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We perform a precision computation of hybrid static potentials with quantum numbers Λϵ
η ¼ Σ−

g ;Σþ
u ;

Σ−
u ;Πg;Πu;Δg;Δu using SU(3) lattice gauge theory. The resulting potentials are used to estimate masses

of heavy c̄c and b̄b hybrid mesons in the Born-Oppenheimer approximation. Part of the lattice gauge
theory computation, which we discuss in detail, is an extensive optimization of hybrid static potential
creation operators. The resulting optimized operators are expected to be essential for future projects
concerning the computation of three-point functions as e.g., needed to study spin corrections, decays or the
gluon distribution of heavy hybrid mesons.
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I. INTRODUCTION

The success of the quark model, following the realization
of the importance of SU(3) flavor symmetry in the context
of the eightfold way, led to understanding the properties of
a large number of mesons and baryons. However, the quark
model does not contain gluons. In the framework of QCD,
it is, thus, of utmost importance to investigate and to
understand what kind of additional hadronic states or
resonances can appear, when gluons are allowed to be in
excited states. In this work, we are particularly interested in
heavy hybrid mesons, i.e., in mesons composed of heavy c
or b quarks, where gluons contribute to the quantum
numbers JPC in a nontrivial way.
With the discovery of the first of the so-called XYZ

mesons around fifteen years ago, the Xð3872Þ, an
entirely new chapter of hadronic physics was opened
and flourished. At present, there are about thirty such
exotic states, which have been observed (for a theoretical
summary cf. e.g., [1–4], for an experimental review
cf. e.g., [5]). Many of these exotic states are believed to
be tetraquark resonances, but some of them are also
being considered as candidates for hybrid mesons. It is
very challenging to understand the internal structure of
exotic hadrons, and even though there is little doubt that
hybrid mesons and baryons exist, not much else is
known about them.

It is a notable feature of hybrid mesons that, due to
their excited gluonic degrees of freedom, part of them
have JPC quantum numbers, which are forbidden in the
quark model.1 In this sense, observing a meson with JPC ¼
0þ−; 0−−; 1−þ; 2þ−;… indicates an exotic structure, pos-
sibly the presence of excited gluons.
Obtaining solid results for exotic hadrons is highly

nontrivial, both on the theoretical and on the experimental
side. There is currently a lot of experimental activity in the
field of exotic hadrons, but even the exact attribution of the
JPC quantum numbers is difficult for many of the exper-
imentally observed XYZ states. Moreover, up until now all
experimentally observed heavy candidates for hybrid mes-
ons exhibit nonexotic quantum numbers, which makes
theoretical investigations of their properties even more
important. There are a few exotic states, which could be
heavy hybrid mesons, the most prominent candidate being
the Yð4260Þ with quantum numbers JPC ¼ 1−−, but there
are also arguments disfavoring a hybrid identification
(cf. e.g., the discussions in [6,7]). Several existing and
future experiments will be taking data in the next couple of
years (e.g., the GlueX and the PANDA experiment) and,
thus, many more candidates for hybrid mesons are likely to
be discovered. On the theoretical side models devised to
explain the properties of exotic hadrons typically possess a
limited applicability and there is no overall coherent
theoretical picture of these hadrons. Lattice field theory,
however, which is a nonperturbative first principles
approach, is an ideal method to predict masses or to
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1In the quark model, P ¼ ð−1ÞLþ1 and C ¼ ð−1ÞLþS for a
meson, where L ∈ f0; 1; 2;…g is the orbital angular momentum
and S ∈ f0; 1g is the quark spin.
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explore properties of hybrid mesons. Such results might
also be useful as input for effective theories like pNRQCD
or to calibrate or devise improved theoretical models.
In this work, we carry out a precise computation of

several hybrid static potentials using SU(3) lattice gauge.
Gluonic excitations are included by considering trial states
containing a static quark-antiquark pair and gluons, which
are characterized by nontrivial quantum numbers, i.e.,
orbital angular momentum, parity or charge conjugation.
Our aim is to improve on existing similar lattice field theory
computations [8–33]) by providing results with smaller
statistical errors and at finer spatial resolution (Sec. V) and
by discussing all technical details of the optimization of
creation operators and the computation of the potentials
(Sec. II–IV). The latter is a necessary and important
preparatory step for the computation of three-point func-
tions, which we recently started, and which we briefly
discuss in our conclusions in Sec. VII.
We also use some of the resulting hybrid static potentials

to estimate masses of heavy-quark hybrid mesons, where
the quarks are either c̄c or b̄b (Sec. VI). This is done in the
Born-Oppenheimer approximation [34], where effects from
the quark spins are neglected, by numerically solving an
appropriate Schrödinger equation. This is expected to be
a good approximation, because the time scales of the
gluons and of the heavy charm or bottom quarks are
significantly different and, thus, their dynamics decouples
almost completely. In this context also, effective theory
approaches like potential nonrelativistic QCD (pNRQCD)
are extremely useful, e.g., when parametrizing discrete
lattice field theory results for hybrid static potentials by
continuous functions (for recent pNRQCD articles on
hybrid mesons cf. e.g., [7,35,36]).

II. QUANTUM NUMBERS AND TRIAL STATES

A hybrid static potential is a potential of a static quark
and a static antiquark, where the gluons form nontrivial
structures and contribute to the quantum numbers. We
compute such hybrid static potentials from Wilson looplike
correlation functions using SU(3) lattice gauge theory. The
gluonic excitations are realized by replacing the straight
spatial Wilson lines of the Wilson loops by parallel
transporters, which have a less trivial structure.
We put the static quark and the static antiquark, which

we treat as spinless color charges, at positions rQ ¼
ð0; 0;þr=2Þ and rQ̄ ¼ ð0; 0;−r=2Þ, respectively, i.e., sep-
arate them along the z axis. In the following, we omit the x
and the y coordinate, e.g., Qðþr=2Þ≡Qð0; 0;þr=2Þ.
Hybrid static potentials are characterized by the follow-

ing quantum numbers:
(i) Λ ¼ 0; 1; 2;…, the absolute value of the total

angular momentum with respect to the axis of
separation of the static quark-antiquark pair, i.e.,
with respect to the z axis.

(ii) η ¼ þ;−, the eigenvalue corresponding to the oper-
ator P∘C, i.e., the combination of parity and charge
conjugation.

(iii) ϵ ¼ þ;−, the eigenvalue corresponding to the oper-
ator Px, which denotes the spatial reflection along
the x axis, which is perpendicular to the axis of
separation of the static quark-antiquark pair.

It is conventional to write Λ ¼ Σ;Π;Δ instead of Λ ¼ 0,
1, 2 and η ¼ g, u instead of η ¼ þ;−.
Note that for angular momentum Λ > 0 the spectrum is

degenerate with respect to ϵ ¼ þ and ϵ ¼ −. The labeling
of states is thus Λϵ

η for Λ ¼ 0 ¼ Σ and Λη for Λ > 0. For a
more detailed discussion of those quantum numbers,
cf. e.g., [37,38].

A. Angular momentum Λ
We start in the continuum and consider hybrid static

potential creation operators and trial states

jΨhybridiS;Λ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
trial state

¼
Z

2π

0

dφ expðiΛφÞRðφÞOS|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
creation operator

jΩi; ð1Þ

where jΩi is the vacuum and RðφÞ denotes a rotation by an
angle φ around the z axis. Moreover,

OSjΩi ¼ Q̄ð−r=2ÞUð−r=2; r1ÞSðr1; r2Þ
×Uðr2;þr=2ÞQðþr=2ÞjΩi; ð2Þ

where Qðþr=2Þ and Q̄ð−r=2Þ are operators creating a
spinless quark-antiquark pair and Uð−r=2; r1ÞSðr1; r2Þ×
Uðr2;þr=2Þ is a parallel transporter connecting the quark
and the antiquark in a gauge invariant way. Uð−r=2; r1Þ
and Uðr2;þr=2Þ denote straight parallel transporters along
the z axis (in the simplest case r1 ¼ −r=2 and r2 ¼ þr=2,
i.e., Uð−r=2; r1Þ ¼ Uðr2;þr=2Þ ¼ 1), while the operator
Sðr1; r2Þ is different from a straight line and, thus,
generates a gluonic excitation. It is easy to show that
the trial state (1) has definite angular momentum Λ (see
appendix A).
The corresponding lattice expression is

jΨhybridiS;Λ ¼
X3
k¼0

exp

�
iπΛk
2

�
R

�
πk
2

�
OSjΩi; ð3Þ

where the angle of rotation is restricted to multiples of π=2
and Uð−r=2; r1Þ, Sð−r=2;þr=2Þ and Uðr2;þr=2Þ are
products of gauge links. For example, for Λ ¼ 1,

jΨhybridiS;Λ¼1 ¼
�
1þ iR

�
π

2

�
− RðπÞ − iR

�
3π

2

��
OsjΩi;

ð4Þ
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i.e., one has to compute Wilson loops, where each of the
straight spatial Wilson lines is replaced by a sum over the
four rotations of the operators O with weight factors þ1,
þi, −1 and −i.
Note that, due to the restriction to cubic rotations, the

lattice trial states do not have definite angular momentum.
They receive contributions from an infinite number of
angular momentum sectors as follows (for details cf. stan-
dard textbooks on group theory, e.g., [39]):

(i) Λ ¼ Σ corresponds to absolute angular momenta
f0; 4; 8; 12;…g,

(ii) Λ ¼ Π corresponds to absolute angular momenta
f1; 3; 5; 7;…g,

(iii) Λ ¼ Δ corresponds to angular momenta
f2; 6; 10; 14;…g.

