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The Thirring model in 2þ 1 spacetime dimensions, in whichN flavors of relativistic fermion interact via
a contact interaction between conserved fermion currents, is studied using lattice field theory simulations
employing domain wall fermions, which furnish the correct Uð2NÞ global symmetry in the limit that the
wall separation Ls → ∞. Attention is focussed on the issue of spontaneous symmetry breakdown via a
nonvanishing fermion bilinear condensate hψ̄ψi ≠ 0. Results from quenched simulations are presented
demonstrating that a nonzero condensate does indeed form over a range of couplings, provided simulation
results are first extrapolated to the Ls → ∞ limit. Next, results from simulations with N ¼ 1 using an
RHMC algorithm demonstrate that U(2) symmetry is unbroken at weak coupling but plausibly broken at
strong coupling. Correlators of mesons with spin zero are consistent with the Goldstone spectrum expected
from Uð2Þ → Uð1Þ ⊗ Uð1Þ. We infer the existence of a symmetry-breaking phase transition at some finite
coupling, and combine this with previous simulation results to deduce that the critical number of flavors for
the existence of a quantum critical point in the Thirring model satisfies 0 < Nc < 2, with strong evidence
that in fact Nc > 1.
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I. INTRODUCTION

While the study of theories of relativistic fermions
moving in the plane, i.e., in 2þ 1 spacetime dimensions,
has received a fillip over the past decade as a result of
developments in the condensed matter physics of layered
systems, the underlying quantum field theories continue to
be of considerable theoretical interest in their own right.
This paper concerns the d ¼ 2þ 1 Thirring model, describ-
ing N flavors of interacting fermion, whose Lagrangian
density reads

L ¼ ψ̄ ið=∂ þmÞψ i þ
g2

2N
ðψ̄ iγμψ iÞ2; i ¼ 1;…; N: ð1Þ

Here μ ¼ 0, 1, 2, and a key feature is that the fields ψ ,ψ̄ lie
in reducible spinor representations, so that Dirac matrices
γμ are 4 × 4. This enables the definition of a mass term
mψ̄ψ which is parity-invariant, where it is convenient to
define a discrete parity transformation in terms of inversion
of all three spacetime axes.
One reason the Thirring model is interesting is its

unexpected renormalizability; while a naive expansion in

powers of the coupling g2 is no longer power-counting
renormalizable once d > 2, if a regularization is chosen
such that current conservation ∂μðψ̄γμψÞ ¼ 0 is respected
then an expansion in powers of 1=N is exactly renormaliz-
able over a continuum of dimensionality d ∈ ð2; 4Þ, and
moreover g2 turns out to be marginal [1–3]. More interest-
ing still is the possibility that the true ground state has a
bilinear condensate hψ̄ψi ≠ 0; fermions propagating
through such a vacuum incur a dynamically-generated
mass. This phenomenon can be described in terms of
spontaneous breaking of a global Uð2NÞ symmetry. This
follows since with two 4 × 4 Dirac matrices anticommuting
with the kinetic operator in (1), for m ¼ 0 the following
rotations leave L invariant:

ψ ↦ eiαψ ; ψ̄ ↦ ψ̄e−iα;

ψ ↦ eαγ3γ5ψ ; ψ̄ ↦ ψ̄e−αγ3γ5 ; ð2Þ

ψ ↦ eiαγ3ψ ; ψ̄ ↦ ψ̄eiαγ3 ;

ψ ↦ eiαγ5ψ ; ψ̄ ↦ ψ̄eiαγ5 : ð3Þ

Once m ≠ 0 only (2) remain as symmetries; i.e., dynamical
fermion mass generation corresponds to a breaking pat-
tern Uð2NÞ → UðNÞ ⊗ UðNÞ.
The question of whether bilinear condensation takes

place is inherently nonperturbative, and has been first
studied using truncated Schwinger-Dyson equations
[2,4,5]. While details are somewhat scheme-dependent,
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the picture emerging is that symmetry breaking is possible
for sufficiently large g2 and sufficiently smallN, and indeed
there exists a critical flavor number Nc such that no
symmetry breaking occurs at any coupling for N > Nc.
More recently the functional renormalization group (FRG)
has also been applied [6]. The main focus of this work has
been to establish the existence of UV-stable RG fixed
points g2�ðNÞ, such that an interacting field theory exists at
all scales in the limit g2 → g2�. On the assumption that the
symmetry-breaking transition is second-order, it seems
reasonable to identify this quantum critical point (QCP)
with the critical g2cðNÞ, which exists for N < Nc. The
identification of Nc is thus an important ingredient in the
search for novel QCPs.
It is natural to apply lattice field theory methods to

the problem, and indeed this has been tried by several
groups over the years [7–12]. A common feature of all
these approaches is the use of staggered lattice fermions in
2þ 1d. The conclusion of [11], employing simulation
studies in the effective strong-coupling limit, is that
Nc ¼ 6.6ð1Þ, and that the critical exponent δ characterising
the response of the order parameter to an explicit sym-
metry-breaking mass at criticality has value δðNcÞ ≈ 7.
Away from the strong-coupling limit the value of δ is found
to be rather sensitive to N. This is to be compared with the
Schwinger-Dyson predictions Nc ≃ 4.32, δðNcÞ ¼ 1 [4].
In summary, the staggered Thirring model exhibits a
nontrivial phase diagram in the ðN; g2Þ plane with some
interesting features.
At the level of the lattice action, massless staggered

fermions in 2þ 1d have a manifest UðNstagÞ ⊗ UðNstagÞ
global symmetry, distinct from the Uð2NÞ of Eq. (1), which
is broken to UðNstagÞ by a fermion mass. In a weak-
coupling continuum limit, Nstag staggered fermions are
known to describe N ¼ 2Nstag continuum flavors, with an
eventual recovery of Uð2NÞ at long wavelengths [13]. Near
a QCP, however, the story may be different. Indeed, a study
of the N ¼ 2 staggered model using a fermion bag
algorithm [12], which permits simulations directly in the
massless limit, found critical exponents compatible with
those of the Gross-Neveu model [14], an unexpected result
since on the face of it the two models have distinct
Lagrangians, different symmetries, and completely differ-
ent 1=N expansions, with symmetry breaking due to
bilinear condensation predicted in the large-N limit in
the GN case, and expected to persist for all N. Instead, the
results of [12,14] imply the two models lie in the same RG
basin of attraction. Indeed, when written purely in terms of
four-point interactions between staggered fermion fields
spread over the vertices of elementary cubes, the only
difference between Thirring and GN is an extra body-
diagonal coupling in the latter case [14].
The mismatch between theoretical expectation and

results from the staggered Thirring model has motivated
us to consider alternative lattice fermion formulations with

the potential to capture the requisite symmetries more
faithfully. Specifically, we have developed both analytical
and numerical insight into how Uð2NÞ symmetry is
manifested in 2þ1d using domain wall fermions (DWF)
[15,16], which will be reviewed in the next section. Next, in
Ref. [17] we applied DWF in exploratory simulations of
both GN and Thirring models with N ¼ 2. The main
conclusions of that work were that in the GN model there
appears to be no obstruction to studying symmetry break-
ing via bilinear condensation and the resulting QCP; good
qualitative agreement was found with the analytical expect-
ations of the large-N approach. However, no evidence was
found for symmetry breaking in the Thirring model with
fixed Ls ¼ 16, implying Nc < 2 in contradiction to the
staggered fermion model. Meanwhile, the Jena group has
applied another Uð2NÞ-invariant formulation, the SLAC
fermion, and found no symmetry breaking in the Thirring
model all the way down to N ¼ 1 [18]. We also note in
this context the recent reported mismatch between DWF
and staggered fermion results near a conformal fixed
point in 3þ 1d non-Abelian gauge theory, which poten-
tially springs from the same failure of the staggered
action to capture the correct symmetries away from weak
coupling [19].
This paper extends the study of spontaneous symmetry

