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In the framework of the heavy baryon chiral perturbation theory (HBChPT), we calculate the radiative
decay amplitudes of the singly heavy baryons up to the next-to-next-to-leading order (NNLO). In the
numerical analysis, we adopt the heavy quark symmetry to relate some low-energy constants (LECs) with
those LECs in the calculation of the magnetic moments. We use the results from the lattice QCD simulation
as input. With a set of unified LECs, we obtain the numerical (transition) magnetic moments and radiative
decay widths. We give the numerical results for the spin-% sextet to the spin-% antitriplet up to the next-to-
leading order (NLO). The nonvanishing I'(E° — E%) and I'(E:° — E%) solely arise from the U-spin
symmetry breaking and do not depend on the lattice QCD inputs up to NLO. We also systematically give
the numerical analysis of the magnetic moments of the spin—%, spin—% sextet and their radiative decay widths
up to NNLO. In the heavy quark limit, the radiative decays between the sextet states happen through the
magnetic dipole (M1) transitions, while the electric quadrupole (E2) transition does not contribute. We also

extend the same analysis to the single bottom baryons.

DOI: 10.1103/PhysRevD.99.034021

I. INTRODUCTION

A heavy baryon contains two light quarks and a heavy
quark. In the SU(3) flavor symmetry, the two light quarks
form a diquark in the antisymmetric 3, or the symmetric 6
representation. Constrained by the Fermi-Dirac statistics,
the J? of the diquark is 0" or 1%, respectively. Then the
diquark and the heavy quark are combined to form the
heavy baryon. For the ground antitriplet, the J* is %*. For
the ground sextet, the J” is 1% or 3. In the following, we
use 3, g, and k. to denote the spin-% antitriplet, spin—%,
and spin-% sextet, respectively.

For the transitions y¢ — w3 and yf. — g, the radiative
decays are quite important, since some strong decay
channels are forbidden by the phase space. So far, the
BABAR and Belle Collaborations have observed three
radiative decay processes: Qf — Q.y [1,2], Ef - Efy,
and E° — 2% [3-5]. More observations are expected at the

fwg\j @pku.edu.cn
flmeng@pku.edu.cn
'Lzhusl@pku.edu.cn

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010/2019/99(3)/034021(20)

034021-1

BESIII, Belle II, LHCDb, and other collaborations in the
future.

The radiative decay processes are good platforms for
studying the electromagnetic properties, which are impor-
tant to reveal the inner structures of the heavy baryons.
In literature, theorists used many different models to study
the radiative decays. In Refs. [6,7], the authors studied the
decay widths and electromagnetic form factors of the
processes Qf — Q.y and E, - E.y using the lattice
QCD simulation. In Ref. [8], the authors constructed the
chiral Lagrangains for the heavy baryons incorporating the
heavy quark symmetry and studied the radiative decays of
the heavy baryons and mesons. Later, the authors in
Refs. [9-12] investigated the electromagnetic properties
of the heavy baryons in the heavy hadron chiral perturba-
tion theory. In Ref. [13], Jiang et al. calculated the
electromagnetic decay widths of the heavy baryons up to
the next-to-leading order (NLO) in the heavy baryon chiral
perturbation theory (HBChPT). They found that the neutral
radiative decay channels, e.g., Z° — 2% and £ — =0,
are suppressed due to the U-spin symmetry. Besides the
lattice QCD and the effective field theory, theorists also
studied the radiative decays with other phenomenological
models: the heavy quark symmetry [14], the light cone
QCD sum rule formalism [15-19], the bag model [20,21],
the nonrelativistic quark model [22], the relativistic three
quark model [23], and other various quark models [24-30].

The chiral perturbation theory is first used to study
the properties of the pseudoscalar mesons [31-34]. It has a
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self-consistent power counting law which is in terms of the
small momentum (mass) of the pseudoscalar mesons.
When it is extended to the baryons, the mass of a baryon,
which is at the same order as the chiral symmetry breaking
scale in the chiral limit, breaks the consistent power
counting [35]. To solve this problem, the heavy baryon
chiral perturbation theory (HBChPT) is developed [36-39].
In this scheme, the baryon field is decomposed into the
light and heavy components. The heavy component can be
integrated out in the low-energy region and the large mass
of the baryon is eliminated. Now, the power counting law
recovers and the expansion is in terms of the residue
momentum of the baryons and the momentum (mass) of the
pseudoscalar mesons.

So far, the amplitudes of the radiative decays are
calculated up to NLO using the effective theory [8—13].
In this work, we systematically derive the radiative decay
amplitudes up to the next-to-next-to-leading order (NNLO)
in HBChPT. Many low-energy coefficients (LECs) are
involved in the analytical expressions. Some of them also
appear in the magnetic moments up to NNLO. In this work,
we will use the data of the magnetic moments and the
radiative decay widths from the lattice QCD simulations as
input to obtain the numerical results. In the numerical
analysis, we adopt the heavy quark symmetry to reduce the
number of the LECs [40,41]. We give the final results of
(transition) magnetic moments, radiative decay widths in a
group of unified LECs.

The paper is arranged as follows. In Sec. II, we derive the
expressions of the decay widths using the form factors from
the electromagnetic multipole expansion. In Sec. III, we
present the effective Lagrangians that contribute to the
radiative decays up to NNLO. In Sec. IV, we derive the
analytical expressions of the decay amplitudes up to
NNLO. In Sec. V, we construct the Lagrangians in the
heavy quark limit and reduce the number of the LECs using
the heavy quark symmetry. In Sec. VI, we use the data from
the lattice QCD simulation as input to calculate the LECs.
Then, we obtain the numerical results of the (transition)
magnetic moments, the M1 transition form factors and the
decay widths of the charmed baryons up to NNLO. In
Sec. VII, we extend the calculations to the bottom baryons.
Finally, we compare our results with those from other
models and give a brief summary in VIII. In Appendix A,
we give the magnetic moments of the spin-j and spin-3
sextet as by-product. In Appendix B, we give some quark
model results. In Appendix C, we list the details of the loop
integrals.

II. THE RADIATIVE DECAY WIDTH

In the SU(3) flavor symmetry, the explicit matrix
forms of the spin-} antitriplet, spin-1, and spin-3 sextet
fields are

+ =t
0 AL &
y3=| -AL 0 B
—4 —0
-5 -8 0
s+ I B
¢ V2 V2
_ g 0 EP
Ye = 73 e 71
=+ =0
= =% 0
st IO Bl K
¢ V2 V2
_ =t « 20
ve =| 5 I |- (1)
ket =0
= = %0
o &

In the following, we calculate the decay widths of the

transitions: yg — w3y, yk. — w3y, and yk. — yey in the
HBChPT scheme, respectively.

A. The radiative transition: spin-% +y > spin-%

For the radiative decay from the spin—% sextet to the spin—%
antitriplet, the decay amplitude reads [42,43],

iM = —iee" (w(p)|j.w(p))
= —iee’u(p’) [(}’ﬂ - %%) Fi(q?)

i0,,9"
o) ulp). @)
where ¢ is the polarization vector of the photon. j, is the
electromagnetic current. u(p) is the heavy baryon field
with momentum p. The momentum transformed is
g=p —p. Fi, are the form factors with g*> as the
variable. M and M’ are the initial and final heavy baryon
masses, respectively. § = M’ — M is the mass difference.
In HBChPT, one decomposes the momentum of a heavy
baryon as

pf = Mv* + Kk, (3)

where k* is a small residue momentum. »* is the velocity of
the heavy baryon and satisfies v> = 1. The field y is then
decomposed into the “light” component B(p) and “heavy”
component H(p) as follows,

L+

B(p) = ™" —=y,

In the low-energy region, one can integrate out the heavy
component H(p) and obtain Lagrangians in the nonrela-
tivistic limit. At this time, the electromagnetic matrix
element in Eq. (2) is written as
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(w(P)july (p))
= eB(p) Kv,, - %qﬂ) Gr(q?)