B. P∘C and Px quantum numbers η and ϵ

It is straightforward to show

ðP∘CÞOSjΩi ¼ ðP∘CÞQ̄ð−r=2ÞUð−r=2; r1ÞSðr1; r2Þ
× Uðr2;þr=2ÞQðþr=2ÞjΩi

¼ Q̄ð−r=2ÞUð−r=2;−r2ÞSP∘Cð−r2;−r1Þ
× Uð−r1;þr=2ÞQðþr=2ÞjΩi; ð5Þ

where SP∘Cð−r2;−r1Þ is the charge conjugated spatial
reflection of Sðr1; r2Þ with respect to the center of the
separation axis. Consequently, one has to include both S
and SP∘C in the final operator, to obtain a trial state with
definite η. Similarly,

PxOSjΩi ¼ PxQ̄ð−r=2ÞUð−r=2; r1ÞSðr1; r2ÞUðr2;þr=2Þ
×Qðþr=2ÞjΩi

¼ Q̄ð−r=2ÞUð−r=2; r1ÞSPx
ðr1; r2ÞUðr2;þr=2Þ

×Qðþr=2ÞjΩi; ð6Þ
where SPx

ðr1; r2Þ is the spatial reflection of Sðr1; r2Þ along
the x axis.
To construct a trial state, which has definite quantum

numbers Λϵ
η, we take the state (3), which has angular

momentum Λ, and project that state onto the subspace of
eigenstates of the operators P∘C and Px characterized by η
and ϵ, respectively:

jΨhybridiS;Λϵ
η
¼ PPC;ηPPx;ϵjΨhybridiS;Λ
¼ 1

4
ð1þ ηðP∘CÞ þ ϵPx þ ηϵðP∘CÞPxÞ

×
X3
k¼0

exp

�
iπΛk
2

�
R

�
πk
2

�
OSjΩi

¼ Q̄ð−r=2ÞaS;Λϵ
η
ð−r=2;þr=2ÞQðþr=2ÞjΩi

ð7Þ
with projectors

PPC;η ¼
1

2
ð1þ ηðP∘CÞÞ; PPx;ϵ ¼

1

2
ð1þ ϵPxÞ ð8Þ

and

aS;Λϵ
η
ð−r=2;þr=2Þ ¼ 1

4

X3
k¼0

exp

�
iπΛk
2

�
R

�
πk
2

�
ðUð−r=2; r1ÞðSðr1; r2Þ þ ϵSPx

ðr1; r2ÞÞUðr2;þr=2Þ

þ Uð−r=2;−r2ÞðηSP∘Cð−r2;−r1Þ þ ηϵSðP∘CÞPx
ð−r2;−r1ÞÞUð−r1;þr=2ÞÞ: ð9Þ

Notice that not every operator Sðr1; r2Þ is suited to
construct trial states for any given set of quantum numbers
Λϵ
η ¼ Λ0ϵ0

η0 , i.e., for some Λ0ϵ0
η0 the trial state defined in (7) is

zero, jΨhybridiS;Λ0ϵ0
η0
¼ 0. Also note, that even though sectors

with Λ ≥ 1 (i.e., in this work the Π and the Δ sectors) are
degenerate with respect to the quantum number ϵ, creation
operators constructed via Eq. (7) with either ϵ ¼ þ or
ϵ ¼ −might be different, i.e., yield nonidentical correlation
functions. In such cases, it is important to consider the
ϵ ¼ þ and ϵ ¼ − operators as separate creation operators,
when identifying an optimal set of creation operators
for each correlation matrix (cf. Sec. IV C; an example is
the Πg sector, when using SIV;1). In practice, we use Eq. (7)
to automatically generate creation operators with definite
quantum numbers Λϵ

η from all considered operators
Sðr1; r2Þ (cf. Fig. 1 for a graphical illustration of an
example).

C. Correlation functions

We determine hybrid static potentials with quantum
numbers Λϵ

η, which we denote by VΛϵ
η
ðrÞ, from the asymp-

totic exponential behavior of temporal correlation functions

WS;S0;Λϵ
η
ðr; tÞ ¼ hΨhybridðtÞjS;Λϵ

η
jΨhybridð0ÞiS0;Λϵ

η

∼t→∞ expð−VΛϵ
η
ðrÞtÞ: ð10Þ

Expressing Eq. (10) in terms of a path integral and perform-
ing the integration over the static quarks leads to

WS;S0;Λϵ
η
ðr; tÞ ¼ hTrðaS0;Λϵ

η
ð−r=2;þr=2; 0ÞUðþr=2; 0; tÞ

× ðaS;Λϵ
η
ð−r=2;þr=2; tÞÞ†Uð−r=2; t; 0ÞÞiU;

ð11Þ
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where Uðr; t1; t2Þ denotes a straight line of temporal gauge
links at r from time t1 to t2 and h…iU is the average on an
ensemble of gauge link configurations distributed according
to e−S. The right-hand side of this equation can be computed
using standard techniques from lattice field theory as briefly
summarized in Sec. III.

III. LATTICE SETUP

All computations presented in this work have been
performed using SU(3) lattice gauge theory. The gauge
link configurations have been generated with the standard
Wilson gauge action (cf. standard textbooks on lattice field
theory, e.g., [40]) and the Chroma QCD library [41]. Since
we are considering purely gluonic observables, we expect
that there is little difference between our SU(3) Yang-Mills
results and corresponding results in full QCD (cf. also the
discussion of systematic errors at the end of Sec. VI B
and [21]).
In this work, we use a single ensemble with lattice extent

243 × 48 and gauge coupling β ¼ 6.0 corresponding to
lattice spacing a ≈ 0.093 fm and spacetime volume
≈ð2.22 fmÞ3 × 4.44 fm, when identifying r0 with 0.5 fm
(for a determination of r0 cf. Sec. VI A). The gauge link
configurations are separated by 20 lattice updates, where
each update comprises a heatbath and four over-relaxation
steps. We have performed standard binning analyses with
bins containing either 1, 2 or 4 gauge link configurations. We
have found that the statistical errors of the Σþ

g potential are
essentially independent of the bin size, which indicates that

performing 20 lattice updates largely eliminates correlations
in Monte Carlo time. For the final results for hybrid static
potentials presented in Sec. V and Table VIII, we have
generated more than 5 500 gauge link configurations. During
the time-consuming optimization of hybrid static potential
creation operators and trial states discussed in Sec. IV, we
use a subset of 100 gauge link configurations, to reduce the
computational effort to an acceptable level.
To improve the signal quality, standard smearing tech-

niques are applied to the gauge links of the Wilson looplike
correlation functions (10). The temporal gauge links in
Uðr; t1; t2Þ are HYP2 smeared gauge links [42–44], which
lead to a reduced self energy of the static quarks and,
consequently, to smaller statistical errors. The spatial gauge
links in aS;Λϵ

η
ðr1; r2; tÞ are APE smeared gauge links (for

detailed equations cf. e.g., [45]), where the parameters are
tuned to optimize the ground state overlaps (cf. Sec. IV B)
and, thus, allow us to extract the potentials at smaller
temporal separations.
All statistical errors shown and quoted throughout this

paper, e.g., for the hybrid static potentials in Sec. V or the
potential parametrizations and hybrid meson masses in
Sec. VI, are determined via an evolved jackknife analysis
starting at the level of the correlation matrices. To exclude
statistical correlations between gauge link configurations,
which are close in Monte Carlo simulation time, we
perform a suitable binning of these configurations.

IV. OPTIMIZATION OF HYBRID STATIC
POTENTIAL CREATION OPERATORS

AND TRIAL STATES

Since the signal-to-noise ratio of correlation functions
(10) decreases exponentially with respect to the temporal
separation, it is essential to identify hybrid static potential
creation operators, which generate trial states with large
ground state overlap. This allows us to extract hybrid static
potentials at rather small temporal separations, where the
signal-to-noise ratio is favorable.
The starting point is a large set of quite distinct operators

S, some of them simple, others of more complicated shape,
which are shown in Fig. 2. All these operators extend over
regions, which are of the same order as the quark-antiquark
separation. This is quite different from our previous
exploratory study in SU(2) Yang-Mills theory [29], where
we used local chromoelectric and chromomagnetic field
strength insertions. While the latter are theoretically easier
to handle and thus are quite common in analytical studies,
e.g., based on pNRQCD [7], the extended operators we are
using here are much better suited for numerical lattice field
theory studies, because they lead to trial states with larger
ground state overlaps and, thus, to results with significantly
smaller statistical errors.
The operators S can be categorized into planar operators,
(I) where gauge links parallel to the z axis are ex-

clusively pointing in positive z direction (as before

FIG. 1. Terms appearing in the construction of the trial state
via Eq. (7) for an exemplary operator Sð−r=2;þr=2Þ (top left).
The columns correspond to rotations of the operator around the
separation axis, while the rows correspond to applications of P∘C
and Px. Red lines represent gauge link variables, red spheres the
quark and the antiquark and black dots lattice sites.
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the static quark-antiquark pair is separated along the
z axis),

(II) with gauge links parallel to the z axis both in
positive and negative z direction, and into nonplanar
operators,

(III) without closed loops,
(IV) with closed loops,
(V) with spiral-like structures.

