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We present a lattice calculation of the electromagnetic (EM) effects on the masses of light pseudoscalar
mesons. The simulations employ 2þ 1 dynamical flavors of asqtad QCD quarks and quenched photons.
Lattice spacings vary from ≈0.12 fm to ≈0.045 fm. We compute the quantity ϵ, which parametrizes the
corrections to Dashen’s theorem for the Kþ–K0 EM mass splitting, as well as ϵK0 , which parametrizes the
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EM contribution to the mass of the K0 itself. An extension of the nonperturbative EM renormalization
scheme introduced by the BMW group is used in separating EM effects from isospin-violating quark mass
effects. We correct for leading finite-volume effects in our realization of lattice electrodynamics in chiral
perturbation theory, and remaining finite-volume errors are relatively small. While electroquenched effects
are under control for ϵ, they are estimated only qualitatively for ϵK0 and constitute one of the largest sources
of uncertainty for that quantity. We find ϵ ¼ 0.78ð1Þstatð þ8

−11Þsyst and ϵK0 ¼ 0.035ð3Þstatð20Þsyst. We then use

these results on 2þ 1þ 1 flavor pure QCD highly improved staggered quark (HISQ) ensembles and find
mu=md ¼ 0.4529ð48Þstatðþ150

−67 Þsyst.

DOI: 10.1103/PhysRevD.99.034503

I. INTRODUCTION

Themass splitting between the charged and neutral kaons,
K� and K0, arises from two effects that give comparable
contributions: the mass difference between up and down
quarks, and electromagnetism. If the electromagnetic (EM)
contributions can be determined and removed from the
experimentalmesonmasses, the resulting pure-QCDmasses
can then be used as input to a lattice QCD calculation to
determine the light quark masses, and in particular the ratio
mu=md, a fundamental parameter of the standard model
which measures the strength of strong isospin violations.
The size of the EM contributions to the K�–K0 mass

splitting is a long-standing issue. Almost fifty years ago,
Dashen [1] showed that the EM splitting of the charged
and neutral kaons is equal to that of the pions in leading order
(LO) of chiral SUð3Þ × SUð3Þ symmetry. In other words, at
LO, ðM2

K� −M2
K0Þγ ¼ ðM2

π� −M2
π0
Þγ , where the superscript

γ denotes the EM contribution, i.e., the difference between
the quantity in the real world and in a world where all quark
charges are set to zero (keeping renormalized quark masses
unchanged). However, it has been known for some time that
the corrections to this lowest-order result are large; see, e.g.,
Ref. [2] for a pedagogical review. These corrections can be
estimated in a variety of continuum phenomenological
models [3]. The model results differ considerably, however,
and do not allow one to make controlled estimates of the
systematic errors. Indeed, in lattice determinations of
mu=md that employ phenomenological estimates of EM
contributions [4–7], the error coming from the range of EM
estimates dominates all other systematic errors.
Direct lattice calculations of the EM contribution to the

kaon splittings can greatly reduce the uncertainties. This
approach was pioneered by Duncan, Eichten, and Thacker
[8] in the quenched approximation of QCD, and has been
applied in full QCD more recently by several groups
[9–17]. Here we report on our lattice QCDþ QED com-
putation of ðM2

K� −M2
K0Þγ . We then apply our result to

compute mu=md in a pure QCD simulation.
There is an alternative approach to calculating EM

effects on the lattice [18,19] in which one expands out
QED and isospin-violating interactions to OðαEM; mu −
mdÞ (where αEM is the fine structure constant) and then

computes the resulting matrix elements in isospin-conserv-
ing pure QCD. We do not discuss this approach further
here, but simply note that the existence of two independent
methods makes possible important cross checks on the
results and errors of both. See Ref. [20] for a review that
covers both approaches.
In lattice simulations of QCDþ QED, both the QCD and

QED should in principle be unquenched, i.e., include all
contributions from virtual sea-quark loops. However,
Bijnens and Danielsson [21] have shown that QED quench-
ing effects for mass differences such as ðM2

K� −M2
K0Þγ are

computable through next-to-leading order (NLO) in
SUð3Þ × SUð3Þ chiral perturbation theory, with no depend-
ence on unknown low energy constants (LECs). In other
words, the sea quarks may be taken to be electrically neutral
in the simulation, and the effects of their charges may be
restored, correct to NLO, after the fact.We take advantage of
this result here and simulate full, unquenched QCD +
quenched QED (the electroquenched approximation) in
order to determine the kaon EM splittings. Since the
QED part of the simulation is quenched, we need only to
calculate valence-quark propagators in a background con-
sisting of pure unquenched QCD and quenched EM fields,
which are free fields and therefore easily generated. For the
pure QCD backgrounds, we use our large data set of
ensembles generated with 2þ 1 flavors of asqtad staggered
quarks [4].We have added a number of additional ensembles
to better study finite-volume effects.
One may parametrize the kaon EM splitting by [2]

ϵ≡ ðM2
K� −M2

K0Þγ − ðM2
π� −M2

π0
Þγ

ðM2
π� −M2

π0
Þexpt ; ð1Þ

where the experimental pion splitting is used in the denom-
inator, rather than the EM pion splitting. The two are equal
up to isospin-violating effects, which are Oððmu −mdÞ2Þ,
and therefore small. Determining the EM contribution to the
mass of the true π0 is costly, however, since it has quark-line
disconnectedEMdiagrams even in the isospin limit. Instead,
we drop the disconnected diagrams, which are expected to
be small, and simply find the RMS average mass of uū and
dd̄ mesons. We call the pion obtained in this manner the
“π0.” Both the true ðM2

π0
Þγ and our ðM2

“π0”
Þγ are small
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because EM contributions to neutral mesons vanish in the
chiral limit. For the true π0, this is required by Dashen’s
arguments [1], and may be seen explicitly in chiral pertur-
bation theory (χPT) including EM effects [22]. For the “π0,”
a simple argument in partially quenched χPT, given below in
Sec. III D, shows that ðM2

“π0”
Þγ also vanishes in the chiral

limit. This means that the disconnected EM contributions
that we are neglecting are themselves small. (An alternative
diagrammatic proof of the small size of the disconnected
terms has been given previously in Ref. [18].) Further,
Zweig’s rule suggests that the mass contribution from the
disconnected diagrams is in fact still smaller than either
ðM2

π0
Þγ or ðM2

“π0”
Þγ separately.

Summarizing, we use

ϵ ≅
ðM2

K� −M2
K0Þγ − ðM2

π� −M2
“π0”

Þγ
ðM2

π� −M2
π0
Þexpt ð2Þ

to compute ϵ. The systematic error coming from using the
“π0” will of course need to be estimated.
An alternative estimate of ϵ is also possible if we employ

the experimental EM pion splitting in the numerator of
Eq. (1) instead of our computed π splitting. This estimate is
then independent of any assumptions about the discon-
nected diagrams in the “π0.” For a test of systematic effects
in the calculation of ϵ, we can therefore look at

ϵ0 ≡ ðM2
K� −M2

K0Þγ − ðM2
π� −M2

π0
Þexpt

ðM2
π� −M2

π0
Þexpt ; ð3Þ

In Ref. [2], the contribution to the pion splitting coming
from quark masses (i.e., the splitting that would be present
in QCD alone) is defined to be ϵmðM2

π� −M2
π0
Þexpt. Then

Eqs. (1) and (3) imply

ϵ0 ¼ ϵ − ϵm: ð4Þ
At NLO in χPT, ϵm ¼ 0.04 [23]. Reference [2] adds a
conservative error and quotes ϵm ¼ 0.04ð2Þ. In our calcu-
lation, ϵ − ϵ0 appears to be positive. However, because our
systematic errors in both ϵ and ϵ0 are significantly larger than
0.04,we are only able to use the difference ϵ − ðϵ0 þ 0.04Þ as
one estimate of those errors, and havenothing to report about
ϵm itself.
We also calculate theEMcontribution to the squaredmass

of the neutral kaon, ðM2
K0Þγ . It is convenient to express this

quantity in terms of the experimental pion splitting, just as
we have done for the kaon splitting. We follow Ref. [2] and
define the dimensionless quantity ϵK0 by

ϵK0 ≡ ðM2
K0Þγ

ðM2
πþ −M2

π0
Þexpt : ð5Þ

The following is an outline of the remainder of the
paper: Section II gives the details of the 2þ 1 flavor asqtad
staggered QCD ensembles [4] on which we compute

(quenched) EM effects. In addition, we describe the pure
QCD 2þ 1þ 1 highly improved staggered quark (HISQ)
ensembles [24] on which we calculate mu=md, with input
on EM effects from the asqtad simulations. We discuss
infinite volume χPT in QCDþ QED in Sec. III.
Modifications for partial quenching [21] and staggered
discretization errors [25] are detailed, and the staggered
result for the meson masses at NLO is presented and
explained. In Sec. IV, we describe how we define QED in
finite volume (FV). Finite-volume effects are then calcu-
lated at one loop in staggered χPT in Sec. V. We show that
the resulting formulas give an excellent description of our
lattice data over a wide range of volumes. We can therefore
correct for FV effects, with a small residual systematic
error. Section VI C then presents a variety of chiral fits to
the FV-corrected lattice data, and Sec. VII describes our
results and systematic errors for the EM contributions to the
kaon massess, and the parameters ϵ and ϵK0 . Finally, in
Sec. VIII, we use our EM results are to adjust the
experimental kaon masses to their values in a pure-QCD
world, which are then taken as input to the calculation of
mu=md following Ref. [26].
Our final results are

ϵ ¼ 0.78ð1Þstat
�þ8

−11

�
syst

;

ϵK0 ¼ 0.035ð3Þstatð20Þsyst;

mu=md ¼ 0.4529ð48Þstat
�þ150

−67

�
syst

:

Preliminary versions of this work have appeared in
Refs. [12–15,27].
We note that mu=md may be computed on the lattice in

other ways that do not depend on knowing the EM
contributions to the kaon masses. In particular, Ref. [28]
uses a dispersive treatment of the experimental input from
the decay ρ → 3π instead of kaon splittings to obtain the
ratio mu=md from their lattice determination of ms=ml,
whereml ≡ ðmu þmdÞ=2. Since the ρ → 3π decay violates
isospin but is known to be fairly independent of EM
corrections, it gives a handle on mu=md that does not
require EM input, at least to some level of accuracy.

II. LATTICE DETAILS

We calculate meson masses on the (2þ 1)-flavor MILC
asqtad ensembles, with quenched photon fields, and with
lattice spacings ranging from ≈0.12 fm to ≈0.045 fm.
Table I shows the ensembles employed. On all ensembles,
we generate propagators for valence quarks that have
charges 0, �1=3e, or �2=3e, where e ≈ 0.303 is the
physical electron charge, and we compute the masses of
mesons made from various combinations of these quarks.
On many ensembles we also have mesons made from
quarks with charges greater than physical: �e and �4=3e.
On some ensembles, we even have quarks with charges
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�2e, although charges that high are not included in the
analysis at this time.
Quenched photon fields are generated in momentum

space in the finite-volume Coulomb gauge QEDTL defined
in detail in Sec. IV. The momentum-space distribution is
Gaussian, and is generated and Fourier transformed to
position space by a serial program. The spectrum program
reads the photon fields from disk and, for each desired
charge, converts the field to a Uð1Þ phase factor with that
charge. The SUð3Þ links are multiplied by the Uð1Þ links,
and then the same gauge smearing that we use for SUð3Þ
alone is applied. This amounts to an a2-improved action,
but without any tadpole improvement of Uð1Þ.

A. New ensembles

To study finite-volume errors, which were found to be
quite important in our prior work, we have generated a
number of new ensembles that are not detailed in Ref. [4].
Our prior finite-volume work used two volumes corre-
sponding to spatial size L ¼ 20 and 28. We have added
L ¼ 12, 16, 40, and 48 in order to have data on both larger
and smaller volumes. For L ¼ 12, we have generated the
ensemble using the R algorithm [29–31] in a single stream
of 5200 time units of evolution. Each trajectory consists of
150 steps with a step size of 0.00667. The first 200 time
units are dropped and every 5th time unit is then archived
for analysis, yielding 1000 configurations in the ensemble.
For L ¼ 16, we have four separate streams. Three of them
use the RHMC [32–36] algorithm with a 3G1F Omelyan
integrator [37,38]. The step size is 0.05, and there are
twenty steps per trajectory. Each of these streams has 334

or 335 configurations separated by 6 time units. A fourth
stream employs the R algorithmwith the same parameters as
for L ¼ 12 and has 300 configurations separated by 5 time
units. ForL ¼ 40, we use theRHMCalgorithmwith 40 steps
of size 0.025 and analyze 115 configurations separated by
6 time units. All of the above ensembles are generated by
single-precision code, except that accumulations are done
in double precision. For L ¼ 48, we use two streams, one
in single precision (as above), and one in double precision. In
each case, archived configurations are separated by 6 time
units. From the single-precision ensemble, 132 configura-
tions are used for the spectrum analysis, whereas 52 are
analyzed from the double-precision ensemble. These have
not been combined in the finite-volume study. Table II
summarizes information about the new ensembles.

TABLE I. Parameters of the (2þ 1)-flavor asqtad ensembles used in this study. The quark masses m0
l and m

0
s are the light and strange

dynamical masses used in the runs. The number of configurations listed as ‘132þ 52’ for the a ≈ 0.12 fm, 483 × 64 ensemble gives
values for two independent streams, the first in single precision, and the second in double. We treat them as separate data, and do not
average the results. The r1=a values are mass-independent, in that they are extrapolated to physical quark masses, rather than the sea
mass of the simulations. The errors listed for r1=a are the sum in quadrature of the statistical errors and the extrapolation errors. We use
the a ≈ 0.12, m0

l ¼ 0.01, m0
s ¼ 0.05 result for r1=a for those a ≈ 0.12 ensembles where no r1=a value has been directly computed.

≈a [fm] Volume β m0
l=m

0
s # Configs. L (fm) mπL r1=a

0.12 123 × 64 6.76 0.01=0.05 1000 1.4 2.7 � � �
163 × 64 6.76 0.01=0.05 1303 1.8 3.6 � � �
203 × 64 6.76 0.01=0.05 2254 2.3 4.5 2.739(12)
283 × 64 6.76 0.01=0.05 274 3.2 6.3 � � �
403 × 64 6.76 0.01=0.05 115 4.6 9.0 � � �
483 × 64 6.76 0.01=0.05 132þ 52 5.5 10.8 � � �
203 × 64 6.76 0.007=0.05 1261 2.3 3.8 2.739(13)
243 × 64 6.76 0.005=0.05 2099 2.7 3.8 2.739(13)

0.09 283 × 96 7.09 0.0062=0.031 1930 2.3 4.1 3.789(6)
403 × 96 7.08 0.0031=0.031 1015 3.3 4.2 3.755(6)

0.06 483 × 144 7.47 0.0036=0.018 670 2.8 4.5 5.353(12)
563 × 144 7.465 0.0025=0.018 798 3.3 4.4 5.330(12)
643 × 144 7.46 0.0018=0.018 826 3.8 4.3 5.307(12)

0.045 643 × 192 7.81 0.0028=0.014 801 2.8 4.6 7.208(25)

TABLE II. Characteristics of the new ensembles generated to
study finite volume effects. Each ensemble has a volume of
L3 × 64 with the value of L in the first column. The second
column indicates the algorithm used to generate the ensemble.
The third and fourth columns contain the molecular dynamics
step size and the number of steps in each trajectory, respectively.
The fifth column indicates how many trajectories separate
archived lattices on which the spectrum analysis is done. The
last column contains additional comments.

L Algorithm δt Steps Trajectories Comment

12 R 0.00667 150 5
16 R 0.00667 150 5
16 RHMC 0.05 20 6 3 streams
40 RHMC 0.025 40 6
48 RHMC 0.025 40 6 Single precision
48 RHMC 0.025 40 6 Double precision
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B. Spectrum calculations

In order to calculate the meson spectrum, we read an
archived dynamical SUð3Þ gauge configuration and a
quenched Uð1Þ gauge configuration and proceed to cast
quark propagators from a corner wall source. We use a
variety of valence quark charges and masses. A multishift
solver is employed so that for each desired charge all
desired masses are found with one iterative process.
The calculation of themeson spectrum has been primarily

done on GPU based computers at the Texas Advanced
Computing Center, National Center for Supercomputing
Applications, and Indiana University using the QUDA
approach pioneered at BostonUniversity [39], but enhanced
to support staggered quarks [40–43].
In Table III, we summarize the quark charges,masses, and

number of channels we study on each ensemble. Figure 1
shows the Goldstone pion propagators as a function of
Euclidean time for the a ≈ 0.045 fm ensemble, which is our
finest lattice spacing.We show four charge combinations for
our lightest valence quark mass on that ensemble. Using the
notation further detailed in Sec. III B, the quark charges
are qx and qy in units of the fundamental charge e, and
the meson charge qxy is qx − qy since the meson is made
from an x-quark and y-antiquark. The combinations ðqx; qyÞ
we plot are (0,0), ð2=3; 2=3Þ, ð1=3;−2=3Þ, and ð2=3;−2=3Þ,
with total chargesqxy ¼ 0, 0, 1 and 4=3, respectively.We see
a nice linear decrease of the propagators in this semiloga-
rithmic plot over a large range of t, before the periodic
boundary conditions result in curvature at large t. In Fig. 2,

TABLE III. Details of the charges and valence quark masses used for the meson spectrum. The last column indicates how many charge
and mass combinations were used to construct mesons.

≈a [fm] Volume m0
l=m

0
s Charges amv Channels

0.12 123 × 64 0.01=0.05 �2=3, �1=3, 0 0.005, 0.007, 0.01, 0.02, 0.03, 0.04, 0.05 700
163 × 64 0.01=0.05 �2=3, �1=3, 0 0.005, 0.007, 0.01, 0.02, 0.03, 0.04, 0.05 700
203 × 64 0.01=0.05 �2, �4=3, �1, �2=3, �1=3, 0 0.005, 0.007, 0.01, 0.02, 0.03, 0.04, 0.05 532
283 × 64 0.01=0.05 �2, �4=3, �1, �2=3, �1=3, 0 0.005, 0.007, 0.01, 0.02, 0.03, 0.04, 0.05 532
403 × 64 0.01=0.05 �2=3, �1=3, 0 0.005, 0.007, 0.01, 0.02, 0.03, 0.04, 0.05 700
483 × 64 0.01=0.05 �2=3, �1=3, 0 0.005, 0.007, 0.01, 0.02, 0.03, 0.04, 0.05 700
203 × 64 0.007=0.05 �4=3, �1, �2=3, �1=3, 0 0.005, 0.007, 0.01, 0.02, 0.03, 0.04, 0.05 364
243 × 64 0.005=0.05 �4=3, �1, �2=3, �1=3, 0 0.005, 0.007, 0.01, 0.02, 0.03, 0.04, 0.05 364

0.09 283 × 96 0.0062=0.031 �4=3, �1, �2=3, �1=3, 0 0.0031, 0.0062, 0.0093, 0.0124, 0.0155,
0.0186, 0.031

364

403 × 96 0.0031=0.031 �2, �4=3, �1, �2=3, �1=3, 0 0.0031, 0.0062, 0.0093, 0.0124, 0.0155,
0.0186, 0.031

532

0.06 483 × 144 0.0036=0.018 �2, �4=3, �1, �2=3, �1=3, 0 0.0036, 0.0054, 0.0072, 0.009, 0.0108,
0.0126, 0.018

532

563 × 144 0.0025=0.018 �2=3, �1=3, 0 0.0018, 0.0025, 0.0036, 0.0044, 0.0054,
0.0072, 0.0108, 0.0144, 0.018

1125

643 × 144 0.0018=0.018 �2=3, �1=3, 0 0.0018, 0.0025, 0.0036, 0.0044, 0.0054,
0.0072, 0.0108, 0.0144, 0.018

1125

0.045 643 × 192 0.0028=0.014 �2=3, �1=3, 0 0.0014, 0.0021, 0.0028, 0.0035, 0.0042,
0.0056, 0.0084, 0.0112, 0.014

1125

FIG. 1. The Goldstone pion propagator as a function of
Euclidean time on the a ≈ 0.045 fm ensemble with am0

l ¼
0.0028 and am0

s ¼ 0.014. The grid size is 643 × 192. The meson
propagators are periodic in time and have been folded over, so the
maximum time is 96. Four charge combinations are plotted: (0,0),
ð2=3; 2=3Þ, ð1=3;−2=3Þ, and ð2=3;−2=3Þ, with total charges
qxy ¼ 0, 0, 1 and 4=3, respectively. These charges are all in units
of e. The valence quark and antiquark masses are both 0.0014 in
lattice units.
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we show the results of fitting the propagators in Fig. 1. Each
plot shows a series of fits starting from Dmin and
extending to the center of the lattice. The symbol size
is proportional to the p value of the fit. Crosses are fits
with a single particle (two free parameters), and squares
correspond to two particles (four parameters). We see
that there are many fits with good p values, and that the
meson masses depend significantly on the total charge.
We can even see a difference between the two cases of a
neutral meson, one with uncharged quarks and the other
made from a quark and an antiquark whose charges
cancel each other. Much of this difference is unphysical,
coming from the effect of EM quark-mass renormaliza-
tion at fixed bare mass—see Sec. III C. Note that the
quality of the plateaus for mesons with charged quarks
is virtually identical to that for the meson with
uncharged quarks; we return to this point in Sec. V.
The masses corresponding to fits with Dmin ¼ 50, which
is the value chosen for this ensemble in our final

analysis, are detailed in Table IV. Figure 3 plots these
masses vs the square of the meson charge.
In order to construct the correlations among the masses

of all the channels on a specific ensemble, we use a single

(a) (b)

(c) (d)

FIG. 2. Fits of the four pion propagators shown in Fig. 1. Fits are from Dmin to the center of the lattice. The symbol sizes are
proportional to the p value of the fit. Black crosses denote single-particle fits and red squares denote two-particle fits.