2 Gt | B )

P
Gp(q*) = Fi(q*) + WFz(CIQ), (6)
Gu(q®) = F2(¢*) + Fi(4?), (7)

where $* is the Pauli-Lubanski operator 5 L y36#v,. G and
G are the charge (EO) and the magnetic dlpole (M1) form
factors, respectively. When ¢ =0, Gg(0) = F,(0) ~0
because of the orthogonality of the initial and final states.
Then, the G,(0) ~ F,(0) and the decay width is expressed
by the magnetic form factor G,(0) as [7,8]

_ Adp,P
(M +M')?

|Gu(0)P%, (8)

where o = 4— 137 is the fine-structure constant, p, is the

momentum of the photon in the central mass system of the
initial state,

M/2 _ M2

7 ©)

p,| =

B. The radiative transition: spin-3 — spin-1 +y

To calculate the decay amplitude of the radiative tran-
sition w’é* — W36 + 7, we introduce the multipole expan-
sion of the electromagnetic current matrix element [44,45]

<l//6* |]u|l//> = ew)(p/)rpyu(p)v

with

Fp G (q2) (prM - dgp}l)YS + G2 (qz)(Qpp;J —-q- p/gpM)YS
+G3(4*) (4,9~ 0975 (10)

where the factors G| , 3 are functions of ¢*. In the HBChPT
scheme, the nonrelativistic form of the I, is

Fpﬂ = 2G1(q2)(QpSﬂ -q- Sgpﬂ)
2M'

G 2
+ Z(Q)M+M/

(vau -q- vgpy)q - S, (11)

where we have omitted the G5 term since it does not
contribute when the photon is on-shell. The spin—% state
decays into the spin-% state through the M1 and E2
transitions. The corresponding magnetic dipole form factor

Gy and electric quadrupole form factor Gg, can be
constructed using G 3 as follows,

+ Gy (M M_ —q?)

1 [ M, (3M' +M) -
G

GMl(qz) :Z M

+ 2(G3 + Gz)q2i| s

1[ .MM _+gq
R

GE2<q2) :4_1 M

+2(G2+G3)q2:|, (12)

where the M, = M’ + M. Since M and M’ are roughly the
same, M_ is nearly 0. When ¢*> =0, we obtain

G = 4= (4 + 42, which indicates the Gp(0) is much

smaller than G, (0).
The transition magnetic moment is defined as

_ Gu(0)
- 750 (13)

With the Gy, and G, the helicity amplitudes are defined

as,
Aspl@) = =\ [5216m () + Gra(@)]. (14)

Al/Z(qz) = —\/%[Gm(qz) - 3GE2(q2>]’ (15)

with

_M’2—M2+q2

@ oM

The radiative decay width reads,

I =

Agj (1 —%) (43/2(0) + A7 )5(0)).  (17)

III. THE LAGRANGIAN

We list the tree and loop diagrams that contribute to the
radiative decay amplitudes up to O(p*) in Figs. 1 and 2,

S B

FIG. 1. The tree-level diagrams that contribute to the radiative
decays. The solid circle, solid square and the square denote the
vertices at O(p?), O(p?), and O(p ), respectively. The single
and double lines denote the spln—— and spin—% heavy baryons,
respectively.
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respectively. The diagram with chiral dimension D, con-
tributes to the O(pP) radiative decay amplitude and
O(pP+~!) transition magnetic moment. In the following,
we list the Lagrangians involved in this work.

The leading-order Lagrangian for the pseudoscalar

meson interaction reads with

i
U: 52 — eF¢, V”U e 8;4U+ leAﬂ[Q, U]a
2 + *
ntse T K
b=V = —Ein k0 | aa o=
_ 0 2
K K \/6’7

FZ
2 -
Ly = Td’Tr[v,,Uv”U'], (18)
2.0 0
o -1 o [, (19)
o o0 -1

where A, is the photon field, Q is the charge matrix of the light quarks. We use the m? and F? to denote the masses and the

decay constants of the mesons, respectively. Their values are [32]

m, = 137 MeV,
F,=924MeV,

my = 496 MeV,
Fy =113 MeV,

m, = 548 MeV,
F, =116 MeV.

()

o

(m) (n) (0)

§

FIG.2. The one loop diagrams which contribute to the radiative transitions up to O(p*). The single and double lines denote the spin—%

and spin-% heavy baryons, respectively.
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The leading-order meson-baryon Lagrangian Eg(;) reads

£40) = S TP — M3)ys] + TrlgiP — M) + Trlg (=g, (iP = Me) + i(7,D, +7,D,)

—7,(iD + Mg )y, )y ]

+ 91 e[y swe] + gaTr[(Fephysws) + Hee] + g3 Tr[(g u,p) + Hee]
+ 94 Tr[(Frg u,w3) + Hee] + gsTr[pg shyswee,| + g6 Tr[sshysws), (21)

with
Dy =0y + Ly +wly, (22)

1

Uy = 3 [E7. 0,8 4 5 A, (£ 0nE + 0487, (23)

j 1 4
= 5 {E1.0,8) = 5 €A, (£ 0pE ~ 6058, (24)

I
where Q3 is the charge matrix of the heavy baryon. Itis related
to the charge matrix of the heavy quark Q and that of the light
quark Q through the relation Q 5= =Q+1 Q For the charmed
baryons, one has 0, = diag(3,%.2) and QB = diag(1,0,0),

respectively. M5¢4- denote the average masses of the anti-

triplet, spin-% sextet, spin-% sextet states, respectively.

In HBChPT, the nonrelativistic form of the L’g(/))
reads [46,47]

1 D D D*
Ly = 5 Tr(Bsiv - DBs) + Tr(By(iv- D = 5)Bq| = Tr[BY(iv- D = 5,)B; )

+ 2ngr(B6S . MB@) —+ 292TY(B6S . MB§ + HC) + g:;Tr(BZMMMBﬁ =+ HC)
+ 94Tr(Bg,u"Bs + H.c.) + 2gsTr(B'S - uBg,) + 296 Tr(B5S - uB3), q (25)

where the mass differences are 6; = Mg — M3, 5, = M-

—Mg and 53 = MG* —Mé.

The O(p?) Lagrangian Eg,) contributes to the leading-order magnetic moment at the tree level,
£® % Tr(B5[S*, $F1,B3) — —— Tr(Bs[S*, $*|B3)Tr(f) _ s 1yp S#, 8|7 Bs)
By 8M 3 ’ 3 8MN 3 ’ 3 1% 4M 6 uv26
idg v + ids u v idg BH pu +
Tr(B[S", $*]Bs)Tr(f},) = 5 Tr(Bg. /i, Bg:) — o~ Tr(Bg. B ) Tr(f,1,)
CAMy 2My 2My
2if, Y fa STy . f3 i
- M—NT r(Bs D[SM’ §¥]Bg) — i My Tr(Bsﬂf;uS B3) - ZZMN Tr(Baﬂf;uS By)
f 3

I Tr(Bg"S"Bg)Tr(f,h,) + H.c.

where M is the nucleon mass. The tensor fields f;y and
Tr(f,,) are defined as

;Ifu = f/ev = —eQp (aﬂAI/ - avAu)’ (27)
fuw = EfREEE e (28)
}‘,uu - ip __Tr(fﬂu) (29)

Since Tr(Q) =0 and Tr(Q) #0, the f,, and Tr(f,)
represent the contributions from the light and heavy quarks,
respectively. The two building blocks are in the octet and
singlet flavor representations, respectively. In the flavor
space,3®3=1@®8and6 ® 6 =1 @ 8 @ 27. The dy 5
and d;go terms correspond to the 8 ® 8 — 1 and

(26)

[
1 ® 1 — 1, respectively. In the antitriplet, the J¥ of the
light diquark is 0. The coupling constant d, vanishes since
the M1 transition |07) — |07)y is forbidden. For the
Bg/B{. — Bjy transition, the heavy baryons form the 3 ®
6 =8 @ 10 flavor representation. Thus, they can only
couple with ]‘,f,, to form the flavor singlet. The leading-
order Bg/Bf. — Bsy transition totally arises from the
dynamics of the light quark sector.

