðλÞ: ð15Þ

Our final results are

flin0 ¼ 11.053ð13Þ χ2=d:o:f ¼ 1.79 ð16Þ

fquad0 ¼ 11.058ð4Þ χ2=d:o:f ¼ 0.77 ð17Þ

flog0 ¼ 11.072ð20Þ χ2=d:o:f ¼ 0.85: ð18Þ

For the linear extrapolation we used the four last data
points of Table I, while for the quadratic and logarithm
extrapolation we used all the data set at our disposal. The
results are plotted in Fig. 2.
In [5] the data show no evidence for the presence of a

term of the type λ logðλÞ. In the present work we reach
much smaller values of λ and we decided to verify if such a
term may be present. As it is clear from Fig. 2 no definite

conclusion can be drawn: also we observe that the function
(15) almost completely overlaps with a simple quadratic fit,
excluding the region of very small λwhere we have no data.
Moreover we note that the linear and the quadratic fit give
almost identical results, and we take this agreement as a
numerical evidence of the fact that a simple polynomial law
is enough to describe the behavior of fðλÞ near λ → 0.

FIG. 2. Final extrapolation of f versus g. Straight red line is
(15). The quadratic fit completely overlaps with the “log” fit; only
for g → 0 we observe a small increase of the “log” fit (orange
curve) with respect to the quadratic one (blue curve).

TABLE I. Infinite volume results of βc and fðλÞ with different
linear lattice sizes.

λ βc ðL=aÞmin ðL=aÞmax fðλÞ
0.0005 0.5019535(5) 192 512 10.9920(88)
0.00075 0.5027800(10) 144 384 10.9754(79)
0.001 0.5035613(10) 112 384 10.9258(79)
0.0015 0.5050340(2) 112 384 10.8801(20)
0.002 0.5064156(9) 112 384 10.8304(45)
0.003 0.5089871(7) 128 384 10.7504(15)
0.004 0.5113712(4) 128 384 10.6884(15)
0.005 0.5136155(5) 112 512 10.6435(10)

TABLE II. Sample of the results for the continuum critical
parameter f0 from the literature. DLCQ stands for discretized
light cone quantization, QSE diagonalization for quasi–sparse
eigenvector diagonalization, DMRG for density matrix renorm-
alization group and for DLCH-FS diagonalized light-front
Hamiltonian in Fock-space representation.

Method f0 Year, Ref.

DLCQ 5.52 1988, [9]
QSE diagonalization 10 2000, [10]
DMRG 9.9816(16) 2004, [11]
Monte Carlo cluster 10.80.10.05 2009, [2]
Monte Carlo SLAC derivative 10.92(13) 2012, [17]
Uniform matrix product states 11.064(20) 2013, [12]
Monte Carlo worm 11.15(9) 2015, [5]
Borel summability-lattice results 11.00(4) 2015, [16]
DLCH-FS 4.40(12) 2016, [18]
Renormalized Hamiltonian 11.04(12) 2017, [13,14]
Borel summability 11.23(14) 2018, [15]
This work 11.055(24) 2018
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We decide to take the mean of the two polynomial results
as our final value and the sum in quadrature of all the three
errors, including the one coming from the “log fit”, to
compute the error. We finally quote

f0 ¼ 11.055ð24Þ ð19Þ

to be compared to our previous result,

f0 ¼ 11.15ð9Þ: ð20Þ

The two values are well compatible within 1-sigma level
but the new result (16) has a sensibly reduced error.

IV. CONCLUSIONS

In Table II we summarize some of the latest results of f0
derived with different approaches: the works [9–14] are
based on Hamiltonian truncation (variational) methods,
Borel summability is applied in [15,16], where in [16]
lattice results are used. Finally in [17] lattice theory is
simulated by using nonlocal SLAC derivative. Since we are
in a good agreement with our previous result, the same
considerations are still valid: our result is compatible with
the last six determinations (excluding [5,18]) at the
2σ-level, which come from different methods.
The gradient flow technique allows us to reach lower

values of λ with respect to our previous work and to obtain
a more precise estimation of f0.
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