TABLE IV. The masses of the four mesons plotted in Fig. 1. On
this ensemble, we fit the propagator from t ¼ 50 to the center of
the lattice assuming a single particle. The first two columns are
the charges of the two quarks in units of e. Since the meson is
made from a quark and an antiquark, the meson charge qxy in the
third column is qx − qy. The mass and its error are in the fourth
column. Each fit has 45 degrees of freedom (d.o.f.). χ2 and the
p value of the fit are in columns five and six, respectively.

qx qy qxy am χ2 p

0 0 0 0.05115(12) 39.26 0.713
2=3 2=3 0 0.05146(12) 42.32 0.586
1=3 −2=3 1 0.05201(12) 39.43 0.706
2=3 −2=3 4=3 0.05263(12) 40.27 0.672
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elimination jackknife fitting procedure. On each ensemble,
a single value of Dmin is used for all channels. In the
subsequent analysis, we subtract the squared meson mass
for q ¼ 0 quarks from the corresponding squared meson
mass with nonzero quark charges, properly taking in
account the correlations. These correlations are expected
to be very large, especially for mesons with the same
valence quark masses but different valence quark charges,
because the QCD contributions are identical in the two
cases, and only the small QED effects are different.
Because of this high degree of correlation, the errors of
the subtracted quantities are much smaller than one would
find by the naive propagation of errors from the masses
themselves. For example, the correlation between the
qx ¼ 0, qy ¼ 0 and the qx ¼ 1=3, qy ¼ −2=3 masses in
Table IV is 0.998, and the error in the mass difference is
0.85%. If the error in the difference were propagated
naively, omitting the correlation, the error in the mass
difference would be about 20%.
The small errors in the subtracted masses is illustrated by

an alternative analysis shown in Fig. 4 for the same data as
in Figs. 1 and 2. Here, rather than fitting individual
propagators, we fit the ratio of each propagator for a
meson made of charged quarks with the corresponding
propagator for the meson made from neutral quarks.
Because of the effect of the periodic boundary conditions
in time, the ratio depends not only on the meson mass
difference, but also on the meson masses themselves. The
latter dependence is mild, but still non-negligible, and
makes fits with three unconstrained parameters (the mass

difference, the mass of qx ¼ qy ¼ 0 meson, and the
overall amplitude) somewhat unstable. Instead, we have
constrained, with Bayesian priors, the mass of the qx ¼
qy ¼ 0 meson to 0.05115(12), as given in Table IV. The
plots show the resulting mass differences as a function of
the minimum distances in the fits, Dmin. The horizontal
solid and dotted lines (in red online) show the mass
differences and errors computed from the individual
masses using Dmin ¼ 50.

C. Scale setting

We use the intermediate quantity r1 [44,45] to set the
relative scale of our ensembles, and take r1 ¼
0.3117ð22Þ fm [46] as the absolute scale. From the smooth-
ing fit to r1=avalues described inRef. [4], we extrapolate the
r1=a values at the simulated quark masses to the physical
quark masses (given below in Table V), holding β fixed.
This defines a mass-independent scale-setting scheme,
which is needed in order to apply chiral perturbation theory.
The scheme is mass independent because it gives an r1=a
value that depends only on β and not on the simulated quark
massesm0

l andm
0
s. Mass-independent values of r1=a for our

ensembles are listed in Table I. The errors shown are a sum
(in quadrature) of statistical errors and errors of the extrapo-
lation to the physical quark masses.

III. CHIRAL PERTURBATION THEORY
WITH ELECTROMAGNETISM

A. Continuum chiral theory for QCD+QED

In the continuum, the chiral effective theory for QCDþ
QED was worked out by Urech [22]. Along with all
hadrons heavier than the pseudoscalar mesons, high-
momentum photons are integrated out of the chiral theory,
resulting in a single effective meson-interaction term at LO.
Photons and mesons with low momentum (less than the
chiral cutoff Λχ), are treated explicitly in this chiral
perturbation theory (χPT).
The partially quenched version of the chiral theory is

relevant here. In partial quenching, the valence and sea
quarks are treated as distinct; when EM is included, this
means that valence and sea quarks may have different
electric charges and/or masses.1 Bijnens and Danielsson
[21] have calculated the meson masses and decay constants
at NLO (one loop) in partially quenched χPT in QCDþ
QED with three flavors of sea quarks (u, d, s). A key
insight of Ref. [21] is that sea-quark charges affect meson
masses in particularly simple ways at NLO. In analytic
terms involving the sea-quark charges, only the sums of the
squared sea-quark charges appear—there are no cross terms
between sea-quark and valence-quark charges. (It is neces-
sary to assume here that the sum of the three sea-quark

FIG. 3. The Goldstone pion mass as a function of the square of
the meson charge on the a ≈ 0.045 fm ensemble with am0

l ¼
0.0028 and am0

s ¼ 0.014. Four charge combinations are plotted:
(0,0), ð2=3; 2=3Þ, ð1=3;−2=3Þ, and ð2=3;−2=3Þ, with total
charges Q ¼ 0, 0, 1 and 4=3, respectively. These charges are
all in units of e. The valence quark and antiquark masses are both
0.0014, in lattice units.

1We will call the limit where valence- and sea-quark masses
and charges are equal “full” QCDþ QED.
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charges vanishes, as it does in the real world.) Sea-quark
charges may also appear in the one-loop chiral logarithms,
but these are completely determined in terms of the LO
LECs. This implies that in the difference of squared mass of

two mesons with the same valence quark masses but
different valence quark charges, the analytic terms depend-
ing on sea-quark charges cancel. Thus the difference may
be reliably computed on the lattice with a simulation in

FIG. 4. Fits of the ratio of the propagators shown in Fig. 1 for mesons with charged quarks, divided by the propagator for the meson
with neutral quarks. The vertical axis gives the mass difference between the two propagators in the ratio. Fits are fromDmin to the center
of the lattice. The symbol sizes are proportional to the p value of the fit. The horizontal, red (color online), solid and dashed lines show
the central value and error for the mass difference given by subtracting the masses in Table IV and propagating the errors using the
covariance matrix determined by jackknife, as described in the text.

TABLE V. Quantities used as inputs in the chiral-discretization fits and/or their extrapolation. The first three columns identify the
ensemble, and then we list, in r1 units, the physical values of the light quark and strange quark mass, the slope B0 [Eq. (13)], and the taste
splittings for axial, tensor, vector, and singlet tastes, respectively. The last row is labeled “Cont.” for “continuum”; see text for how this is
defined. The errors for the quark masses are from the chiral extrapolation and the absolute scale, respectively; statistical errors are
negligible. For the other quantities the errors given are statistical only.

≈a [fm] β m0
l=m

0
s r1ml r1ms r1B0 r21a

2ΔA r21a
2ΔT r21a

2ΔV r21a
2ΔI

0.12 6.76 0.005=0.05 0.00333(6)(5) 0.0919(16)(13) 6.832(4) 0.230(2) 0.371(5) 0.487(6) 0.609(17)
0.09 7.08 0.0031=0.031 0.00338(6)(5) 0.0927(16)(13) 6.639(6) 0.075(5) 0.124(6) 0.160(10) 0.222(18)
0.06 7.46 0.0018=0.018 0.00343(7)(5) 0.0937(16)(13) 6.487(6) 0.027(1) 0.044(2) 0.058(2) 0.071(3)
0.045 7.81 0.0028=0.014 0.00342(6)(5) 0.0936(16)(13) 6.417(6) 0.010(2) 0.017(3) 0.023(3) 0.028(3)
Cont. 7.08 � � � 0.00361(7)(5) 0.0990(17)(14) 6.015(6) 0 0 0 0
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which the sea quarks are uncharged (the electroquenched
approximation). The sea-quark charge dependence, which
comes only from one-loop chiral logarithms, may be put in
after the fact. All dependence on unknown NLO LECs
cancels in the difference.
Note that the quantities we need to calculate to determine

ϵ in Eq. (2), namely ðM2
K� −M2

K0Þγ and ðM2
π� −M2

“π0”
Þγ ,

are squared-mass differences of the type required to make
them reliably calculable with electroquenched simulations,
in the sense described in the previous paragraph. We
emphasize, however, that the calculability depends on
using SU(3) (3-flavor) χPT at NLO, which will have
non-negligible systematic corrections that need to be
estimated. The alternative, treating only the u, d quarks
as light (2-flavor SU(2) χPT), is not necessarily an
improvement, despite the fact that in SU(2) χPT the errors
are generically much smaller at a given order than in SU(3).
The reason is that the calculability of squared-mass
differences in the electroquenched approximation depends
on the tracelessness of the quark charge matrix, which
holds in SU(3), but not in SU(2). Thus, if SU(2) is used,
the chiral errors are likely to be smaller, but one must
include a separate quenching error that needs to be
estimated in some independent fashion. That is the
approach taken in Ref. [17].
In this paper, we compute the EM effect on the neutral

kaon mass, ðM2
K0Þγ ¼ ϵK0ðM2

πþ −M2
π0
Þexpt, in addition to ϵ.

In this case, χPT does not allow us to control the electro-
quenching error, because that error it is not computable at
lowest nontrivial χPT order. The quantity ðM2

K0Þγ is the
difference between the squared mass of a neutral kaon
made out of charged valence quarks, with a charged sea,
and the squared mass of a kaon made out of neutral valence
quarks, with a neutral sea. Even effects that depend on the
sea-quark charges alone do not cancel here. Our estimate of
the electroquenching error in ðM2

K0Þγ is therefore based on
large-Nc power counting only (Nc ¼ 3 is the number of
QCD colors), and must be considered a rough guide only.

B. Staggered chiral perturbation theory with EM

With the staggered lattice action, each quark flavor
appears as four species, known as “tastes.” This is a
remnant of the 16-fold doubling of species of naive lattice
fermions. To obtain standard QCD in the continuum limit,
it is necessary to eliminate the unwanted taste d.o.f. in the
sea. Our simulations accomplish this by taking the fourth-
root of the fermion determinant for each quark flavor [47].
Numerical and theoretical arguments for the validity of
this procedure in the continuum limit can be found in
Refs. [48–59]. The appropriate chiral theory for staggered
quarks with the rooting procedure is called “rooted stag-
gered” χPT (rSχPT) [60,61]. Starting with the staggered
chiral Lagrangian of Ref. [61], it is straightforward [25] to
include EM effects following Ref. [22].

At leading order, the Euclidean, staggered QCDþ QED
chiral Lagrangian is2

LðLOÞ ¼ 1

4
FμνFμν þ

λ

2
ð∂μAμÞ2 þ

f2

8
TrðdμΣ†dμΣÞ

−
B0f2

4
TrðMΣþMΣ†Þ

þm2
0

24
ðTrðΦÞÞ2 þ a2V − e2C TrðQΣQΣ†Þ; ð6Þ

where Tr denotes a trace over flavor and staggered taste
indices. The quantities Aμ, Fμν, and λ are the photon gauge
potential, the EM field strength, and the gauge-fixing
parameter, respectively. The meson fields are contained in

Σ¼ expðiΦ=fÞ; Φ¼

0
B@

U πþ Kþ

π− D K0

K− K̄0 S

1
CA; ð7Þ

where diagonal entries U D, and S, are the quark-antiquark
pairs uū, dd̄, and ss̄ respectively. Each of the meson fields
U;Πþ; Kþ;… in Eq. (7) are composed of 16 tastes, as in
πþ ≡P

16
b¼1 π

þ
b Tb, where the Tb are the Hermitian taste

generators

Tb ¼ fξ5; iξμ5; iξμνðμ < νÞ; ξμ; ξIg: ð8Þ

Here ξμ are a set of 4 Euclidean gammamatrices, ξμν ≡ ξμξν,
ξμ5 ≡ ξμξ5, and ξI ≡ I is the 4 × 4 identity matrix. The
term a2V in Eq. (6) is the taste-violating potential [61], with
a the lattice spacing. The anomaly term 1

24
m2

0hΦi2 gives
mass to the η0, and causes mixing of the flavor-neutral fields
U, D, S through “hairpin” (quark-line disconnected) dia-
grams [62,63]. As usual in partially quenched and/or
staggered calculations, it is convenient to keep this term
and use the simpleU,D, S basis along the diagonal ofΦ. At
the end of the calculation, we can take m0 → ∞ [64] and
decouple the η0.
In Eq. (6), M is the quark mass matrix,

M ¼ diagðmu;md;msÞ; ð9Þ

and Q is the quark (electric) charge matrix

Q ¼ diagðqu; qd; qsÞ ¼ diagð2=3;−1=3;−1=3Þ; ð10Þ

with the property TrðQÞ ¼ 0. The covariant derivative dμ is
given by

2Reference [25] used this Lagrangian but, because of space
limitations, did not explicitly display it.
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dμΣ ¼ ∂μΣ − ieQAμΣþ iΣeQAμ; ð11Þ

wherewe have set vector and axial source terms to zero since
they are not needed for present purposes. Electromagnetic
effects on the meson masses come both directly, from the
low-energy photon field Aμ, and indirectly, through the term
e2CTrðQΣQΣ†Þ (with e the fundamental electric charge and
C an LEC), which represents the effects of high-energy
photons that have been integrated out.
With p a typical meson 4-momentum, and M and m

generic meson and quark masses, respectively, the standard
power-counting scheme of rSχPT is p2 ∼M2 ∼m ∼ a2,
where factors of the chiral scale Λχ (to make the dimension
of each quantity the same) are implicit. Including EM, χPT
becomes a joint expansion in p2 and e2. The Lagrangian of
Eq. (6) is LO in the sense that it includes the leading terms
both in p2 and in e2. Even though EM corrections are in
general smaller or much smaller than typical SU(3) chiral
corrections,3 we are interested here in EM quantities, which
start at Oðe2Þ, so e2 terms are rightly included in the LO
Lagrangian. One-loop diagrams from Eq. (6) then produce
Oðe2p2Þ corrections, which we consider NLO. Higher
nonanalytic (chiral log) corrections have not been com-
puted in rSχPT, but it will be necessary to add higher-
order analytic terms (Oðe2p4Þ and sometimes Oðe4Þ and
Oðe4p2Þ) in order to get acceptable chiral fits. We will refer
to Oðe2p4Þ and Oðe4Þ terms as next-to-next-to leading
order (NNLO), and those ofOðe4p2Þ orOðe2p6Þ as N3LO;
this counting treats e2 ∼ p4. Terms that go like e4 ulti-
mately have negligible impact on our results for ϵ, but can
be necessary to describe small, but statistically significant,
effects in our lattice data, especially when we include data
for quarks with larger-than-physical charges.
We consider a generic pseudoscalar meson composed of

two different valence quarks x and y with masses mx and
my. In units of e, the quark (not antiquark) charges are qx
and qy, so that the meson charge is qxy ¼ qx − qy. At LO,
the squared mass of such a meson with taste b is

M2
xy;b ¼ χxy;b þ q2xye2ΔEM; ð12Þ

χxy;b ¼ B0ðmx þmyÞ þ a2Δb; ð13Þ

where χxy;b is the LO squared mass without EM effects, Δb

is the taste splitting coming from the staggered potential V,
and

ΔEM ≡ 4C
f2

: ð14Þ

Dashen’s theorem is immediately evident from Eq. (12)
since the LO EM contribution proportional to ΔEM is
independent of quark masses.
We remark that Eqs. (12) and (13) are in general

complete LO masses (with and without EM) only when
the meson is flavor charged (x ≠ y). For x ¼ y, there are
additional contributions in the taste-singlet case (coming
from the anomaly, m0, term) and the taste-vector or axial
vector cases (coming from taste-violating hairpins in V). As
is standard in partially quenched or staggered χPT calcu-
lations, such terms are treated as separate two-meson
vertices, giving rise to disconnected contributions to
flavor-neutral propagators.
Beyond LO, the fourth-root procedure needs to be

implemented. This can be done systematically at the level
of the chiral theory by using a replica trick [65] for the sea
quarks: replicating them nr times and setting nr ¼ 1=4 at
the end of the calculation [54,55,66]. (Additional, un-
replicated valence quarks, here called x and y, must also be
introduced.) We do not show the replications explicitly in
Eq. (6); in practice it is actually more convenient at the one-
loop level to use quark-flow techniques [67] to keep track
of diagrams with sea-quark loops, and multiply them by
hand by a factor of 1=4. Since both the replica and the
quark-flow approaches distinguish sea and valence quarks,
it is straightforward to take into account, in the chiral
calculations, the fact that our simulations are partially
quenched.
From Eq. (6), it is straightforward to compute the

squared mass of a pseudoscalar meson to order NLO
(Oðp4Þ, one-loop). We focus on the taste-ξ5 (pseudoscalar
taste) meson because it is the valence meson that we have
simulated. The taste-ξ5 meson is a true Goldstone boson in
the massless limit and in the absence of EM (for electrically
charged mesons). From now on, we always mean the taste-
ξ5 meson if we do not otherwise specify the meson’s taste.
We are interested in the EM contribution to the squared

mass,

ðM2
xyÞγ≡M2

xy−M2
xyjqx¼qy¼qu¼qd¼qs¼0 ½fixed renorm:mass�;

ð15Þ

where the second term on the right-hand side is the squared
mass in a world without EM, where all quark charges, both
valence (qx, qy) and sea (qu, qd, qs) vanish. The difference
should be taken at fixed renormalized quark masses, so that
only physically meaningful EM effects contribute to
ðM2

xyÞγ . This is a nontrivial requirement because the masses
of quarks with different charges, e.g., u and d, have
different EM renormalization. It is much more convenient
to work with an intermediate quantity

ΔM2
xy ≡M2

xy −M2
xyjqx¼qy¼qu¼qd¼qs¼0 ½fixed bare mass�;

ð16Þ

3For example, a typical Oðp2Þ chiral correction is
ðfK − fπÞNLO=fπ ∼ 20%, while the Oðe2Þ (and higher) correc-
tion to the charged pion mass is ðM2

π� −M2
π0
Þγ=M2

π0
∼ 5%, and is

much less than that, on a percentage basis, for the kaon.
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where the two terms on the right-hand side are computed at
the same values of the bare quark masses.
On the lattice, we have computed Mxy for various

choices of valence quark charges, including vanishing
charges, for each valence bare quark mass studied. This
means that it is straightforward to construct the quantity
ΔM2

xy, as well as its correlated errors with other choices of
quark charges and valence masses. On the other hand, the
construction of ðM2

xyÞγ would require theoretical assump-
tions about the EM mass renormalization, coupled with
interpolation or extrapolation of the data to adjust the bare
masses in the subtraction in Eq. (15). It is much easier to
postpone the renormalization step until after the chiral fit,
when we will have the ability to make these adjustments
easily. Fortunately, the functional form of the chiral fit that
is appropriate to the physical quantity ðM2

xyÞγ may also be
applied to a fit of the unphysical intermediate quantity
ΔM2

xy. As we will see, the only consequence of fitting
ΔM2

xy instead of ðM2
xyÞγ is that the former will have

unphysical contributions to two LECs that are affected
by EM renormalization. We therefore postpone detailed
discussion of renormalization until Sec. III C. Except for
some comments about the affected LECs, we ignore the
difference betweenΔM2

xy and ðM2
xyÞγ in the current section.

Separating orders in the chiral expansion, we write the
difference in Eq. (16) as

ΔM2
xy ¼ ΔLOM2

xy þ ΔNLOM2
xy þ ΔNNLOM2

xy þ � � � ; ð17Þ

ΔLOM2
xy ¼ q2xye2ΔEM; ð18Þ

ΔNLOM2
xy ¼ Δlog

NLOM
2
xy þ Δanalytic

NLO M2
xy; ð19Þ

whereΔLOM2
xy is independent of taste. Equation (18) follows

from Eq. (12), and Eq. (19) divides the NLO contribution
into logarithmic (nonanalytic) and analytic contributions.
For NNLO and higher orders, the chiral logarithms are not
known; when such orders are needed in the chiral fits, we
therefore include the analytic contributions only.
The mass of the Goldstone meson has been computed to

NLO [one loop, Oðp4; e2p2Þ] in rSχPT with EM in
Ref. [25]. Figure 5 shows the NLO contributions to the
meson mass. The photon tadpole diagram does not con-
tribute here since it vanishes in dimensional regularization;
in FV, however, the momentum integral becomes a sum,
and the photon tadpole is nonzero, as discussed in Sec. IV.
The photon sunset diagram is essentially the same as in
the continuum, since the meson-photon vertex is taste-
conserving, and the external pseudoscalar-taste meson is
also the meson in the loop. The calculation of the con-
tribution from the meson tadpole, Fig. 5(c), is very similar
to that in Ref. [61], with the addition of a new 4-meson
vertex from the C term in Eq. (6).