breaking in the Thirring model with DWF to N ¼ 1. The
formulation is reviewed below in Sec. II. Of the two
possible ways to introduce the Thirring interaction dis-
cussed in [17], we will focus almost exclusively on the
variant in which the auxiliary vector field is located
uniformly throughout the bulk, ie. stressing its resemblance
to an Abelian gauge potential. Simulating just a single
DWF flavor requires the RHMC algorithm, as argued in
Appendix; details of the implementation are also given in
Sec. II, along with results of an initial survey at fixed
Ls ¼ 8, permitting a comparison with the N ¼ 2 data
from [17]. Since to date Uð2NÞ symmetry breaking has
not been observed with DWF, as a warm-up Sec. III
presents results from a study of the quenched Thirring
model, to see what broken symmetry might look like. We
will see that extrapolation to the Ls → ∞ limit is crucial at
the stronger couplings examined, and introduce an expo-
nential Ansatz which empirically works well. There does
indeed appear to be a range of couplings where Uð2NÞ
symmetry is broken. Results from an exploratory study of a
quenched model with the auxiliary formulated just on the
domain walls are also presented. Finally in Sec. IV we
present a detailed study of the N ¼ 1 model on 123 at four
representative g2 over a range of masses m, allowing Ls to
vary between 8 and 40 (and in some cases 48) to facilitate
for the first time a controlled Ls → ∞ extrapolation.
Comparison data taken for N ¼ 2, and for N ¼ 1 on 163

are also presented. In addition to the bilinear condensate
hψ̄ψi, results for correlators of spin-0 mesons will be
given, including the channel with quantum numbers of the

SIMON HANDS PHYS. REV. D 99, 034504 (2019)

034504-2



would-be Goldstone bosons. We will argue that at the
strongest coupling examined, close to the effective strong
coupling limit, the most plausible explanation of the data is
that U(2) symmetry is spontaneously broken. By contrast,
the Ls-extrapolated data for the N ¼ 2 model in the
effective strong coupling limit is consistent with unbroken
symmetry, implying 1 < Nc < 2. We summarize and out-
line plans for future work in Sec. V.

II. FORMULATION AND IMPLEMENTATION

The most straightforward way to simulate the Thirring
model with orthodox techniques is via introduction of a
vector auxiliary field AμðxÞ. The continuum Lagrangian
density is then written

L ¼ ψ̄ ið=∂ þ i=AþmÞψ i þ
N
2g2

A2
μ: ð4Þ

In this form the similarity to an Abelian gauge theory is
manifest, and it is clear the Thirring model inherits the
same Uð2NÞ global symmetry (2), (3). The bosonic action
violates the gauge symmetry, however, though this can be
remedied by introduction of a Stückelberg scalar leading
to a “hidden local symmetry” [4]. Equation (4) includes a
mass termmψ̄ψ , which for reducible spinor representations
in 2þ 1d can be shown to be invariant under parity
inversion. However, it is not unique; as outlined in [15]
there are three possible parity-invariant mass terms:

mhψ̄ψ ; im3ψ̄γ3ψ ; im5ψ̄γ5ψ ; ð5Þ

in Euclidean metric the first is hermitian while the two
“twisted” forms are antihermitian. Due to their equivalence
under Uð2NÞ rotations, and the absence of chiral anomalies
in 2þ 1d, they are physically indistinguishable.
In this work fermions are studied on a 2þ 1þ 1d lattice

using the DWF formulation. The action is written [17]

S¼SkinþSintþSbos

¼
XN
i¼1

X
x;y

X
s;s0

Ψ̄iðx;sÞMðx;sjy;s0ÞΨiðy;s0ÞþSbos; ð6Þ

where Ψðx; sÞ, Ψ̄ðx; sÞ are defined on the 2þ 1þ 1d
lattice. Sbos is the action for the auxiliary boson fields
AμðxÞ defined on links μ ¼ 0, 1, 2, and is an obvious
generalization of the Gaussian term in (4). For convenience
throughout we will use lattice units with a≡ 1, but note
here that the dimensionless combination is g−2a. The
coordinates x, y denote sites in 2þ 1d, and s running
along the third direction x3 takes values 1;…; Ls. The
fermion kinetic action is defined

Skin¼
X
x;y

X
s;s0

Ψ̄ðx;sÞ½δs;s0DWx;yþδx;yD3s;s0 �Ψðy;s0ÞþmaSa:

ð7Þ

DWðMÞx;y is the 2þ 1d Wilson operator with M the
domain wall height:

DWðMÞx;y ¼ −
1

2

X
μ¼0;1;2

½ð1 − γμÞδxþμ̂;y þ ð1þ γμÞδx−μ̂;y�

þ ð3 −MÞδx;y; ð8Þ

while D3 governs hopping along x3:

D3s;s0 ¼−½P−δsþ1;s0 ð1−δs0;Ls
ÞþPþδs−1;s0 ð1−δs0;1Þ�þδs;s0 :

ð9Þ

The factors (1 − δs0;1=Ls
) implement open boundary con-

ditions at domain walls located at s ¼ 1, Ls, while the
projectors P� ≡ 1

2
ð1� γ3Þ also appear in the identification

of target fermions ψðxÞ, ψ̄ðxÞ defined as 2þ 1d fields
localized on the domain walls at s ¼ 1, Ls:

ψðxÞ ¼ P−Ψðx; 1Þ þ PþΨðx; LsÞ;
ψ̄ðxÞ ¼ Ψ̄ðx; LsÞP− þ Ψ̄ðx; 1ÞPþ: ð10Þ

The relations (10) are a major ingredient in the physical
interpretation of DWF, but for now we stress they should
be regarded as assumptions. They permit a definition of
the mass term maSa in (7), using (5) with a ¼ h, 3, 5. It is
easily checked that mh, m3 couple fields defined on
opposite walls, while m5 couples fields on the same wall.
In Ref. [16] it was shown that in the limit Ls → ∞

the DWF operator M is equivalent to an overlap operator
constructed to satisfy 2þ 1d generalizations of the
Ginsparg-Wilson relations, and [15] demonstrated recovery
of Uð2NÞ symmetry in a weakly coupled theory, quenched
noncompact QED3, in the same limit. Specifically, for finite
Ls the three condensates related by Uð2NÞ satisfy:

1

2
hψ̄ψiLs

¼ i
2
hψ̄γ3ψiLS→∞ þ δhðLsÞ þ ϵhðLsÞ; ð11Þ

i
2
hψ̄γ3ψiLs

¼ i
2
hψ̄γ3ψiLS→∞ þ ϵ3ðLsÞ; ð12Þ

i
2
hψ̄γ5ψiLs

¼ i
2
hψ̄γ3ψiLS→∞ þ ϵ5ðLsÞ; ð13Þ

all residuals decaying exponentially with Ls with hierarchy
δh ≫ ϵh ≫ ϵ3, ϵ5. The dominant residual δh is defined by
the imaginary component of the 3-condensate:

δhðLsÞ ¼ ℑhΨ̄ð1Þiγ3ΨðLsÞi ¼ −ℑhΨ̄ðLsÞiγ3Ψð1Þi; ð14Þ
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and is thus measurable even when, as in this work, the
action m3S3 is used.
To complete the specification of the Thirring model with

DWF we need the fermion-auxiliary interaction Sint. Two
variants were introduced in Ref. [17]. The surface formu-
lation has the link fields Aμ linearly coupled to point-split
fermion bilinears defined on the walls:

Ssurf ¼
i
2

X
x;μ

AμðxÞ½Ψ̄ðx; 1ÞγμP−Ψðxþ μ̂; 1Þ

þ Ψ̄ðx; LsÞγμPþΨðxþ μ̂; LsÞ�
þ Aμðx − μ̂Þ½Ψ̄ðx; 1ÞγμP−Ψðx − μ̂; 1Þ
þ Ψ̄ðx; LsÞγμPþΨðx − μ̂; LsÞ�: ð15Þ