Some of these operators, e.g., SI;1, SI;3, SIII;1, SIII;2, SIII;4,
SIII;5, SIV;1, SIV;2, SIV;3, SIV;5 and SV;2 were already used in
previous lattice field theory studies of hybrid mesons,
e.g., in [13], while other operators are explored for the
first time in this work. From these operators we construct a
large number of different trial states jΨhybridiS;Λϵ

η
using

Eqs. (7)–(9).
To check, whether a trial state jΨhybridiS;Λϵ

η
has large

ground state overlap, we compute the effective mass

Veff;S;Λϵ
η
ðr; tÞa ¼ ln

�
WS;S;Λϵ

η
ðr; tÞ

WS;S;Λϵ
η
ðr; tþ aÞ

�
ð12Þ

at small temporal separations, in particular at t ¼ a, where
contributions of excited states are most prominent. Small
effective masses indicate trial states with large ground state
overlaps, while operators leading to large effective masses
can be discarded. In the following, we discuss in detail,
how we identify and optimize a small set of relevant
operators S for each hybrid static potential sector Λϵ

η.

A. Optimization of the extents of the operators S

In a first step, we consider each of the operators S
shown in Fig. 2 separately and optimize their extents for
each hybrid potential sector Λϵ

η. In other words, for each
arrow in Fig. 2, we determine the number of gauge links it

FIG. 2. Operators S used to generate trial states jΨhybridiS;Λϵ
η
according to Eqs. (7)–(9). Each arrow represents a straight path of gauge

links. Arrows with the same color (red, green or blue) have the same length, i.e., represent the same number of gauge links. Dotted
arrows can have length zero, while solid arrows represent at least one gauge link. If the starting point and the end point of S are marked
by black dots, Uð−r=2; r1Þ and Uðr2;þr=2Þ in Eq. (2) have the same length, i.e., r1 − ð−r=2Þ ¼ þr=2 − r2, else their length can be
different. n ∈ f1; 2; 4g is the number of differently oriented operators (i.e., operators, which cannot be transformed into each other by
rotations around the z axis) obtained by applying P∘C, Px and ðP∘CÞPx.
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represents, such that the ground state overlap of the
corresponding trial state is maximal.
As an example we briefly discuss the optimization of the

operator SI;1 for the Πu hybrid static potential. Variations of

SI;1 are denoted by S
Ex;Ez
I;1 , where Ex and Ez are the operator

extents in units of the lattice spacing in the x direction and
the z direction, respectively. To keep the computational cost
of the optimization on a feasible level, we first determine
the optimal value for Ex and after that the optimal value for
Ez. Figure 3 shows that the optimal value for Ex weakly
depends on the separation of the quark-antiquark pair r.

For r=a ≤ 3, the operator extent Ex ¼ 2 minimizes the
effective mass Veff;SEx;EzI;1 ;Πu

ðr; t ¼ aÞ and, thus, the corre-

sponding trial state has better overlap to the ground state in
theΠu sector than trial states generated with Ex ∈ f1; 2; 4g.
Similarly, for r=a ≥ 4 the operator with extent Ex ¼ 3
minimizes Veff;SEx;EzI;1 ;Πu

ðr; t ¼ aÞ and, thus, maximizes the

ground state overlap. Since operator extents Ex ∈ f1; 4g do
not minimize Veff;SEx;EzI;1 ;Πu

ðr; t ¼ aÞ for any of the consid-

ered quark-antiquark separations r, they are discarded.
In Fig. 4, we show an analogous comparison of effective

0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

2 3 4

FIG. 3. Investigation of the dependence of Veff;SEx;Ez¼r=a
I;1 ;Πu

ðr; t ¼ aÞ on Ex. Red spheres, red arrows, and black dots represent quarks,
gauge links and lattice sites, respectively.

FIG. 4. Investigation of the dependence of Veff;SEx;EzI;1 ;Πu
ðr; t ¼ aÞ on Ez (Ex ∈ f2; 3g, the optimum according to Fig. 3). Red spheres,

red arrows, and black dots represent quarks, single gauge links and lattice sites, respectively.
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masses Veff;SEx;EzI;1 ;Πu
ðr; t ¼ aÞ for different Ez and the

previously optimized Ex ∈ f2; 3g. We find that the opti-
mum is Ez ¼ r=a independent of r and Ex, i.e., the z extent
of operator SI;1 should be identical to the quark-antiquark
separation, when used to compute the ground state hybrid
static potential in the Πu sector.

All 19 operators S shown in Fig. 2 are optimized for each
sector Λϵ

η and each separation r in a similar way. In the
majority of cases, more than two extents have to be
optimized.

B. Optimization of APE smearing parameters

To further improve the ground state overlap of the trial
states, we use APE smeared spatial gauge links in
aS;Λϵ

η
ðr1; r2; tÞ in (11). For detailed equations, cf. e.g.,

[45]. We set αAPE ¼ 0.5, which is a common choice in
the literature and we investigate the dependence of
Veff;S;Λϵ

η
ðr; t ¼ aÞ on the number of APE smearing steps

NAPE. An example plot for operator S1;r=aI;1 and the Πu

hybrid static potential is shown in Fig. 5. While there is a
significant increase of the ground state overlap, when
increasing NAPE from 0 to around 20, there is no further
gain, when using NAPE > 20. This behavior is observed
for various quark antiquark separations r ¼ 2a;…; 8a.
Similar findings are obtained also for the other operators
S shown in Fig. 2 and for all sectors Λϵ

η. Therefore, we use
NAPE ¼ 20 for all computations presented throughout
this paper.

FIG. 5. Investigation of the dependence of Veff;S1;r=aI;1 ;Πu
ðr; t ¼ aÞ

on the number of APE smearing steps NAPE.

TABLE I. Optimized creation operators for VΣ−
g
ðrÞ.

Σ−
g

SIII;1 ¼ U2
xU2

yU
Ez
z U2

−yU2
−x

r=a 2 3 4 5 6 7 8 9 10 11 12

Ez 2 3 4 5 6 7 8 9 10 11 12

SIII;2 ¼ U2
xU2

yU
Ez;1
z U2

−yU2
−xU

Ez;2
z U2

−xU2
−yU

Ez;1
z U2

yU2
x

r=a 2 3 4 5 6 7 8 9 10 11 12

Ez;1 1 1 2 2 3 3 4 4 5 5 6
Ez;2 0 1 0 1 0 1 0 1 0 1 0

SIII;4 ¼ U2
xU2

yU
Ez;1
z U2

−yU2
−xU

Ez;2
z

r=a 2 3 4 5 6 7 8 9 10 11 12

Ez;1 1 1 2 2 3 3 4 4 5 5 6
Ez;2 1 2 2 3 3 4 4 5 5 6 6
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C. Selecting optimal sets of trial states

To further improve the ground state overlaps of the trial
states, we resort to variational techniques for our final
analyses in Sec. V. For each sector Λϵ

η, we use an “optimal
set” of operators S, compute the corresponding correlation
matrix (11) and solve generalized eigenvalue problems
(see e.g., [46,47]). In this way, the static potentials are
determined using an optimized linear combination of
creation operators. To keep the computational effort on
an acceptable level, we have restricted these variational
analyses to the three or four most promising operators S for
each sector Λϵ

η and separation r.
To select these operators, we have first performed an

optimization of the extents of each operator as discussed in
Sec. IVA. We have then taken those three or four operators,
which yield the smallest effective masses (12) at t ¼ a.
Results are collected in Table I–VII. Each table corresponds
to another hybrid static potential Λϵ

η. The operators are
sketched in the left column of each table. In two cases
(Λϵ

η ¼ Σþ
u and Λϵ

η ¼ Πg, i.e., Tables II and IV), not only the
extents, but also the operators S change with the separation
r, indicated by “� � �”. The operators are also defined
mathematically in the tables. For example, the left-hand
side of USU ¼ U2

xU2
yU

Ez
z U2

−yU2
−x (first line of Table I)

represents Uð−r=2; r1ÞSðr1; r2ÞUðr2;þr=2Þ from Eq. (9),
while the right-hand side denotes 2 links in positive x
direction, 2 links in positive y direction, Ez links in positive
z direction (where Ez as a function of r is listed directly
below), 2 links in negative y direction, 2 links in negative x
direction.