The O(p?) Lagrangians constructed from other building
blocks do not contribute to the O(p?) radiative decays. For
instance, the following y. is O(p?),

L=y £ le (30)

x = 2Bydiag(m,, my, my), (31)

034021-5



GUANG-JUAN WANG, LU MENG, and SHI-LIN ZHU

PHYS. REV. D 99, 034021 (2019)

TABLE I. The u, ® 1, may be in the 8®8=1@8, ®8, & 10 ® 10 @ 27 flavor representations. {}*'}

{bj}

represents that the scrlpts b( ) and the j(i) are symmetrized. S}, is the symmetrization operator for the subscrlpts

1, 2, and 3. €;j is the Levi-Civita symbol.

1 8, 8, 10 10 27
Tr(u,u,) [, 1, ] {uyu,} Sijk AT Sabcuﬁiuzje,-jc {u’g“u‘;’}g;}}
where By = —3 F2 (gq) is a parameter related to the quark ~ transitions from the sextet to the antitriplet, the baryon

condensate, m, 4, denotes the current quark mass. At the
leading order, the m, , is ignored and 2Bym, are absorbed
into the coupling constant. We obtain y, = diag(0,0, 1).
We can construct the O(p?) Lagrangians with y, for
instance, Tr(Bszy. Bg). However, they do not contribute to
the radiative decay amplitude at O(p?).

The O(p?) B¢ vertex arising from Eg,)) » contributes to

the O(p*) decay amplitude,

(2) _ a; R_[Qu QU
Lppp = VNTT(B3[S’ . 8¥][uy, u,|Bg)

+ 22 Tr(By S, S¥uluc BY)
My

in“ju
as -
+—Tr(B S#{u,,, u,)Bg.)
N
+M—Tr(BgabS MWMJUBDU)

+ M—Tr(B6S” [, u,)B) +He.  (32)

N
The u, and u,, form the flavor representations § @ 8 = 1 @

8, @8, ®10® 10 @ 27 as illustrated in Table 1. For the
|

£ = (Vo D) +
By 8M]2VM6 (W3 lfuya 1//6) + 8M12VM6*
m 7 m
7.V, F vry<i DRy, 2
t o 8M MG* (l//6 /If;wy V5" ) + —8M12\,M6*
i i -
+ M2 Mg TrlpeTe(V,f o )r'ysiD*ye.] + Hee.

where n, n,, m,, and /i, terms contribute to the G,. They cancel the divergences of the O(

terms have the same structures as those in the O(p?

Tr(p3V,fnr'ysiD we.) +

Tr(peV.f i r'ysiD'wh.) +

building blocks have 6 @ 3 = 8 @ 27. The a3 and a4
terms correspond to the 8§ ® §; — 1 and 10 ® 10— 1,
respectively. The term Tr(Bs[S*, $*}{u,.u,}Bs) corre-
sponding to 8 @ 8, — 1, vanishes due to the antisymmetry
of the Lorentz indices y and v. For the transition By. — By,
the baryons form the 6 ® 6=16e 8 ® 10 flavor represen-
tations. There should have existed four independent inter-
action terms corresponding to 8® 8§, — 1, 8 ® 8§, — 1,
1®1 -1 and 27 @ 27 — 1. The explicit forms of the
Lagrangians are Tr(BgS* [u,,.u,)B%. ), Tr(BeS*{u,., u,} B{*),

Tr(BgS* B ) Tr(u,u,) and  Tr(Beo, S {uf,ut, } 42 BYY),
respectively. In diagram (d) in Fig. 2, the vertices B¢¢p
arising from the last three Lagrangian terms are symmetric
for the opposite charged pseudoscalar mesons, while the
¢y vertex is antisymmetric. Then the loops with the
opposite charged intermediate pseudoscalar mesons cancel
out. Therefore, the above three Lagrangian terms do not
contribute to the radiative decay.

The decay |1) — |1)y is the M1 transition. The transition
|3) — | 1)y may happen through the M1 and E2 transitions.

2
The Lagrangian at O(p?) contributes,

n2 _ - . l
WTY(%VU‘,ZWWD wo)

iy _ .
MM MM TV, Tr(f o0, )7 ysiD yt.|
o

(33)

p?) loop diagrams. The finite

) tree diagrams when the same meson decay constants are adopted

F, = Fx = F,. Then they can be absorbed into the lower-order f,_, and f5 terms in Eq. (26). The n;, m; and 7, terms
contribute to G,, which contributes to the lowest-order E2 transition.

The nonrelativistic form of Egy) is

) — _ Tr(B3V, J}, (S, S0/ Bg) + —r
By M12v s H 4MN
m y my
+— e (B6v/1f/wS/IyMB6*) + M2 Tr
Ryyes 4M2 Tr[BTr(V,f.u)S"v* By ] + H.c.

n
Tr(B5V, [, S* " BL.) —i—ﬁTr

_ - my
(BGVQf:DSMU/IBE*> + WTI'

(B3V,f,,S"v*BY.)
N

[B6V,1Tr(f;)510/‘3‘6’*]

(34)
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TABLE II. The possible flavor structures constructed by two baryons in the O(p*) Lagrangians.
Group representation 3®6—38 3610 6®6—1 6®6—38 6®6— 27
Flavor structure B$"Becq B’ Bg; Tr(BsBs) BB, BBy

TABLEIIL.  The possible flavor structures constructed by y ., f, w o1 Tr(f,,) for the O(p*) Lagrangians. These structures combine with
those in Table II to form the Lagrangians according to group representations: 8 ® 8 - 1, 10 ® 10 » 1,27 ® 27 - land 1 ® 1 — 1.

The three {} in the third or sixth rows correspond to L3¢, L3¢+ and Lgg:, respectively. The “ab. f;”” means that the LEC can be absorbed
by f;. And {-} represents that the corresponding group representation does not exist.

Group representation 1®1—-1 1®8—38 8®1—-38 8§x8 -1
Flavor structure Tr(y, ) Tr( f;;) Tr(y +)J},Z 7 +Tr(f,f,,) Tr(y +f;y)
LECs {—H{-}ab.f3} {ab.f2}{ab.f3}{ab.f4} {erH{m K} {=}{-}{ab.f3}
Group representation 8®8 — 8 8®8 =38, 8®8 —27 8®8—10
Flavor structure D(+’ f;u] {)(+’ f;:b} {)(+’ f/j—u};jb (Z+):z(f/ju){;
LECs vanishing {ea}{m}{ab.0;} {=H-Hb} fes{ns}{-}
At O(p*), the Lagrangian that contributes at the tree level is,
(4 Cl _ ] _ 7 ‘3
‘CB}/) - %TT(W§Z+0qu6)Tr(f;u) + %Tr(l//3{)(+7fﬁ}0ml//6) + %Tr(lﬂg )(a—}—fbﬂy ﬂlflll6l])
Tt 1 T ~ e e (. T rrse) — o T Tt ¥
8my JZ 6 Hy 8my w iy 6 8my 3 Aat) bl p 67ij
il _ il - — i
— = Tr(er v,y swi ) Tr(fi) = o= Tr(pe (. F Yoy vurswtei;) + Hee. (35)
SmN SmN

As illustrated in Tables II and I1I, there are five and six independent Lagrangian terms for the transitions Bg/Bf. — By and
Bf. — Bgy, respectively. The leading-order expansion of the operator [y, . fﬂv] vanishes, since they are diagonal matrices.
Many terms are absorbed by the other Lagrangians.