A similar approach has been adopted in DWF studies of
another 2þ 1d theory of interacting fermions, the Gross-
Neveu model [17,20]. Because the interaction is defined
only at the walls, (15) brings the technical advantage that
the Pauli-Villars determinant needed to formally recover
the correct fermion measure as Ls → ∞ does not depend on
Aμ, and hence need not be simulated, making calculations
with (15) relatively inexpensive. The bulk formulation
emphasizes the resemblance of the vector auxiliary to a
gauge field, defining a linear interaction between the vector
bilinear current and an s-independent Aμ throughout the
bulk:

Sbulk ¼
i
2

X
x;μ;s

AμðxÞ½Ψ̄ðx; sÞð−1þ γμÞΨðxþ μ̂; sÞ�

þ Aμðx − μ̂Þ½Ψ̄ðx; sÞð1þ γμÞΨðx − μ̂; sÞ�: ð16Þ

Operationally, the fermion operator with Sint ¼ Sbulk
resembles that of a gauge theory with connection
Uμ ¼ ð1þ iAμÞ; in other words, the link field is no longer
constrained to be unitary. This choice is not unique—other
lattice approaches to the Thirring model use unitary link
fields [8,21]—but for N > 1 it ensures there are no fermion
interactions higher than four-point once the auxiliary is
integrated out [7]. However, in the same work it was shown
that this regularization fails to preserve the transversity of
the vacuum polarization correction to the A-propagator,
leading to an additive renormalization of g−2 in the large-N
expansion. The consequent uncertainty in identifying the
strong-coupling limit has been explored using staggered
fermions in [11], where the pragmatic approach of iden-
tifying the physical strong coupling limit g2R → ∞ with the
point where hψ̄ψðg2Þi has a maximum was found to yield
a plausible equation of state. This point will be further
discussed below Fig. 1.
Most of the results presented in the paper are obtained

using the bulk formulation, and it will be shown in Sec. IV
C why this is the preferred option. The Appendix derives

some relations for the fermion determinant in the bulk
approach, motivating the use of the RHMC algorithm [22]
for simulation withN ¼ 1. For even N, the HMC algorithm
outlined in [17] is sufficient. The pseudofermion action
used in RHMC is

S ¼
XN
i¼1

X
x;y;s;s0

Φ†
i ðx; sÞf½M†Mmh¼1�N4 ½M†Mm3¼m�−N

2

× ½M†Mmh¼1�N4gx;sjy;s0Φiðy; s0Þ; ð17Þ

where subscripts on M†M denote nonvanishing mass
terms. We choose the domain wall mass M ¼ 1. The
components with mh ¼ 1 describe Pauli-Villars fields
needed to cancel bulk contributions to the determinant
and ensure coincidence with the correct overlap operator
as Ls → ∞ [16]. The fractional matrix powers needed
to compute (17) are estimated by means of a rational
approximation

ðAÞp ≃ rpðAÞ ¼ α0 þ
XNpf

i¼1

αi
Aþ βi

: ð18Þ

The required coefficients α, β are calculated with the
Remez algorithm using the implementation available
at [23]. They were chosen such that over a spectral
range (0.0001, 50) (which accommodates the upper limit
ð2ð2þ 1þ 1Þ −MÞ2 obtained in the free-field limit of (6)),
jrpðxÞ − xpj is less than 10−6 for matrices needed during
guidance and 10−13 for those needed in the Hamiltonian
calculations required for the acceptance step of the algo-
rithm. This appears to be a conservative requirement for the
systems studied to date, and translates into Npf ¼ 12

(guidance) and Npf ¼ 25 (acceptance). The need for

0 0.2 0.4 0.6 0.8 1

g
-2

0

0.01

0.02

0.03

<Ψ
Ψ

>

N=2 surface
N=2 bulk
N=1 surface
N=1 bulk

FIG. 1. Bilinear condensate hψ̄ψi vs g−2 for N ¼ 1, 2 on a
123 × Ls lattice with m ¼ 0.01.

SIMON HANDS PHYS. REV. D 99, 034504 (2019)

034504-4



further refinement cannot be ruled out for future studies of
critical systems.
The partial fraction expansion (18) is efficiently calcu-

lated using the multishift procedure described in [24],
which in turn requires the use of a Hermitian Lanczos
solver such as described in [25]. For the systems we have
examined, particularly as Ls is made large, maintaining
orthonormality of the Lanczos vectors generated at each
successive iteration requires double precision arithmetic;
on the same systems the conjugate gradient algorithm used
in measurement routines runs happily in single precision.
For an evaluation of x ¼ ðM†MÞpΦ, the convergence
criterion adopted is

max
i
jαiρij <

4LsVε2

NpfjΦj ð19Þ

where ρi [25] is a real variable parametrizing the magnitude
of the latest increment to the solution vector xi (where
x ¼ α0Φþ αixi), and ε ¼ 10−6 (guidance) and 10−9

(acceptance). Finally, it should be noted that the matrix
inversions are numerically demanding, especially as the
coupling becomes strong, possibly as a consequence of
the nonunitarity of the link fields Uμ. For instance, on the
largest 163 × 40 volume studied, at the strongest coupling
g−2 ¼ 0.3 and the smallest mass m ¼ 0.01, the Lanczos
solver in the Hamiltonian calculation requires roughly
11000 iterations to achieve convergence. The conjugate
gradient solver operating on stochastic noise sources in the
measurement routine on the same system requires roughly
4700 iterations.
For orientation, in the remainder of this section we

present the main features of the model based on simulations
with fixed finite Ls. All results are taken using the m3S3
mass term, and henceforth for convenience when there is no
possibility of confusion we will often write the associated
condensate hψ̄ iγ3ψi as hψ̄ψi. Figure 1 shows hψ̄ψi vs g−2
for m ¼ 0.01 on 123 × Ls, for both surface and bulk
formulations with N ¼ 1 (Ls ¼ 8) and N ¼ 2 (Ls ¼ 16).
The N ¼ 2 results obtained using the HMC algorithm were
first presented in [17].
In all cases the condensate increases as the coupling is

increased from weak to strong, until it reaches a maximum
in the region g−2 ≈ 0.2–0.3. This nonmonotonic behaviour
maximum is also observed in simulations using both
staggered [7,11] and SLAC [26] fermions, and is associated
with strong-coupling artifacts possibly due to the non-
transversity of the auxiliary propagator discussed above;
following [11] we will identify the maximum with the
approximate location of the effective strong coupling limit,
and focus our attention on the weak-coupling side of this
maximum. With the vertical scale chosen to accommodate
the N ¼ 1 bulk data, the condensates obtained with the
surface formulation in this region are very small and show
little dependence on coupling. The bulk formulation yields

larger condensates, but the most striking feature of Fig. 1
is the sharp rise in the bulk condensate for g−2 < 0.6 for
N ¼ 1; it is already apparent that the tendency for fermions
and antifermions to pair is more significant here than for
any case previously examined.
Figure 2 shows the auxiliary action density

N
2V g

−2P
xμA

2
μðxÞ vs g−2 on the same systems. This meas-

urable offers an interesting diagnostic of the UV properties
of the different model approaches. First note that in the
continuum, a comparison of ∂ lnZ=∂g2 obtained using the
original action (1) and with the bosonized form (4),
following a change in functional integration variables,
results in the following identity for the boson action:

N
2g2

hA2
μi ¼

3

2
þ g2

2N
hðψ̄iγμψÞ2i: ð20Þ

Assuming smooth behavior of the expectation of the square
of the fermion current on the right-hand side (RHS) of (20),
we therefore expect departures from the free-field value 3