V. LATTICE FIELD THEORY RESULTS FOR
HYBRID STATIC POTENTIALS

We compute the ground state hybrid static potential for
each of the sectors Λϵ

η ¼ Σ−
g ;Σþ

u ;Σ−
u ;Πg;Πu;Δg;Δu as well

as the ground state and first excited static potential for the
sector Λϵ

η ¼ Σþ
g . The latter is in the same energy region as

the ground state hybrid static potentials and of particular
interest, since it is expected to become degenerate with the
Πg hybrid static potential in the limit of small quark-
antiquark separations r. For these computations, we use
correlation matrices

Cj;k;Λϵ
η
ðr; tÞ ¼ WSj;Sk;Λϵ

η
ðr; tÞ: ð13Þ

(i) Σ−
g , Σþ

u , Σ−
u , Πu: 3 × 3 correlation matrices with

operators as specified in Tables I–III and V.

TABLE II. Optimized creation operators for VΣþ
u
ðrÞ.

Σþ
u

SI;3 ¼ U4
xU

Ez;1
z U4

−xU
Ez;2
z

r=a 2 3 4 5 6 7 8 9 10 11 12

Ez;1 � � � � � � � � � � � � 2 2 3 3 3 4 4
Ez;2 � � � � � � � � � � � � 4 5 5 6 7 7 8

SII;2 ¼ UEz
z U2

xU3
zU−xU2

−zU−xUz

r=a 2 3 4 5 6 7 8 9 10 11 12

Ez 0 1 2 3 � � � � � � � � � � � � � � � � � � � � �

SII;3 ¼ UEz;1
z UxU2

−zU2
xU4

zU2
−xU2

−zU−xU
Ez;2
z

r=a 2 3 4 5 6 7 8 9 10 11 12

Ez;1 0 0 0 0 1 1 1 1 2 2 2
Ez;2 2 3 4 5 5 6 7 8 8 9 10

SIII;4 ¼ U4
xU2

yU
Ez;1
z U2

−yU4
−xU

Ez;2
z

r=a 2 3 4 5 6 7 8 9 10 11 12

Ez;1 1 2 2 3 3 4 4 5 5 6 6
Ez;2 1 1 2 2 3 3 4 4 5 5 6
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(ii) Πg,Δg,Δu: 4 × 4 correlation matrices with operators
as specified in Tables IV, VI and VII.

(iii) Σþ
g (ground state): ordinary Wilson loops, i.e., 1 × 1

correlation matrices.
(iv) Σþ

g (first excitation): 3 × 3 correlation matrices with
the same operators Sj as for Σþ

u (cf. Table II).
We solve generalized eigenvalue problems,

CΛϵ
η
ðr; tÞvðnÞðr; t; t0Þ ¼ λðnÞðr; t; t0ÞCΛϵ

η
ðr; t0ÞvðnÞðr; t; t0Þ;

ð14Þ

with t0 ¼ a and n ¼ 0; 1;… (we sort the resulting eigen-
values according to λð0Þðr; t; t0Þ > λð1Þðr; t; t0Þ > …; for
details concerning the generalized eigenvalue problem
cf. e.g., [47] and references therein). The resulting “effec-
tive potentials,”

VðnÞ
eff;Λϵ

η
ðr; t; t0Þ ¼ ln

λðnÞðr; t; t0Þ
λðnÞðr; tþ a; t0Þ

; ð15Þ

are constant with respect to t for sufficiently large t within

statistical errors. The plateau values of Vð0Þ
eff;Λϵ

η
ðr; t; t0Þ

correspond to the ground state potentials VΛϵ
η
ðrÞ and we

extract them by fitting a constant to Vð0Þ
eff;Λϵ

η
ðr; t; t0Þ for each

r in the range tmin ≤ t ≤ tmax. Similarly, we determine the

first excitation V 0
Σþ
g
ðrÞ from Vð1Þ

eff;Λϵ
η
ðr; t; t0Þ. In principle, we

could determine the first excitations of the hybrid static
potentials in the same way, but since statistical errors for
these excitations are quite large, we decided not to include
the corresponding results in this work.
We choose tmin sufficiently large to guarantee a strong

suppression of excited states. On the other hand, statistical
errors of effective potentials are smaller at smaller t.
Consequently, the statistical error on VΛϵ

η
ðrÞ will be

smaller, when using smaller tmin. We have implemented
the following algorithm with the intention to automatically
determine tmin and tmax for each of the static potentials and
each r in a fair way.

(i) t0min is the minimal t, where Veff;Λϵ
η
ðr; t; t0Þ and

Veff;Λϵ
η
ðr; tþ a; t0Þ differ by less than 2σ.

(ii) t0max ¼ 9a, the maximum t, where correlation func-
tions have been computed.

(iii) Fit constants VΛϵ
η
ðrÞ to Veff;Λϵ

η
ðr; t; t0Þ for all

ranges tmin…tmax with t0min ≤ tmin, tmax ≤ t0max and

TABLE III. Optimized creation operators for VΣ−
u
ðrÞ.

Σ−
u

SIV;2 ¼ UEz;1
z U3

xU3
yU3

−xU3
−yU

Ez;2
z U3

xU3
yU3

−xU3
−yU

Ez;1
z

r=a 2 3 4 5 6 7 8 9 10 11 12

Ez;1 0 0 0 1 1 2 2 3 3 4 4
Ez;2 2 3 4 3 4 3 4 3 4 3 4

SIV;3 ¼ UEz;1
z UxU2

−yU2
xU4

yU2
−xU2

−yU−xU
Ez;2
z UxU2

−yU2
xU4

yU2
−xU2

−yU−xU
Ez;1
z

r=a 2 3 4 5 6 7 8 9 10 11 12

Ez;1 0 0 0 1 1 1 2 2 2 3 3
Ez;2 2 3 4 3 4 5 4 5 6 5 6

SV;1 ¼ UEz;1
z U3

xU3
yU

Ez;2
z U3

−xU3
−yU

Ez;1
z

r=a 2 3 4 5 6 7 8 9 10 11 12

Ez;1 0 0 0 1 1 1 2 2 2 3 3
Ez;2 2 3 4 3 4 5 4 5 6 5 6
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tmax − tmin ≥ 2a. Results with χ2red > 1.0 are dis-
carded, where χ2red denotes the uncorrelated reduced
χ2 of the corresponding fit. If all fits yield χ2red > 1.0,
keep that one with the smallest χ2red and discard all
others.

(iv) As final result for VΛϵ
η
ðrÞ, take the fit result corre-

sponding to the longest plateau, i.e., with maximum
tmax − tmin. If there are several fit results with the
same maximum tmax − tmin, take the fit result with
the smallest tmin.

We have checked each of the resulting fitting ranges and
corresponding plateau fits and have found that in almost all

cases the algorithm decided for a reasonable range
tmin…tmax. Only in very few cases (less than 5%) one gets
the impression that there is a slight mismatch between the
range tmin…tmax determined by the algorithm and the
plateau region. In these cases, we have changed tmin
manually by either þa or −a.
To illustrate the quality of our numerical data and

the automatic determination of fitting ranges, we show
effective potentials for all eight sectors Λϵ

η ¼ Σþ
g ;Σ−

g ;
Σþ
u ;Σ−

u ;Πg;Πu;Δg;Δu for separations r=a ¼ 2, 5, 8 in
Fig. 6. The fitting ranges tmin…tmax are indicated by
red lines.

TABLE IV. Optimized creation operators for VΠg
ðrÞ. Note that, even though the Πg hybrid potential is degenerate with respect to ϵ, the

construction of creation operators via Eq. (7) is not independent of ϵ; the optimized set of creation operators corresponds to ϵ ¼ − as
indicated by Π−

g in the first line of the table.