In the nonrelativistic limit, ,Cg,) is written as

45 —icy ~ —ic3 =a
L5} = gy B[S SIBITH) + 4—Tr<Bg{x+,f;D}[s,,,syJB6> + o T B Lo T, 15,5, Bei)
h v h v lh3 pab, i Fit v
+ s T SuBETH ) + 3 B Tr(Bs (T} SuBt) + 3 2B i TS B
mpy N
il —1 _ e i
+ gy T Bt S, B () + 3 B THB T Y S,By) + Hie. (36)

IV. ANALYTICAL EXPRESSION

A. Bs(p') = B3(p) +7(q)
At the leading order, the O(p?
stems from the ng) and contributes to O(p?) decay

) tree diagram in Fig. 1

amplitude and O(p) transition magnetic moment,

P (B8 = Afy) = V21,
/lt(reL(Ec E‘ J/) - 4\/_f27
Ho (B — E) = 0. (37)

The superscript denotes the chiral order. The transition
magnetic moment is in the unit of nuclear magneton.
At NLO, the results from the tree diagrams are

@) v+ A+ n¢
Hiee (2 — Aly) =
ee \/_MN
@) (=it =) — n¢
Hiee(Bem = Bly) = :
ee \/EMN
Hi (B — Ey) = 0. (38)

with £ = v - g. At NLO, the chiral corrections come from
the loop diagrams (a), (b) and (i)—(1). After the integration,
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the amplitudes of the diagrams (i)-(l) vanish due to
S-v=0. The (a) and (b) diagrams contribute to the
O(p?) decay amplitude and O(p?) transition magnetic
moment:

——— (=83, =63 = £)

9394 4
N AF3d—1

- g;—g)ZnIII(O, —f)} . £=v-q (39)
where n!l is the finite part of the loop integral and its
explicit form is given in the Appendix. d is the dimension.
¢ represents the intermediate pseudoscalar meson in the
loop. C((/?)
Table IV.

is the coefficient for the loops as illustrated in

At NNLO, the chiral corrections come from the O(p*)
tree diagram in Fig. 1 and the loop diagrams (c)—(h) and
(m)—(p) in Fig. 2. The O(p?) magnetic moments from the
tree diagram read,

Pak (58 = AL) =0,

(3) (":;'H— N ’:H‘) o 2<C2 + C3) - 3Cl

Hiree\ = —c ) = 3\/5 s
3) —_ 3C1 - 2C2 + C3
,ut(re)e(:‘/co - H(c)) - _T' (40)

The O(p?) magnetic moments from the loop diagrams read

fa (MG mj
¢ — L2 (b=t
R ANTT e

(41)

TABLEIV. The coefficients for the tree and loop diagrams that contribute to the amplitudes in the radiative decays

Bg/B§. — B3y up to NNLO.

BY. — Bsy T A, Zit - B 20 - 79
O(p?) Tree c® \/LE \/LE 0
(a), (b) () 202 % _ %
c’ 5 2v2 1
(c) o —4\2 —2V2 2V2
s -2v2 —-4y2 22
(d) rr 22 V2 )
7t V2 2V2 V2
75 V2 0 0
v5 0 V2 0
n ds—6d, 3ds.
(), (f): (g), (h) 13 —\/Eds - s4\/56 2\/65
ag —2% — 5 (@ ds + ds) — 5 (ds + ds)
n ds+6d ds—3d,
%o 0 v o
al, ds — dg, dg — dg
e ds = f3, ds = f3
T 1 1
p V2 s -
ﬂk 1 1 _ L
V2 V2 V2
J 3
P 0 N 0
(m), (n), (0), (p) Nt 6 3 3
NX 2 5 5
v ;
N 2 3 3
NF¥ 2 1 1
N 0 é §
o ! ; z
0 } ? ?
o 3 13 1

034021-8



RADIATIVE DECAYS OF THE SINGLY HEAVY BARYONS ...

PHYS. REV. D 99, 034021 (2019)

2 2
« y‘F;(32 2 ”22F2 3277 n,12 - (42)

(e) ¢ 9394 8 4(5-d)
= * A _f_5 7_5 )
=% qp (1—d @—nz) o)
(43)
919,d—3 ,81293
W =t B2 DN 0,0y 2 N ),
@ ¢
(44)
y 933 —d
#gg) = _agﬁ*F—éd— 1A2(—f, —83), (45)
h 91943 —d
/45) _ 26*F—§)ﬂ[\2(_53_f’0)
3—-d
_ﬁ¢gzlg:“;f4d—[\2( 5—53,51) (46)
)
0 _ Lt B e sou. 47
M E 34F2( ) ( - 3)ﬂtree’ ( )
2
(n) - 1 ) -92 1— d
! = N0 (48)
O _Los B0 pr(—su® 49
H —5 @( _) ( 3):utree’ ( )
1[ . @l-d g1
,u<p) = — 0¢—]—J/ (0) N¢ —J/ (51)/4Ere)e /"'Ere)e'

(50)

where J,, J) and A, are the finite parts of the loop integrals.

5, y‘{”Q, ag'@ and other coefficients for the loops are listed in
Table IV.

B. B{.(p') — B3(p) +7(9)
For the radiative transition Bf. — By, we give the

explicit forms of the G; and G,. At the leading order,

the Egy) contributes to the form factor G,

GEZ,lrec) _ f4 C (51)
2mN
where the superscript denotes that the value of G| comes
from the O(p?) tree diagram in Fig. 1. G, vanishes at
this order.
At NLO, both the M1 and E2 transitions contribute to the
radiative decay. The Egy) contributes at the tree level and
the from factors read,

) )
G(B,tree) o n2fc¢ (3.tree) _ n1C¢ ' (52)
! 4m% 2 2m%

The loop diagrams (a) and (b) also contribute at this order,

3.a-b 9293 d-73
G = {_ngﬂ(ay@ -5 23 +< 50.-0)7—

Gg3,a—b) _ { 9293 (2 111(53,53 f) +2n! (53,63 f))

2F 2

d 3
g d=3

Sy o0~ 200 )¢

(53)

where nit, nif!

integrals.
At O(p*), the analytical expressions of form factors
coming from the tree diagram are

1

and nf are the finite parts of the loop

G (5 — Af) =0,
2(hy + h3) = 3h,
12M V2
3hy —2hy + by
12MyV2

At O(p?*), the analytical expressions of form factors
coming from the loop diagrams are

G (@ ~ 8 =

3

G"(2l - &) = - (54)

2 2

(4e) _ Ja o ™M TG
G =———6—In—, 55
1 16myF3° 162 22 (55)
G+ — " nm—é Y o M lnm—é
: 4F2 027 2 4Fimy 32 2
(56)

(4.e) ¢ 9495 2(d2—2d—3)
G = - % A _K,O, 57
T T i S AN Y
(4.f) _ 9293

G, ——0‘?4F§)MNA2(53—5,53)
_prg 298S2 § s g 58
P b= ) ()

(4.9) o 9295 3-d 2
G = —a. A (67=2,0), (59
1 a662F$§MN< R 2(63 ). (59)
(4n o 9394 d->5
Gl ——a6*68FéM —d_lAz(—f,é:;)
2 d-5

_pp I LTI (ps 60
p SV d— 1 2(=2.62), (60)
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(4m) _ b 9a G
G =Ny =036, (o)
() _ o9 1-d 1 (o)
G, —N3F2 1 ——J4(85—¢) x 5Gi < (62)
(4.0) _ ~¢ 1-d 1 gs / 1 (2.tree)
G, =07 —— ) B 7,(0)x=G , (63
<4 i F2 2(0) % 21 (63)
2
4 g 9. 1 (2tree
G — o [—ﬁfé@)—wﬁ%@)} 1o,
(64)

C. Bg.(p') — Bs(p) +7(q)
The spin—% sextet decay into the spin—% sextet through the
M1 and E2 transitions. In this section, we show the analytical

expressions of the form factors G; and G,. Then, one can
obtain the analytical expressions of the decay amplitudes
and the transition magnetic moments using Eqs. (12)—(17).