The result of the calculation is that the NLO contribution
to the squared mass splits into an EM contribution propor-
tional to e2 and a non-EM contribution, which is identical
to that in Ref. [61], and which cancels in the difference
ΔM2

xy;5, where we include the subscript 5 to emphasize here
that we are talking about the meson with taste ξ5. The one-
loop diagrams Fig. 5(a)–5(c) give

Δlog
NLOM

2
xy;5¼−

1

16π2
e2q2xyχxy;5½3 lnðχxy;5=Λ2

χÞ−4�

−2e2ΔEM

16π2f2

�
1

16

�

×
X
σ;b

½qxσqxylðχxσ;bÞ−qyσqxylðχyσ;bÞ�; ð20Þ

where sea-quark flavors and the 16 meson tastes are labeled
by σ and b, respectively, Λχ is the chiral scale, and lðχÞ is
the renormalized loop integral

Z
d4k
π2

1

k2 þ χ
→ lðχÞ≡ χ lnðχ=Λ2

χÞ: ð21Þ

The result in the first line in Eq. (20) is from the photon
sunset diagram, Fig. 5(b), and that in the second and third
lines is from the meson tadpole, Fig. 5(c). We have put the
squared masses on the right-hand side to their values in the
absence of EM (χxy;b), rather than the full LO masses,
Eq. (12). This change makes only a higher order, Oðe4Þ,
difference. In chiral fits, we have also tried replacing χxy;b
by the full LO masses in the one-loop terms; the small
difference does not change either the quality of fits or the
physical results significantly.
The contributions from Fig. 5(d) lead to analytic con-

tributions with unknown LECs. It is useful to write these
contributions in terms of natural dimensionless variables of
rSχPT [7]

μi ¼
2B0mi

8π2f2π
;

μa2 ¼
a2Δ̄
8π2f2π

; ð22Þ

FIG. 5. Feynman diagrams that contribute to the meson-mass at
Oðp4; e2p2Þ. Straight lines are the pseudoscalar meson propa-
gator and wiggly lines are the photon. A filled dot represents a
vertex from the Oðp2; e2Þ Lagrangian, LðLOÞ, while an open
square represents an insertion of the Oðp4; e2p2Þ Lagrangian,
LðNLOÞ. (a) photon tadpole; (b) photon sunset; (c) meson tadpole;
(d) Oðp4; e2p2Þ tree-level insertion.
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where i labels quark flavors, i ∈ fx; y; u; d; sg, and Δ̄ is the
mean of the taste splittings Δb (weighted by multiplicities).
It is straightforward to find the possible analytic terms
using the standard spurion approach, but it is much quicker
simply to write down all polynomials of a given order using
the rules that follow from the symmetries:
(1) Charge conjugation symmetry implies that a valence

xȳ meson has the same mass as its antiparticle, the
yx̄ meson, so terms must be symmetric under the
interchange qx; μx ↔ qy; μy.

(2) In the absence of EM, the partially conserved
staggered axial symmetry that rotates x into y quarks
guarantees that M2

xy;5 is proportional to mx þmy

(times possible additional mass factors). When EM

is turned on, the symmetry is explicitly broken, but
only for charged mesons (qx ≠ qy). Thus, when
qx ¼ qy, all terms must either vanish or be propor-
tional to mx þmy.

(3) The fact that the sea quarks couple equally to
valence quarks implies that terms must be symmetric
under sea-quark interchange: qu; μu ↔ qd; μd ↔
qs; μs ↔ qu; μu.

(4) The sum of sea-quark charges vanishes in the two
cases of interest here, the physical case and the
electroquenched case. Therefore, terms proportional
to the sum qu þ qd þ qs may be dropped.

Given these rules, there are six independent analytic
contributions possible at Oðe2p2Þ (NLO):

e2q2xyμa2 ; e2q2xyðμu þ μd þ μsÞ; e2ðq2x þ q2yÞðμx þ μyÞ;
e2q2xyðμx þ μyÞ; e2ðq2xμx þ q2yμyÞ; e2ðq2u þ q2d þ q2sÞðμx þ μyÞ: ð23Þ

Of these, the last contribution will cancel for ΔM2
xy

since it is independent of the valence charges. The
remaining contributions are independent of the sea-quark
charges. That means that sea-quark-charge dependence
only enters at NLO in the chiral logarithms, Eq. (20), and
hence is computable, as discovered by Bijnens and
Danielsson [21].4

The result of an Oð1Þ shift in the scale of the chiral
logarithms suggests that an appropriate scale for the
analytic contributions in Eq. (23) is f2π [from the first line
in Eq. (20)] or ΔEM [from the second line in Eq. (20)]. In
fact, these two quantities are the same order of magnitude,
as can be seen by estimating ΔEM by assuming that the
experimental πþ–π0 mass splitting comes entirely from the
leading-order contribution e2ΔEM. We therefore choose
the scale f2π for all the NLO analytic contributions. In
addition, we find it helpful to include mean taste splittings
in analytic terms that absorb the chiral-scale dependence
coming from the meson tadpole, which has an average over
tastes in the third line in Eq. (20). As in Ref. [7], this
definition of the LECs at nonzero lattice spacing simplifies
the chiral-scale dependence of the LECs, and also tends to
capture much of the lattice-spacing dependence of the
lattice data, reducing the size of the pure discretization term
(proportional to μa2) in the fit. The NLO analytic contri-
bution to ΔM2

xy is then

Δanalytic
NLO M2

xy¼e2f2π½κ1q2xyμa2 þκ2q2xyðμuþμdþμsþ3μa2Þ
þκ3ðq2xþq2yÞðμxþμyÞ
þκ4q2xyðμxþμyÞþκ5ðq2xμxþq2yμyþq2xyμa2Þ�:

ð24Þ
The usual expectation would be that the dimensionless

LECs κi are Oð1Þ. However, several features of the current
problem indicate that the expectation may be violated. First
of all, previous work, both in the continuum [3] and on the
lattice [10–14,16–18], suggests that ϵ is large (Oð1Þ, rather
than≪ 1), which would imply that the NLO terms produce
Oð1Þ corrections to the LO result, and hence that at least
some of the NLO LECs may be expected to be significantly
larger than 1. A second issue arises from the nature of our
data set. Because the ensembles we study here all have a
strange quark mass tuned to near the physical value
(m0

s ≈ms), and a light quark mass significantly lighter
than that (m0

l ≤ 0.2m0
s), the κ2 term in Eq. (24) is approx-

imately a constant up to discretization errors, and may
therefore compete in the fit with the LO term q2xye2ΔEM. In
most fits, in fact, κ2 has a tendency to get large and ΔEM to
get small—even negative in some cases. This is a typical
problem that occurs with SU(3) fits to data sets in whichm0

s
does not take a significant range of values less than ms.
Fortunately, the final results for physical quantities depend
only mildly on the relative sizes of the LO and κ2 terms. In
most of our fits, including the central fit, we simply set
κ2 ¼ 0, but leave ΔEM unconstrained. However we also
consider fits where both ΔEM and κ2 are unconstrained, as
well as ones in which κ2 is constrained by a prior that
enforces κ2 ≲ 1. Differences between results of these fits
and the central one are included in an estimate of the
systematic error of the chiral extrapolation.

4The fact that qu þ qd þ qs ¼ 0 is crucial to this conclusion. If
the sum of the sea-quark charges were not zero, calculability of
sea-quark charge dependence of ΔM2

xy at NLO would be spoiled,
e.g., by a term in M2

xy proportional to ðqxþqyÞðquþqdþqsÞ×
ðμxþμyÞ. Such a term would be generated, in the notation of
Ref. [21], by a contribution to the Lagrangian of the form
TrðQLÞTrðQRuνuνÞ þ ðL ↔ RÞ.
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A final complication is the fact that ΔM2
xy;5, the quantity

we are fitting, includes unphysical contributions because it
has not been adjusted for the effects of EM quark-mass
renormalization. In particular, the term multiplied by κ5 in
Eq. (24) is precisely of the form that would be induced by
the OðαEMÞ EM renormalization of the quark masses mx
and my, so κ5 will have an unphysical renormalization
contribution. Indeed, all fits that do not include an addi-
tional correction for renormalization give κ5 ≈ 12, with
κ5 ¼ 12.2ð2Þ in the central fit. After renormalization is
taken into account in some way, this effective value of κ5 is
significantly reduced. On our central fit, the preferred

nonperturbative scheme described in Sec. III C is nearly
equivalent to simply setting κ5 ¼ 0 after the fit. With an MS
scheme and a perturbative determination of the renormal-
ization constant at one loop, κ5 is reduced, effectively, by a
factor of 2 but remains clearly nonzero.
Beyond NLO, the SχPT logarithms have not been

calculated, so we are unable to continue the chiral expan-
sion in a systematic fashion. However, for acceptable chiral
fits to the lattice data, we must include some or all of the
NNLO analytic terms, and at least one N3LO term.
Following the symmetry rules above, the independent
NNLO terms (for vanishing sea-quark charges) are

Δanalytic
NNLO M2

xy ¼ e2f2π½ρ1q2xyμ2a2 þ ρ2q2xyμa2ðμu þ μd þ μs þ 3μa2Þ þ ρ3ðq2x þ q2yÞμa2ðμx þ μyÞ
þ ρ4q2xyμa2ðμx þ μyÞ þ ρ5qxyμa2 ½qxðμx þ μa2Þ − qyðμy þ μa2Þ�
þ ρ6q2xyðμu þ μd þ μs þ 3μa2Þ2 þ ρ7q2xyðμ2u þ μ2d þ μ2sÞ
þ ρ8q2xyðμx þ μyÞðμu þ μd þ μs þ 3μa2Þ þ ρ9qxyðμu þ μd þ μs þ 3μa2Þ½qxðμx þ μa2Þ − qyðμy þ μa2Þ�
þ ρ10ðq2x þ q2yÞðμx þ μyÞðμu þ μd þ μs þ 3μa2Þ þ ρ11ðq2x þ q2yÞðμx þ μyÞ2
þ ρ12ðq2x − q2yÞðμ2x − μ2yÞ þ ρ13q2xyðμx þ μyÞ2 þ ρ14q2xyðμ2x þ μ2yÞ�
þ e4f2π½ρ01q2xyðq2x þ q2yÞ þ ρ02ðq2x − q2yÞ2�; ð25Þ

where the terms with ρi coefficients areOðe2p4Þ, and those
with ρ0i coefficients are Oðe4Þ. Taste-splitting terms (μa2)
have been added to mass terms (μj) in plausible ways based
on the example of the NLO chiral logarithms, but of course
these choices are merely guesses of how best to absorb
discretization errors into the mass terms.
Equation (25) includes taste-violating analytic terms,

such as the term multiplied by ρ1, that arise naturally in
rSχPT. However, lattice-spacing dependence can also
arise simply from “generic” discretization effects that
break no continuum symmetries and therefore produce
no new LECs. Rather, they induce a-dependence in the
LECs that are already present. While the leading taste
violations in QCD with asqtad quarks are Oðα2Sa2Þ, the
leading generic errors are OðαSa2Þ. The quark couplings
to EM do not change the leading generic errors because
the combination of paths in the asqtad action removes
Oða2Þ terms as always. However, the EM gauge action
we use is unimproved and therefore induces Oða2Þ
generic errors.5

Generic discretization errors of the NLO analytic
parameters κ1;…; κ5 in Eq. (24) may produce effects of
a size comparable to that from the NNLO parameters, so

should be included. Even more important, a generic error
on the LO parameter ΔEM may induce effects comparable
to NLO and is therefore required in our fits. We thus
include six generic variation parameters ψ0;…;ψ5 that give
a-dependence to the LO and NLO LECs:

ΔEMðaÞ ¼ ΔEM

�
1þ ψ0

a2

r21

�
; ð26Þ

κiðaÞ ¼ κi

�
1þ ψ i

a2

r21

�
; ði ¼ 1;…; 5Þ: ð27Þ

The parameters ΔEM and κi on the right-hand side here are
the continuum (a ¼ 0) values. In Eqs. (26) and (27), we
have assumed Oða2Þ generic errors. However, we also
make fits assuming OðαSa2Þ errors, and include the results
of those fits in our systematic error estimates. In practice, it
makes little difference whether we assume Oða2Þ or
OðαSa2Þ generic errors. Fits with the former actually tend
to have slightly lower p values and slightly larger statistical
errors. Nevertheless, they are preferred because the leading
errors are Oða2Þ.
At N3LO, possible terms are Oðe4p2Þ or Oðe2p6Þ.

The latter are not necessary for good fits on any subsets
of our data that we have considered, and we do not
discuss them further here. The former are necessary,
especially when we include data with quark charges
larger than their physical values. The independent N3LO
Oðe4p2Þ terms are

5The fact that the a2 errors occur in the EM sector, and
therefore automatically come with a factor of αEM in quark
quantities, does not help here because we are focusing on EM
quantities, which have that same overall αEM factor.
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Δanalytic
N3LO

M2
xy¼ e4f2π½λ1q2xyðq2xþq2yÞμa2 þλ2ðq2x−q2yÞ2μa2 þ λ3q2xyðq2xþq2yÞðμuþμdþμsþ3μa2Þ

þ λ4ðq2x−q2yÞ2ðμuþμdþμsþ3μa2Þþ λ5ðq4xþq4yÞðμxþμyÞþλ6ðq4xμxþq4yμyÞþλ7qxqyðq2xþq2yÞðμxþμyÞ
þ λ8qxqyðq2xμxþq2yμyÞþλ9q4xyðμxþμyÞ�: ð28Þ

When the charges of the quarks in the mesons are limited to
physical values or smaller (�2e=3,�e=3, or 0), only the λ6
term is necessary for acceptable fits, and its value is ≈4.
(The central fit gives λ6 ¼ 4.1ð1Þ.) Note that this term has
the form of an Oðe4Þ quark mass renormalization. This
implies that λ6, like the NLO LEC κ5 [Eq. (24)], has an
unphysical renormalization contribution. We note that,
even though fits with λ6 set to zero have very low p
values, <10−10, the term has little effect on the physical
quantities studied here. In particular, if we simply set λ6 ¼ 0
after the fit, these quantities change by amounts less than
or equal to their statistical errors, and much less than their
total (systematic plus statistical) errors.

C. Electromagnetic quark-mass renormalization

In this section, we discuss the renormalization of quark
masses due to EM effects, i.e., Oðe2Þ or higher. This is
important because the multiplicative renormalization factor
Zm is different for quarks with different EM charges, and
thus affects how we separate “true” EM effects from quark
mass effects such as isospin violations. Because we are not
interested here in determining absolute, physical quark
masses (e.g., MS quark masses in MeV, say), renormaliza-
tion due to the strong interactions alone can be ignored
since the corresponding Zm is the same for all quark
flavors. Therefore, when we refer in this paper to “renor-
malized” or “bare” quark masses, we mean renormalized or
bare with respect to EM. All quark masses discussed are
bare as far as the strong interactions are concerned.
It is instructive first to estimate the size of the EM

renormalization effect on the determination of ϵ. At fixed
lattice spacing a, let δu and δd be the fractional shift in
the u and d bare masses such that their renormalized EM
masses are both equal to ml. At Oðe2Þ, we have

mlðδu − δdÞ ¼ C
ðqueÞ2 − ðqdeÞ2

4π
ml ¼ C

αEM
3

ml: ð29Þ

Assuming that the size of any logarithms in aμ remains
modest (μ is the scale of the renormalized masses), the
constant C is expected to be of order 1. With αEM ∼ 0.01,
this gives δu − δd ∼ 0.003. Compared to the experimental
pion splitting, the induced mass-squared splitting between a
Kþ and a K0 is then approximately

B0mlðδu − δdÞ
m2

πþ −m2
π0

∼
0.003m2

π=2
m2

πþ −m2
π0

∼ 0.02: ð30Þ

Our estimate of the EM renormalization effect on ϵ is
thus quite small, 0.02. The reason the effect is small is that
the residual chiral symmetry of staggered quarks guaran-
tees that the renormalization is multiplicative, so that the
shifts in the u- and d-quark masses are small. The shift in
the s-quark mass is much larger; however, its effect cancels
in ϵ between M2

Kþ and M2
K0 . On the other hand, for

quantities such as ðM2
K0Þγ, the EM effect on the squared

K0 mass itself, the fractional systematic error from not
including renormalization effects is at least an order of
magnitude larger than for ϵ. One must also keep in mind
that the estimate in Eq. (30) is qualitative, and could easily
be off by a factor of 3 or more if C is larger or smaller than
naively expected.
We now proceed to more detailed discussion of pertur-

bative renormalization, which converts bare quark masses
to MS renormalized masses at some convenient scale, here
taken to be μ ¼ 2 GeV. Only a one-loop determination is
available in the literature. For staggered quarks in QCD, the
renormalized MS mass is given at this order in terms of the
bare mass mðaÞ at lattice spacing a by [68]

mMSðμÞ ¼ ZmmðaÞ ¼ ð1þ αVðq�ÞZð2Þ
m ðaμÞÞmðaÞ; ð31Þ

Zð2Þ
m ðaμÞ ¼ b −

4

3π
−
2

π
lnðaμÞ; ð32Þ

where αVðq�Þ is the strong coupling in the V scheme [69]
evaluated at scale q�, and b is a constant depending on the
details of the staggered action. We have neglected discre-
tization corrections of OððamÞ2Þ.
In order to find the corresponding EM renormalization

for staggered quarks, we merely have to remove the overall
SU(3) Casimir factor of 4=3 from Zð2Þ

m and to replace
αVðq�Þ with αEM ¼ e2=ð4πÞ. Issues such as the proper
scheme and scale q� for αEM are irrelevant since αEM is so
small compared to αS, and hence runs very slowly. Because
we do not include EM corrections to the QCD tadpole
factors in the asqtad action, we take b ¼ 2.27 [68], which
corresponds to the case of asqtadlike smearing without
tadpole improvement. The one-loop EM renormalization is
then
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δm≡ ðmMSðμÞ −mðaÞÞEM
¼ q2e2mðaÞ

�
c −

3

8π2
lnðaμÞ

�
; c ¼ 0.110; ð33Þ

where q is the charge of the quark in units of e.
The EM renormalization first affects ΔM2

xy at NLO in
χPT. To include one-loop renormalization in the chiral fit at
this order, we simply add

ΔrenormM2
xy ¼ B0ðδmx þ δmyÞ ð34Þ

to Eq. (17). Note that changes in μ can then be absorbed in
the chiral fits by changes in the NLO LECs: κ5 and (if
discretization effects are important) κ1, Eq. (24). After the
fit, the effect of Eq. (34) is removed from the result. This
procedure is equivalent to readjusting the bare quark
masses so that the renormalized masses have the desired

value, so that, in particular, mMS
u ðμÞ ¼ mMS

d ðμÞ. As dis-
cussed below in Sec. VII, the net result is that including the
one-loop EM renormalization would shift ϵ by 0.03, with
small variations depending on the details of the fit. This is
consistent with (but somewhat larger than) the order-of-
magnitude estimate of the effect made above. Based on this
small shift, which is significantly less than the other
systematic errors in our result, our approach in preliminary
calculations [12–14,27] was to omit renormalization in the
central value, and simply include an estimate of the effect in
the systematic errors. However, Eq. (33) will get strong
corrections starting at two loops, i.e., OðαSe2Þ, and
experience from pure-QCD quark mass renormalization
suggests that we would need the corrections through
Oðα2Se2Þ to be able to be confident of the coefficient of
e2 at the few percent level.6 We are thus only able to take
Eq. (33) as a qualitative estimate of the EM renormalization
effect in the MS scheme.
In the absence of high-order perturbative calculations, a

nonperturbative determination of the EM renormalization
is necessary to get reliable results. As we will see below,
such a nonperturbative approach yields an estimate for the
effect of EM renormalization on ϵ of approximately 0.07,
a bit more than twice as large as the one-loop perturbative
estimate.
The nonperturbative method we use has been proposed

by the BMWCollaboration [71]. The idea is to compare the
masses of neutral π0-like mesons constructed from uū
quarks and dd̄ quarks with quark-line connected propa-
gators only (no intermediate states with only gluons and/or
photons are allowed).
We first introduce the needed connected correlators for

arbitrary valence quarks x and y. The connected xx̄ and yȳ
correlators are explicitly constructed in PQQCD by

introducing additional valence flavors x0 and y0 with
qx0 ¼ qx,mx0 ¼ mx and qy0 ¼ qy,my0 ¼ my. The connected
correlators are then

Gxx0 ðtÞ ¼
1

2

X
z⃗

hx̄ðt; z⃗Þγ5x0ðt; z⃗Þx̄0ð0Þγ5xð0Þi; ð35Þ

Gyy0 ðtÞ ¼
1

2

X
z⃗

hȳðt; z⃗Þγ5y0ðt; z⃗Þȳ0ð0Þγ5yð0Þi; ð36Þ

where disconnected contributions are absent since x and x0
are different quarks, so x cannot contract with x̄0 (and
similarly for y and ȳ0). We let Mxx0 and Myy0 be their
masses. These mesons are each of the form discussed in
rule 2 above Eq. (23): neutral mesons composed of two
different, but equally charged, quarks. The EM contribu-
tions to Mxx0 and Myy0 must therefore be proportional to
B0q2xe2ðmx þmx0 Þ and B0q2ye2ðmy þmy0 Þ, respectively,
where we have inserted the factor of B0 to put these
contributions in units of squared meson mass. For
qx ¼ 2=3, mx ∼mu, and qy ¼ −1=3, my ∼md, the con-
tributions are of order αEMM2