Π−
g

SI;3 ¼ UEx
x UEz

z UEx
−xUz

r=a 2 3 4 5 6 7 8 9 10 11 12

Ex � � � � � � 3 3 3 2 2 2 2 2 2
Ez � � � � � � 3 4 5 6 7 8 9 10 11

SII;2 ¼ UEz
z U2

xU3
zU−xU2

−zU−xUz

r=a 2 3 4 5 6 7 8 9 10 11 12

Ez 0 1 2 3 4 5 6 7 8 9 10

SII;3 ¼ UEz;1
z UxU2

−zU
Ex
x U4

zU
Ex
−xU2

−zU−xU
Ez;2
z

r=a 2 3 4 5 6 7 8 9 10 11 12

Ez;1 0 0 0 0 0 1 1 1 1 1 1
Ex 1 1 2 2 2 2 2 2 2 2 2
Ez;2 2 3 4 5 6 6 7 8 9 10 11

SIV;2 ¼ UEz;1
z U3

xU3
yU3

−xU3
−yU

Ez;2
z U3

xU3
yU3

−xU3
−yU

Ez;1
z

r=a 2 3 4 5 6 7 8 9 10 11 12

Ez;1 0 0 1 1 1 2 2 2 3 3 3
Ez;2 2 3 2 3 4 3 4 5 4 5 6

SIV;3 ¼ UEz;1
z UxU2

−yU2
xU4

yU2
−xU2

−yU−xU
Ez;2
z UxU2

−yU2
xU4

yU2
−xU2

−yU−xU
Ez;1
z

r=a 2 3 4 5 6 7 8 9 10 11 12

Ez;1 0 0 � � � � � � � � � � � � � � � � � � � � � � � � � � �
Ez;2 2 3 � � � � � � � � � � � � � � � � � � � � � � � � � � �
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The resulting hybrid static potentials are shown in units
of r0

2 together with the ordinary static potential and its first
excitation in Fig. 7. Separations r < 2a are not shown,
because such data points are known to exhibit strong lattice
discretization effects. The corresponding numbers VΛϵ

η
ðrÞ,

Λϵ
η ¼ Σþ

g ;Σ−
g ;Σþ

u ;Σ−
u ;Πg;Πu;Δg;Δu and V 0

Σþ
g
ðrÞ are col-

lected in Table VIII for future reference. This data might be
of interest for similar recent or future lattice studies as a
benchmark (cf. e.g., [32]) or as input for effective field
theories like pNRQCD and mass determinations of heavy
hybrid mesons (cf. e.g., [7,48]).
In the following, we compare our results from Figs. 6, 7

and Table VIII to a previous computation of hybrid static
potentials [15,16,18,19,22,23,25,28]. Even though this
computation was performed more than 15 years ago, the
resulting potentials are frequently used in current projects
(cf. e.g., [7,48]) and seem to be the most accurate lattice
field theory results for hybrid static potentials, which are
currently available. Unfortunately, the above references

correspond to rather short publications, where the result-
ing potentials are shown, but details are missing, e.g.,
tables containing numerical values, in particular error
bars, or effective mass plots. More detailed information is,
however, available on the webpage [49] of one of the
authors of the listed publications. Thus, the following
comparative discussion is to a large extent based on the
data collected at [49].
Both our computation as well as the computation from

[49] are done within pure SU(3) gauge theory, i.e., without
dynamical quarks. There are, however, several technical
differences.

(i) At [49] different lattice spacings are considered,where
the two finest spatial lattice spacings are a ≈ 0.12 fm
(denoted as Run A) and a ≈ 0.19 fm (denoted as Run
B). Our computation is done at a single lattice spacing,
which is somewhat smaller, a ≈ 0.093 fm.

(ii) The maximal separations provided at [49] are
r ¼ 12a ≈ 1.44 fm (Run A) and r ¼ 10a ≈ 1.90 fm
(Run B). In our computation, we considered sepa-
rations up to r ¼ 12a ≈ 1.12 fm.

(iii) We use the ordinary Wilson gauge action, i.e.,
lattices with the same lattice spacing in all four
spacetime dimensions. At [49] anisotropic lattices
are employed, where the temporal lattice spacing is

TABLE V. Optimized creation operators for VΠu
ðrÞ. Note that, even though the Πu hybrid potential is degenerate with respect to ϵ, the

construction of creation operators via Eq. (7) is not independent of ϵ; the optimized set of creation operators corresponds to ϵ ¼ þ as
indicated by Πþ

u in the first line of the table.

Πþ
u

SIII;1 ¼ UxU3
yU

Ez
z U3

−yU−x

r=a 2 3 4 5 6 7 8 9 10 11 12

Ez 2 3 4 5 6 7 8 9 10 11 12

SIII;4 ¼ UxU3
yU

Ez
z U3

−yU−xUz

r=a 2 3 4 5 6 7 8 9 10 11 12

Ez 1 2 3 4 5 6 7 8 9 10 11

SV;1 ¼ U2
xU2

yU
Ez
z U2

−xU2
−y

r=a 2 3 4 5 6 7 8 9 10 11 12

Ez 2 3 4 5 6 7 8 9 10 11 12

2We have plotted both the quark-antiquark separation r as well
as the static potentials VΛϵ

η
ðrÞ in units of r0 ¼ 0.5 fm (cf. also

Sec. VI A), to allow a straightforward comparison with the results
from [13,23], which are frequently used in recent publications.
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smaller by a factor of 3 (Run A) and 5 (Run B) than
the spatial lattice spacing.

(iv) We use a 243 × 48 lattice, i.e., the same number
of lattice sites in all three spatial directions. At [49]
the number of spatial lattice sites is larger in the
direction of the quark antiquark separation, than in
the two other directions, i.e., ð182×24Þ×54 (Run A)
and ð162 × 20Þ × 80 (Run B).

(v) We use HYP2 smeared temporal links, when com-
puting correlation functions (11), to reduce the
self energy of the static quarks. At [49] unsmeared
temporal links are used.

Comparing our effective potentials (Fig. 6) to those at
[49] in a meaningful way is difficult. Our effective
potentials are obtained from correlation matrices by solving
generalized eigenvalue problems, while at [49] optimized
correlation functions are used. Also the extraction of the
potentials is done in a different way. We fit constants at
larger temporal separations, where effective potentials are
consistent with a plateau, while at [49] sums of two
exponentials are fitted to the optimized correlation func-
tions including also data points at small temporal separa-
tions. Nevertheless, when comparing to [49]/Run A it seems

that our effective potentials start to be consistent with
plateaus at smaller temporal separations (in physical units)
for Λϵ

η ¼ Σ−
u ;Δg;Δu, at similar temporal separations for

Λϵ
η ¼ Σþ

u ;Σ−
g ;Πg and at larger temporal separations for

Λϵ
η ¼ Πu. This is most likely a consequence of different

operator sets used in this work and at [49]. While we have
documented our operator optimization in Sec. IV in detail,
equivalent information for the computation from [49] does
not seem to be available. Another observation is that
our plateaulike regions tend to be somewhat longer (in
physical units), which we attribute to the smaller self
energy of the static quarks due to the use of HYP2 smeared
temporal links.
The temporal separations, where effective potentials

start to be consistent with plateaus, are also reflected in
the statistical errors of the hybrid static potentials (cf.
Table VIII of this work and [49]). In comparison to [49]/
Run A, our statistical errors are smaller by a factor
≈1.5…2.0 for Λϵ

η ¼ Σ−
u ;Δg;Δu, similar for Λϵ

η ¼
Σþ
u ;Σ−

g ;Πg and larger by a factor ≈2.0 for Λϵ
η ¼ Πu.

[49]/Run B has slightly smaller statistical errors than
[49]/Run A, but the overall picture is the same.

TABLE VI. Optimized creation operators for VΔg
ðrÞ. Note that, even though theΔg hybrid potential is degenerate with respect to ϵ, the

construction of creation operators via Eq. (7) is not independent of ϵ; the optimized set of creation operators corresponds to ϵ ¼ þ as
indicated by Δþ

g in the first line of the table.

Δþ
g

SI;1 ¼ U5
xU

Ez
z U5

−x

r=a 2 3 4 5 6 7 8 9 10 11 12

Ez 2 3 4 5 6 7 8 9 10 11 12

SI;3 ¼ U5
xU

Ez;1
z UEx;1

−x UzU
Ex;2
−x UEz;2

z

r=a 2 3 4 5 6 7 8 9 10 11 12

Ez;1 1 2 3 4 4 5 6 7 8 9 10
Ex;1 1 1 1 2 2 2 3 3 3 3 3
Ex;2 4 4 4 3 3 3 2 2 2 2 2
Ez;2 0 0 0 0 1 1 1 1 1 1 1

SII;3 ¼ UEz;1
z U2

xU3
−zU

Ex
x U6

zU
Ex
−xU3

−zU2
−xU

Ez;2
z

r=a 2 3 4 5 6 7 8 9 10 11 12

Ez;1 0 0 1 1 2 2 2 3 3 3 4
Ex 2 2 2 2 3 3 3 3 3 3 3
Ez;2 2 3 3 4 4 5 6 6 7 8 8

SIII;1 ¼ UxU4
yU

Ez
z U4

−yU−x

r=a 2 3 4 5 6 7 8 9 10 11 12

Ez 2 3 4 5 6 7 8 9 10 11 12
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There is no obvious discrepancy for the majority of
potentials concerning their shape (cf. Fig. 7 of this work
and e.g., Fig. 2 in [23]). Clearly visible differences can
be observed for VΠg

ðrÞ and VΔu
ðrÞ, in particular at small

separations r≲ 0.25 fm. Our results for these potentials are
somewhat lower than those from [23] and exhibit the
expected approximate degeneracy with V 0

Σþ
g
ðrÞ and VΣþ

u
ðrÞ,

respectively (for a detailed discussion of these degeneracies
and their relation to gluelump masses cf. e.g., [50]).
Interestingly, we have found that the resulting potentials
VΠg

ðrÞ and VΔu
ðrÞ are quite sensitive to the creation

operators used in the correlation matrices. In both cases,
the operator SIV;2 significantly increases the ground state
overlap and, thus, is essential to observe the previously
mentioned and expected degeneracies at short r. We

interpret this as indication that our selected sets of operators
are better able to isolate the ground state potentials for short
r in the Πg and Δu sectors than the operators used in [23]. It
should, however, be noted that hybrid static potentials at
sufficiently small separations can decay to the ordinary
static potential and a glueball. Thus, extracting the potential
from the exponential decay of a correlation function, as
done in our work as well as in [23], might give contami-
nated results for small r. The lightest glueball has quantum
numbers JPC ¼ 0þþ and mass m0þþ ≈ 4.21=r0 [51]. Using
this mass one can read off from Fig. 7 that VΠg

ðrÞ can decay
for r≲ 0.25 fm and VΔu

ðrÞ for r≲ 0.5 fm. The lowest
hybrid static potentials VΠu

ðrÞ and VΣ−
u
ðrÞ, which are used

in Sec. VI to estimate masses of heavy hybrid mesons, can
only decay for r≲ 0.12 fm.