2
to

increase monotonically with g2, and Fig. 2 shows this is
indeed the case for the surface model with N ¼ 1, 2. For
the bulk model the corresponding relation contains terms
of the form Ψ̄γμΨðsÞΨ̄γμΨðs0Þ, Ψ̄γμΨðsÞΦ†γμΦðs0Þ, with
s; s0 ¼ 1;…; Ls and Φ, Φ† are Pauli-Villars fields, i.e.,
there are contributions from bulk fields whose interpreta-
tion is not as transparent. In fact, Fig. 2 shows the
correction to the free-field result has the opposite sign
except at the very strongest coupling.
The contrast between surface and bulk formulations was

already noted in [17]. Here we note thatN ¼ 1, 2 yield very
similar results for the surface formulation, but for N ¼ 1

there is a marked contrast in the bulk results once g−2 ≲ 0.5,
again hinting at interesting strong coupling behavior.
Figure 2 also plots N ¼ 1 bulk data from 123 × 40 showing
small but significant disparities; this is a reminder of the

0 0.5 1

g
-2

1.2

1.4

1.6

1.8

2

(N
/2

g2 )A
μ2

N=2 surface
N=2 bulk
N=1 surface
N=1 bulk
N=1 bulk L

s
=40

FIG. 2. Bose action density N
2g2 hA2

μi vs g−2 for N ¼ 1, 2.
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importance of seeking the Ls → ∞ limit of all observables
in the DWF approach, in particular the bilinear condensate.
Section III presents a first investigation in this direction in
the quenched limit N ¼ 0, and enables us to address the
question what does spontaneous symmetry breaking due to
bilinear condensation look like with DWF?

III. RESULTS IN THE QUENCHED LIMIT N = 0

The quenched theory with N ¼ 0 is technically very
simple to explore; one simply performs fermionic mea-
surements using the operator M on field configurations
inexpensively generated using the Gaussian auxiliary
action. Unlike gauge theory, there is no theoretical expect-
ation that the results have any relevance to the full theory;
this is best understood via the auxiliary propagator SAðxÞ in
the large-N expansion, which at strong coupling decays as
jxj−2 as a result of vacuum polarization corrections [3], but
which remains a contact SAðxÞ ∼ δdðxÞ in the quenched
limit. Figure 3 compares condensate data obtained with
the bulk formulation for N ¼ 0, 1, 2 for m ¼ 0.01 with
Ls ¼ 16; for N > 0 the spacetime volume is 123, but the
low computational cost enabled the quenched study on 163.
Compared to Fig. 1 the vertical scale has been extended
to accommodate the quenched data: the hierarchy
hψ̄ψðN¼0Þi≫hψ̄ψðN¼1Þi≫hψ̄ψðN¼2Þi is as expected;
the low eigenvalues of the effective Dirac operator respon-
sible for the condensate signal via the Banks-Casher relation
also suppress the determinant in the path integral measure.
To explore the Ls → ∞ limit we performed a systematic

study of the bilinear condensate hψ̄ψðg2; mÞi on 163 × Ls

with Ls ¼ 8;…; 40, g−2 ¼ 0.2; 0.3;…; 1.0 and m ¼ 0.01;
0.02;…; 0.05. Each boson configuration, separated by 100
HMC trajectories, was analysed using 10 stochastic noise
vectors located on either wall. 25000 trajectories were
studied for Ls ¼ 8, 16, and 5000 for Ls ¼ 24, 32, 40.

Results for hψ̄ψðLsÞi withm ¼ 0.05 and varying g−2 are
shown in Fig. 4, and for varying m at g−2 ¼ 0.4, 0.8 in
Fig. 5. It is evident that finite-Ls corrections are significant,
and increase in importance as the coupling grows. We have
modeled them using the notation of (12) as follows:

hψ̄ψiLs¼∞−hψ̄ψiLs
¼2ϵ3ðLs;m;g2Þ¼Aðm;g2Þe−Δðm;g2ÞLs :

ð21Þ

The resulting three parameter fits are plotted as dashed lines
in Figs. 4 and 5. The exponential form (21) works well
across the dataset, but the asymptotic value hψ̄ψi∞
becomes poorly constrained as m → 0 resulting in large
uncertainties in this limit. Also note that the strongest
coupling g−2 ¼ 0.2 looks to be an outlier in both Figs. 3
and 4, reflecting the probable influence of strong coupling
artifacts.
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FIG. 3. hψ̄ψi vs g−2 for N ¼ 0, 1, 2 on L3 × 16 with m ¼ 0.01.

0 16 32 48
L

s

0

0.1

0.2

0.3

0.4

g
-2

=0.2

g
-2

=0.4

g
-2

=0.6

g
-2

=0.8

g
-2

=1.0

FIG. 4. hψ̄ψi vs Ls for various g−2 with m ¼ 0.05.

0 16 32 48
L

s

0

0.1

0.2

0.3 g
-2

=0.4

g
-2

=0.8

FIG. 5. hψ̄ψi vs Ls for m ¼ 0.01;…0.05 with g−2 ¼ 0.4, 0.8.

SIMON HANDS PHYS. REV. D 99, 034504 (2019)

034504-6



Results for hψ̄ψi∞ obtained using fits to (21) are
plotted for various g−2 as a function of mass m in
Fig. 6. The curves are for the most part remarkably m-
independent. The m → 0 limit of the strong coupling data
at g−2 ¼ 0.2 and possibly 0.3 are affected by artifacts as
discussed above, and the large error bars in the same limit
for g−2 ≳ 0.8 reflect poorly constrained fit parameters
associated with the lack of curvature seen in Fig. 5. It is
difficult to say anything definitive in either case. However.
Figure 6 supports a coupling window g−2 ∈ ð0.4; 0.7Þ
where limm→0hψ̄ψi∞ is plausibly nonzero, implying bro-
ken Uð2NÞ symmetry. We therefore deduce the existence
of Uð2NÞ symmetry breaking for N ¼ 0 for sufficiently
strong coupling, though the data is not of sufficient
quality to determine whether there is a critical g2c
such that symmetry is restored for g2 < g2c, such as
occurs in quenched QED4 with staggered fermions [27].
Nonetheless, this exercise suggests that Nc > 0 for the
Thirring model.
To emphasize the importance of first taking the Ls → ∞

limit, in Fig. 7 we plot the g−2 ¼ 0.4 data vs m at fixed Ls.
While the increasing curvature of the data with Ls is
suggestive, there is no compelling evidence to support a
nonzero intercept on the vertical axis asm → 0. Them → 0
and Ls → ∞ limits do not commute.
For completeness, in Fig. 8 we plot bilinear condensate

data for the quenched surface model. Data have been taken
at couplings ranging from the relatively weak g−2 ¼ 0.6 to
g−2 ¼ 0.2 on 163 × Ls, with Ls ¼ 8 at all couplings,
increasing up to 24 (g−2 ¼ 0.3) and 40 (g−2 ¼ 0.2), using
at least 12500 HMC trajectories in all cases. The abcissæ
of some datapoints at this strongest coupling have been
slightly displaced for clarity. The emerging picture is
qualitatively different from the bulk case; here there is
no evidence for any systematic change in the signal as Ls

is increased. For g−2 ≥ 0.3 the data show a fairly weak

g2-dependence with limm→0hψ̄ψi ¼ 0 consistent with the
absence of symmetry breaking. By contrast data at
g−2 ¼ 0.2 admit a plausible extrapolation to a nonzero
intercept at m ¼ 0, implying condensation at this strongest
coupling, and suggesting both that Nc > 0, and that there
exists a critical g−2c > 0 at which the symmetry is restored.
Disentangling these effects from the strong-coupling arti-
facts discussed below Fig. 1 would require an extensive
program of further simulations.
To summarize, the quenched exercise shows the impor-

tance, at least for the bulk formulation, of taking data at
varying Ls and performing a plausible extrapolation to
the Uð2NÞ-symmetric limit Ls → ∞ using the exponential
Ansatz (21). While the quenched limit does not correspond
to a unitary field theory (the m-independence of the curves
in Fig. 6 may be a symptom of this), these results are
encouraging because they illustrate at least the possibility
of finding symmetry breaking in the Thirring model with
DWF. We will apply the same procedure to N ¼ 1 in the
next section.
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FIG. 6. hψ̄ψi∞ vsm for g−2 ∈ ½0.2; 1.0�. For clarity some points
with large error bars have been horizontally displaced.