At the leading order, the transition amplitude arises from

the 522],). The G, vanishes and the G, is

Céz)f3 + Céz)ﬁ
2mN ’

G§2.tree) _ (65)

where the C<62) and C‘<62)
Table V.

At the next-to-leading order, both the tree and the loop
diagrams contribute to the chiral corrections. The O(p?)

are the coefficients listed in

tree diagram arises from the Egy) and the form factors are

TABLE V. The coefficients for the tree and loop diagrams that contribute to the amplitudes in the radiative decays

Bf. — Bgy up to NNLO.

Tt Xity Dt o3y 03y Bt ey BV E2Yy Q- QY

O(p*). O(p*) Tree 3 g -3 6 -3 =3

=2

C(G) 1 1 1 1 1 1
(a), (b) B 1 0 -1 1 -1 0

1 1

B 1 ! 0 0 -3 -1

h” 2 0 -2 1 -1 0

h* 2 1 0 0 -1 -2
(c), (d) 66 —4f; 0 4f3 —2f3 2f3 0

S5 —4f3 —2f3 0 0 2f3 4f3

v 2 0 -2 1 -1 0

7 2 1 0 0 -1 )

ok f}+% f3~—{% f}‘% %(6f3+f3) Sf‘—% 2]”}—%3

0" L3f3+2f3) (6f35+f3) $Bf-1f3) H6f3+f) %GBfi—f) 23f3—1f3)

07 1(dy+6dy) Y(dy+6ds) }(dy+6ds) ;(6d;—d,) 4 0

08 L(dy+6dy)  2dy-% 24— Ly, Crd; 4di-%

Gg 0 0 0 %(dz + 6d5) %(3‘13 - dy) 0

0;4: -1 01 1 }Tl % 0

0 -1 -1 0 -4 ! 1

0! 0 0 o - 0 0

o7 f3—ds, f3— ds

@y f3—=do, f3— dy
(m),(n),(0).(p)  N* 2 2 2 3 3 0

N¥ 2 2 2 1 1 4

N 0 0 0 % % 0

0: 2 2 2 % % 0

o \ \ : : .

o 3 3 3 i i 3
O(p*) Tree D, 0 0 0 hil h-4 -
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3.t 4 2 ~ I 2
Gg ree)_<m24mNCé)+m24mNCé> ) f:qv

mp Cé2) + ﬁ'll 6(62)

G(3,tree) _
2m3,

2 (66)

The analytical expressions of the O(p?) loop diagrams
(a), (b) in Fig. 2 are,

(Ba) _ pp 9593 d-3
G = '34)2—]75) <n1511(0’ _f)m_p nIII(O, —f)), (67)
Gb) _ ap 9193 ¢ 9492
G = —p 2—}%”1511(53753 ~ )= h ﬂngl(éﬁ‘% -7
(68)
(3,a) b 9593 d=3 11
G, =P Fﬁ(”z (0,=2) +n5(0,=2)),  (69)
@
, 99
G = P (n31(83.85 = £) + 1 (85,8, = )
¢
h¢g492( W5 5 _7 U5 & —¢
—_ F—inz(z,z_ )+n4(27 2 ))

(70)

where #?, h? and the following &, 6, and so on are the
coefficients as listed in Table V.

At NNLO, the form factors from the O(p*) loop
diagrams and the tree diagram are,

2 2
(40) 1 ny, 1y,
G = b 9. 71
‘ S T6MyF3 1672 22 (71)
2 2
4,d b a m( m(
G =y S Lt (72)

AMyF3 3257 72

(3e) _ _9¢ 9395 2(d2 —2d - 3)

G A, (=2,0), 73
1 24]‘4]\]}725 (d_1)2 2( ) ( )
GBf) . 9193
Gy =0 4MNF§)A2(53 —7.83)
9294
- A (653 —=0C,6
3 4MNF§) 2(03 3)
@ 9194f >
- 9484MNF2 Ay (83 —7,5,)
¢
9194f>
— 0!8 L Ay (6, — £, 55), (74)
¢
B9 __pp 9195 3-d 2
G =-0 A (55=7,0
! 2MNF§)< 7 taoi) e )
p» 9295f4 (3—d 2
-7 Ay (8,—2.0), 75

> 45
G = —gr % (—)Az(ég,—f)

8MyF; \d—1
9394f4 (d—=5
— 6! 8M P (ﬁ> Ay (8,,=2),  (76)
p)
G4 — b B o2 -ayxt6®. (7
1 = 4F2 (=) )X2 15 (77)
&
2 2
(4.n) 91 1-d / 9 1-d /
G\ = [04’—2—]2(53—f)+N¢—2—J2(52—f)
F2 4 F2 4
1
XEG?), (78)

2
o) _ np 95 (1—d 1 1 1
G =0t (— =4 — \10)x=G, (79
! F;<4 a—1)20 360 ()

|
9 6,)x=GP,  (80)
2 J2\02 1 »
4F2

2
G = =00 11 (53) - N :

2
4F ¢
D,

G 1(4,1ree) — _ .
: 4My

(81)

D. The U-spin symmetry in the analytical expressions

For the transitions Bs — B3y and Bf. — Bsy, the form
factors and the transition magnetic moments of the heavy
baryons completely come from the dynamics of the two
inner light quarks. The contributions from the two light
quarks are destructive, which is clearer in the quark model
as listed in Appendix B.

In the neutral decays E° — 5% and = — =0, the two
light quarks are s and d. In the O(p?) and O(p?) tree
diagrams, their contributions cancel out because their
masses and charges are the same in the SU(3) flavor
symmetry. The coefficient C(?) for the two tree diagrams
vanishes. Then, the decay amplitudes totally come from the
chiral corrections of the loop diagrams (a) and (b) in Fig. 2
up to NLO. In these diagrams, the coefficients of the 7 and
K loops are opposite as illustrated in Table IV. In the exact
SU(3) flavor symmetry, the masses and decay constants of
the 7, K and # are the same. Then the x loop and K loop in
(a) or (b) cancel out exactly. In this work, we introduce the
breaking effects of the U-spin symmetry through the
masses and decay constants of the # and K mesons in
the loops. The decay widths are nonvanishing.

At NNLO, the above conclusion also holds. The wave
function renormalization diagrams do not contribute since
the amplitudes of the O(p?) tree diagrams vanish. The 7
loop and K loop in the (¢) and (d) diagrams cancel out with
each other. In the (e)—(h) diagrams, the sum of the z loop, K

loop and # loop cancel out. The [Z?y) can be absorbed into

the c@ in the exact SU(3) flavor symmetry.
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TABLE VL

The masses of the heavy baryons in the unit of MeV. The masses without special notations are from

Ref. [48]. The { represents that the mass of the corresponding state is still absent. Then we estimate it with the
average mass of the other states in the same isospin multiplet.

AF = = >t =F 0 =t =0 QY
2453.97 2452.9 2453.75 2577.4 2578.8 2695.2
2286.46  2467.87  2470.87 Tt et ¥ = =0 Q0
2518.41 2517.5 2518.48 2645.53 2646.32 2765.9
A g g =, z; Ep E) Q,
5811.3 5813.47 5815.5 5935.02"  5935.02 6046.1
5619.6 5791.9 5794.5 it 30 e g0 Che Q™ [49]
5832.1 5833.6" 5835.1 5949.8 5955.33 6083.2

In conclusion, the decay widths of the Z° — Z% and

20 — 29 totally arise from the U-spin symmetry breaking
effects up to NNLO.