π. This is much smaller than
the effect of isospin violation on the squared mass differ-
enceM2

xx0 −M2
yy0 , which is B0ðmx −myÞ ∼M2

π for approx-
imately physical mass of the quarks, since the quark mass
difference is of the same order as the masses themselves.
To lowest nontrivial order in αEM, we may therefore

define an isospin limit by adjusting the bare massesmu and
md such that M2

uu0 ¼ M2
dd0 [71]. This is not by itself a

sufficient renormalization condition, however, since it does
not fix the overall scale of the light quark masses. We can
do that by demanding that the renormalized mass of the
u and d quarks is the same as their mass in pure isospin-
symmetric QCD, the theory onto which we are matching
our QCDþ ðquenchedÞQED theory. Since chiral sym-
metry requires that the EM effects on the mass of the
physical π0 are also of order αEMM2

π, the pion mass in pure
QCDmay be taken to have the experimental mass of the π0,
Mπ0;expt. This leads to a nonperturbative EM renormaliza-
tion condition. In the QCD+(quenched)QED theory, we
adjust the bare masses mu and md to enforce

M2
uu0 ¼ M2

dd0 ¼ ðM2
πÞQCD ≡M2

π0;expt: ð37Þ

We call the renormalization scheme defined by this con-
dition the “BMW scheme.” A related “Dashen scheme” has
been introduced by the QCDSF Collaboration [16]. In their
scheme, the masses of connected uū, dd̄ and ss̄ mesons are
all set equal at a symmetric point.
We define the mass ml as the common u, d mass such

that the charged pion in our pure QCD simulations has
mass ðMπÞQCD. Therefore, Eq. (37) may be enforced by
setting

6Compare, e.g., the one-loop result for the strange quark mass
in Ref. [68] with the two-loop result of Ref. [70].
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mu ¼ mlð1 − δuÞ; md ¼ mlð1 − δdÞ ð38Þ

and choosing δu and δd so that the EM contributions to
M2

uu0 and M2
dd0 vanish:

ðM2
uu0 Þγ ¼ 0 ¼ ðM2

dd0 Þγ: ð39Þ
Recall that ðM2Þγ is defined as the difference between the
squared mass of the meson composed of charged quarks
with that composed of uncharged quarks, but with the same
renormalized masses. In Eq. (39), the EM renormalized
mass is ml, so that the neutral-quark (pure QCD) sub-
traction terms in the definition of ðM2

uu0 Þγ and ðM2
dd0 Þγ [see

Eq. (15)] are equal to ðM2
πÞQCD. Thus Eq. (38) should be

interpreted as defining the bare massesmu andmd such that
the EM renormalized mass of each quark is ml.
The condition Eq. (39) must then be rewritten in terms of

ΔM2
uu0 and ΔM2

dd0 , the EM effects at fixed bare mass [see
Eq. (16)], which are the quantities we directly compute and
fit in our simulations. With the bare mass fixed at mu in
ΔM2

uu0 , and at md in ΔM2
dd0 , the charged-quark terms in

ΔM2
uu0 and ΔM2

dd0 are the same as in ðM2
uu0 Þγ and ðM2

dd0 Þγ ,
respectively, but the neutral quark subtraction terms are
different.Within the approximation thatM2

xy ¼ Bðmx þmyÞ
in pure QCD, we may easily correct for the changed
subtraction terms and rewrite Eq. (39) as

ΔM2
uu0 ðmuÞ−2Bmlδu¼ 0¼ΔM2

dd0 ðmdÞ−2Bmlδd: ð40Þ

After a chiral fit to the data for ΔM2
xyðmx;myÞ, we solve

these conditions iteratively for δu and δd at each lattice
spacing, or in the fit extrapolated to the continuum.
Iteration is in principle necessary because mu and md

depend nonlinearly on ΔM2
uu0 and ΔM2

dd0 , respectively, at
fixed ml. However, since δu and δd are OðαEMÞ, one could
simply evaluate ΔM2

uu0 and ΔM2
dd0 in Eq. (40) at ml with

negligible changes to our final results. For B, we use the
derivative with respect to 2ml of the NLO SU(2) χPT result
for M2

π in QCD:

B ¼ ðM2
πÞ

2ml

�
1 − l̄3

M2
π

16π2f2π

�
ð41Þ

with l̄3 ¼ 2.81ð64Þ [2]. Systematic errors associated with
the value ofB are included in our error analysis in Sec. VII.
The residual chiral symmetry of staggered quarks

implies that quark mass normalization is multiplicative.
That means that once we know δd, we can use it to
renormalize any charge-1=3 quark. In particular, in this
scheme the bare strange quark mass mS whose EM
renormalized mass is ms, the known physical strange mass
in pure QCD, is

mS ¼ msð1 − δdÞ: ð42Þ

Once the strange quark mass has been renormalized, we
may compute ðM2

K0Þγ , the EM effect on the neutral kaon,
from

ðM2
K0Þγ ¼ ΔM2

K0 − Bsðms −mSÞ − Blðml −mdÞ; ð43Þ

where Bs and Bl are the derivatives of ðM2
KÞQCD with

respect toms andml, respectively. Unfortunately, because a
large fraction of ΔM2

K0 is unphysical, and removed when
constructing ðM2

K0Þγ in the renormalization step, the result-
ing systematic error in ðM2

K0Þγ [or equivalently ϵK0, Eq. (5)]
is relatively large (∼35%). The result is particularly
sensitive to the uncertainty in the derivative Bs.
We emphasize here two contrasting points about our

renormalization scheme. On the one hand, if we keep δu
and δd in Eq. (38) fixed, we can replace ml, the average
physical u, dmass, with any massm0

l, and thereby find bare
massesmu andmd that both have renormalizedmasses equal
to m0

l. On the other hand, for masses m0
l > ml it is not true

that the resulting EM contributions to ðM2
uu0 Þγ and ðM2

dd0 Þγ
vanish or even remain equal to each other. The condition in
Eq. (40) may only be enforced at one value of m0

l, and it is
onlywhenwe enforce it at or nearm0

l ¼ ml, aswe do, that the
terms we set to zero are necessarily small, of second order in
a joint expansion in αEM and isospin violations. As a
numerical test of the latter point, we computed ðM2

uu0 Þγ
and ðM2

dd0 Þγ form0
l ¼ ms=2, i.e., for a heavy pion with mass

approximately equal to the mass of the kaon. We obtain
ðM2

uu0 Þγ ≈ 82ðMeVÞ2 and ðM2
dd0 Þγ ≈ 21ðMeVÞ2, which are

non-negligible and of the same order of magnitude as our
result for ðM2

K0Þγ.
A final renormalization scheme that we have tried

consists of simply setting to zero after the chiral fit the
two LECs, κ5 and λ6, that are dominated by unphysical
renormalization effects at OðαEMÞ and Oðα2EMÞ, respec-
tively. Interestingly, this “LEC scheme” gives results for the
central fit that are extremely close to those obtained from
the BMW scheme: ϵ differs only by 0.03%; ϵK0 , by 0.2%.
However, the results from different chiral fits vary much
more with the LEC scheme than with the BMWone; this is
especially true of ϵK0 , which can differ by more than 100%
as we change the details of the fit, or the ranges of valence
masses and charges included. For this reason we do not
consider the LEC scheme further here.

D. The neutral pion

The mass of the (partially quenched) π0 comes from the
correlator

Gπ0ðtÞ ¼
1

2

X
z⃗

h½x̄ðt; z⃗Þγ5xðt; z⃗Þ − ȳðt; z⃗Þγ5yðt; z⃗Þ�

× ½x̄ð0Þγ5xð0Þ − ȳð0Þγ5yð0Þ�i; ð44Þ
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where x is an up-type valence quark with qx ¼ 2=3, y is a
down-type valence quark with qy ¼ −1=3, and we work in
the isospin limitmx ¼ my. (For simplicity, all quark masses
in this subsection should be interpreted as renormalized
masses.) This true π0 has quark-line disconnected EM
contributions because qx ≠ qy. As mentioned in the intro-
duction, such disconnected contributions would be costly
to compute numerically, so we drop them. We define the
squared mass “M2

π0
” as a simple average of the squared

masses coming from the two connected correlators, one for
x and one for y, obtained from Eqs. (35) and (36),
respectively. We can now define

M2
“π0”

¼ 1

2
ðM2

xx0 þM2
yy0 Þ: ð45Þ

It is then easy to see that chiral symmetry implies that
M2

“π0”
vanishes in the (two-flavor) chiral limit. That is

because both M2
xx0 and M2

yy0 are of the form discussed in
rule 2 above Eq. (23): neutral mesons composed of two
different, but equally charged, quarks. The EM contribu-
tions to their masses must therefore be proportional to
e2ðmx þmx0 Þ ¼ e2ðmy þmy0 Þ ∝ e2M2

π . Chiral symmetry
also implies that the EM contributions to the trueM2

π0
must

be proportional to e2M2
π , but the reasoning is slightly

different because M2
π0

is not of the form M2
xx0 with x and

x0 different flavors. The spontaneously broken chiral sym-
metry associated with the π0 is diagonal and is not broken
explicitly by the also-diagonal quark-charge matrix Q.
Hence the EM contribution to its mass must vanish as usual
in the two-flavor chiral limit.Wemaymake a rough estimate
of the size of ðM2

π0
Þγ by using the chiral logarithm con-

tribution calculated in [22], e2ΔEMM2
πðlnðM2

π=Λ2
χÞ þ 1Þ=

ð8π2f2Þ, and takingΔEM ¼ 4C=f2≈4C=f2π ≅ 9900 ðMeVÞ2
from [21] and Λχ ¼ mρ ¼ 0.77 GeV. This gives a magni-
tude of about 30 MeV2.
The πþ has totally different behavior from either the “π0”

or the π0. Since its chiral symmetry is broken explicitly by
the quark charges, ΔM2

πþ is nonvanishing in the two-flavor
chiral limit at leading order, and equal to e2ΔEM. At NLO,
Eqs. (20) and (24) show that there are both a chiral log and
an analytic contribution (from the κ2 term) proportional to
e2M2

K . We may estimate the size of ΔM2
πþ from the LO

term, Eq. (18), and the NLO chiral logarithm contribution
proportional to e2M2

K in the continuum limit. This gives
ΔM2

πþ ≈ 1050 MeV2. Alternatively, since ΔM2
πþ is so

much larger than ΔM2
π0
, and since the u–d quark mass

difference contributes so little to the πþ–π0 splitting, we
may simply use the experimental splitting M2

πþ −M2
π0
¼

1261 MeV2 as an estimate of ΔM2
πþ . Either way, it is clear

that ΔM2
πþ ≫ ΔM2

π0
.

Since both ΔM2
π0

and ΔM2
“π0”

are OðαEMM2
πÞ, the error

due to the simulation of the “π0” rather than the π0 is also

OðαEMM2
πÞ. We estimate the size of this systematic error in

Sec. VII D.

IV. QED IN FINITE VOLUME

With the noncompact realization of QED on the
lattice, which we use, it is necessary to drop some
zero-modes in a finite volume in order to have a
convergent path integral. In particular, the action in
Coulomb gauge for the zero component of the vector
potential, A0, is 1

2

R ð∂iA0Þ2. Since the A0 mode with
spatial momentum k⃗ ¼ 0 has vanishing action, it must
be dropped. Similarly, the action for the spatial compo-
nents Ai is 1

2

R ½ð∂0AiÞ2þð∂jAiÞ2�. Here only the mode
with 4-momentum kμ¼0 must be dropped, and that is
what we do. This version of QED in FV was first
introduced by Duncan, Eichten and Thacker [8]; follow-
ing the nomenclature in Borsanyi et al. [72], we call the
resulting theory QEDTL. Summarizing, QEDTL is
defined in Coulomb gauge by

A0ðk0; k⃗ ¼ 0Þ ¼ 0; ∀k0;
k⃗ · A⃗ðk0; k⃗Þ ¼ 0; ∀k0; k⃗; ½QEDTL�

A⃗ðk0 ¼ 0; k⃗ ¼ 0Þ ¼ 0: ð46Þ

Hayakawa and Uno, in their calculation of EM FV
effects in χPT [73], introduce a different FV action,
called QEDL, in which they drop all modes with k⃗ ¼ 0,
both for A0 and for Ai. Again in Coulomb gauge, QEDL
is defined by

A0ðk0; k⃗ ¼ 0Þ ¼ 0; ∀k0;
k⃗ · A⃗ðk0; k⃗Þ ¼ 0; ∀k0; k⃗; ½QEDL�

A⃗ðk0; k⃗ ¼ 0Þ ¼ 0; ∀k0: ð47Þ

The difference between Eqs. (46) and (47) is solely in the
last line of each, in the treatment of A⃗ when k⃗ ¼ 0. This
difference implies that the FV effects in the MILC calcu-
lations are different from those computed in Ref. [73].
To make explicit the difference between our set-up

(QEDTL) and that of Ref. [73] (QEDL), we give the
Coulomb gauge photon propagator in each case:

DijðkÞ≡ hAiðkÞAjð−kÞi

¼

8>><
>>:

1

k2

�
δij −

kikj

k⃗2

�
; k⃗ ≠ 0;

0; k⃗ ¼ 0:

½QEDL� ð48Þ
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DijðkÞ≡ hAiðkÞAjð−kÞi

¼

8>>>>><
>>>>>:

1

k2

�
δij−

kikj

k⃗ 2

�
; k⃗≠ 0;

1

k2
δij; k⃗¼ 0;k0 ≠ 0;

0; k⃗¼ 0;k0¼ 0.

½QEDTL�

ð49Þ

D00ðkÞ≡ hA0ðkÞA0ð−kÞi

¼

8><
>:

1

k⃗2
; k⃗ ≠ 0;

0; k⃗ ¼ 0:

½QEDL and QEDTL� ð50Þ

The violation of Gauss’s law induced by the absence of the
k⃗ ¼ 0A0modemakes it possible to have net charges on a FV
torus with periodic boundary conditions [73]. But Gauss’s
law has no implications for the spatial modesAi, so does not
distinguish between Eqs. (48) and (49).
Borsanyi et al. [72] have independently studied QED in

FV, using both the QEDL and QEDTL versions. They define
QEDL by

X
x⃗

Aμ;x0;x⃗ ¼ 0; ∀x0; μ: ð51Þ

This is in fact a partial gauge specification, because
spatially-independent, but time-dependent, gauge transfor-
mations would violate the μ ¼ 0 condition A0ðk0;k⃗¼0Þ¼0
(written here in momentum space). One can bring any EM
gauge field that satisfies Eq. (51) into Coulomb gauge, as
was assumed in writing Eq. (48). The necessary gauge
transformation is, in momentum space:

Aμðk0; k⃗Þ → Aμðk0; k⃗Þ − ikμΛðk0; k⃗Þ ð52Þ

Λðk0; k⃗Þ ¼

8>><
>>:

−
ik⃗ · A⃗ðk0; k⃗Þ

k⃗2
; k⃗ ≠ 0;

0; k⃗ ¼ 0.

; ð53Þ

Borsanyi et al. define QEDTL by

X
x

Aμ;x ¼ 0; ∀μ: ð54Þ

Unlike Eq. (51), this definition is gauge invariant, as can be
immediately seen from Eq. (52). Equation (54) can be put
into a special Coulomb gauge that satisfies Eq. (46) by the
transformation:

Λðk0; k⃗Þ ¼

8>>>>>><
>>>>>>:

−
ik⃗ · A⃗ðk0; k⃗Þ

k⃗2
; k⃗ ≠ 0;

−
iA0ðk0; k⃗Þ

k0
; k⃗ ¼ 0; k0 ≠ 0;

0; k0 ¼ 0; k⃗ ¼ 0:

ð55Þ

Thus the two definitions of QEDTL, Eqs. (46) and (54),
are equivalent.

V. FINITE VOLUME EFFECTS IN CHIRAL
PERTURBATION THEORY

Before discussing the FV calculations, it is important to
make some remarks on the literature. The first calculation
for the FV EM effects on pseudoscalar meson masses that
we are aware of was performed by Hayakawa and Uno [73].
Theyworked inQEDL exclusively and used χPTat one loop.
Again for QEDL, Davoudi and Savage [74] showed, using
nonrelativistic effective field theory, that the leading 1=L
and 1=L2 terms found in Ref. [73] are in fact universal,
independent of the internal structure of the particle of
interest. They related higher-order terms directly to the
structure, parametrized in terms of EM multipole moments
and polarizabilities, and extended the calculations to include
spin-1=2, as well as spin-0, particles. Shortly after Ref. [74]
appeared, Borsanyi et al. [72], and our own work [14]
independently completed the FV calculations for QEDTL.
Where they overlap, the results of Ref. [72] and Ref. [14]
agree. However we have focused only on pseudoscalar
mesons and have not worked out the analytic form of the
asymptotic expansions in powers of L and T, which
Ref. [72] does very nicely for both QEDTL and QEDL.
Further, Borsanyi et al. found a discrepancy with the results
of Ref. [74] for the first nonuniversal (1=L3) terms for spin-
1=2. The issue involved is in fact quite subtle, but it seems to
have been resolved [75,76] in favor of the result in [72].
In FV, defined here by spatial extentL and temporal extent

T, the momentum components take on discrete values

ki ¼
2πni
L

; k0 ¼
2πn0
T

; ð56Þ

with ni (i ¼ 1, 2, 3) and n0 integers. Through NLO in χPT,
the meson mass squared in FV may then be calculated
simply by replacing themomentum integrals in the diagrams
of Fig. 5 by sums:

Z
d4k
ð2πÞ4 →

1

L3T

X
nμ

: ð57Þ

Because the Feynman diagrams are divergent, it is as usual
convenient to perform the renormalization in infinite vol-
ume, and, in FV, calculate only the difference between the
momentum sums and the integrals. This difference, if treated
carefully, is finite and does not require renormalization.
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We thus stipulate that the EM effect ΔM2
xy defined in

Eq. (16) is the appropriately renormalized infinite-volume
result, and write

ðΔM2
xyÞFV ¼ ΔM2

xy þ δFV; ð58Þ

δFV ¼ δmeson
FV þ e2q2xym2δγFVðmL;mTÞ ð59Þ

where δFV is the complete NLO FV correction, δmeson
FV is the

contribution from themeson tadpole, Fig. 5(c), and δγFV is the
contribution from photon loops, Figs. 5(a) and 5(b). The
factors e2q2xym2 have been taken out of δγFV for convenience.
For notational simplicity in this section, m will denote the
tree-levelmass of themesonof interest in the absence of EM;
ultimatelywe putm2 ¼ χxy;5 in the results.With the factor of
m2 removed, δγFV is dimensionless, and hence is a function of
mL and mT (or T=L) only, rather than m, L, T separately.
The FVeffects from the meson tadpole come from pions

that loop around the volume, and hence the effect is
suppressed by a factor of expð−mLÞ. Because of this
suppression, δmeson

FV is of negligible size on our ensembles,
≲0.2%. However, since the calculation of the effect is
completely standard, it is straightforward to include it. In
the notation of Ref. [77], we just have to make the
substitution lnðm2=Λ2Þ → δ1ðmLÞ, where δ1 is a sum over
Bessel functions, to obtain the FV correction. From
Eq. (20), this gives

δmeson
FV ¼ −2e2ΔEM

16π2f2

�
1

16

�X
σ;b

½qxσqxy χxσ;b δ1ð ffiffiffiffiffiffiffiffiffi
χxσ;b

p
LÞ

− qyσqxy χyσ;b δ1ð ffiffiffiffiffiffiffiffiffi
χyσ;b

p
LÞ�: ð60Þ

In contrast to the meson tadpole effects, the FV effects
from photon diagrams, parametrized by δγFV, are large:
∼5%–20%, depending on the ensemble and valence
masses. Since the results are nontrivial, we describe the
calculation in some detail, starting with the sunset diagram,
Fig. 5(b). We work in Coulomb gauge, choose the external
meson to be at rest [p ¼ ðp0; 0; 0; 0Þ], and route the loop
momentum k along the interior meson line, with momen-
tum p − k on the photon line.7 Because spatial p⃗ ¼ 0 and
kiDij ¼ 0 (for both QEDL and QEDTL), only the 00
component of the photon propagator contributes to the
sunset diagram. This diagram’s contribution to the self-
energy then has integrand (summand)

I s ¼ −
k20 þ p2

0

k⃗2ðk2 þm2Þ
; ½k⃗ ≠ 0�; ð61Þ

where we have omitted an overall factor of e2q2xy. A linear
term in k0 in the numerator has been dropped because k0
and −k0 contributions cancel for both the infinite-volume
integral and the FV sum.
Since I s goes to a constant as k0 → ∞, the difference

between the sum and integral over k0 (not to mention the
integral itself) is divergent, so the FV effect from this
diagram alone (in Coulomb gauge) is not well defined.
However, once this diagram is combined with the photon
tadpole, the problem goes away. What is needed is in fact
only the D00 contribution to the tadpole, which has the
integrand 1=k⃗2. Adding this to Eq. (61), gives