0 0.01 0.02 0.03 0.04 0.05 0.06
m

0

0.05

0.1

0.15

0.2

0.25

<Ψ
Ψ

>

L
s
=8

L
s
=16

L
s
=24

L
s
=32

L
s
=40

FIG. 7. hψ̄ψiLs
vs m for g−2 ¼ 0.4.

0 0.01 0.02 0.03 0.04 0.05 0.06
m

0

0.02

0.04

0.06

0.08

0.1

<Ψ
Ψ

>

g
-2

= 0.2

g
-2

= 0.3

g
-2

= 0.3 L
s
=24

g
-2

= 0.4

g
-2

= 0.5

g
-2

= 0.6

FIG. 8. hψ̄ψi vs m for various g−2,Ls for the quenched surface
model. The differing symbols for g−2¼0.2 denoteLs¼8;16;…40.

CRITICAL FLAVOR NUMBER IN THE 2þ 1D THIRRING MODEL PHYS. REV. D 99, 034504 (2019)

034504-7



IV. RESULTS FOR N = 1

Next we present results from simulations of the full field
theory with N ¼ 1, with emphasis on the Ls → ∞ limit. As
outlined in Sec. II, the required RHMC simulations are
numerically demanding, so the study has been limited to
four couplings g−2 ¼ 0.3, 0.4, 0.5, 0.6 chosen to span the
region of greatest variation in Fig. 1 while remaining on
the weak-coupling side of the maximum. Data were taken
at each of 5 masses m ¼ 0.01;…; 0.05, and unless stated
on a 123 spacetime lattice. To probe the large-Ls limit we
examined Ls ¼ 8, 16, 24, 32 and 40, except at the strongest
coupling g−2 ¼ 0.3, where runs with Ls ¼ 48 were also
performed for the three lightest masses. To explore poten-
tial volume effects we also simulated a 163 lattice at
g−2 ¼ 0.3, 0.6 with m ¼ 0.01. For each parameter set a
minimum of 600 RHMC trajectories of mean length 1.0
were generated, with observables calculated every five
trajectories.

A. Bilinear condensate hψ̄ψi
Just as in the quenched case, the importance of

finite-Ls corrections increases markedly as the coupling
gets stronger. Figure 9 compares data taken at the
strongest and weakest couplings explored for all five
mass values, and bears a striking resemblance to Fig. 5.
Indeed, the Ansatz (21) again gives a very good descrip-
tion of the condensate data, with χ2 per degree of freedom
for each fit usually ≲2 across the entire dataset. In what
follows the condensate values extrapolated to Ls → ∞ are
based on all available data, with no points excluded from
the fit. Figure 9 also includes results taken on 163 denoted
by open symbols. On the scale of the plot, volume effects
are only discernible at strong couplings and the largest

available Ls; fits from both 123 and 163 will be pre-
sented below.
The inset of Fig. 9 shows the variance of hψ̄ψi, or in

physical terms the disconnected contribution to the longi-
tudinal susceptibility, as a function of Ls. This demon-
strates that the Ls → ∞ limit is also key to characterizing
the fluctuations of a would-be order parameter; indeed it is
clear that still larger Ls will be needed before this
observable converges, particularly at stronger couplings.
Note that data from 163 are compatible with 123, demon-
strating that the observed growth is a finite-Ls artifact and is
not associated with critical fluctuations.
Figure 10 shows the bilinear condensate hψ̄ψi follow-

ing the Ls → ∞ limit obtained using (21). Different
colors correspond to different couplings—note that
uncertainties in the Ls → ∞ extrapolation occasionally
result in very large error bars at the weakest coupling
g−2 ¼ 0.6. For g−2 ≥ 0.4, the data are consistent with the
behavior hψ̄ψðmÞi ∝ m, implying no symmetry breaking
in the limit m → 0. The 163 g−2 ¼ 0.6 point suggests that
volume effects are small in this regime. This is similar to
the findings of simulations with N ¼ 2 using the HMC
algorithm [17]; however in that study there was no
attempt to take the Ls → ∞ limit. Here we rectify that
omission by plotting extrapolated data from HMC sim-
ulations with Ls¼8;…;40 at the strongest available
coupling g−2 ¼ 0.3. Fortunately the conclusions of [17]
remain unchanged; there is no evidence for spontaneous
symmetry breaking, implying Nc < 2. The contrast with
the results of Fig. 6 is particularly striking; whilst the
condensate in the quenched model shows no significant
m-dependence, here the linear behavior is precisely
that expected of a unitary field theory in its symmetric
phase.
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ForN ¼ 1 at the strongest coupling examined g−2 ¼ 0.3,
hψ̄ψðmÞi is a factor of two or greater than data from
the next strongest coupling, and a linear extrapolation
limm→0hψ̄ψðmÞi ¼ Σ ≈Oð0.1Þ ≠ 0 looks reasonable, par-
ticularly if the 163 point is used at m ¼ 0.01. This would be
consistent with the spontaneous breakdown of U(2) sym-
metry due to bilinear condensation at this coupling, although
nonlinear extrapolations to a symmetric limit hψ̄ψi ¼ 0
cannot at this stage be excluded. If symmetry is indeed
broken, on general grounds significant finite volume cor-
rections are expected in the mesoscopic regime mΣV ≲ 1,
and the data support this; note that the dimensionless
combination mΣV ≈ 1.5 for the 123, m ¼ 0.01 point.
In summary, Fig. 10 presents strong evidence for the

Thirring model with g−2 ¼ 0.3 to exhibit qualitatively very
different behavior from that observed at weaker couplings,
due to a significant enhancement of fermion-antifermion
pairing. Finite-Ls corrections are also much more important
in this regime, as illustrated in Fig. 9, and an Ls → ∞
extrapolation proves key to interpreting the data. The
simplest explanation is that U(2) symmetry is spontane-
ously broken at the strongest coupling examined, imply-
ing Nc > 1.

B. The approach to Ls → ∞
It is interesting to compare the m-dependence of the

decay constant Δ, implicitly defined in (21), between
different couplings. Of course, for a fixed window in Ls,
Δ is easier to pin down for data with large curvature,
corresponding to strong couplings and larger masses. For
this reason the large uncertainties on Δ from the weaker
couplings g−2 ¼ 0.5, 0.6 do not yield much of use; however
results from the stronger couplings g−2 ¼ 0.3, 0.4 plotted
in Fig. 11 show a marked contrast. Within sizeable
uncertainties Δðg−2 ¼ 0.4Þ ≈ 0.06–0.07 is approximately
m-independent, whereas Δðg−2 ¼ 0.3Þ ∝ m, the linearity

becoming more convincing still if the 163 value is taken at
m ¼ 0.01. The straight line fit shown yields a slope
1.33(15), with intercept consistent with passing through
the origin. This is another hint of a qualitative difference in
the behavior of the model at these two couplings.
Another measure for the approach to the Ls → ∞ limit

is the residual δh defined in (14). As shown in [15], it
quantifies the difference between the U(2)-equivalent con-
densates hψ̄ψi and the measured ihψ̄γ3ψi, and should
therefore vanish in a simulation respecting U(2) symmetry.
Results for δhðLsÞ for various couplings are shown on a log
scale in Fig. 12. Just as in quenched QED3 (see Fig. 2 of
[15]), δh is strongly coupling-dependent. In all cases the
data is consistent with an asymptotic behavior δh ∝ e−cLs

implying U(2) restoration in the large-Ls limit; however
the restoration becomes slower as coupling increases. There
is a marked difference between g−2 ¼ 0.6, where δh is
roughly m-independent, and g−2 ¼ 0.3 where data from all
5 masses are plotted, and c found apparently to decrease
systematically with m. At this strong coupling for m ¼
0.01 δh is of the same order of magnitude as the signal
ihψ̄γ3ψi even for Ls ¼ 48. For the larger 163 lattice, c is
smaller still; a similar trend was observed in [15].
The findings of both Figs. 11 and 12 are consistent with

the extrapolation Ls → ∞ used to obtain Fig. 10, and
moreover both display qualitative differences between
strong and weak coupling, thus supporting the argument
that g−2 ¼ 0.3 and g−2 ¼ 0.6 lie in different phases.
However the approach to the large-Ls limit becomes very
slow in the symmetry broken phase in the limit m → 0,
which will almost certainly present practical difficulties in
future more refined simulations, and may also raise more
conceptual problems related to the existence of a U(2)-
symmetric limit at strong coupling.
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C. Meson correlators