Another manifestation of the U-spin symmetry is the
relations among the coefficients of the charged radiative
decays. If we exchange the s quark and d quark, the heavy
baryons transform as £} — E, A7 — Ef. One obtains

Xx*(K) (ZE*)Jr = Aly) = XK(’”(EI/C(*)Jr - Ely), (82)

where X denotes the coefficients C), §¢ and so on for the
diagrams (a)—(d).

For the radiative decays Bf. — Bgy, there are similar
relations between the coefficients as Eq. (82),

x*K)(Zit — 2ty)
= XKW(E = Bfy), xMO(Z0 — xy)
= XK(:0 Q). (83)
where X denotes the coefficients in Table V for the
diagrams (a)—(d).

We also find some relations between the form factors in
Table V. Up to NLO, one obtains similar relations as those
in Ref. [11],

Gyt (B = Z8y) + G (20 - =)
=2Gy (ZiF = Xly). (84)

G (T = Zy) + 26 (B — EDy)
= Gy (T = Z) + 26y (BT — Elfy)
= Gy (QF = Q) + 26y (B — ). (85)
The G, also satisfies the same relationships. Up to NNLO,
Eq. (84) still holds. Equation (85) is destroyed by the
O(p*) loop diagrams. In the calculation of the transition

magnetic moments and the amplitudes, we use the baryon
masses as listed in Table VI.

V. THE INDEPENDENT LECS IN THE HEAVY
QUARK LIMIT

In previous works, we have calculated the magnetic mo-
ments of the spin-} and spin-3 heavy baryons up to NNLO
[40,41]. There are many common LECs for the magnetic
moments and the radiative decay amplitudes. Thus, we
perform the numerical analysis for the radiative decay widths
together with the magnetic moments up to NNLO.
f234, and f5. At NLO, the magnetic moments and the
decay amplitudes contain nine LECs, including five axial
coupling constants g,_s in the O(p?) loop diagrams and
three LECs in the O(p?) tree diagrams: n,, m,, and 7, .

At NNLO, there are eight LECs a;_s, d;, d4, and d;
in the loop diagrams. In the tree diagrams, there are eight
LECs c¢i_3, hi_3 and [;, for the radiative transition and
five LECs s,_¢ for the magnetic moments. In general, these
LECs should have been estimated with the experiment data
as input. So far, there are no experiment data. As a
compromise, we use the data from the lattice QCD
simulation as input, which is listed in Table VII. One
notices that the number of the lattice QCD data is still
smaller than that of the LECs. In the following section, we
use the heavy quark symmetry to reduce the number of
the LECs.

A. The heavy quark symmetry

Besides the Lagrangians in Sec. III, the magnetic
moments up to NNLO involve the following Lagrangians,

o 4 r(Bs[$*, 8¥][u,, u,)B3)

d _
+ — Tr(Bg[S*, $*][u,. u,|Bs)
My

d _
+ MiNTr(Bg (4., u,)BY.). (86)

034021-12



RADIATIVE DECAYS OF THE SINGLY HEAVY BARYONS ...

PHYS. REV. D 99, 034021 (2019)

TABLE VIIL

The data from the lattice QCD simulation [6,7,50,51]. The value of G, (Q: — Q0) is derived from

Ref. [7]. The magnetic moment is in the unit of the nuclear magneton. The superscript § denotes that the

corresponding data is treated as input.

/é; lc it Heno y;%m Ho_z0,
0.235(25) 0.192(17) 0.315(141) —0.599(71) 0.729(103) 0.009(13)
Mo Mo Hep Heyo G (Q° — Q)
1.499(202) —0.875(103) —0.688(31) —0.730(23) G4, (0) = 0.671 G, (0) = 0.145
ES}? = —%Tr(BdSﬂ, SV Bo)Tr(f o) de = gKav dy = —4Kks, fi= —EK} (94)
N V3

is i v
m3 Tr(B“b[S” SU}{Z+’ f;u/} g Bﬁl])

4 —Tr(B *)(JFB”*)TT(}?;Z)
dmy

‘+15%Td3é{xwfﬁ}%3é) (87)

In the heavy quark limitthe spin- and spln—— sextets
are in the same multiplet. They can be described by a
superfield [52],

1
y" = B — \/;(7” + v")r5Bs. (88)

o 1
7, = Bl + \éBﬁys(yﬂ +v,). (89)

With the superfield, we construct the Lagrangians, the x_g
terms, to reduce the number of the LECs.

The O(p?) Lagrangians that contribute to the radiative
decays read

eﬂlzaﬂTr@_/ﬂ]Ncaﬁ v"Bs ) ’

(90)

2 . K1 — K>
‘C(H>QSS = lM—NTI‘(l,l/”f;Dl//U) + M_N

Loy = —Tr(l//

) Te (), (1)
where the subscript “QB” represents the breaking effect of
the heavy quark spin symmetry. Combining the two
equations with Eq. (26), we reduce the seven LECs,
dses9, f23, and f5, to three independent LECs, K123

8 1
d5:_§’<l’ dg = =2k, f3=4\/;’<1’ (92)
fo=8c,  fr= (93)
= K N = —K .
4 2 2= 7R

The Lagrangian that introduces the vertex Bgg at O(p?) is

2 ik oMY
Ll = 3 T 00 32 € Tr(Bali 0],

+M—]6\7Tr(B§ab€lwypuz¢u1p Upwo') (95)

The LECs d, 47 in Eq. (86) and a;,345 in Eq. (32) are
reduced to three independent LECs k45 as follows,

1 2
as = —2\/;@, d, = §K4, d; = Ky, (96)
1
asz = 2ks, a) = 4\/;’%’ (97)
1
ay = 4k, a, =2 §K6‘ (98)

At O(p*), the Lagrangian reads

£ = S ey
By my I‘( {)(+ /w uhll/l])
K _ v
+ m—iTr(y/’l)Ho"‘ w)Tr(fh) (99)

The LEC:s 51,378 in Eq. (87) and [, , in Eq. (36) are related
to two independent LECs x7 g,

1 8
lz = 8\/;’('7, S3 = —§K7, §g = 4K7,
1 8
ll - —32\/;1(8, Sy = §K8’

In conclusion, up to NNLO, the LECs for the magnetic
moments and the radiative decay amplitudes of the heavy
baryons can be expressed by eleven independent LECs:
Ki_g> N1, my and 71, in the heavy quark limit.

(100)

§7 = 8]('8. (101)
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TABLE VIII. The transition magnetic moment and the decay
width for the radiative transition Bs/Bf. — B3y in the charmed
baryon sector. y is in the unit of nuclear magneton. The super-
script  denotes that the corresponding data is used as input.

H(py)

Channel O(p) 0O(p?) Total I' (keV)
SF o Afy =270 132 —138+002  65.6+2
B s Ey =270 197 0.73% 543 +0.33
B0y 0 0.22 0.22 0.46
¥t S Ary 391 —191 2.00 161.6 + 5
5y 388 —2.83 1.05 216+ 1
BB 0 ~0.31 ~0.31 1.84

VI. NUMERICAL RESULTS AND DISCUSSIONS

A. The radiative decays from the sextet
to the antitriplet charmed baryons

For the radiative transitions Bs — B3y and Bf. — Bsy,
we calculate the numerical results up to NLO. The
numerical results are listed in Table VIII. Their analytical
expressions contain three unknown coefficients f,, f,, and
n;. The f, is related to f, through «x, in the heavy quark
limit and «, is estimated using u(E." — Efy) from lattice
QCD simulation. The n; contributes to the G, form factor,
which are important for the G, and has little influence on
G- The radiative decay width mainly arises from the M1
transition. Then we calculate the decay width without the
G, contribution.