I ŝ ¼
k⃗2 þm2 − p2

0

k⃗2ðk2 þm2Þ
; ½k⃗ ≠ 0�; ð62Þ

where the “hat” on the subscript s indicates that the sunset
diagram has beenmodified by a piece of the photon tadpole.
It is useful to keep the rest of the tadpole separate, because it
gives different contributions in the QEDL andQEDTL cases,
unlike I ŝ.
The FVeffect on the self energy coming from Eq. (62) is

m2δŝFVðp0=m;mL;mTÞ¼ 1

L3T

X0

k0;k⃗

I ŝ−
Z

d4k
ð2πÞ4I ŝ; ð63Þ

where the prime on the summation symbol means that
the k⃗ ¼ 0 term is dropped, but there is no restriction on
k0. As in Eq. (59), we take out a factor of m2 to make δŝFV
dimensionless.
From Eq. (48), the remaining (spatial) components of the

photon tadpole in QEDL give the integrand and corre-
sponding FV effect

I t;QEDL
¼ 2

k2
; ½k⃗ ≠ 0�; ð64Þ

m2δt;QEDL
FV ðmL;mTÞ¼ 1

L3T

X0

k0;k⃗

I t;QEDL
−
Z

d4k
ð2πÞ4I t;QEDL

:

ð65Þ

In QEDTL, there is an extra contribution coming from the
nonzero value of Dij when k⃗ ¼ 0 but k0 ≠ 0, see Eq. (49).

m2δt;QEDTL
FV ðmL;mTÞ
¼ m2δt;QEDL

FV ðmL;mTÞ þm2δt;þFVðmL;mTÞ: ð66Þ

δt;þFVðmL;mTÞ ¼ 1

m2L3T

X
k0≠0

3

k20

¼ mT
ðmLÞ3

3

4π2
2
X∞
n¼1

1

n2
¼ mT

4ðmLÞ3 ; ð67Þ
7The final result is of course independent of the momentum

routing. However, when T is not infinite, there are interesting
subtleties, which can lead to apparent routing-dependence if
treated incorrectly. See the Appendix for a discussion.
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where we have used the well-known result
P∞

n¼1 1=n
2 ¼

π2=6 [78].
When T is infinite, we can obtain the correction to the

meson mass-squared by evaluating the self energy at
p0 ¼ im. For finite T, however, this prescription is not
obviously correct, and indeed is wrong in some cases. Here,
we will simply assume that we may use the prescription,
and leave it to the Appendix to explain the point in detail
and show that plugging p0 ¼ im into the integrand in
Eq. (62) gives the desired answer. The complete contribu-
tions from the photon diagrams to the FV effect on the
meson mass-squared are then

δγ;QEDL
FV ðmL;mTÞ ¼ δŝFVði; mL;mTÞ þ δt;QEDL

FV ðmL;mTÞ
ð68Þ

δγ;QEDTL
FV ðmL;mTÞ ¼ δγ;QEDL

FV ðmL;mTÞ þ mT
4ðmLÞ3 : ð69Þ

It now is necessary only to evaluate the difference of sums
and integrals given in Eqs. (63) and (65). This can be done
straightforwardly using an importance-sampling integration
program such as VEGAS [79]. The summay be treated as an
integral by defining the “finite-volume integrand” at the
arbitrary point k as the average of the infinite-volume
integrand at the 16 corners of the FV hypercube containing

k, weighted appropriately by the distances in each direction
to the corners. For example, if k̃ is the closest point in the sum
“below” k (k̃μ < kμ) then the weight of the integrand at k̃
is ½1 − ðk0 − k̃0ÞT=ð2πÞ�

Q
3
i¼1½1 − ðki − k̃iÞL=ð2πÞ�. When

a corner is a special point (e.g., k⃗ ¼ 0, k0 arbitrary) that
should be dropped from the sum, we simply put in 0 for the
integrand there. One could also use the value at the closest
corner of the FV hypercube rather than the weighted
average, but the resulting integrand has discontinuities on
the midplanes of the hypercube, and the numerical integra-
tion therefore has larger errors.
We have checked that our result for δγFV, the sum of the

sunset and the photon tadpole diagrams, agrees with that of
Ref. [73] in the QEDL case. In Fig. 6, we plot in dark green
the result calculated from the results of Hayakawa and Uno
[73], and superimpose points calculated by us at represen-
tative values of mL. Hayakawa and Uno work at infinite T,
whereas our points have been computed at T=L ¼ 2.29 and
T=L ¼ 5.33. It is clear that for such values of T=L the
finite-T effects are negligible in QEDL. (See the Appendix
for further discussion.)
The difference in the QEDTL case is the extra term δt;þFV in

Eq. (67). Figure 6 also shows our QEDTL results for ranges
in values of mL and T=L that cover all of our data used in
the final analysis; data with more extreme T=L values (≥4
and ≤1.6) are used later in this section in testing the
applicability of our formulas.
Unlike Ref. [73] and the present calculation, Davoudi

and Savage [74] and Borsanyi et al. [72] do not compute
the FV effects in the context of χPT, but instead work first
with the universal terms that describe a pointlike particle,
and then consider corrections coming from the particle
structure. Aside from the contribution from the meson
tadpole, Eq. (60), which is suppressed by expð−mLÞ, the
one-loop χPT calculation is in fact identical to the pointlike
approximation of Refs. [72,74] because there are no
corrections to the photon-meson vertices or internal meson
lines in Figs. 5(a) and 5(b). In QEDTL, for pointlike
mesons, Ref. [72] finds

δγFV ∼
T;L→∞

−
κ

4πmL
−

κ

2πðmLÞ2 þ
mT

4ðmLÞ3 ; ð70Þ

where the last term is what we call δt;þFV , Eq. (67), and the
other terms come from the asymptotic expansion of δγFV in
QEDL. The constant κ is defined in Ref. [72] by

κ ≡
Z

∞

0

dλ

λ3=2
fλ3=2 þ 1 − ½θ3ð0; e−π

λÞ�3g; ð71Þ

where θ3ðu; qÞ ¼
Pþ∞

n¼−∞ qn
2

ei2nu is a Jacobi theta func-
tion. By numerical integration, one finds κ ≈ 2.8373. An
equivalent definition of κ in Ref. [73] is

FIG. 6. The FVeffect from photon diagrams, δγFV for QEDL and
QEDTL, as a function of mL. In the QEDL case, the dark green
line shows the result when T ¼ ∞ from Hayakawa and Uno [73],
while the dark red diamonds and purple squares show our
evaluation at T=L ¼ 2.29 and T=L ¼ 5.33, respectively. For
QEDTL, the lines give our results for six values of T=L ranging
between 2.25 and 3.43, which are the values relevant to the bulk
of our data. The numerical errors in the points and lines are too
small to be seen on this scale.
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κ ¼
Z

∞

0

dλ
λ2

fλ3=2 þ 1 − ½θ3ð0; e−π
λÞ�3g: ð72Þ

The equivalence of Eqs. (71) and (72) follows from the
identity [80]

θ3ð0; e−πxÞ ¼
1ffiffiffi
x

p θ3ð0; e−π=xÞ; ð73Þ

which can easily be proved using the Poisson summation
formula.

In Fig. 7, we compare our results for QEDTL with the
asymptotic form Eq. (70). For mL ≥ 3.8, which describes
the unitary points in our data used in the final analysis, the
differences with the asymptotic form are negligible.
However, a few valence points in that analysis have
mL≳ 2.9, for which the differences (≲6%) are important
to include. In our test of FV effects described later in the
section, we have points as low asmL ¼ 2.7 and aspect ratio
of T=L ¼ 5.33 for which the differences are a bit bigger,
≈7%. For convenience, we use our full results everywhere
in the analysis, even where the differences with the
asymptotic form are negligible.
We emphasize here that the term δt;þFV ¼ mT=ð4ðmLÞ3Þ

in Eq. (67) indicates that the large-volume limit is rather
subtle in QEDTL. The result is acceptable if the limit
L → ∞ is taken before T → ∞, or if the limits are taken
together at fixed aspect ratio T=L, but not if the limit
T → ∞ is taken first. In other words, the QEDTL set-up is
not well defined in finite spatial volume at zero temper-
ature. This fact has also been pointed out by Borsanyi et al.
[72]. They make the further point that QEDTL violates
reflection positivity because the constraint required to set
the single kμ ¼ 0 mode of Ai to zero involves the square of
the integral over all space-time of Ai. Although many
actions used in lattice QCD violate reflection positivity, one
might worry that in this case the violation leads to problems
with defining or isolating the lowest states in correlation
functions. Reference [72] did have problems from close
excited states in extractingmasses in pure quenchedQEDTL.
In our QCD plus quenched QEDTL simulations, however,
this does not seem to be a problem. As illustrated in Fig. 8,
we find no significant differences between the qualities of
plateaus in correlation functions in QCD+QEDTL vs those
for QCD alone. The example shown is for a putative “worst
case” in our data because the aspect ratioT=L ¼ 5.33has the
largest value, andL is the smallest. See also the plots for our
ensemble with a ≈ 0.045 fm and T=L ¼ 3, shown in Fig. 2.

FIG. 7. A comparison of the full FV effect for QEDTL, coming
from one-loop photon diagrams with a pointlike meson, and the
corresponding asymptotic forms determined in Ref. [72], for
various values of T=L. The squares show our calculations
of the full effect, while the lines are the asymptotic forms.
The numerical errors in the points are small and are just barely
visible in some of the points at the left.

FIG. 8. Effective mass plots for a “Kþ meson” in pure QCD (left) and in QCDþ quenchedQEDTL (right). The data is from the
ensemble listed first in Table I, with a ≈ 0.12 fm, L=a ¼ 12 and T=a ¼ 64. The valence masses are 0.01 and 0.04.
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Again, no significant differences in plateau quality between
QCD +QEDTL and pure QCD are visible.
Despite the fact that we have not found any evidence of

problems due to the lack of reflection positivity in QEDTL,
the reader may wonder why we did not just use QEDL or a
massive-photon infrared regulator [81], both of which are
reflection-positive. The reason is straightforward: When
this project was begun [27], and by the time most of the
numerical computations were completed [12], the issues
with QEDTL were not known. We simply followed the
QEDTL approach of the original paper on the subject,
Ref. [8]. The fact that QEDTL has smaller FV corrections
than QEDL in the relevant range of parameters (as seen in
Fig. 6) is a nice accidental benefit of our choice of QEDTL,
but it was also not known when this project started and
therefore had no influence on the choice.
To test our understanding of the FV effects, we have

generated ensembles with a wide range of spatial sizes at
β ¼ 6.76 (a ≈ 0.12 fm) with sea-quark masses m0

l ¼ 0.01
and m0

s ¼ 0.05 (see Table I). In Fig. 9, we show fits, for
two different meson masses on these ensembles, to our
calculated FV correction, given by Eqs. (58) and (59), with
δγFV ¼ δγ;QEDTL

FV , Eq. (69). We neglect the meson tadpole
term in Eq. (58) for convenience, since its effect is not
visible on this scale. This means that the FV correction
used here is the same as in the pointlike approximation
for the mesons. The shape of the fit curves are completely

determined by the FV calculation; the only free parameter
in each fit is the overall height of the curve given by the
value in infinite volume. The theory gives a good descrip-
tion of the data, and we use it to correct the data for FV
effects. We estimate the remaining systematic error asso-
ciated with FV effects in Sec. VII B.
One can now understand why it was difficult to observe

FV effects directly in the data set available in Ref. [12]. At
that time, we had only the L ¼ 20 and L ¼ 28 ensembles to
compare. From Fig. 9, one sees that the minima of the
curves are in this region of L or close to it, and therefore the
difference expected between these volumes is small com-
pared to the statistical errors in the data.

VI. CHIRAL-DISCRETIZATION FITS AND
CHIRAL-CONTINUUM EXTRAPOLATIONS

In this section, we first discuss the quantities that
have been determined from pure QCD computations,
and are used here as inputs to the chiral-discretization fits.
We then show (a small subset of) the data we fit, both
before and after FV corrections. Finally, we describe the fits
themselves.

A. Inputs

In addition to the lattice values of r1=a that set the
relative scales, we need other lattice-dependent quantities
as inputs to the QCDþ QED calculations. Table V lists the
values of these quantities for one ensemble at each of our
(approximate) lattice spacings. The first three columns
serve to identify the ensembles. Columns four and five give
the light and strange physical quark masses in r1 units,
which are determined from chiral fits to pure QCD lattice
data [4]. These masses are “physical” in the sense that they
have been determined by demanding that the π and K
mesons take their (isospin-averaged) experimental values
in absence of EM.8 They are, however, bare masses, in that
no renormalization (perturbative or otherwise) has been
applied.
Two errors are shown for the masses. The first is the

systematic error coming from the chiral extrapolation. It is
determined by comparing the results of fits that include
chiral logarithms through NNLO (plus higher-order ana-
lytic terms) and those that include the chiral logarithms
only through NLO. Other changes in the fits give similar
estimates of the errors. The second error in the masses
comes from the uncertainty in the absolute scale, i.e., the
error in the physical value of r1.

FIG. 9. Finite volume effects at a ≈ 0.12 fm and am0
l ¼ 0.01,

am0
s ¼ 0.05 as a function of spatial lattice length L for two

different meson masses: a unitary ‘pion’ (blue) with degenerate
valence masses mx ¼ my ¼ m0

l, and a ‘kaon’ (red) with valence
masses mx ¼ m0

l and amy ¼ 0.04, close to the physical strange
quark mass. The fit lines are to our FV form for QEDTL (omitting
the negligible meson tadpole term), and have one free parameter
each, the infinite volume value (shown by horizontal solid lines
with dotted lines for errors).

8There is an apparent circularity here, in that we are computing
in this paper the EM effects on the π and K masses. In practice,
we have used earlier, phenomenological estimates of EM effects
(see Ref. [82]) to remove them at this stage. We can iterate to
make the calculation self-consistent, but it is unnecessary,
because the EM effects make only a small change in the estimates
of the strange and isospin-averaged light masses.
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In the final row of the table, “Cont.” stands for “con-
tinuum.” It is convenient for us to view the continuum not as
the β → ∞, a → 0 limit, but as another ensemble with fixed
β and a, in which all discretization effects have been
extrapolated away. In other words, we view the continuum
as a latticewith a perfect action. This allows us to continue to
employ bare lattice masses to describe the physical point,
just aswe do at nonzero lattice spacing.Herewe have chosen
the continuum to have β ¼ 7.08, the same as the a ≈ 0.09
ensemble with simulation masses m0

l=m
0
s ¼ 0.0031=0.031.

The scale of the two is however slightly different, since
extrapolating away the discretization effects changes the
estimates of the physical quark masses. This in turn affects
the r1=a value, which is adjusted to be at physical masses.
The 0.0031=0.031 ensemble has r1=a ¼ 3.755, while
r1=a ¼ 3.744 for the “continuum,” a 0.3% difference.
This difference shows that the discretization effects in our
mass-independent scale-setting scheme are small.
The LEC B0 is given in column six of Table V. It is

obtained from a fit of the squared masses of the Goldstone
(taste ξ5) mesons to Eq. (13). The fit is performed for each
lattice spacing over the full range of mesonmasses that enter
this analysis. This LO result is used for the meson masses in
the NLO (and higher-order) expressions in ΔM2

xy, Eq. (17);
ΔLOM2

xy is of course mass independent. Like the quark
masses, theB0 values shown here are bare (unrenormalized).
Both B0 and the quark masses need to be renormalized

before we can properly compare values at different lattice
spacings and extrapolate to the continuum. We use the
one-loop renormalization from [68], Eq. (31), to do the
extrapolation. As discussed in the context of EM mass
renormalization in Sec. III C, this means that there are
substantial errors from renormalization affecting the con-
tinuum values ofB0,ml, andms in Table V. This is true even

though we take out the renormalization factors, defined for
the continuum to be the same as those of the β ¼ 7.08,
m0

l=m
0
s ¼ 0.0031=0.031 ensemble. Such errors would be

important if we wanted to extract quark masses or B0 in a
continuum scheme such as MS. However the renormaliza-
tion errors are irrelevant here and not included in Table V
because only the renormalization-invariant products B0ml
and B0ms enter into the results from our χPT fits. This is
illustrated in Fig. 10, which shows these products computed
from the values in Table V and compares the continuum
values (blue octagons) to the values that would have been
obtained by linear extrapolation in a2 from all four of our
lattice spacings (red lines and crosses) or the three spacings
with a ≲ 0.09 fm (green lines and fancy crosses). Although
the continuum values of ml, ms, or B0 were not obtained
from such extrapolations,9 the figure shows that the prod-
ucts have small discretization errors and smooth behavior
with a2. Renormalization factors, along with their large
one-loop errors, cancel out.
The values of quark masses and B0 shown in the table

may be used for any ensemble in the same group of
approximate lattice spacings as the ones listed. For exam-
ple, for the a ≈ 0.06 fm, β ¼ 7.47,m0

l=m
0
s ¼ 0.0036=0.018

ensemble, which is not listed in Table V, one should just use
the values listed for the a ≈ 0.06 fm, β ¼ 7.46, m0

l=m
0
s ¼

0.0018=0.018 ensemble. The small changes in β, and hence
in lattice scale, result in even smaller changes in discre-
tization effects and renormalization constants. Thus even
though the quantities shown are unrenormalized, their
differences among a group of ensembles with the same

FIG. 10. Products B0ml (left) and B0ms (right) vs a2. The black squares show our data at nonzero lattice spacing, while the blue
octagons show our continuum values. Two simple linear extrapolations are shown for comparison. The red line in each plot is a fit to all
four lattice spacings, and the red cross is its extrapolation. Similarly, the green line and fancy cross in each plot comes from a fit that
omits the coarsest lattice spacing.

9The physical quark masses come from two-loop chiral fits
described in [4], while B0 comes from linear extrapolation of the
values in Table V after renormalization.
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group of approximate lattice spacings are negligible. Note
from the table that even when the lattice scale changes from
≈0.12 fm to ≈0.045 fm, the changes in the masses in r1
units are less than 3% and those in B0 are less than 7%.
The final needed input for our fits are the values of the

taste-splittings a2Δb in Eq. (13). Table V gives these
splittings in r1 units. For unlisted ensembles, the explicit
factor of a2 in the splittings results in changes of a few
percent from the listed ones. We include these changes in
our fitting routines, even though they are smaller than the
current statistical errors on the splittings. One can make
the adjustment simply by multiplying the listed value by the
ratio ðr1=aÞ2listed=ðr1=aÞ2unlisted, with the r1=a values taken
from Table I. For the two a ≈ 0.06 fm ensembles men-
tioned in the previous paragraph, the adjustment in split-
tings is about 2%.

B. FV corrections to our data

Figure 11 shows a small subset of our data for ΔM2
xy,

plotted as a function of the meson mass, r21M
2
xy, before and

after correction for FVeffects. The subset consists of charge
�e unitary or nearly-unitary points, as described in more
detail in the figure caption. Because the correction due to
photon diagrams is proportional to M2

xy, see Eq. (59), the
absolute FV effect is larger for kaonlike points (right-hand
half of the plot) than for pionlike points (left-hand half).
The correction ranges from 0.0013 to 0.0021 for kaons and
0.0005 to 0.0009 for pions. Even the fractional correction is
generally larger for kaons than for pions since the LO
contribution to ΔM2

xy itself is the mass-independent quan-
tity ΔEM [the Dashen term, Eq. (14)], which has no FV
correction. The correction varies from 10% to 16% for
kaons, and from 6% to 12% for pions.
Strictly speaking, the full FV correction to ΔM2

xy
depends on the chiral fit, because the FV effect of the
meson tadpole δmeson

FV , Eq. (60), depends on the fit param-
eterΔEM. However, this dependence would not be visible in
Fig. 11, because the exponentially suppressed meson
tadpole FV corrections are very small compared with those
from the photon diagrams, which are independent of the fit
parameters.
Because the FV corrections depend, at least in principle,

on the parameters of the fit, we fit uncorrected (raw) data
for ΔM2

xy to a chiral fit form that includes the FV NLO
adjustment δFV in Eq. (58). However, we will always
present the results of chiral fits after a posteriori correction
to infinite volume of both the data and the fit lines. This
allows us to present results obtained from different volumes
in an accessible fashion, and also facilitates comparison to
experiment.