Finally we consider correlators of states formed from a
fermion and an antifermion, which by analogy with QCD
will be referred to as mesons. We will focus on the sector
with angular momentum J ¼ 0, in which case four inter-
polating operators can be written. With a choice of mass
term S3, they split into two scalars (ψ̄ψ , ψ̄γ3ψ) and two
pseudoscalars (ψ̄γ5ψ , ψ̄γ3γ5ψ). In the event that a sym-
metry-breaking condensate ihψ̄γ3ψi ≠ 0 forms, then a
Goldstone boson of either parity, interpolated by ψ̄γ5ψ
(0−) and ψ̄ψ (0þ), is expected. The other two states remain
massive.
The DWF formulation was set out in [15] in terms of

“primitive” propagators

C−−ðxÞ ¼ tr½Sðm3; 0; 1; x; LsÞP−S†ðm3; 0; 1; x; LsÞP−�;
ð22Þ

Cþ−ðxÞ ¼ tr½Sðm3; 0; 1; x; 1ÞPþS†ðm3; 0; 1; x; 1ÞP−�;
ð23Þ

where the 2þ1þ1d fermion propagator Sðma;x;s;y;s0Þ¼
hΨðx;sÞΨ̄ðy;s0Þima

. By construction C�− are real and
positive. It can be shown that the meson interpolated by
ψ̄γ5ψ has a propagator Cþ− þ C−−, while that interpolated
by ψ̄γ3γ5ψ has propagator Cþ− − C−−. The other two
mesons in principle require additional fermion propagator
calculations with the flip m3 ↦ −m3; however in the
context of quenched QED3 it was shown in [15] that the
propagator interpolated by ψ̄ψ becomes approximately
equal to ψ̄γ5ψ , and that of ψ̄γ3ψ equal to ψ̄γ3γ5ψ , in the
limit Ls → ∞. Degeneracy of these opposite parity mesons
is necessary for U(2) symmetry restoration; we will not
pursue this issue further, but rather confine our attention to
the pseudoscalar channels interpolated by ψ̄γ5ψ and
ψ̄γ3γ5ψ , which will be referred to as Goldstone (G) and
non-Goldstone (NG) respectively.
Meson timeslice correlators CðτÞ ¼ P

x⃗Cðx⃗; τÞ were
calculated on a 123 lattice with Ls ¼ 40 with m ¼ 0.01
at each coupling already investigated, with a minimum
of 500 RHMC trajectories. The primitive propagators
were calculated every 5 trajectories by averaging over 5
point sources located at random spacetime points, and the
reconstructed G and NG correlators are plotted in Figs. 13
and 14 respectively. Additional calculations with m ¼ 0.05
were performed at g−2 ¼ 0.3, 0.6.
A 123 lattice is too far from both thermodynamic and

zero-temperature limits for any statements about the mod-
el’s spectrum to be reliable; there is no sign of pure
exponential decay corresponding to a simple propagator
pole, and as we shall see below it is also not safe at this
stage to infer anything regarding the residue. Accordingly
we restrict ourselves to qualitative comments. In the G
channel (Fig. 13) there is a huge variation in signal size as

the coupling increases, with in particular a factor of 18
increase at the midpoint τ ¼ 6 between g−2 ¼ 0.5 and 0.3,
and one of 5 between g−2 ¼ 0.4 and 0.3. Moreover, the
impact of changing m from 0.01 to 0.05 is far more
pronounced at g−2 ¼ 0.3, where CGð6Þ decreases by
almost a half, and g−2 ¼ 0.6, where the decrease is less
than 20%. In the NG channel (Fig. 14) the variation at the
midpoint between g−2 ¼ 0.3, 0.6 is an order of magnitude
smaller.
Quantitatively, the ratio CGð6Þ∶CNGð6Þ increases from

∼1.5 at g−2 ¼ 0.6 to ∼17 at the strongest coupling. In terms
of primitive correlators, this implies that C−− ≪ Cþ− at
weak coupling, so that G and NG channels are approx-
imately degenerate, but that C−− ≲ Cþ− by g−2 ¼ 0.3. This
development is also reflected by the relatively large error
bars in CNG at this coupling.
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FIG. 13. Time slice correlator for the Goldstone meson CGðτÞ
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In view of the results for the would-be order parameter
hψ̄ψi of Sec. IVA, a natural interpretation of these results is
that U(2) symmetry spontaneously breaks somewhere in
the range g−2 ∈ ð0.5; 0.3Þ and that both the increased
magnitude of CG and its enhanced sensitivity to a change
in m is due to its developing into a true Goldstone boson.
It is interesting to compare these results with those

presented in Fig. 15 of Ref. [17] for the would-be
Goldstone meson on 122 × 24 in the surface formulation
of the Thirring model with N ¼ 2. In that case CGðτÞ
manifests a τ-independent plateau for 5≲ τ ≲ 20 over a
range of couplings, interpreted in [17] as being due to
fermion propagators reconnecting only after one of them
loops around the timelike extent of the system. In other
words, the surface formulation does not appear to support
mesonic bound states. With the caveats already discussed,
the meson correlators of Figs. 13, 14 do appear to resemble
those of conventional mesons. This is the first hint that the
bulk formulation is the preferred approach to the Thirring
model with DWF.
Finally, we consider more a formulational issue by

examining the axial Ward identity, first considered in this
context in [17]. For a system with the U(2) symmetry
anticipated in the Ls → ∞ limit, the following identity
relating the order parameter with the integrated correlator
holds1:

ihψ̄γ3ψi
m

¼
X
x

hψ̄γ5ψð0Þψ̄γ5ψðxÞi ¼ 2
X
τ

CGðτÞ≡ χπ:

ð24Þ
The ratio hψ̄ψi=mχπ is plotted vs g−2 in Fig. 15, together
with bulk formulation results for N ¼ 2 on 123 × 16 [17].
The clear issues are that the ratio is neither constant, nor
equal to unity, as required by (24). Reference [17] sug-
gested this is due to a nontrivial relation between either or
both of the fermion mass m and the physical fields ψψ̄
defined in (10), and their continuum counterparts (amus-
ingly, on the vertical scale used in Fig. 15 the data
provoking this speculation now looks rather constant as
a function of g−2). This would mean that bilinear operators
and/or the fermion mass m would need to be renormalized
for the Ward identity to apply. Figure 15 suggests these
considerations become still more important at strong
coupling for N ¼ 1; indeed, at g−2 ¼ 0.3 even the effect
of changing m results in a marked renormalization. Recall
the ratio was observed to bem-independent for N ¼ 2 [17].
Strong renormalizations depending on both g2 and m
cannot be ruled out for the parameter regime studied in
this paper; moreover we draw some encouragement from
the hints in Fig. 15 that the effect is smooth as g−2 ranges
from 0.6 to 0.3, consistent with UV physics, and in contrast

with the sharp changes over the same range reported in the
rest of this section, associated with a symmetry breaking
phase transition.