The radiative decay amplitudes of Z° — 2 and =0 —
2% completely come from the loops (a) and (b) up to NLO
as illustrated in Sec. IV D. The amplitudes of the two loops
only involve g;_g. Their values are [13,46,47]

3 V3
g1 = 098, g = — ggl = —060, g3 :791 = 085,
3
94 = —\/§92 =104, gs5= —591 =-147, g4=0,
(102)

where ¢, 4 are calculated through the strong decay widths
of the charmed baryons and others are obtained through the
quark model. In Table VIII, one obtains

(103)

The above results are independent of the inputs from the
lattice QCD simulations. For the neutral decay channel
=0 — 2%, the E2 transition decay width is only 1.6 eV.
The E2 transition is very strongly suppressed compared
with the M1 transition.

B. The radiative decay width from the spin-%
sextet to the spin-} sextet

In the heavy quark limit, the average mass differences are

01 = 6, = 127 MeV, 63 =0MeV. (104)
The mass difference between the antitriplet and sextet does
not vanish in the heavy quark symmetry limit. This will
impact the convergence of the numerical results [40]. Thus,
we do not consider the contributions of the intermediate
antitriplet states in the loops in the numerical analysis.
Since M_ = &5 vanishes in the heavy quark limit, the G,
does not contribute to the G,;;. The G, vanishes according
to Eq. (12). Then the m; and 77; do not appear in the
analytical expressions. The LECs are reduced to «, k3, K4,
K7, and Kg.

In Refs. [40,41], we decomposed the magnetic moments
of the heavy baryons into the contributions of the light and
heavy quarks. We selected the average value u,. = 0.21uy
from the lattice QCD simulation as the magnetic moment
of the charm quark. The heavy quark contributions to the
magnetic moments of the antitriplet, the spin—% and spin—%
sextets are 0.21uy, —0.07uy, and 0.21py, respectively. For
the transition Bf. — Bgy, we use the Gi,, (Qi — Q.y) =
—0.15 in Ref. [1] as the contribution of the charm quark.
Then, we extract the contribution in the light quark sector
and fit them order by order up to NNLO.

TABLE IX. The magnetic dipole form factor, transition magnetic moment and the decay width for the radiative transition from the
spin-% to the spin-% sextet. The second to the forth columns represent contributions from the light quarks order by order. The “Light” and

“Heavy” represent the contributions from the light and heavy quarks, respectively. The sum of them are the total G,;; form factor. “...

”

denotes that there is no corresponding data in the lattice QCD simulations.

Gy

Channel O(p) O(p*) O(p’) Light Heavy Total lattice QCD [6] He—6(Hn) I'(keV)
ittt o Bty 4.36 —-1.69 0.90 3.57 —0.15 3.434+0.7 1.07 £ 0.23 1.20 £ 0.6
it Iy 1.09 —0.60 0.27 0.76 —0.15 0.61 £0.2 0.19 + 0.06 0.04 £0.03
=0 - 30y -2.18 049  -0.37 -2.06 -0.15 -220+0.3 —0.69 £ 0.1 0.49 £0.1
Bt - By 1.15 -0.26 0.04 0.92 —0.15 0.77 £ 0.2 0.23 + 0.06 0.07 £0.03
B0 50y -2.29 089 -045 -1.85 -0.15 -2.00+04 -0.59+0.12 042+0.16
Q0 - QY -2.39 1.31 —-0.48 —-1.56 —-0.15 -1.71+0.5 —0.816 —0.49 +0.14 0.32+0.20
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TABLE X. The values of the LECs.

LECs Value LECs Value LECs Value LECs Value

K1 —1.08 £0.01 fa —-0.48 £0.05 fa —6.60 £0.71

K> —0.83 £0.01 ds 2.87 +0.31 dg 2.154+0.23 f3 —-2.48 +0.27
K3 0 d6 0 dg 0 }‘3 0

K4 1.66 £0.12 as —-1.91 +£0.33 dy 1.10 £0.19 d; 1.66 £0.29

K7 0.09 +0.02 5 0.424+0.11 53 —-0.24 £ 0.07 Sg 0.36 £0.10

Kg 0 ll 0 S 0 857 0

In our calculation, we calculate the radiative decay widths
of the singly heavy baryons in Secs. II-VI. The analytical
expressions involve many unknown LECs as listed in the last
three columns in Table X. We use the heavy quark symmetry
to relate these LECs and express them with eight indepen-
dent parameters k; — kg. We use the data from the lattice
QCD simulations to determine the x; — xg. The errors on «;
from the lattice QCD simulations are obtained with the
minimum y? fit. To obtain the parameters in the last three
columns in Table X, for instance the ds — dy, the error of the
order 10% is introduced to the heavy quark symmetry. Thus,
the errors of the above LECs come from both the lattice QCD
simulation and the heavy quark symmetry. Varying the
LECs, we obtain the uncertainties of the decay widths and
magnetic moments. The numerical results for the magnetic
dipole form factors, the decay widths and the (transition)
magnetic moments are listed in Table IX. The chiral
expansion works well. The chiral corrections at NLO and
NNLO to the (transition) magnetic moments cancel with
each other in most channels. This helps to guarantee that the
total results are mainly from the leading order.

VII. THE RESULTS FOR THE BOTTOM BARYONS

In this section, we extend the calculations to the singly
bottom baryons. The charge matrices of the bottom quark
and bottom baryons are

0O di 1 1 0 di I 1 1
ey 1 _—— —— —— f— 1 —_— —— —— .

b ag 3 ) 3 ) 3 ) B ag 2 ) 2 ) 2
(105)
TABLE XI. The transition magnetic moment and the decay

width for the bottom sextet to the antitriplet. 4 is in the unit of the
nuclear magneton.

u

Channel O(p) O(p?) Total I (keV)
20— Ay -2.70 1.33 -1.37 108.0 4
Y - By -2.70 1.95 -0.75 13.0+0.8
2~ - By 0 021 021 1.0
=0 > Ay 3.85 —1.89 1.96 142.1 £5
E;;O — E(b)y 3.84 -2.78 1.06 172 +£0.1
B~y 0 ~030  —0.30 1.4

The (transition) magnetic moments and the radiative decay
amplitudes of the singly heavy baryons can be divided as

u=pu +u°, M= M7+ M2, (106)

where the superscripts “g” and “Q” denote the contributions
from the light and heavy quarks, respectively. The
Lagrangians and the LECs of the light quark sector are the
same for the bottom and charmed baryons. For the heavy
quark sector, one obtains the Lagrangians for the bottom
baryons by replacing the Q. with Q,, in the Tr( i)

In the heavy quark limit, the mass differences for the
bottom baryon states are

8, =68 =15739 MeV, 8 =0MeV.  (107)

For Bg/B§. — Bsy, the numerical results are listed in
Table XI. One obtains

(2, - E;y) = 1.0 keV, I'(E;~ - E)y) =14 keV.

(108)

The I'(E;~ — &, y) is also mainly from the M1 transition,
and the E2 decay width is only 0.20 eV.

For the radiative decays Bf. — Bgy, we use the predictions
from the quark model to estimate the contributions from the
bottom quarks [41]. The transition magnetic moments and the
radiative decay widths are listed in Table XII.

VIII. SUMMARY

In this work, we calculate the radiative decay amplitudes
and the transition magnetic moments for the singly heavy
baryons. We derive their analytical expressions up to the next-
to-next-to-leading order in the framework of the HBChPT.
The expressions contain many LECs. Most of them also
contributed to the magnetic moments. Thus, we perform the

TABLE XII. The transition magnetic moment and the decay
width for the transition Bf. — Bgy.

He' 6 Light  Heavy Total I' eV)
ot -3ty 1.11 0.06 1.17+£0.22 50 £ 20
0 - 2y 0.24 0.06 0.30 £ 0.06 30+£1
T -y —-0.63 0.06 -0.58 £ 0.1 103 +£4
g0 - 20y 0.27 0.06 0.33 +£0.06 1.5£05
E-—-E7y -054 0.06 —0.49 £0.1 82+4
Q= Qy 044 0.06 -0.38 £ 0.13 30.6 £ 26
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TABLE XIII.