C. Fits

We fit various subsets of the data to the chiral forms
described in Sec. III B, with the FV corrections appropriate

to each ensemble added on. The chiral forms include
discretization effects, so from now on we will refer to
the fits as chiral-discretization fits. The complete data set,
which includes a ≈ 0.12, 0.09, 0.06, and 0.045 fm ensem-
bles, and quark charges 0,�e=3,�2e=3,�e,�4e=3,�2e,
is based on a total of 11,654 configurations and has 2978
data points for ΔM2

xy. Without the a ≈ 0.12 fm ensembles,
which are often omitted from our fits, the data set has 2166
points based on 6040 configurations. Because points from
the same ensemble but with different valence masses and/or
quark charges are highly correlated, and because the
number of points is not very much less than the number
of configurations, the full covariance matrix is nearly
singular and has many poorly determined low eigenvalues.
Fits with acceptable p values to the whole data set are
therefore not possible. However, once the data is thinned to
a more reasonable number of points in comparison to the
number of configurations (∼250 to 450 points), acceptable
fits are possible. For fits with up to about 350 points, we are
able to include the complete covariance matrix, with no

FIG. 11. Finite-volume corrections to ΔM2
xy for a small subset

of our data vsM2
xy itself, where both quantities are expressed in r1

units. For each pair of points with the same color and symbol, the
lower point shows the raw datum, while the upper shows the
result after correction for FV effects, i.e., in infinite volume.
Colors and symbols identify the lattice spacing and light sea-
quark mass, and (in one case) the spatial lattice size, as shown in
the legend. Points in the left-hand cluster are pionlike and unitary
(mx ¼ my ¼ m0

l), while those in the right-hand cluster are
kaonlike and almost always unitary (mx ¼ m0

l, my ¼ m0
s). The

exceptions are kaonlike points for a ≈ 0.12 fm, which have
my ¼ 0.8m0

s, which is closer to the physical strange mass than
m0

s itself. The locations of the physical pion and kaon masses are
indicated by the vertical dot-dashed black lines. All points shown
are for mesons with charge �e.
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modifications. For fits with more points than that, statistical
and roundoff errors typically lead to a small number of
negative eigenvalues (up to about 10) in the covariance
matrix. We remove such eigenvalues with SVD when
finding the inverse covariance matrix used in the fitting
procedure. For every dropped eigenvalue, we reduce the
number of d.o.f. by 1 in computing the p value of the fit.
Our central fit, with 264 points, has no negative (and
therefore no dropped) eigenvalues; the alternative fits used
in estimating the errors of the chiral-continuum extrapo-
lation do include some with dropped negative eigenvalues.
When determining the p value of a given fit, we take into

account the fact that the sample covariance matrix is used,
rather than the exact covariance matrix that would be
computed from an infinite number of configurations in our
ensembles. We make the leading corrections in 1=N, where
N is the total number of (independent) configurations in our
sample [83].
We fit the thinned data to the LOþ NLO SχPT form [6

parameters; Eqs. (18), (20) and (24)], plus generic discre-
tization terms at LO and NLO [6 parameters; Eqs. (26) and
(27)], and NNLO analytic terms [16 parameters; Eq. (25)].
The higher-order analytic terms, which include discretiza-
tion terms, are necessary because our statistical errors in
ΔM2

xy are as low as 0.2%, and always less than 3.3%.10 In
addition, as described at the end of Sec. III B, we must
include at least the N3LO term λ6, Eq. (28), to obtain chiral-
discretization fits with acceptable p values. When we
include data with charges greater than physical, other
N3LO analytical terms are also necessary to obtain accept-
able fits.
Our central fit includes data from the a ≈ 0.09, 0.06, and

0.045 fm ensembles, and quark charges 0, �e=3, and
�2e=3. As explained following Eq. (24), we fix to zero the
NLO analytic parameter κ2, which describes sea-quark
mass dependence at NLO, and leave the LO parameter ΔEM
unconstrained. The generic discretization parameter corre-
sponding to κ2, called ψ2, is also fixed to zero. The fit thus
has a total of 27 parameters.
Except for the NLO parameter κ5, all NLO and NNLO

parameters, as well as the N3LO term λ6, are constrained in
the central fit by Bayesian priors with a Gaussian width of 3
around 0. As discussed following Eq. (24), the usual χPT
expectation would be that these parameters are Oð1Þ; we
believe constraining them with a prior width of 3 is
reasonable given that it is known that the size of the chiral
corrections to ϵ are relatively large. The width for κ5 is
taken to be a factor of 10 larger still, in recognition of the

fact that it gets large unphysical contributions from EM
quark-mass renormalization. The width for the generic
discretization parameters ψ i is 0.044, which implies a 1-σ
deviation of 5.1% at a ≈ 0.09 fm, 2.5% at a ≈ 0.06 fm, and
1.4% at a ≈ 0.045 fm.
The purpose of the Bayesian priors is to (loosely) enforce

χPT behavior, as well as to stabilize the fit to lattice-spacing
dependence, for which there are many parameters and
several directions in parameter space not well constrained
by the data. For the generic lattice spacing dependence, we
can write the errors as ðaΛÞ2, where Λ is a discretization
scale, Λ ≈ 540 MeV,11 which we judge is large enough to
be conservative. In any case, the effects of increasing the
prior widths by factors of 3 or 10 (or in many cases,
removing the Bayesian constraints entirely) is included in
the systematic errors, as discussed in Sec. VII.
The central fit includes points with meson masses up to

about 635 MeV. When masses significantly higher than that
are included, it is difficult to fit the data to χPT forms, even
with the NNLO analytic terms in the fit function. Some
alternative chiral-discretization fits that are used to estimate
systematic errors include data up to about 660 MeV, but
their p values are rather poor (10−4 to 10−3). Other
alternatives reduce the maximum meson mass included;
the lowest maximum is about 540 MeV. We do not go
below this because, in order to be able to interpolate to the
physical kaon with controlled errors, it is necessary to
include the meson made from one valence quark with mass
nearms and the other the lightest valence quark. We always
include the lightest mesons available, which are “pions”
with mass of about 250 MeV at a ≈ 0.09 fm and about
225 MeV at a ≈ 0.06 and 0.045 fm.
We emphasize that the masses mentioned in the previous

paragraph all refer to taste-ξ5 (Goldstone) mesons, which
are the only mesons for which we have a significant
amount of data. Mesons with other tastes can appear at
one loop in the chiral expansion. The minimum RMS mass
of such mesons is about 330 MeV at a ≈ 0.09 fm, about
260 MeVat a ≈ 0.06, and about 240 MeVat a ≈ 0.045 fm.
The taste splittings have less effect on the maximum
masses; for the central fit the maximum RMS mass goes
from about 670 MeV at a ≈ 0.09 fm to about 650 MeV
at a ≈ 0.045 fm.
Figure 12 shows the same subset of our data as in Fig. 11

(charge �e, unitary or approximately unitary) after cor-
rection for FV effects, along with the central chiral-
discretization fit and its extrapolations. The unitary (or
approximately unitary) points from the same fit for neutral
mesons made out of d- or s-type quarks (charges�e=3) are
shown in Fig. 13. The fit has 264 data points, 237 d.o.f.,
χ2 ¼ 248.0, and p ¼ 0.47. (Without correction for the use

10The smallest errors tend to occur either when both valence
quarks have masses near the heavier end of our range, or when
just one quark is light, and it is uncharged. Typically, relative
errors for mesons with net charge are less than those for neutral
mesons, because the total EM effect is smaller for the neutrals.
Approximately 80% of the data points have errors of 1% or less.

11Note that the actual lattice scales used, which we obtain from
r1=a values in Table I and r1 ¼ 0.3117ð22Þ fm [46], are some-
what smaller than their nominal values.
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of the sample covariance matrix, the p value of this fit
would have been 0.30.) Here and below, when we give χ2

or p values without further qualification, they are the
standard ones, where χ2 comes only from the difference of
the data and the fit, and the d.o.f. are equal to the total
number of data points minus the number of parameters,
without regard to whether those parameters are constrained
by Bayesian priors. We will specify when we actually mean
the augmented values, where the priors are treated as
additional data, contributing to χ2 as well as to the d.o.f.
Because the priors are loose, in the sense that the param-
eters are to a great extent constrained by the data and not the
priors, we expect that the augmented p values will be larger
than the standard p values. In the case of the central fit,
ðχ2=d:o:f:Þaug ¼ 255.3=263, giving paug ¼ 0.79.
In Fig. 12, the blue, light green, and dark green curves

show the quality of the fit to the a ≈ 0.09, 0.06, and

0.045 fm data, respectively. The points at a ≈ 0.12 fm (red
and magenta) are not included in the fit, but the dashed red
curves show that the fit does reasonably well in predicting
the data at this lattice spacing. It is more difficult to
extrapolate to larger lattice spacing than to smaller lattice
spacing, since larger lattice spacing may be sensitive to
higher-order terms that are either not included in the fit or
not well determined on finer lattices.
For the neutral mesons (Fig. 13), the discretization errors,

as well as the sea-mass dependence, are quite small, since
points from different lattice spacings and sea-mass values
line up very well. Further, as required by chiral symmetry,
ΔM2

xy vanishes in the chiral limit. It is also noteworthy that
the curvature in the fit lines is small, as may be deduced from
the small difference between the curves and the dashed black
line, which is straight. There are no chiral logarithms for
neutral particles atNLO, and theNNLO logs are not included
in our fit function. There is a contribution from the NNLO
analytic term that is quadratic in valence masses and can
contribute to neutral mesons [the ρ11 term in Eq. (25)], but it
is rather small: ρ11 ¼ 0.52ð3Þ. All our alternative chiral-
discretization fits preserve these simple features, which are
enforced by the lattice data. Therefore we only show the
charged-meson plots for the alternative fits below.
The black curves in Fig. 12 show the fit after setting

valence and sea masses equal, adjusting ms to its physical

FIG. 13. Same fit as Fig. 12, but showing the neutral mesons
made out of quarks with charges �e=3. The meaning of the blue,
light green, dark green, and dashed red curves is the same as in
Fig. 12; note the difference in vertical scale between the two plots.
The solid black curves are extrapolations of ΔM2

xy to the
continuum. The dashed black lines show the NLO contribution
to the solid black curves; there are no LO contributions. The
discretization errors and sea-mass dependence for neutral mesons
are very small, as are the nonlinear contributions to the valence-
mass dependence.

FIG. 12. Central fit to the EM splitting ΔM2
xy vs the sum of the

valence-quark masses, after correction for FV effects. The same
small subset of the data as in Fig. 11 is shown. The blue, light
green, and dark green lines show the fit to the a ≈ 0.09, 0.06, and
0.045 fm data, respectively. The largest lattice spacing (red and
magenta points, a ≈ 0.12 fm) is not included in the fit; the dashed
red lines show how the fit does in “predicting” these points. The
horizontal dotted line shows the experimental value of the πþ–π0
splitting; the vertical dashed-dotted lines show the quark mass
values for physical π and K mesons. The black and brown curves
are extrapolations of ΔM2

xy to the continuum, with and without
the NLO effects of sea quark charges, respectively. (The brown
curve is barely visible under the right hand black curve; the
curves are identical for the pions at left, and only the black curve
is visible.) The solid purple curves are obtained from the black
ones by subtracting ΔM2

xy for the corresponding neutral mesons,
K0 and “π0.” The dashed-dotted line and the dashed purple curves
show the LO, and LOþ NLO contributions to the total solid
purple lines, respectively.
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value, extrapolating to the continuum, and adjusting the sea
charges to their physical values using NLO χPT. The last
adjustment vanishes identically for pions and is very small
for kaons. The brown kaon curve (barely visible under the
black kaon curve) shows the value before adjustment, i.e.,
with vanishing sea-quark charges. From the black curves
for the πþ and Kþ, we subtract the corresponding black
curves for the neutral mesons “π0” and K0 shown in
Fig. 13,12 giving the solid purple curves, whose values
at the physical point for each meson (indicated by the
vertical dashed-dotted lines) are the physical results.
The solid purple curve in Fig. 12 includes all chiral terms

through NNLO (and with the N3LO term λ6). We also show
the LO contribution alone (the mass-independent horizon-
tal dashed-dotted purple line) and the LOþ NLO contri-
butions (the dashed purple curves). In this fit, the LO
contribution has the value r21e

2ΔEM ¼ 0.00189ð12Þ; this is
about 60% of the value 0.00315 that would be necessary to
give the full experimental pion splitting at LO. As expected
from the fact that ϵ, which measures higher-order contri-
butions to ðM2Þγ, is of order 1, the NLO contributions are
relatively large, especially for the kaons or heavier-than-
physical pions. The NNLO contributions are clearly much
smaller than the NLO ones for physical kaons, and
negligible, or nearly so, for physical pions. Thus, after

an anomalously large NLO contribution, SU(3) χPT appears
to converge reasonably well.
One may wonder whether this picture of the convergence

of χPT is strongly influenced by the Bayesian priors that
constrain NLO and NNLO LECs in the fit. In fact, the
priors on physical LECs (those whose contributions do not
vanish in the continuum limit) have almost no effect on the
convergence or the results. If we remove all prior constraint
on these physical13 LECs (κ2, κ3, κ4, κ5, ρ6, ρ7, ρ8, ρ9, ρ10,
ρ11, ρ12, ρ13, ρ14, ρ01, ρ

0
2, λ5), the fit and results are almost

unaffected: ϵ changes by only 0.03%. This is however
dependent on our setting parameter κ2 ¼ 0 as discussed
above; the separation between LO and NLO contributions
can be drastically altered if κ2 is allowed to vary.
Figure 14 shows two alternative chiral-discretization fits

to the same set of data points as the central fit. Both of these
fits have reasonable p values. In (a), the NNLO parameters
ρ6 and ρ7 are set to zero, in addition to the NLO parameter
κ2. These NNLO parameters play a role that is similar
to κ2: the corresponding analytic terms depend on the
sea-quark masses and are nonzero in the chiral limit.
No major changes from the central fit are visible, but
the LO continuum contribution (dashed-dotted purple
curve) is slightly higher than for the central fit [here,

(a) (b)

FIG. 14. Two alternative chiral-discretization fits. The data included in the fits, as well as the meaning of symbols and curves, is the
same as for the central fit, Fig. 12. Fit (a) sets parameters ρ6 and ρ7 to zero, as well as κ2. The differences with Fig. 12 are small: all
curves are slightly higher in the chiral limit, and the predictions for the a ≈ 0.12 fm points (dashed red curves) are noticeably higher. Fit
(b) does not fix the parameter κ2 (or ρ6 and ρ7) to zero. The main difference from Fig. 12 that is apparent in fit (b) is the relative size of
the contributions to the continuum result of the LO contribution (horizontal, purple dashed-dotted line), and the LOþ NLO contribution
(dashed purple curves). The full continuum-extrapolated results (solid purple curves) are however very close to those in Fig. 12.

12More precisely Fig. 13 only shows the dd̄ contribution to
the “π0.”

13The LO physical LEC ΔEM is never constrained unless
nonzero κ2 is allowed. We also include κ5 and λ6 among the
“physical” LECs even though they get unphysical contributions
from EM renormalization, because they do not vanish in the
continuum limit.
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r21e
2ΔEM ¼ 0.00202ð4Þ], and all the curves (fit lines as well

as extrapolations) are correspondingly higher in the chiral
limit. The value of ϵ, however, is only 0.002 below that of
the central fit. One somewhat more obvious change is that
the predictions for the a ≈ 0.12 fm points (dashed red
curves) are somewhat worse than in the central fit.
In Fig. 14(b), κ2 is not fixed, but is constrained by our

standard prior for physical LECs, 0� 3. The LO parameter
is now also constrained by priors with central value
r21e

2ΔEM ¼ 0.003 and width 0.001. The posterior value
is almost two sigma lower, r21e

2ΔEM ¼ 0.0012ð3Þ, now less
than 40% of the value that would be necessary to give the
experimental pion splitting at LO. Nevertheless, the final
results (sum of all chiral orders) from this fit are quite close
to those of the central fit, as can be seen by comparing the
solid purple curves in Figs. 12 and 14(b). Indeed, the value
of ϵ coming from this alternative fit is just 0.02 below that
in the central fit. The fit lines to the data at fixed lattice
spacings and sea masses are also very similar in Figs. 12
and 14(b).
In Fig. 15, we show a third alternative fit to the same data

points as the central fit. Here, we have put a very tight prior
onΔEM, r21e

2ΔEM ¼ 0.0031� 0.0001) to force the LO χPT
contribution to be close to the experimental pion splitting.
The posterior value is about two sigma below this,
r21e

2ΔEM ¼ 0.0029ð1Þ. The chiral LECs all have priors
0� 3, including κ2, which is allowed to vary, but now has a
negative posterior value in order to reduce the pion chiral
limit of the fit to something that is better tolerated by the
data. The p value of the fit (p ¼ 0.035) is significantly less
than the other fits that we have considered so far, but is still
acceptable. The resulting value of ϵ is 0.024 higher than
that of our central fit, and is in fact the largest positive
deviation from the central value of all the alternative fits we
have considered.
The relative contributions in the continuum of various

orders in the chiral expansion as predicted by the fits are
also sensitive to the parameters that control lattice spacing
dependence (κ1, ρ1, ρ2, ρ3, ρ4, ρ5, ψ0, and ψ i). As
mentioned above, the fit becomes unstable if these param-
eters are completely unconstrained. If the prior widths are
widened but not eliminated, the effects on the results are
controlled (and included in the systematic error estimates),
but the division between LO and NLO contributions can
again be significantly changed. Thus the division between
orders in χPT shown in Fig. 12 is at best very rough. The
final results are nevertheless much more stable than the
individual χPT orders, as we have already seen in compar-
ing the fits in Figs. 12, 14, and 15. This remains true even
for the more extreme divisions between orders consid-
ered below.
It is not surprising that inclusion of the a ≈ 0.12 fm

ensembles leads to difficulties with the fits. The taste-
breaking effects at this lattice spacing produce large
discretization errors, and the fact that the physical strange

quark is about 35% below the simulated strange mass gives
further problems. The smallest meson-mass maximum that
allows us to interpolate to the kaon is approximately
645 MeV for the Goldstone meson, and about 750 MeV
for the RMS taste meson. For low masses, the taste effects
are even worse: while the lowest available Goldstone mass
is about 275MeV, this corresponds to an RMS taste mass of
about 465 MeV. Thus, when we add in the a ≈ 0.12 fm
ensembles, the chiral-discretization fits have various unde-
sirable features. Figure 16 shows two examples of such fits.
Figure 16(a) is rather similar to the central fit: ΔEM is
unconstrained but κ2 is fixed to zero. Despite the fact that
we have increased the prior widths of the LECs controlling
lattice spacing dependence (κ1, ρ1, ρ2, ρ3, ρ4, ρ5) to 40, and
the width of the generic variation parameters to 0.11, the fit
is poor (p ¼ 0.0005). Nevertheless, ϵ is only 0.01 below
that of the central fit.
Fits with reasonable p values that include the a ≈

0.12 fm ensembles are possible. In Fig. 16(b), we allow
κ2 to vary, and put a relatively loose prior on ΔEM

(r21e
2ΔEM¼0.003�0.001), as well as dramatically increas-

ing the prior widths of the parameters that control lattice
spacing dependence. We now obtain p ¼ 0.098. However,
this fit has a negative value of ΔEM, which implies an
extreme breakdown of χPT, as well as very large discre-
tization LECs (κ1 ≈ −34, ρ1 ≈ −70, ρ2 ≈ 33, λ2 ≈ 16). It
may very well be justified to drop this fit on these grounds.
To be conservative, however, we keep it in estimating the
systematic errors. Indeed, it is the fit that gives a value of ϵ

FIG. 15. An alternative chiral-discretization fit to the same data
as for the central fit. The meaning of symbols and curves is the
same as for the Fig. 12. This fit puts a strict prior on ΔEM to force
it to be very near to the value that would give the physical pion
splitting at LO. Note that the higher chiral orders reduce the pion
chiral limit significantly below the LO contribution.
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that is furthest away from our central value (0.082 lower)
out of all the chiral-discretization alternatives we consider.
Adding in points with quark charges that are greater than

the physical ones leads to problems with the chiral-
discretization fits that are similar to those we have when
adding in the a ≈ 0.12 fm ensembles. This may be because
the higher charges bring in greater discretization errors.
Indeed, there is evidence [12] that taste violations from
photon exchange begin to be important when the charges
increase above their physical values. For data with quark
charges 0,�1=3,�2=3,�1, and�4=3, a fit like the central
fit [but including all the e4p2 LECs λi in Eq. (28)] and with
somewhat larger priors (0� 5 on LECs) has p ¼ 0.005 and
an ϵ that is 0.03 below that of the central fit. A fit with κ2
not fixed to zero, and very loose priors on LECs and
generic discretization parameters, has p ¼ 0.21. However
ΔEM is negative, and discretization terms are very large.
Both features are quite similar to those seen in Fig. 16(b). In
this case, ϵ is 0.065 below that of the central fit.

VII. SYSTEMATIC ERRORS AND RESULTS
OF EM CALCULATION

Our calculation has the following significant sources of
systematic errors: (1) chiral-continuum uncertainties from
the extrapolations to the physical light quark mass and to
a ¼ 0, (2) finite-volume (FV) effects, (3) systematic issues
involved in the EM renormalization, (4) effects of using the
“π0,” which does not include quark-line disconnected
contributions, instead of the true π0, (5) errors in the
physical value of r1, the quantity we use to set the scale,
(6) uncertainties in the physical values of the quark masses
after extrapolation to the continuum, and (7) effects of EM

quenching. In the following subsections, we discuss each
source of error in turn. For the two EM quantities we
calculate, ϵ and ϵK0 , Table VI lists central values and
statistical errors from the fit shown in Fig. 12, and each
systematic error.
The separation between EM and isospin-violating effects

is dependent on the scheme, which enters through the EM
renormalization of quark masses. Our calculation is per-
formed in the BMW scheme [71], described in Sec. III C.
For some purposes, it may be useful to gauge the effects of
changing to another reasonable scheme. In Sec. VII H, we
estimate such scheme dependence for ϵ and ϵK0 .