V. DISCUSSION

The main result of this paper is that the spontaneous
breakdown of the Uð2NÞ symmetry present for massless
reducible fermions in 2þ 1d can be demonstrated in
simulations of an interacting field theory using domain
wall fermions. The proof of concept was given in the
quenched limit in Sec. III, where the importance of taking
the Ls → ∞ limit before the m → 0 limit was shown.
Next, simulations of the unitaryN ¼ 1model with a newly-
developed RHMC algorithm, discussed in Sec. IV, yielded
results following the same procedure consistent with
unbroken U(2) symmetry for g−2 ≥ 0.4, but with enhanced
bilinear condensation at the strongest available coupling
g−2 ¼ 0.3, consistent with a nonvanishing intercept in the
m → 0 limit signaling the breaking of U(2) (see Fig. 10).
Meson correlators on admittedly small spacetime volumes
were consistent with the Goldstone spectrum expected for
the breaking pattern Uð2Þ → Uð1Þ ⊗ Uð1Þ (see Figs. 13,
14). The most natural conclusion is that there is a
symmetry-breaking phase transition at some g−2c ∈
ð0.3; 0.4Þ, that the critical flavor number in the 2þ 1d
Thirring model satisfies 1 < Nc < 2, and that there is the
potential for a QCP in the N ¼ 1 model described by a
strongly-interacting local unitary quantum field theory.
Final confirmation of this important result must await
further simulations permitting enhanced control over both
V → ∞ and m → 0 limits; until then strictly the bound we
have found is 0 < Nc < 2. The large disparity with the
staggered Thirring model result Nc ¼ 6.6ð1Þ [11] is a
dramatic indicator of the importance of the faithful
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FIG. 15. The ratio hψ̄ψi=mχπ vs g−2 on 123 × 40 for variousm,
together with corresponding data taken at N ¼ 2 on 123 × 16 and
m ¼ 0.01 [17].

1The factor of 2 after the second equality in (24) reflects the
contributions of C−þ, Cþþ.
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rendition of global symmetries when modeling strongly-
interacting systems.
As a bonus, the form of the meson correlators strongly

suggests the preferred formulation of the Thirring model
with DWF uses the bulk formulation of the vector
auxiliary, clearing up an outstanding issue from previous
work [17]. However the quenched results of Sec. III
revealing symmetry breaking in the surface model at very
strong coupling mandate further investigation of this
formulation. The question of the most natural formulation
of this (or any strongly-interacting) model permitting
systematic numerical investigation remains open; here it
is prudent to recall that simulations of the Thirring model
with SLAC fermions find Nc < 1 [18].
The N ¼ 1 bulk simulations also raise some concerns.

The decay constant Δ governing the Ls → ∞ extrapolation
seems to follow Δ ∝ m for g−2 < g−2c (see Fig. 11),
implying that there may be both practical and even
conceptual difficulties reaching the massless limit in the
broken phase. The residual δh parametrizing the explicit
Uð2NÞ symmetry breaking at finite Ls is also rather large
and slowly-decaying in this regime (see Fig. 12). This
suggests rather careful attention will need to be paid to the
question of Uð2NÞ symmetry in future studies of the broken
phase. We also remark that a further outstanding issue is the
locality of the associated 2þ 1d overlap operator, which
governs the validity of the Uð2NÞ in terms of global
symmetry rotations on local fields in 2þ 1d [16,28]. An
understanding of each of these issues is a precondition for a
satisfactory operational definition of quantum field theories
of strongly-interacting fermions.
In future work we plan to implement simulation code

with improved performance to counter the considerable
numerical effort required for the inversion of M†M at
the strong couplings relevant for symmetry breaking. The
need for further improvements in the invertor algorithm,
and even in the DWF formulation following the ideas
of [29], should not be ruled out. The next step is a more
refined scan of the N ¼ 1 theory in the critical region

g−2 ∈ ð0.3; 0.4Þ with the goal of first locating and then
characterizing the critical point at g−2c . The potential
difficulty of correctly capturing critical fluctuations is
highlighted in the inset of Fig. 9. Finally, using the
control over global symmetries furnished by DWF it will
be straightforward to examine the effect of a Uð2NÞ and
parity-invariant “Haldane” contact interaction ðψ̄γ3γ5ψÞ2,
which in Ref. [6] was found to be a component of the
interaction at the fixed point. Exploratory results in this
direction were reported in [26].
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APPENDIX: THE DETERMINANT
IN THE BULK FORMULATION

Write the fermion action in (6) as

Ψ̄MΨ≡ Ψ̄DWΨþ Ψ̄D3ΨþmaSa ðA1Þ

with

DW ≡ γμDμ − ðD̂2 þMÞ; D3 ≡ γ3∂3 − ∂̂2
3: ðA2Þ

The symbol ∂ is reserved for operators with no dependence
on the auxiliary Aμ. These definitions yield the properties

D̂2 ¼ D̂2† ≠
P

μD
2
μ and ∂̂2

3 ¼ ∂̂2†
3 ≠ ∂3∂3. We first note

that for a ¼ h; 3 the identity γ5Mγ5 ¼ M† [15] ensures
that detM2 is positive and hence detM real.
In the Dirac basis γμ ¼ σμþ1 ⊗ τ3 (μ ¼ 0, 1, 2) and

γ3 ¼ 1 ⊗ τ2, where σ⃗ and τ⃗ are Pauli matrices, and setting
ma ¼ 0, we find

M ¼
�
σμþ1Dμ − ðD̂2 þM þ ∂̂2

3Þ −i∂3

i∂3 −σμþ1Dμ − ðD̂2 þM þ ∂̂2
3Þ

�
≡

�DŴ − ∂̂2
3 −i∂3

i∂3 D†
Ŵ
− ∂̂2

3

�
ðA3Þ

so that

detM ¼ detð−i∂3Þ det½i∂3

− ðDŴ − ∂̂2
3Þ†ð−i∂3Þ−1ðDŴ − ∂̂2

3Þ�: ðA4Þ

Now, if the commutator ½∂3; DŴ − ∂̂2
3� ¼ 0, then (A4) can

be rearranged to read

detM ¼ det½∂†
3∂3 þ ðDŴ − ∂̂2

3Þ†ðDŴ − ∂̂2
3Þ�

¼ detðB†BÞ det½C†Cþ 1� ðA5Þ

whereB ¼ ∂3,C ¼ ðDŴ − ∂̂2
3Þ∂−1

3 , and the last step follows
if B is invertible. Then detMwould be positive definite, and
moreover M could be represented as a positive operator
making it possible to simulate using bosonic pseudofermions.
Now let us examine the commutator. The contributions

½∂3; Dμ� ¼ ½∂3; D̂
2 þM� ¼ 0, which follows provided the
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link connections obey Uμ;x ¼ Uμ;x�3̂ and U†
μ;x ¼ U†

μ;x�3̂
.

This is the case both for gauge theories and for the bulk
formulation of the Thirring model; in each case the
connection is “3-static”, i.e., ∂3Uμ;x ¼ 0. However, the
remaining part is nonvanishing:

½∂3; ∂̂2
3� ¼

1

2
δx;yðδx3;1 − δx3;Ls

Þ: ðA6Þ

Whilst a simple physical interpretation of this term is
obscure, it is clear the obstruction to proving the positivity
of detM has its origin in the open boundary conditions
imposed at the walls. Now consider a Dirac basis
γμ ¼ σμþ1 ⊗ τ2, γ3 ¼ 1 ⊗ τ3 so that

M ¼
� ∂3 − ðD̂2 þM þ ∂̂2

3Þ −iσμþ1Dμ

iσμþ1Dμ −∂3 − ðD̂2 þM þ ∂̂2
3Þ

�
:

ðA7Þ

In this case the obstruction to proving positivity turns out to
be the nonvanishing commutator

½Dμ; D̂
2� ¼ −

1

4

X
ν

½ðUμxUνxþμ̂ − UνxUμxþν̂Þδxþμ̂þν̂;y

þ ðUμxU
†
νxþμ̂−ν̂ −U†

νx−ν̂Uμx−ν̂Þδxþμ̂−ν̂;y

þ ðUνxU
†
μx−μ̂þν̂ −U†

μx−μ̂Uνx−μ̂Þδx−μ̂þν̂;y

þ ðU†
νx−ν̂U

†
μx−μ̂−ν̂ − U†

μx−μ̂U
†
νx−μ̂−ν̂Þδx−μ̂−ν̂;y�;

ðA8Þ
which by construction is evenly distributed throughout the
bulk. The commutator (A8) vanishes for configurations in
which both the “plaquette” Uμν ¼ 1 and U†

μUμ ¼ 1, which
for the Thirring model is expected to be reached only in the
limit g2 → 0.
We conclude that detM is real but not in general positive,

motivating the use of the RHMC algorithm to simulate the
functional measure detðM†MÞ12 outlined in Sec. II. We note
that there is no such obstruction for HMC simulations of
detM using twisted-mass Wilson fermions [30] or overlap
fermions [31], both of which have been recently used to
study QED3.