TABLE VII. Optimized creation operators for VΔu
ðrÞ. Note that, even though the Δu hybrid potential is degenerate with respect to ϵ,

the construction of creation operators via Eq. (7) is not independent of ϵ; the optimized set of creation operators corresponds to ϵ ¼ þ as
indicated by Δþ

u in the first line of the table.

Δþ
u

SI;3 ¼ UEx;1
x UEz;1

z UEx;2
−x UEz;2

z UEx;3
−x UEz;3

z

r=a 2 3 4 5 6 7 8 9 10 11 12

Ex;1 4 4 4 4 4 4 5 5 5 5 5
Ez;1 1 2 3 4 5 6 4 5 5 6 6
Ex;2 2 2 2 2 2 2 5 5 5 6 6
Ez;2 1 1 1 1 1 1 0 0 0 0 0
Ex;3 2 2 2 2 2 2 0 0 0 0 0
Ez;3 0 0 0 0 0 0 4 4 5 5 6

SII;3 ¼ UEz;1
z U2

xU3
−zU2

xU6
zU2

−xU3
−zU2

−xU
Ez;2
z

r=a 2 3 4 5 6 7 8 9 10 11 12

Ez;1 0 0 0 0 0 1 1 1 1 1 1
Ez;2 2 3 4 5 6 6 7 8 9 10 11

SIV;2 ¼ U3
xU3

yU3
−xU3

−yU
Ez
z U3

xU3
yU3

−xU3
−y

r=a 2 3 4 5 6 7 8 9 10 11 12

Ez;1 0 0 1 1 2 2 3 3 4 4 5
Ez;2 2 3 2 3 2 3 2 3 2 3 2

SV;1 ¼ UEz;1
z U4

xU
Ez;2
z U4

yU
Ez;3
z U4

−xU
Ez;2
z U4

−yU
Ez;1
z

r=a 2 3 4 5 6 7 8 9 10 11 12

Ez;1 0 1 0 0 0 0 0 0 0 0 0
Ez;2 1 0 2 2 3 3 4 4 5 5 6
Ez;3 0 1 0 1 0 1 0 1 0 1 0
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There are further lattice field theory computations of
hybrid static potentials, which are interesting to discuss or
to compare with:

(i) In [27], the Σ−
u and Πu hybrid static potentials

were computed in pure SU(3) gauge theory using
several lattice spacings a ≥ 0.16 × r0 ≈ 0.08 fm

as well as off-axis separations. The focus of
the paper is on the phenomenology of static
sources and gluonic excitations at short separa-
tion. The results presented for the Σ−

u and Πu
hybrid static potentials seem to agree with our
findings.
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FIG. 6. Effective potentials Vð0Þ
eff;Λϵ

η
ðr; t; t0 ¼ aÞa, Λϵ

η ¼ Σþ
g ;Σ−

g ;Σþ
u ;Σ−

u ;Πg;Πu;Δg;Δu and Vð1Þ
eff;Σþ

g
ðr; t; t0 ¼ aÞa as functions of t=a

together with the corresponding plateau fits for separations r=a ¼ 2, 5, 8. To allow a straightforward comparison of different sectors, the
vertical scale is the same for all nine plots.
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(ii) Very recently color field densities of static poten-
tial flux tubes in the sectors Σþ

g , Σþ
u and Πu have

been computed in pure SU(3) gauge theory [32].
As a byproduct the potentials in these three sectors
have been obtained, which seem to agree with our
results.

VI. MASSES OF HEAVY HYBRID MESONS IN THE
BORN-OPPENHEIMER APPROXIMATION

In this section, we parametrize the ordinary static
potential VΣþ

g
ðrÞ and the two lowest hybrid static potentials

VΠu
ðrÞ and VΣ−

u
ðrÞ computed in Sec. V, to estimate
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FIG. 7. The ordinary static potential VΣþ
g
ðrÞr0 and the corresponding first excitation V 0

Σþ
g
ðrÞr0 as well as the hybrid static

potentials VΛϵ
η
ðrÞr0, Λϵ

η ¼ Σ−
g ;Σþ

u ;Σ−
u ;Πg;Πu;Δg;Δu as functions of the separation r=r0, where r0 ¼ 0.5 fm. To allow a

straightforward comparison with results from the literature, e.g., with [13,23], the vertical scale has been shifted by an additive
constant such that VΣþ

g
ð2r0Þ ¼ 0.
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masses of heavy hybrid mesons with quarks Q̄Q ¼ c̄c and
Q̄Q ¼ b̄b for various JPC quantum numbers. This is done
in the Born-Oppenheimer approximation [34], which is a
two-step procedure commonly used e.g., in molecular
physics. In the first step, which is the computation of
hybrid static potentials using lattice field theory (cf. Secs. V
and VI A), the gluons are the only dynamical degrees of
freedom, whereas the positions of the heavy quarks Q̄ and
Q are frozen. In the second step, which is discussed in
Sec. VI B, this constraint is relaxed by solving the
Schrödinger equation for the relative coordinate of the
Q̄Q pair using the hybrid static potentials computed in
the first step.

A. Parametrization of lattice field theory results
for the ordinary Σ+

g and the hybrid Πu
and Σ−

u static potentials

For the ordinary static potential (the ground state in the
Σþ
g sector), a common choice, which is able to parametrize

lattice data for separations r≳ 0.15 fm, is

VΣþ
g
ðrÞ ¼ V0 −

α

r
þ σr: ð16Þ

σ is the string tension, α is a positive constant and V0 is a
physically irrelevant shift, which contains the self energy of

the static quarks and, thus, depends on the lattice spacing.
For a detailed recent discussion of this parametrization,
cf. e.g., [52].
In this section, we focus on the two lowest hybrid static

potentials with quantum numbers Πu and Σ−
u . Our para-

metrizations are based on the pNRQCD prediction

VhybridðrÞ ¼ VRS
o ðr; νfÞ þ ΛHðνfÞ þOðr2Þ; ð17Þ

which is valid for small separations r ≪ 1=ΛQCD ≈
0.5 fm [7,50]. VRS

o ðr; νfÞ ¼ αV0
ðνfÞ=6rþ δVRS

o ðνfÞ is
the Renormalon Subtracted (RS) octet potential, νf the
subtraction scale and ΛHðνfÞ a constant. ΛHðνfÞ is the
same for those hybrid static potentials, which are degen-
erate for r → 0, i.e., for VΠu

ðrÞ and VΣ−
u
ðrÞ. Equation (17)

suggests to use

VΛϵ
η
ðrÞ ¼ A1

r
þ A2 þ A3r2 ð18Þ

as fit function for small separations r, where both A1 und A2

are the same for Λϵ
η ¼ Πu and Λϵ

η ¼ Σ−
u , while A3 is

different.
We are interested in parametrizations of our lattice field

theory results over the whole available range of separations
r, i.e., up to r ¼ 12a ≈ 1.1 fm. While Eq. (18) is suited to

TABLE VIII. Summary of lattice field theory results for static potentials VΛϵ
η
ðrÞ with Λϵ

η ¼ Σþ
g ;Σ−

g ;Σþ
u ;Σ−

u ;Πg;
Πu;Δg;Δu and V 0

Σþ
g
.