A. Chiral-continuum error

We determine this error by considering a wide range of
alternative chiral-discretization fits, with various priors and/
or parameters set to zero, and apply them to various subsets
of the data: different maximum meson masses included,
different thinning, omitting or including the coarsest

(a) (b)

FIG. 16. Two examples of chiral-discretization fit and extrapolation like the central fit in Fig. 12, but including the points from the
a ≈ 0.12 fm ensembles. Fit (a) is most similar to the central fit, in that κ2 is fixed to zero and ΔEM is unconstrained. Fit (b) allows κ2 to
vary (with a prior 0� 40), and imposes a prior of 0.003� 0.001 on r21e

2ΔEM. Nevertheless the fit value of ΔEM is negative.

TABLE VI. Central values and errors for ϵ and ϵK0 .

Source ϵ ϵK0

Central value 0.776 0.035
Statistics 0.012 0.003
Chiral-continuum þ0.024

−0.082 0.002
Finite volume 0.056 � � �
Renormalization 0.002 0.012
“π0” 0.034 � � �
Absolute scale 0.001 0.000
Quark masses 0.009 0.011
EM quenching 0.040 0.012
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(a ≈ 0.12 fm) ensembles, and omitting or including quark
charges greater than the physical charges. Several of these
fits have been presented in Sec. VI C. To be conservative
we include fits that have p values as small as 10−5, as well
as ones that have very large discretization terms and/or
exhibit extreme breakdown of χPT (e.g., negative ΔEM).
Altogether, 89 fits are included. We take the largest positive
and negative differences from the value in the central fit as
the error. For ϵ, this gives a positive error of þ0.024,
coming from the fit in Fig. 15, and a negative error of
−0.082, coming from the fit in Fig. 16(b). For ϵK0, the
maximum positive and negative differences are compa-
rable, so we average them and quote a symmetric error
of 0.002.

B. Finite-volume error

To estimate the systematic error associated with the FV
correction we use (a residual FV error), we examine the
deviations of the fit lines from the data in Fig. 9. By far the
largest deviation occurs for the “pion” (blue) curve at
L ¼ 16. Let x be the difference between the predicted
infinite-volume value of the pion mass from the L ¼ 16
point alone and the value from all the other points. We take
x as the presumed absolute value of the error of our FV
estimates, and divide it by the size of the estimated FV
correction at L ¼ 20, to find a fractional residual FV error
of approximately 20%. We use the L ¼ 20 point because
most of the data used in the central fit is from physical
volumes of approximately that size or slightly larger; using
the L ¼ 28 point instead would make a negligible differ-
ence. An error of 20% is also reasonable because usual
corrections from higher orders in SU(3) χPT are of this size.
For ϵ the net effect of the FV corrections we have made is
0.28, which we find simply by comparing our central value
with the value obtained by refitting the data with FV
corrections turned off. Our estimate for the residual FV
error is then 20% of 0.28, or 0.056.
For neutral mesons, there are no chiral logarithms at

NLO, and hence no FV effects at this order. There will be
FV effects at higher orders, but they are very likely to be
much smaller than our other systematic errors in ϵK0 , which
are quite large. We therefore do not include a residual FV
error for ϵK0 in Table VI.

C. EM renormalization error

We use the BMW scheme, as defined by Eq. (37) and as
implemented by Eq. (40), to perform nonperturbative EM
renormalization of the u- and d-quark masses. For ϵ, this is
sufficient, since the renormalization of the s-quark mass
cancels in the difference ðM2

Kþ −M2
K0Þγ . However s-quark

mass renormalization is crucial for obtaining ϵK0 . We
extend the renormalization to the s quark using Eq. (42).
We can implement Eq. (40) to high accuracy from our

chiral fits, so the only significant systematic errors in the

scheme come from the errors in our values of the derivatives
of the squared meson masses with respect to quark mass:
B≡∂M2

π=∂ml, Bl¼∂M2
K=∂ml, and Bs ¼ ∂M2

K=∂ms. We
only need these quantities for physical quark masses and in
the continuum limit, since we perform the renormalization
after the chiral-discretization fit and its extrapolations. ForB,
we have the SU(2) χPT result, Eq. (41), which is quite
precise: the error from l̄3 ¼ 2.81ð64Þ [2] results in a 0.4%
error in B. Corrections from NNLO should be even
smaller, since the NLO correction is already only 2%. For
Bl and Bs, SU(3) χPT would be needed, but the higher-
order corrections, as well as the uncertainty in the relevant
LEC, are large. Instead, we extract these quantities
from our lattice data, and make a simple extrapolation
(linear in a2) to the continuum.We findBs=B ¼ 0.974ð15Þ,
Bl=B ¼ 0.946ð19Þ, wherewe give the results in terms of the
central value ofB (errors inB should not be added on to these
values). The error in Bl is small enough that the resulting
error in ϵ is small compared to other systematic errors; ϵ is
independent of Bs. The total renormalization error on ϵ
is 0.002.
For ϵK0, we find a renormalization error of 0.012. The

error is dominated by the uncertainty coming from Bs,
and would therefore benefit from increased precision in this
quantity. A significant improvement in Bs could be
obtained from a dedicated pure QCD calculation with
several closely spaced strange-quark masses around the
physical value at each lattice spacing. However, the fact
that ϵK0 has an uncontrolled quenched-EM error means that
one cannot decrease the overall error very much without
also going to dynamical QED simulations (or equivalent
approaches to include the effects of sea-quark charges at
order αEM).

D. Error from dropping disconnected π0 diagrams

As described in Sec. III D, we simulate a “π0” in which
quark-line disconnected diagrams are dropped, rather than
the physical π0. The difference is OðαEMM2

πÞ.
We may estimate the size of this effect by noting that the

disconnected contributions are solely responsible for the
chiral logarithm term found in Ref. [22]. The connected
contributions, which are equal to ðM2

uu0 Þγ or ðM2
dd0 Þγ, have

no chiral logarithms at NLO. Indeed, there are no NLO
chiral logarithms for any neutral meson that has only
connected contributions, such as the neutral kaon. In
Sec. III D, we estimated the chiral logarithm term in
ðM2

π0
Þγ as approximately 30ðMeVÞ2. Using the result from

our central fit for e2ΔEM instead of the value from Ref. [21],
gives a smaller result of 25ðMeVÞ2.
In estimating the error on ϵ, we also need the pion

splitting, which appears in the denominator. The exper-
imental value is 1261 ðMeVÞ2, but we can put the denom-
inator on the same footing as the error in the numerator by
using instead the value obtained from LO, namely e2ΔEM.
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With the value of ΔEM from Ref. [21], we get about
900 ðMeVÞ2 for the LO pion splitting. Taking this smaller
value for the denominator and the larger estimate of the
error in numerator, we get a conservative estimate of 0.034
for the error in ϵ. This value is independent of what is
assumed for ΔEM, since it cancels between the numerator
and denominator.
Another approach to estimating the “π0” error would be

to compare ϵ with ϵ0, defined by Eq. (3). In ϵ0, the
experimental value of the pion splitting appears in the
numerator instead of the computed value of the pion EM
splitting, so ϵ0 is independent of how we treat the π0. From
the discussion in Sec. I, we expect that, in the absence of
statistical or other systematic errors, ϵ ¼ ϵ0 þ ϵm, where
ϵm ¼ 0.04ð2Þ [2]. However, chiral-discretization errors
play a significant role here, since there is a partial cancela-
tion of errors in ϵ when we subtract ðM2

πþ −M2
“π0”

Þγ from
ðM2

Kþ −M2
K0Þγ . Indeed, the chiral-discretization error for ϵ0

is a factor of about 4 larger than for ϵ. If we ignore this
problem and just focus on the central fit, ϵ − ðϵ0 þ 0.04Þ ¼
0.089. This is slightly smaller than the expected error
(0.091) from the addition in quadrature of the chiral-
discretization and “π0” errors on ϵ, and the ϵm error.
Because there are also likely to be some residual FV errors
in the difference ϵ − ðϵ0 þ 0.04Þ, the ϵ0 result suggests that
the errors we have already included are reasonable and do
not need to be increased further.
The calculation of the EM effect for the K0 is indepen-

dent of the treatment of the π0, so there is no corresponding
error in ϵK0 .

E. Scale error

The absolute scale of our ensembles is set by r1 ¼
0.3117ð22Þ fm [46]. To find the induced error in our
results, we rerun the analysis with r1 changed by 1 σ. In
doing so, it is necessary to include the changes, caused by
the scale, in the physical quark masses in the continuum
limit. The scale error in these masses is given in Table V.
Note that the estimates of the quark masses move in the
same direction as r1 because the quark masses are adjusted
to reproduce the experimental values of the meson masses
multiplied by r1.
The resulting scale errors are very small: 0.001 in ϵ and

0.0002 in ϵK0 . In each case, the effect of changing the scale
itself is largely cancelled by the scale changes in the quark
masses. Only the denominators, which come from the
squared experimental splitting multiplied by r21, are affected
by the change in the scale itself, and only the numerators
are affected by the changes in quark masses.

F. Quark mass error

To find the errors coming from our values of the physical
quark masses, we rerun the analysis with the continuum

physical mass values14 given in Table V changed by 1
systematic σ (not including scale errors). Because the
nonscale errors arise largely from variations over the same
set of pure QCD chiral fits,ml andms are highly, positively
correlated, and we change both in the same direction. We
find quark mass errors of 0.009 in ϵ and 0.011 in ϵK0 .
Assuming instead that the errors on ml and ms were
uncorrelated would change the resulting errors only slightly
because changes in one of the masses always dominate: ms
dominates for ϵ, while ml dominates for ϵK0.
Errors arising from the other inputs in Table V are

negligible and are not included in Table VI. Because only
the products B0ml and B0ms enter our results, it is clear
that the errors in B0 will have a negligible effect compared
to the effect of the quark mass errors. We bound the effects
of the errors in the splittings by rerunning the analysis with
all splittings at a lattice spacing changed by 1σ in the same
direction, but with the direction varied randomly at differ-
ent lattice spacings. Because splitting errors are uncorre-
lated for different ensembles, and only somewhat correlated
for different splittings on the same ensemble, changes of
this type provide an upper limit on the changes we find if
we change individual spacings randomly within their
errors. The maximum differences we find are 0.007 in ϵ
and 0.0004 in ϵK0 , which are in each case smaller than
statistical errors, and much smaller than the dominant
systematic errors.

G. Quenched EM error

For ϵ, the effect of having quenched the EM interactions
is controlled at NLO in SU(3) χPT, per the argument of
Ref. [21]. This is because effects that depend on the
sea-quark charges and unknown LECS are independent
of valence-quark charges and therefore cancel in
ðM2

Kþ −M2
K0Þγ and in ðM2

πþ −M2
“π0”

Þγ—see Eq. (23).
Errors arise at NNLO, in which cross terms between
valence and sea charges can first appear in analytic terms,
which have unknown LECs. Examples of such terms are
ones proportional to qxyðμx − μyÞðquμu þ qdμd þ qsμsÞ or
ðqx þ qyÞðμx þ μyÞðquμu þ qdμd þ qsμsÞ. From our cen-
tral fit, the calculated effect of turning on the sea quark
charges is 0.040, or 8.2% of the 0.486 NLO contribution
for neutral sea quarks. Assuming the quenching effects on
NNLO would be of this same size, an estimate of the
electroquenching error is 8.2% of the 0.250 NNLO con-
tribution, or 0.020. It may be, however, that the electro-
quenching effect at NLO is anomalously small. In particular,
there is no effect on “pions” (mesonswith degenerate quarks)
at this order. We therefore follow a more conservative

14The values of physical quark masses at nonzero lattice
spacings affect our results only through the values of r1=a,
which are extrapolated to these quark masses in our mass-
independent scale-setting scheme. The effects on the final results
are negligible.
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approach and take the full value of theNLO sea-quark charge
effect, namely 0.040, as the error estimate for ϵ.
As explained at the end of Sec. III A, the electroquench-

ing error in ϵK0 is uncontrolled, in the sense that it is not
computable at lowest nontrivial χPT order. We can get a
rough handle on this error by 1=Nc counting. At OðαEMÞ,
the electroquenching effects come from diagrams with
either (1) a photon that connects a sea-quark loop to a
valence line, (2) a photon that spans a single sea-quark
loop, or (3) a photon that connects two sea-quark loops. In
all three cases, each loop must also have attached gluons,15

so 1=Nc counting applies. Diagrams (1) and (2) are then
suppressed by 1=Nc, while diagram (3) is suppressed by
1=N2

c. Diagram (1) is further suppressed by SU(3) flavor
[71], since the sum of sea-quark charges vanishes, and
quark mass factors must be included to get a nonzero result.
Since diagram (2) cancels for ϵ, the double suppression of
electroquenching effects may explain why the contribution
of sea-quark charges is only 0.04 at NLO. However,
diagram (2) does not cancel for ϵK0, so we have only
the 1=Nc suppression. We therefore take 1=3 of the central
value, namely 0.012, as the electroquenching error in ϵK0 .

H. Scheme dependence

It may be helpful for some purposes to estimate the
changes that would be induced in our results if we changed
to a different scheme for EM renormalization. For example,
in a pure-QCD calculation that relies on our results to
remove EM effects from physical quantities that are used to
set the quark masses or scale, it would be useful to know
how much the results could change in a different scheme
for separating EM from isospin-violating effects.
In addition to the BMW scheme, we have tried renorm-

alizing the quark masses using the MS scheme at scale
μ ¼ 2 GeV. Unfortunately, we have only a one-loop
determination of the renormalization, and this may suffer
from rather large perturbative errors, as we remarked in
Sec. III C. Nevertheless, comparison of the MS scheme at
one loop, Eq. (33), with that of the BMW scheme, Eq. (42),
gives at least a rough estimate of how much the results may
change over various choices of “reasonable” schemes.
With the MS scheme and the central fit, we obtain

ϵ ¼ 0.814ð12Þ, where the error is statistical only. This
suggests a scheme dependence of ∼0.04 in ϵ. The small
dependence is in accordance with the general discussion at
the beginning of Sec. III C. The corresponding result for the
neutral kaon is ϵK0 ¼ 0.365ð2Þ giving a scheme depend-
ence of ∼0.330. Note that, if the two-loop corrections from
QCD make a comparable contribution to the one-loop EM
renormalization as they do in the pure QCD, asqtad

case [70], the value of ϵK0 in the MS scheme at 2 GeV
would be reduced by a factor of order 3.
The large dependence on scheme for ϵK0 is not surpris-

ing, since ϵK0 is very sensitive to the renormalization of the
strange quark mass. The fractional shift in the continuum of
the strange mass under EM renormalization in the BMW
scheme is 0.32%, while in one-loop MS, it is only 0.12%.
Neither of these shifts is of an unreasonable size for an
OðαEMÞ effect. The fractional difference of 0.2% in the
strange mass would correspond to a change in ðM2

K0Þγ of
roughly 0.002M2

K=ð1þ 1=27Þ, giving a change of ϵK0 of
approximately 0.37, where we take MK ≈ 495 MeV. The
factor of 1=ð1þ 27Þ comes from the fact that the light
quark mass, which is not changing, is about 1=27 of the
strange quark mass.
Adding the systematic errors in Table VI in quadrature,

we find

ϵ ¼ 0.78ð1Þstat
�þ8

−11

�
syst

: ð74Þ

ϵK0 ¼ 0.035ð3Þstatð20Þsyst: ð75Þ

The result for ϵK0 implies ðM2
K0Þγ¼44ð3Þstatð25ÞsystðMeVÞ2.

A preliminary value for ðM2
K0Þγ was reported in Ref. [13].

That result did not yet take into account EM quark-mass
renormalization and is thus not reliable.

VIII. CALCULATION OF mu=md

Using the values of ϵ and ϵK0 given in Eqs. (74) and (75),
we can use the dependence of the kaon mass on the light
quark mass to find the quark mass ratio mu=md. Because ϵ
and ϵK0 are physical parameters (albeit in a fixed scheme
for separating EM from strong isospin-violating effects),
we need not use the same set of simulations for this step.
Here we use the MILC HISQ (2þ 1þ 1)-flavor QCD
ensembles, since these have smaller lattice artifacts than the
asqtad ensembles and contain ensembles with light quark
masses near their physical values. Table VII shows the
2þ 1þ 1 flavor ensembles with approximately physical
light sea quark masses, which are used in this section.
The procedure for findingmu=md is described in detail in

Ref. [26]. Very briefly, the essential steps are
(1) Use the pion mass and decay constant to fix the

lattice spacing and average light quark mass, ml ¼
ðmu þmdÞ=2, on each ensemble. Here we use the
physical π0 mass, since this has small electromag-
netic contributions. This mass is also adjusted for
QCD finite size effects.

(2) Find the tuned strange quark mass on each ensemble
by matching 2M2

K −M2
π . In this step, the lattice

masses use the average light quark mass computed
in the first step, and the input MK is the average of

15This follows from Furry’s theorem, which forbids loops with
only one photon vertex, as well as the usual cancellation of
vacuum bubbles that are completely unconnected to the rest of the
diagram.
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the K0 and Kþ masses after subtracting the electro-
magnetic contributions parametrized by ϵ and ϵK0 .

(3) Use the derivative of the lattice M2
K with respect to

the light valence quark mass and the difference
between the K0 and Kþ masses after removing
electromagnetic contributions to find md −mu and
hence mu=md on each ensemble.

(4) Fit the values of mu=md on each ensemble to a
smooth function of the lattice spacing, and evaluate
the fit at a ¼ 0. For our central fit we fit the points
with a ≤ 0.12 fm to a quadratic in αsa2, using the
strong coupling constant αs determined from the
plaquette. Alternative fits to estimate systematic
errors from the continuum extrapolation include a
quadratic fit including the 0.15 fm data, a linear fit
excluding the 0.15 fm ensemble, and a linear fit
excluding both the 0.12 and 0.15 fm ensembles.

The most important differences between this analysis
and that of Ref. [26] are the extension of the 0.06 fm
ensemble to 895 lattices and the addition of an ensemble
with a ≈ 0.04 fm. Figure 17 shows the values ofmu=md for
each ensemble, and the continuum extrapolation. With the
addition of this data at small lattice spacings, we now
choose to omit the 0.15 fm data from our central fit, and use
the fit including this ensemble as one of our alternative fits
for estimating the systematic error due to the choice of
continuum extrapolation. We take the range of all of these
continuum extrapolations as our estimate of the systematic
error coming from the choices made in our continuum
extrapolation.
Using the MILC HISQ (2þ 1þ 1)-flavor QCD ensem-

bles and the values of ϵ and ϵK0 given in Eqs. (74) and (75),
and following the approach described in Ref. [26], we
obtain

mu=md ¼ 0.4529ð48Þstat
�þ118

−0

�
cont

×

�þ91

−66

�
ϵ

ð0ÞϵK0 ð4ÞFVQCD
ð13ÞΔMKðexpÞ: ð76Þ

The errors on the quantity are, in order, the statistical error
and the errors from choices in the continuum extrapolation,
from ϵ, from ϵK0 , from finite volume in the pure QCD

calculation, and from the error in the experimental value of
MK0 −MKþ [84]. The finite-volume effects are taken
to be the difference between a NLO staggered chiral
perturbation theory calculation and a nonstaggered calcu-
lation at NNLO for Mπ and Fπ and NLO for MK and FK .
We note that the result in Eq. (76) should be considered
an update to the result quoted in Ref. [85], mu=md ¼
0.4556ð55Þstatðþ114

−67 Þsystð13ÞΔMK
. The current result includes

newly generated 2þ 1þ 1 HISQ configurations at a ≈
0.06 fm and 0.04 fm, as well as all our configurations at
a ≈ 0.09 fm. Reference [85], which focused on physics
for quarks heavier than mc, included only the subset of
configurations at a ≈ 0.09 fm for which we have generated
propagators for those heavy quarks. The smaller statistical
error of the current result reflects the larger data set used.
Our procedures for estimating systematic errors, however,

FIG. 17. mu=md on the physical quark mass HISQ ensembles,
and the continuum extrapolation. The red line is the fit used for
our central value, and the blue lines three of the alternative fits
used for estimating systematic error from the continuum extrapo-
lation. These alternate fits are a quadratic fit including all the data
points, a linear fit omitting the 0.15 fm. data, and a linear fit
omitting both the 0.15 and 0.12 fm data.

TABLE VII. Ensembles used in the calculation of mu=md. The first column in this table is the approximate lattice spacing in fm. The
second column is the gauge coupling β ¼ 10=g2, and the next three columns are the sea-quark masses in lattice units. The primes on the
masses indicate that they are the values used in the runs, and in general differ slightly from the physical values because of tuning errors.

Key β am0
l am0

s am0
c ðL=aÞ3 × ðT=aÞ Nlats a (fm) L (fm) MπL Mπ (MeV)

0.15 5.80 0.002 35 0.0647 0.831 323 × 48 1000 0.150 79(17) 4.83 3.2 130
0.12 6.00 0.001 84 0.0507 0.628 483 × 64 999 0.121 11(10) 5.82 3.9 133
0.09 6.30 0.0012 0.0363 0.432 643 × 96 1031 0.087 72(12) 5.62 3.7 130
0.06 6.72 0.0008 0.022 0.260 963 × 192 895 0.056 73(5) 5.44 3.7 135
0.04 7.00 0.000 569 0.01555 0.1827 1443 × 288 470 0.042 54(5) 6.12 4.17 134
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actually give slightly larger values in the current analsyis
than in Ref. [85].
To this level of precision, and within the scheme we are

using, our EM errors in mu=md come only from ϵ and not
from ϵK0 , despite the large relative error in the latter
quantity. The errors in ϵK0 do, however, have an effect
on the errors in ms and in ratios such as ms=ml [85,86].