[1] G. Parisi, Nucl. Phys. B100, 368 (1975); S. Hikami and
T. Muta, Prog. Theor. Phys. 57, 785 (1977); Z. Yang, Texas
Report No. UTTG-40-90, 1990.

[2] M. Gomes, R. S. Mendes, R. F. Ribeiro, and A. J. da Silva,
Phys. Rev. D 43, 3516 (1991).

[3] S. Hands, Phys. Rev. D 51, 5816 (1995).
[4] T. Itoh, Y. Kim, M. Sugiura, and K. Yamawaki, Prog. Theor.

Phys. 93, 417 (1995).
[5] M. Sugiura, Prog. Theor. Phys. 97, 311 (1997).
[6] H. Gies and L. Janssen, Phys. Rev. D 82, 085018 (2010);

86, 105007 (2012); F. Gehring, H. Gies, and L. Janssen,
Phys. Rev. D 92, 085046 (2015).

[7] L. Del Debbio, S. Hands, and J. C. Mehegan, Nucl. Phys.
B502, 269 (1997).

[8] S. Kim and Y. Kim, arXiv:hep-lat/9605021.
[9] L. Del Debbio and S. J. Hands, Nucl. Phys. B552, 339

(1999).
[10] S. Hands and B. Lucini, Phys. Lett. B 461, 263 (1999).
[11] S. Christofi, S. Hands, and C. Strouthos, Phys. Rev. D 75,

101701 (2007).
[12] S. Chandrasekharan and A. Li, Phys. Rev. Lett. 108, 140404

(2012).
[13] C. Burden and A. N. Burkitt, Europhys. Lett. 3, 545 (1987).
[14] S. Chandrasekharan and A. Li, Phys. Rev. D 88, 021701

(2013).
[15] S. Hands, J. High Energy Phys. 09 (2015) 047.
[16] S. Hands, Phys. Lett. B 754, 264 (2016).

[17] S. Hands, J. High Energy Phys. 11 (2016) 015.
[18] B. H. Wellegehausen, D. Schmidt, and A. Wipf, Phys.

Rev. D 96, 094504 (2017).
[19] A. Hasenfratz, C. Rebbi, and O. Witzel, EPJ Web Conf. 175,

03006 (2018); arXiv:1710.11578; arXiv:1810.05176.
[20] P. Vranas, I. Tziligakis, and J. B. Kogut, Phys. Rev. D 62,

054507 (2000).
[21] A. Alexandru, P. F. Bedaque, H. Lamm, S. Lawrence, and

N. C. Warrington, Phys. Rev. Lett. 121, 191602 (2018).
[22] M. A. Clark and A. D. Kennedy, Nucl. Phys. B, Proc. Suppl.

129, 850 (2004).
[23] M. A. Clark and A. D. Kennedy, 2005, https://github.com/

mikeaclark/AlgRemez.
[24] A. Frommer, B. Nöckel, S. Güsken, T. Lippert, and K.

Schilling, Int. J. Mod. Phys. C 06, 627 (1995).
[25] G. H.Golub andC. H. vanLoan,Matrix Computations (Johns

Hopkins University Press, Baltimore, 1989), Chap. 9.3.1.
[26] D. Schmidt, B. Wellegehausen, and A. Wipf, Proc. Sci.,

LATTICE2016 (2016) 247.
[27] A. Kocić, S. Hands, J. B. Kogut, and E. Dagotto, Nucl.

Phys. B347, 217 (1990).
[28] M. Lüscher, Phys. Lett. B 428, 342 (1998).
[29] T. W. Chiu, Phys. Rev. Lett. 90, 071601 (2003).
[30] N. Karthik and R. Narayanan, Phys. Rev. D 93, 045020

(2016).
[31] N. Karthik and R. Narayanan, Phys. Rev. D 94, 065026

(2016).

CRITICAL FLAVOR NUMBER IN THE 2þ 1D THIRRING MODEL PHYS. REV. D 99, 034504 (2019)

034504-13

https://doi.org/10.1016/0550-3213(75)90624-0
https://doi.org/10.1143/PTP.57.785
https://doi.org/10.1103/PhysRevD.43.3516
https://doi.org/10.1103/PhysRevD.51.5816
https://doi.org/10.1143/PTP.93.417
https://doi.org/10.1143/PTP.93.417
https://doi.org/10.1143/PTP.97.311
https://doi.org/10.1103/PhysRevD.82.085018
https://doi.org/10.1103/PhysRevD.86.105007
https://doi.org/10.1103/PhysRevD.92.085046
https://doi.org/10.1016/S0550-3213(97)00435-5
https://doi.org/10.1016/S0550-3213(97)00435-5
http://arXiv.org/abs/hep-lat/9605021
https://doi.org/10.1016/S0550-3213(99)00258-8
https://doi.org/10.1016/S0550-3213(99)00258-8
https://doi.org/10.1016/S0370-2693(99)00843-6
https://doi.org/10.1103/PhysRevD.75.101701
https://doi.org/10.1103/PhysRevD.75.101701
https://doi.org/10.1103/PhysRevLett.108.140404
https://doi.org/10.1103/PhysRevLett.108.140404
https://doi.org/10.1209/0295-5075/3/5/006
https://doi.org/10.1103/PhysRevD.88.021701
https://doi.org/10.1103/PhysRevD.88.021701
https://doi.org/10.1007/JHEP09(2015)047
https://doi.org/10.1016/j.physletb.2016.01.037
https://doi.org/10.1007/JHEP11(2016)015
https://doi.org/10.1103/PhysRevD.96.094504
https://doi.org/10.1103/PhysRevD.96.094504
https://doi.org/10.1051/epjconf/201817503006
https://doi.org/10.1051/epjconf/201817503006
http://arXiv.org/abs/1710.11578
http://arXiv.org/abs/1810.05176
https://doi.org/10.1103/PhysRevD.62.054507
https://doi.org/10.1103/PhysRevD.62.054507
https://doi.org/10.1103/PhysRevLett.121.191602
https://doi.org/10.1016/S0920-5632(03)02732-4
https://doi.org/10.1016/S0920-5632(03)02732-4
https://github.com/mikeaclark/AlgRemez
https://github.com/mikeaclark/AlgRemez
https://github.com/mikeaclark/AlgRemez
https://doi.org/10.1142/S0129183195000538
https://doi.org/10.22323/1.256.0247
https://doi.org/10.22323/1.256.0247
https://doi.org/10.1016/0550-3213(90)90558-U
https://doi.org/10.1016/0550-3213(90)90558-U
https://doi.org/10.1016/S0370-2693(98)00423-7
https://doi.org/10.1103/PhysRevLett.90.071601
https://doi.org/10.1103/PhysRevD.93.045020
https://doi.org/10.1103/PhysRevD.93.045020
https://doi.org/10.1103/PhysRevD.94.065026
https://doi.org/10.1103/PhysRevD.94.065026