r=a VΣþ
g
a V 0

Σþ
g
a VΣ−

g
a VΣþ

u
a VΣ−

u
a

2 0.116648(13) 0.9020(30) 1.0066(25) 1.1334(42) 0.77365(75)
3 0.206462(31) 0.9023(28) 1.0068(23) 1.1241(37) 0.79015(81)
4 0.275767(61) 0.9155(14) 1.0155(23) 1.1209(35) 0.81509(90)
5 0.33655(12) 0.9289(14) 1.0285(23) 1.1220(33) 0.8469(11)
6 0.39290(19) 0.9465(31) 1.0468(25) 1.1329(32) 0.88094(63)
7 0.44651(29) 0.9689(34) 1.0700(27) 1.1443(33) 0.91711(72)
8 0.49847(45) 0.9940(40) 1.0975(31) 1.1592(35) 0.95862(81)
9 0.54952(68) 1.0249(19) 1.1282(36) 1.1786(37) 0.99662(94)
10 0.6000(11) 1.0489(55) 1.1610(43) 1.2011(42) 1.0382(11)
11 0.6492(16) 1.0834(26) 1.1971(53) 1.2251(46) 1.0831(13)
12 0.6962(24) 1.1056(81) 1.2350(64) 1.2486(52) 1.1266(15)

r=a VΠg
a VΠu

a VΔg
a VΔu

a

2 0.9425(17) 0.7427(22) 0.99183(88) 1.1686(18)
3 0.9585(17) 0.7369(19) 0.98505(83) 1.1719(17)
4 0.9796(18) 0.7395(18) 0.98451(78) 1.1764(17)
5 0.9960(19) 0.7483(18) 0.9863(17) 1.1791(17)
6 1.0086(19) 0.7621(20) 0.9947(17) 1.1844(16)
7 1.0216(20) 0.7805(22) 1.00777(78) 1.1936(16)
8 1.0355(21) 0.8037(25) 1.02320(81) 1.2068(16)
9 1.0528(24) 0.8326(16) 1.04199(86) 1.2184(16)
10 1.0628(68) 0.8613(19) 1.06294(92) 1.2361(17)
11 1.0837(81) 0.8920(23) 1.0865(11) 1.2528(18)
12 1.1098(99) 0.9243(28) 1.1072(28) 1.2758(19)
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parametrize VΠu
ðrÞ up to r ¼ 12a, which is beyond the

region of validity of the pNRQCD prediction, this is not the
case for VΣ−

u
ðrÞ. Therefore, we use for VΣ−

u
ðrÞ a fit function

with additional degrees of freedom, which reduces to
Eq. (18) in the limit of small r. In [6], it was suggested
to use

VΣ−
u
ðrÞ − VΠu

ðrÞ ¼ B1r2

1þ B3r2
ð19Þ

for the difference of the two lowest hybrid static potentials.
While this is a reasonable crude description of this differ-
ence, it is not sufficient to parametrize our precise lattice
field theory results from Sec. V in a consistent way, i.e.,
with reduced χ2 ≲ 1. Therefore, we extend Eq. (19) by
introducing another parameter B2,

VΣ−
u
ðrÞ − VΠu

ðrÞ ¼ B1r2

1þ B2rþ B3r2
: ð20Þ

Altogether we parametrize VΠu
ðrÞ and VΣ−

u
ðrÞ by

VΠu
ðrÞ ¼ A1

r
þ A2 þ A3r2 ð21Þ

VΣ−
u
ðrÞ ¼ A1

r
þ A2 þ A3r2 þ

B1r2

1þ B2rþ B3r2
; ð22Þ

where A1, A2, A3, B1, B2 and B3 are fit parameters. Note
that (22) still reduces to the NRQCD prediction (18) in the
limit of small r, i.e., the Πu and Σ−

u hybrid static potentials
are dominated by the same repulsive “octetlike” 1=r term
and become degenerate [A3 in Eq. (18) is then equivalent to
A3 þ B1 in Eq. (22)].
To determine the unknown parameters in Eq. (16), (21)

and (22), we perform uncorrelated χ2 minimizing fits to our
lattice data points in the region rmin ≤ r ≤ rmax.

For the Σþ
g static potential, we use rmin ¼ 3a (for r < 3a

lattice field theory results obtained with HYP smearing
typically exhibit non-negligible discretization errors) and
rmax ¼ 12a. From a 3-parameter fit we obtain

V0a¼ 0.1515ð13Þ α¼ 0.2626ð23Þ σa2 ¼ 0.04749ð17Þ;
ð23Þ

where χ2red ¼ 0.80 indicates a consistent fit. The para-
metrization (16) with the parameters (23) is shown in
Fig. 8 (left) together with our corresponding lattice field
theory results.
From these results we can determine r0, which is the

typical length scale in lattice gauge theory and quite often
used to set the scale. r0 is defined via

V 0ðr0Þr20 ¼ 1.65 ð24Þ
and we obtain

r0
a
¼

�
1.65 − α

σa2

�
1=2

¼ 5.405ð6Þ: ð25Þ

When identifying r0 with 0.5 fm, which is a common choice
in lattice gauge theory,3 we find a ¼ 0.0925ð1Þ fm (cf. also
Sec. III). This value is consistent with an independent
simulation and scale setting analysis quoted in [54].
For the Πu and Σ−

u hybrid static potentials, we use rmin ¼
2a and rmax ¼ 12a. From a single six-parameter fit we
obtain

A1¼0.0958ð46Þ A2a¼0.6900ð30Þ A3a3¼0.001599ð29Þ
B1a3¼0.0119ð10Þ B2a¼0.249ð42Þ B3a2¼0.0316ð28Þ;

ð26Þ
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FIG. 8. Parametrizations of lattice field theory results. (left) Σþ
g static potential [Eq. (16) with parameters (23)]. (right) Πu and Σ−

u
hybrid static potentials [Eq. (21) and (22) with parameters (26)]. Vertical dotted lines indicate the data points, which have been
considered in the χ2 minimizing fits.

3For a discussion of the uncertainty of r0 in fm, cf. e.g., [53], in
particular Table I.
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where χ2red ¼ 1.48 indicates a reasonable fit. The para-
metrizations (21) and (22) with the parameters (26) are
shown in Fig. 8 (right) together with our corresponding
lattice field theory results.

B. Prediction of masses of heavy hybrid mesons

The Born-Oppenheimer approximation for heavy hybrid
mesons was pioneered in [12,18,55] and is explained in
detail in [6]. One has to solve the radial Schrödinger
equation

�
−

1

2μ

d2

dr2
þ LðLþ 1Þ − 2Λ2 þ JΛϵ

η
ðJΛϵ

η
þ 1Þ

2μr2
þ VΛϵ

η
ðrÞ

�

× uΛϵ
η;L;nðrÞ ¼ EΛϵ

η;L;nuΛϵ
η;L;nðrÞ; ð27Þ

where r is the separation of the heavy Q̄Q pair, VΛϵ
η
ðrÞ is

one of the static potential parametrizations from Sec. VI A,
Eqs. (16), (21) or (22), and μ ¼ mQ̄mQ=ðmQ̄ þmQÞ is the
reduced mass of the QQ̄ pair. We use mQ ¼ mc ¼
1628 MeV and mQ ¼ mb ¼ 4977 MeV from quark mod-
els [56]. The wave function of the relative coordinate of the
Q̄Q pair is ψΛϵ

η;L;n;mL
ðr; ϑ;φÞ ¼ ðuΛϵ

η;L;nðrÞ=rÞYL;mL
ðϑ;φÞ.

L ∈ fΛ;Λþ 1;…g is the quantum number corresponding
to the operator L, the sum of all angular momenta
excluding the heavy quark spins S, i.e., J ¼ Lþ S, where
J is the total angular momentum of the meson. In the limit
r → 0, the gluon field configuration of a hybrid static
potential is identical to that of a gluelump, where JΛϵ

η
is the

gluon spin of this gluelump. JΛϵ
η
¼ 0 for Λϵ

η ¼ Σþ
g , JΛϵ

η
¼ 1

for Λϵ
η ∈ fΣþ0

g ;Σ−
u ;Πg;Πug and JΛϵ

η
¼ 2 for Λϵ

η ∈
fΣ−

g ;Σþ
u ;Δg;Δug [50].

The derivation of the Schrödinger equation (27) is based
on the following approximations (cf. also [6]):

(i) In the adiabatic approximation, the gluon field is
assumed to be in a stationary state in the presence
of the heavy Q̄Q pair, i.e., the gluon field configu-
ration is one of the hybrid static potentials computed
in Sec. V labeled by quantum numbers Λϵ

η. Errors
are proportional to ΛQCD=mQ, i.e., the adiabatic
approximation is suited for heavy quarks. It is
consistent with using static potentials, where also
1=mQ corrections are neglected.

(ii) The Schrödinger equation to determine masses of a
heavy hybrid mesons with quantum numbers JP is a
multichannel equation including all hybrid static
potentials VΛϵ

η
ðrÞ consistent with JP (cf. [7] for a

detailed derivation of a coupled channel Schrödinger
equation). In the single channel approximation, only
a single component of this multichannel Schrödinger
equation is considered and couplings to other
channels are ignored. The single channel approxi-
mation is good, if the resulting wave function is

small for separations r, where the used hybrid static
potential has avoided crossings with the other hybrid
static potentials.

(iii) Finally the gluon spin is approximated by the gluon
spin of a gluelump, which is a good approximation
for small separations r, where the system resembles
a gluelump. Consequently, the approximation is
good for resulting wave functions ψðr; ϑ;φÞ, which
are localized near r ¼ 0.