IX. CONCLUSIONS AND OUTLOOK

Using the three-flavor MILC asqtad configurations, we
have computed the EM quantities ϵ and ϵK0 , which para-
metrize the EM contribution to the Kþ–K0 mass splitting,
and to the K0 mass itself, respectively. Our results are given
in Eqs. (74) and (75). A comparison of our result for ϵ
(labeled as MILC 18) with those of other groups (and our
preliminary result, labeled as MILC 16) is shown in Fig. 18.
We note that different groups in general use different
schemes for separating electromagnetic and strong isospin-
violating effects. Nevertheless, the scheme-dependence
of ϵ is likely to be small—see the discussion in Secs. III
C and VII H. With the exceptions of the early result in RBC
07, which quotes statistical errors only, and the result from
QCDSF 15, from which we differ by about 2 sigma, the
agreement with the work of other groups is good.
With the EM contributions in hand, we have proceeded

to compute the quark mass ratio mu=md in QCD, using the
four-flavor MILC HISQ configurations. Figure 19 com-
pares our work with that of other lattice groups. In general,
we only show results that employ a lattice evaluation of the
EM effects; however we have included for comparison the
MILC 09 [4] result (shown with an open symbol), which
relies on a phenomenological estimate of ϵ. With our new
results of the EM effects, our estimate for the EM
uncertainty in mu=md has been reduced by more than a
factor of 5 from our error in MILC 09. Other systematic
errors are comparable between MILC 09 and MILC 18, so
the total error is reduced by a factor of about 3.5.
Note that our current value for mu=md is plotted in

Fig. 19 with the u, d, s, c sea results. The pure QCD HISQ
ensembles that are used in finding mu=md indeed have
2þ 1þ 1 dynamical flavors. On the other hand, our EM
calculation giving ϵ and ϵK0 employs the asqtad 2þ 1
ensembles. The error from omitting the dynamical charm
quark, however, is expected to be at most a few percent. An
error of that size would be small compared to the other
errors in the EM calculation, so should not effect the final
value for mu=md significantly.
Our result for mu=md is consistent with those from most

other groups, but lies on the low side of the range of results.
From Fig. 17 one can see that the low continuum value
from our data set is due to the results from the two finest
lattice spacings, a ≈ 0.06 fm and a ≈ 0.04 fm. The latter is
finer than the finest of the ensembles used by the other
groups, which has a ≈ 0.054 fm. Because discretization
errors depend on the lattice action, however, it is unclear at

FIG. 18. Comparison of ϵ in Eq. (74) (magenta burst) with
previous unquenched lattice-QCD calculations. The open sym-
bols with dashed error bars represent early work, with only
statistical errors quoted. The references are RM123 17 [19],
MILC 16 [15] (a preliminary result), BMW 16 [17], QCDSF 15
[16], Blum et al. 10 [10], RM123 13 [18], and RBC 07 [9].

FIG. 19. Comparison of mu=md in Eq. (76) (magenta burst)
with previous unquenched lattice-QCD calculations that include a
lattice evaluation of the EM effects. For comparison, we also
show, with an open triangle, the MILC 09 result, which uses a
phenomenological estimate of the EM effects. An early result,
RBC 07, just quotes statistical errors and is shown with dashed
error bars and an open symbol. The current (MILC 18) result
should be considered an update of the Fermilab/MILC 17 result
[see discussion following Eq. (76)]. The references are Fermilab/
MILC 17 [85], RM123 17 [19], ETM 14 [87], BMW 16 [17],
QCDSF 15 [16], Blum et al. 10 [10], MILC 09 [4], RM123 13
[18], and RBC 07 [9].
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this point whether the difference in available lattice spac-
ings is relevant to the apparent differences seen in Fig. 19.
While the electroquenching errors for ϵ are under control,

these errors are uncontrolled formost quantities, e.g., ϵK0 . To
move beyond the electroquenched approximation, we have
developed a dynamical EM code [88] and are beginning to
generate unquenched QCDþ QED ensembles. These
ensembles will be crucial to our efforts to obtain precise
results for the hadronic contributions to ðg − 2Þμ, as well as
for calculations such as the proton-neutron mass difference
and improvements in the result for ϵK0.
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APPENDIX: OBTAINING THE MASS FROM
THE SELF-ENERGY AT FINITE T

For infinite T, the standard procedure to get the correc-
tion to the squared mass is to evaluate the Euclidean self
energy σðp0Þ at p0 ¼ im. In this Appendix, we show that
method does not in general give the right answer at finite T.
In particular, σðimÞ is dependent on the routing of the loop

momentum through the diagram. Nevertheless, we show
that the particular momentum routing chosen in Sec. V
does allow us to extract the mass correction from σðimÞ
because the natural continuation of σðp0Þ away from the
Matsubara frequencies 2πn=T happens to be particularly
simple.
To introduce our notation and approach, we first review

the usual procedure when the time extent T is infinite. The
momentum-space Euclidean propagator has the form

G̃∞ðp0Þ ¼
1

p2
0 þm2 þ σ∞ðp0Þ

; ðA1Þ

where m is the Lagrangian mass, σ∞ is the self energy, the
subscript ∞ indicates that T is infinite, and we have taken
the case of vanishing spatial momentum, p ¼ ðp0; 0⃗Þ, for
simplicity.
To find the physical mass, we Fourier transform to

position space

G∞ðtÞ ¼
Z

dp0

2π
eip0tG̃∞ðp0Þ ðA2Þ

¼ Ce−Mt þ � � � ½t > 0�; ðA3Þ

where C is a constant, and p2
0 ¼ −M2 is the location of the

single-particle pole

M2 ¼ m2 þ σ∞ðiMÞ ≈m2 þ σ∞ðimÞ; ðA4Þ

and � � � in Eq. (A3) represents the contributions of excited
andmultiparticle states.Equation (A3) follows fromEq. (A2)
by completing the contour in the upper half plane using
Jordan’s lemma, which requires only that

lim
jp0j→∞

1

p2
0 þm2 þ σ∞ðp0Þ

¼ 0 ðA5Þ

in the upper half plane. From Eq. (A4), we read off the
standard answer: the first-order correction to the squared
mass is simply the self-energy evaluated at p0 ¼ im.
When T is finite, the calculation of the mass correction

changes in two crucial ways. First of all, the integral over
p0 in Eq. (A2) becomes a sum over p0 ¼ 2πl=T, where l
runs over the integers. The self energy σðp0Þ and hence
G̃ðp0Þ are moreover only well defined for these discrete
values of p0. We may continue these functions to σcontðp0Þ
and G̃contðp0Þ, defined on the full complex p0 plane, but the
continued functions are not unique. Second, the internal
loop energy [e.g., k0 in Eq. (63)] in the determination of
σðp0Þ is itself discrete, so that σðp0Þ is not the same
function of p0 as σ∞ðp0Þ, even on the discrete points
p0 ¼ 2πl=T. These two changes interact in interesting
ways, with the result that the procedure to obtain the
squared-mass correction by evaluating σcontðp0Þ at p0 ¼
im is not valid in general.
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We discuss the discrete sum over p0 first. To extract the
mass, we need to compute

GðtÞ ¼ 1

T

X
p0¼2πl=T

eip0tG̃ðp0Þ: ðA6Þ

GðtÞ is a periodic function of t with period T. The standard
technique is to use the Poisson summation formula to
rewrite GðtÞ as a sum of nonperiodic propagators to each
periodic image of the fundamental domain 0 ≤ t ≤ T.
Usually these nonperiodic propagators are just the known
T ¼ ∞ propagators, but here that is not the case, since we
are keeping T finite for the internal energy sums in σ. We
instead simply use a continuation G̃contðp0Þ of G̃ðp0Þ,
which defines GcontðtÞ by Fourier transformation. The
Poisson formula then gives

GðtÞ ¼
Xþ∞

n¼−∞
Gcontðtþ nTÞ; ðA7Þ

GcontðτÞ ¼
Z

dp0

2π
eip0tG̃contðp0Þ: ðA8Þ

Although G̃contðp0Þ is not unique, it is straightforward to
check that another continuation constructed by adding a
function that vanishes at p0 ¼ 2πl=T, such as sinðp0T=2Þ,
will not change GðtÞ, although it does of course change
GcontðτÞ. This still leaves open the question of how
G̃contðp0Þ should be chosen. For now, we simply state that
we should choose G̃contðp0Þ so that GcontðτÞ is strongly
damped for large τ. By a standard theorem of Fourier
transformations, we can accomplish this if G̃contðp0Þ and all
its derivatives are continuous and absolutely integrable over
the real p0 line [89].
If GcontðtÞ is exponentially damped for mt ≫ 1, we can,

in practical situations, neglect most or all of the n ≠ 0 terms
in Eq. (A7). A standard approach is just to include n ¼ −1
in addition to n ¼ 0, so that we include a backward
propagating meson in our fit Ansatz for GðtÞ:

GðtÞ ∼ Cðe−Mt þ e−MðT−tÞÞ: ðA9Þ

The fit for mt ≫ 1 will then effectively isolate the first
contribution, from GcontðtÞ, and extract the corrected mass
M from its exponential decay. If Jordan’s lemma applies to
the Fourier transform and if the only single-particle pole in
G̃ðp0Þ is the usual one near p0 ¼ im, then the correction to
the squared mass is indeed just σcontðimÞ. We will see
below, however, that this will not be true in general.
So we are led to consideration of the finite-T self energy

in momentum space σðp0Þ, and how it may be continued
away from the special values p0 ¼ 2πl=T to σcontðp0Þ. A
natural choice for σcontðp0Þ is simply the result of doing the
loop energy/momenta sums for arbitrary external p0,
instead of only for the special values. For example, we
can perform the sum in the first term on the right-hand side

of Eq. (63) for any p0. Because the resulting self-energy
function and its derivatives obey the continuity and
integrability conditions mentioned above, GcontðtÞ will
automatically be exponentially damped16 as desired.
An undesirable, but unavoidable, feature of this con-

tinuation σcontðp0Þ is that it depends on the routing of the
external momentum p0 through the diagram. The depend-
ence on routing vanishes when p0 ¼ 2πl=T because the
loop energy may be shifted by this amount. But away from
these special points, there is no reason for σcontðp0Þ to be
independent of the routing; we have checked this depend-
ence numerically for

σcontðp0Þ ¼
1

L3T

X0

k0;k⃗

I ŝ −
Z

d4k
ð2πÞ4 I ŝ; ðA10Þ

with I ŝ the photon-sunset integrand given by Eq. (62). Here
we have considered the difference between the sum and the
integral, rather than the sum itself, to avoid having to cut off
the sum over k⃗, which is irrelevant to the current dis-
cussion.17 Further, the dependence on momentum routing
persists when σcont is evaluated at p0 ¼ im, which indicates
that the rule relating the mass correction to σcontðimÞ cannot
be true in general. We emphasize that this is a problem with
the rule, rather than some fundamental problem with the
definition of the mass correction itself: The finite-T
propagator GðtÞ is of course completely independent of
the routing.
To examine this issue further, we consider the two

obvious possible momentum routings in the sunset dia-
gram. Routing A, which we used in Sec. V, has p − k on the
photon line and k on the internal meson line. Routing B has
k on the photon line and p − k on the internal meson line.
With p ¼ ðp0; 0⃗Þ and k⃗ ≠ 0,

IA
ŝ ¼ k⃗2 þm2 − p2

0

k⃗2ðk20 þ k⃗2 þm2Þ
; ðA11Þ

IB
ŝ ¼ k⃗2 þm2 þ 2p0k0 − 3p2

0

k⃗2ððk0 − p0Þ2 þ k⃗2 þm2Þ
; ðA12Þ

where Eq. (A11) is copied from Eq. (62). In both cases we
have added on the 00 component of the tadpole, which is
independent of the external momentum. The linear term in
k0 in the numerator of IB

ŝ cannot be dropped since the
denominator is not symmetric under k0 → −k0. When
p0 ¼ 2πl=T, IA

ŝ and IB
ŝ clearly give the same result for

16More precisely, it will decrease faster than any power of 1=t
for large t [89].

17From now on we use the term “mass correction” to mean the
finite-L and finite-T contribution to the mass correction. The
additional correction when T and L are infinite will not affect any
of the following discussion, as long as that correction is small
enough that it does not violate the perturbative expansion.
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σðp0Þ, as can be seen by shifting the summation variable
k0 → k0 þ p0 in IB

ŝ (and then dropping a linear term in k0
in the numerator).
Extracting the mass correction is easy for routing A. We

can see from Eq. (A11) that σAcontðp0Þ has the simple form
αþ βp2

0, where α and β are independent of p0. Therefore,
G̃A

contðp0Þ has a simple pole close to p0 ¼ im, and Jordan’s
lemma allows us to close the contour as usual in the upper
half plane (for t > 0) for the Fourier transform of G̃A

contðp0Þ.
This determines the squared-mass correction to be
σAcontðimÞ, as was assumed in Sec. V.
Extracting the mass correction in the case of routing B is

more subtle. To see the relation between the self energy
from IB

ŝ and IA
ŝ when p0 is not at a special point, we use

the Poisson summation formula to write

σBcontðp0Þ¼
1

L3

X0

k⃗

X
n

Z
dk0
2π

einTk0IB
ŝ −

Z
d4k
ð2πÞ4I

B
ŝ ;

ðA13Þ
where n runs over the integers. We can now make the shift
k0 → k0 þ p0 in both integrals, converting IB

ŝ into IA
ŝ .

Differences remain, however, from the resulting phase
einTp0 and from the term in the numerator linear in k0,
which gives a nonvanishing contribution when n ≠ 0. The
difference between the self-energies is then

Δσðp0Þ¼−
2

L3

X
n≥1

X0

k⃗

e−ωknT

k⃗ 2

×

�
sin2ðnTp0=2Þ

k⃗ 2þm2−p2
0

ωk
þp0 sinðnTp0Þ

�
;

ðA14Þ

where Δσ ≡ σBcont − σAcont, and ωk ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þm2

p
.

Because of the additional factors of sin2ðnTp0=2Þ and
sinðnTp0Þ, which blow up for large imaginary p0, the
analytic properties of σBcont are not standard, and we must
reexamine the usual assumptions that go into finding the
mass. To simplify the algebra we take mT ≫ 1 and
consider p0 ¼ iy with y≳m. We can therefore neglect
the exponentially falling terms expð−ynTÞ from the sine
functions and keep only the growing ones. The sum over n
then immediately gives

ΔσðiyÞ ¼ 1

2L3

X0

k⃗

ðωk þ yÞ2
k⃗2ωkðeTðωk−yÞ − 1Þ

: ðA15Þ

The values of ωk for each discrete value of k⃗ therefore
determine singularities in Δσ. As y approaches a discrete
value ofωk from below,Δσ goes toþ∞, and then comes up
from −∞ as y increases above ωk. Because the self-energy
varies over the full range ð−∞;∞Þ, G̃B

cont will have a pole
near each of the singularities in Δσ. Figure 20 shows how
this occurs for three choices of mT and mL. The equation
for the poles is y2 ¼ m2 þ σBcontðiyÞ, which we find from
the crossings of the curves ðy=mÞ2 and 1þ ΔσðiyÞ=m2,
where we have neglected the difference between Δσ and
σBcont. This difference is σAcont, which just gives a relatively
small correction to the terms ðy=mÞ2 and 1, and does not
change the qualitative picture. In the plots, we have
included all the k⃗ values in the sum in Eq. (A15) that
contribute significantly in the region of y=m shown.
The left-hand plot (mT ¼ 10, mL ¼ 5) shows that, in

addition to the “normal” pole close to y ¼ m, there are
anomalous poles close the singular values in Δσ where
y ¼ ωk, for some k⃗. As L increases, the possible values of k
get closer, and the poles get denser. We observe this feature
in the middle plot (mT ¼ 10, mL ¼ 10). As L → ∞, the

FIG. 20. Location of the poles of the momentum space propagator G̃contðp0Þ for routing B, for three different values of mT and mL.
The quantities ðy=mÞ2 (black lines) and 1þ ΔσðiyÞ=m2 (red lines) are shown as a function of y=m, where y is the imaginary part of the
Euclidean energy p0. The y=m values of the poles are given by the locations of the crossings of the two curves.
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poles pile up at y ¼ m. On the other hand, as mT gets
smaller, the residues of the singularities in Δσ increase like
1=ðmTÞ. This can lead to the particularly strange situation
where the normal pole in G̃cont close to y ¼ m disappears,
as shown in the right-hand plot (mT ¼ 5, mL ¼ 10).
Because there are many poles in the propagator, and

often many of them are close to p0 ¼ im, the quantity
σBcontðimÞ has no direct relation to the mass correction.
Nevertheless, the finite-T propagator GðtÞ is always well
defined, and in principle one could always extract the mass
from GðtÞ numerically. The relation between the self-
energy at p0 ¼ im and the mass correction is however
problematic, and it seems unlikely in most cases that the
dependence of the self-energy on p0 will be simple enough
to relate the mass-correction to the self energy at p0 ¼ im,
as we did for σAcontðimÞ.
It is worth making contact here with the argument given

in Ref. [72] about the effect of finite T. They write the
difference between finite and infinite T for arbitrary
momentum routing as in Eq. (A13)

δσcontðp0Þ ¼
1

L3

X0

k⃗

X0

n

Z
dk0
2π

einTk0Iðk0; k⃗; p0Þ; ðA16Þ

where the prime on the sum on n indicates that n ¼ 0
should be omitted; it is cancelled by the infinite-T sub-
traction. They then argue that Iðk0; k⃗; imÞ has no poles on
the real k0 axis and is infinitely differentiable, with all of its
derivatives integrable, which implies that δσcontðimÞ van-
ishes faster than any power of 1=T as T → ∞. This
argument explains why the QEDL FV correction δγ;QEDL

FV
shows negligible dependence on T for the values of mT
relevant to Fig. 6. Indeed, using routing A, the unique
single-particle pole in G̃cont near p0 ¼ im implies that the
leading T-dependence in QEDL is suppressed by a factor
of expð−mTÞ.18
However, the Borsanyi et al. argument does not apply in

general for routings that generate complicated p0 depend-
ence away from the discrete points 2πl=T. In particular, the
argument cannot be use to conclude that routing-dependent
differences in σcontðimÞ are similarly suppressed by
expð−mTÞ and therefore negligible for values of mT used
in our computation. To see this, we look at a simple
example with

Iðk0; k⃗; p0Þ ¼
1

ðk0 þ p0Þ2 þ k⃗2 þm2
: ðA17Þ

With p0 ¼ iy and y ≤ ωk (for fixed k⃗), there is a simple
pole in the upper half plane at k0 ¼ iðωk − yÞ. When

y ¼ m, the n ≥ 1 terms in the sum give contributions (after
integration over k0) proportional to expð−nTðωk −mÞÞ,
while the n ≤ −1 contributions are more highly suppressed
for large T since the pole in the lower half-plane is further
from the axis. Because k⃗ ≠ 0, all the terms in the sum over
k⃗ indeed decay exponentially with T. The rate of decay,
however, can be very small for large L, because the lowest
momenta have magnitude 2π=L. Thus it is not obvious that
the difference between finite T and infinite T can be
neglected, even if one just focusses on σcontðimÞ. More
importantly, there are poles in σcontðiyÞ for y ¼ ωk (for
some k⃗) as the k0 pole in I moves down to the real axis.
These poles mean that −p2

0 ¼ y2 ¼ m2 þ σcontðiyÞ can
have multiple solutions, so there are multiple poles in
the momentum space propagator G̃ðp0Þ, as we have seen in
Fig. 20. If the higher poles are close to y ¼ m [as in Fig. 20
(middle)], or the y ≈m pole is absent entirely [as in Fig. 20
(right)], σcontðimÞ will have little to do with the finite-T
mass correction. Unfortunately, it is likely that the generic
case will be like routing B rather than routing A—it seems
to be an accident that with routing A no p0 dependence
appears in the denominator of our integrand, so that
σAcontðp0Þ is a simple (quadratic) polynomial in p0.
Finally, as an estimate of how important these effects are

for the actual simulation data, we study the routing
dependence of the self energy at p0 ¼ im, coming from

FIG. 21. Relative size of the routing dependence of the self-
energy contribution at p0 ¼ im of the sunset graph, for the same
data at 0.12 fm that was presented in Fig. 9. The red squares are
for “kaon” points; the blue diamonds, for “pion” points. For the
three leftmost diamonds and the three leftmost squares, where no
deviation from 0 is visible, the actual deviation varies between
≈5 × 10−5 and ≈1 × 10−4.

18Note that the extra term δt;þFVðmL;mTÞ for QEDTL, given in
Eq. (67), is not negligible for any of our data.
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the photon sunset graph and 00 component of the
photon tadpole. (As elsewhere in this Appendix, the spatial
part of the photon tadpole is not included because it has no
routing dependence.) In Fig. 21, we plot the ratio of
ΔσðimÞ=σAcontðimÞ vs mL for the data shown in Fig. 9

above. As expected from the above discussion, the depend-
ence increases with mL for fixed mT, and decreases with
mT for fixed mL. Note that, even though mT is large, the
routing dependence is not negligible for much for our data,
and approaches 50% for the largest values of mL.
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