The Schrödinger equation (27) can be solved numeri-
cally with standard techniques. We employ a 4th order
Runge-Kutta shooting method combined with Newton’s
method for root finding. Note that the resulting energies
EΛϵ

η;L;n contain the self-energies of the static quarks, which
depend on the lattice spacing. To predict heavy hybrid
meson masses, one has to eliminate these self-energies,
which we do by subtracting EΛϵ

η¼Σþ
g ;n¼1;L¼0, the lowest

energy from the ordinary static potential computed within
the same setup. This energy EΛϵ

η¼Σþ
g ;n¼1;L¼0 corresponds for

Q̄Q ¼ c̄c to the ηcð1SÞ and J=Ψð1SÞ meson, which are
degenerate in the static limit, and similarly for Q̄Q ¼ b̄b to
the ηbð1SÞ and ϒð1SÞ meson. Heavy hybrid meson masses
are then given by

mΛϵ
η;L;n ¼ EΛϵ

η;L;n − EΛϵ
η¼Σþ

g ;n¼1;L¼0 þm; ð28Þ

wherem is the spin averaged mass from experiments, either
m ¼ ðmηbð1SÞ;exp þ 3mϒð1SÞ;expÞ=4 ¼ 9445ð1Þ MeV orm ¼
ðmηcð1SÞ;exp þ 3mJ=Ψð1SÞ;expÞ=4 ¼ 3069ð1Þ MeV [57].
The masses mΛϵ

η;L;n are related to heavy hybrid mesons
with quantum numbers JPC according to

J ¼

8>><
>>:

L if S ¼ 0

1 if S ¼ 1 and L ¼ 0

fL − 1; L; Lþ 1g if S ¼ 1 and L ≥ 1

ð29Þ

P ¼ ϵð−1ÞΛþLþ1 ð30Þ

C ¼ ηϵð−1ÞΛþLþS ð31Þ

as discussed in [6]. Our predicted heavy hybrid meson
masses are collected in Table IX and summarized in a
graphical way in Fig. 9. The errors are statistical uncer-
tainties, which have been obtained via an elaborate
jackknife analysis (cf. Sec. III). In Fig. 10, we also show
the probability density for the separation r, which is
juΛϵ

η;L;nðrÞj2, for the Πu and the Σ−
u hybrid static potentials

and for Q̄Q ¼ c̄c and Q̄Q ¼ b̄b.
There are also systematic errors, which are difficult to

quantify. The derivation of the Schrödinger equation is
based on several approximations, as discussed above, most
notably the neglect of 1=mQ corrections. In principle, such
corrections can be computed for hybrid static potentials,
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but this is expected to be very challenging, since it turned
out to be difficult already for the ordinary static potential
with quantum numbers Λϵ

η ¼ Σþ
g [54,58–61]. At the

moment, we crudely estimate the magnitude of this error

by half the experimental mass differences of the nonex-
otic Q̄Q mesons with JPC ¼ 0−þ and JPC ¼ 1−−, i.e.,
ðmJ=Ψð1SÞ;exp −mηcð1SÞ;expÞ=2 ≈ 60 MeV and ðmϒð1SÞ;exp−
mηbð1SÞ;expÞ=2 ≈ 30 MeV. Other sources of systematic

TABLE IX. Predictions for heavy hybrid meson masses. Exotic JPC quantum numbers, i.e., quantum numbers
forbidden in the quark model, where P ¼ ð−1ÞLþ1 and C ¼ ð−1ÞLþS, are written in bold.

Λϵ
η L n JPC

for S ¼ 0
JPC

for S ¼ 1
mΛϵ

η;L;n in MeV
for Q̄Q ¼ c̄c

mΛϵ
η;L;n in MeV

for Q̄Q ¼ b̄b

Πþ
u 1 1 1−− ð0; 1; 2Þ−þ 4184(6) 10679(4)

2 4572(10) 10899(6)
2 1 2þþ ð1; 2; 3Þþ− 4374(8) 10783(5)
3 1 3−− ð2; 3; 4Þ−þ 4566(10) 10891(6)

Π−
u 1 1 1þþ ð0; 1; 2Þþ− 4184(6) 10679(4)

2 4572(10) 10899(6)
2 1 2−− ð1; 2; 3Þ−þ 4374(8) 10783(5)
3 1 3þþ ð2; 3; 4Þþ− 4566(10) 10891(6)

Σ−
u 0 1 0þþ 1þ− 4487(5) 10912(3)

2 4933(9) 11192(5)
1 1 1−− ð0; 1; 2Þ−þ 4623(6) 10998(4)

2 5058(10) 11268(6)
2 1 2þþ ð1; 2; 3Þþ− 4814(7) 11117(4)
3 1 3−− ð2; 3; 4Þ−þ 5019(9) 11245(5)
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FIG. 9. Predictions for heavy hybrid meson masses. (left) Πu hybrid static potential. (right) Σ−
u hybrid static potential.
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error are the finite lattice spacing and spacetime volume.
We plan to improve our results in the near future by
performing similar computations with even smaller val-
ues of the lattice spacing and larger spatial extent. We
expect the corresponding corrections to be rather small
based on our experience from previous projects con-
cerned with the static potential, in particular [62].
Moreover, dynamical light quarks have been neglected.
Note, however, in [21] the Πu hybrid static potential was
computed in full QCD, i.e., with dynamical quarks
corresponding to pion masses mπ ≈ 500…1200 MeV.
No statistically significant differences were found, when
comparing to an equivalent computation in pure SU(3)
gauge theory. We have also investigated the dependence
of the predicted heavy hybrid meson masses on the c and
b quark masses used in the Schrödinger equation. This
dependence has been found to be very weak. For
example, when using quark masses mc ¼ 1480 MeV
and mb ¼ 4890 MeV as in [6], which differ from our
choice mc ¼ 1628 MeV and mb ¼ 4977 MeV by 2%
and 9%, respectively, the mass differences EΛϵ

η;L;n −
EΛϵ

η¼Σþ
g ;n¼1;L¼0 [cf. Eq. (28)] change for the majority of

states only on the per mille level. Finally, these mass
differences also depend on the scale setting procedure,

i.e., on the value of r0 used for scale setting. The
corresponding relative systematic error on EΛϵ

η;L;n −
EΛϵ

η¼Σþ
g ;n¼1;L¼0 is roughly the same as the relative uncer-

tainty on r0, which is around 4%.

VII. CONCLUSIONS

We have computed hybrid static potentials VΛϵ
η
ðrÞ for

Λϵ
η ¼ Σ−

g ;Σþ
u ;Σ−

u ;Πg;Πu;Δg;Δu in SU(3) lattice gauge
theory. Compared to results from the literature, we use a
rather fine lattice spacing and statistical errors are quite
small. In contrast to the majority of existing publications,
technical aspects of the computation and the analysis are
discussed in detail. This offers the possibility of direct and
meaningful comparison with similar computations and of
methodological improvement. Moreover, we provide the
numerical values of the discrete lattice data points for all
computed hybrid static potentials VΛϵ

η
ðrÞ, to allow straight-

forward usability of our results in future effective field
theory or phenomenological work by other authors.
We also estimate masses of heavy hybrid mesons in the

Born-Oppenheimer approximation, where we follow
closely the approach discussed in [6]. The resulting spectra
are, however, rather crude estimates, mainly because 1=mQ
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FIG. 10. Probability density for the separation r. (left) Πu hybrid static potential. (right) Σ−
u hybrid static potential.
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corrections, e.g., from the quark spins, are neglected at the
moment.
An essential point of this work is the extensive opti-

mization of hybrid static potential creation operators. We
plan to use these optimized operators in follow-up projects
concerned with the computation of three-point functions.
Such three-point functions might allow us to drastically
reduce systematic errors in the above mentioned predic-
tion of heavy hybrid meson masses, e.g., by computing
quark spin corrections or by studying possible decays to
ordinary quarkonium states and glueballs. Furthermore,
three-point functions will provide interesting insights
concerning the gluon distribution inside heavy hybrid
mesons. We have presented first corresponding results at
recent conferences [63,64].
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APPENDIX A: ANGULAR MOMENTUM
OF THE TRIAL STATES

In this appendix, we show that the trial state (1),

jΨhybridiS;Λ ¼
Z

2π

0

dφ expðiΛφÞRðφÞOSjΩi; ðA1Þ

has definite total angular momentum Λ with respect to the
z axis.
Any state can be rotated by an angle α around the z axis

using the total angular momentum operator Jz. For exam-
ple, the rotated trial state jΨhybridiS;Λ is given by

RðαÞjΨhybridiS;Λ ¼ expð−iJzαÞjΨhybridiS;Λ: ðA2Þ
The same rotation is obtained by explicitly rotating the

field operators on the right-hand side of Eq. (A1), which
amounts to replacing the weight factor expðiΛφÞ by
expðiΛðφ − αÞÞ,

RðαÞjΨhybridiS;Λ ¼ RðαÞ
Z

2π

0

dφ expðiΛφÞRðφÞOSjΩi

¼
Z

2π

0

dφ expðiΛðφ − αÞÞRðφÞOSjΩi

¼ expð−iΛαÞjΨhybridiS;Λ: ðA3Þ
Equating the right-hand sides of Eqs. (A2) and (A3) and

considering an infinitesimal angle α leads to

JzjΨhybridiS;Λ ¼ ΛjΨhybridiS;Λ: ðA4Þ
This proves that the trial state jΨhybridiS;Λ is an eigenstate of
the total angular momentum operator Jz with eigenvalue Λ.
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