The decay widths of the charmed baryon transitions from different frameworks, the lattice QCD

[6,7], the extent bag model [20], the light cone QCD sum rule [53-55], the heavy hadron chiral perturbation theory
(HHChPT) [11,56], the HBChPT [13] and the quark model [23].

T (keV) This work 16,7] [20] [53-55]  [56]  [l1] [13] [23]

F = Aly 65.6 74.1 50(17) 46 164 60.7 £ 1.5
B o Eiy 543 5.468(1.500) 17.3 852.5) 1.3 543 127+£15
g0 50y 0.46 0.002(4) 0.185 027(6) 004 12407 002 0.17+0.02
Tt = Aty 161.8 190 130(45) 893 151 +4
Bt - 2ty 216 727 52(25) 502 5443
210 5 59y 1.84 0.745  0.66(32) 51427 036  0.68+0.04
Tt o Tty 1.20 196 2.65(1.20) 11.6

Tt o Sty 0.04 0.011  0.46(16) 0.85  0.14 £ 0.004
¥:0 5 30, 0.49 141 0.08(3) 2.92

Bt 2ty 0.07 0063 0274 1.10

=0, =0y 0.42 1.33 2.14 3.83

Q0 - QY 0.32 0.074(8) 1.13 0.932 4.82

numerical analysis for the magnetic moments and the decay
amplitudes of the singly heavy baryons simultaneously with a
set of unified LECs. The heavy baryons have the heavy quark
symmetry in the heavy quark limit. This helps to reduce the
number of the independent LECs.

For the decays Bs — B3y and B. — Bjy, we calculate
the numerical results up to the next-to-leading order. Due
to the U-spin symmetry, the tree diagrams do not contribute
to the transitions Z° — 2% and Z° — E%y. Their decay
widths totally arise from the chiral corrections, which does
not involve unknown LECs up to NLO. For 20 — 20, the
E2 transition is suppressed. The above conclusions also
hold for the radiative decays Z;- — 5,y and B;,~ — E; 7.

For the radiative decays Bfi. — Bgy, we calculate
numerical results of the decay widths up to the next-to-
next-to-leading order. In the process, we do not include the
antitriplet states as the intermediate states in the loops. We
use the magnetic moments of the charmed baryons from the
lattice QCD simulations are treated as input and predict the
transition magnetic moments and the decay widths.

We extend the calculations to the bottom baryons. The
light quark contributions are the same as those in the
charmed baryon sector. The heavy quark contributions are
estimated using the quark model.

In Tables XIII and XIV, we list our numerical results for
the radiative decay widths in the charmed and bottom baryon
sectors, respectively. We compare them with the results
calculated using the lattice QCD [6,7], the extent bag model
[20], the light cone QCD sum rule [53-55], the heavy hadron
chiral perturbation theory (HHChPT) [11,56], the HBChPT
[13] and the quark model [23]. For the radiative decays By —
Bsy and Bf. — Bjy, our numerical results are consistent
with those from other frameworks. For the radiative decay
Bf. — Bgy, we have estimated the LECs by adopting four
magnetic moments from the lattice QCD simulations as
input, which are smaller than those of other models [40,41].

Since the decay width is proportional to the square of the
multipole form factor, the inputs from the lattice QCD may
lead to smaller decay widths.

In the future, with more data from the experiment and the
lattice QCD, we can update our numerical results using the
analytical expressions. We expect the analytical expres-
sions may be helpful for the extroplation of the lattice QCD
simulation. Hopefully, our numerical results will be helpful
to the experimental search of the radiative decays of the
heavy baryons at LHCb, Belle I and BESIIL.
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TABLE XIV. The decay widths of the bottom baryon transi-
tions from different frameworks, the extent bag model [20], the
light cone QCD sum rule [53-55], the HHChPT [11] and the
HBChHPT [13].

I (keV) This work  [20] [53-55]  [11]  [13]
0 — Ay 108.0 116 152(60) 288
Eg) - Egy 13.0 36.4 47(21)

B - Eyy 1.0 0357  33(1.3) 3.1+18

0 - A0y 1421 158 114(45) 435
20— 2y 17.2 55.3 135(65) 136
B >y 1.4 0536 1.50(75) 42424 1.87
-3y 005 0.11 0.46(22) 0.6
0 - 20y 3.0x1073 8.3 x 107 0.028(16) 0.05
T~ =Xy 0013 0.0192  0.11(6) 0.08
=05 E20% 1.5x107  0.0105 0.131

;" - &,y 82x1073  0.0136 0.303

Q- Qyy 0031 9.1x1073  0.092
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TABLE XV. The magnetic moments of the spin-% and spin-% singly charmed sextet. The superscript & denotes that
the corresponding data is treated as input.

O(p) O(p?) O(p?) Light Heavy Total Lattice QCD
yjzzﬁ 1.91 -0.74 0.39 1.57 —0.07 1.50 £ 0.32 1.499(202)
,uz} 0.48 —0.26 0.12 0.33 —0.07 0.26 +0.09
Hzo —-0.96 0.22 —0.16 —-0.90 —0.07 —-0.97+£0.14 —0.875(103)
ﬂf_, 0.48 —0.11 0.01 0.39 —0.07 0.32 +0.09 0.315(141)
qu —-0.96 0.37 -0.19 —-0.77 -0.07 —0.84 +£0.17 —0.599(71)
M;o —-0.96 0.52 -0.19 -0.62 -0.07 —0.69 +0.19 —0.688(31)
P+ 2.87 —1.11 0.59 2.35 0.21 2.56 £ 0.46
s+ 0.72 -0.39 0.17 0.50 0.21 0.71 +0.13
Hso —1.43 0.32 —-0.24 -1.35 0.21 —-1.14 +0.20
Mzt 0.72 —0.16 0.02 0.58 0.21 0.79 +0.12
Hzo —1.43 0.55 —-0.28 —1.16 0.21 —-0.95+0.24
ﬂgm —1.43 0.78 —-0.29 —-0.94 0.21 —0.73 £0.28 —0.730(23)

TABLE XVI. The magnetic moments of the spin-} and spin-3

singly bottom sextet.

Light Heavy Total Light Heavy Total

Hst 1.57 -0.02 1.55 Hs:+ 235 —0.06 2.29
Hs) 033 —-0.02 0.31 Mo 0.50 —0.06 0.44
ps; =090 -0.02 -0.92  py- -135 =006 -141
Hgp 0.39 —-0.02 0.37 Hzyo 0.58 —0.06 0.51
g —077 -0.02 -0.79 5 -1.16 -0.06 -1.22
Moy -0.62 -0.02 -0.64 Ho- —0.94 -0.06 -1.00

where we use 1, 4 ; and y, to denote the magnetic moments
of the light and heavy quarks, respectively. We find that the
heavy quarks do not contribute to the radiative decays from
the sextet to the antitriplet. The contributions of two light
quarks are opposite to each other.

For the decay Bf. — Bgy, one obtains

APPENDIX A: MAGNETIC MOMENTS OF SPIN-%
AND SPIN-% SEXTETS

In this section, we give the magnetic moments of spin—%
and spin—% sextets in Tables XV and XVI.
APPENDIX B: QUARK MODEL RESULTS

We calculate the transition magnetic moments of the
charmed baryons in the quark model. For the radiative
decays Bs — Bsy and Bf. — Bjy, the results are

1
/4(2? - Aj_]/) = _ﬁ(/’tu _:ud)’
_ |
HES = Ely) = _%(ﬂu — Hy),
1
HEL - Bly) = ——3(ﬂd — 1)
2
wET = Aly) = 7 (M = Ha)-
— 2
HES - Bly) = —6(/@ — Hy),
—_0 . = 2
uEL - Ely) = —6(ﬂd — ). (B1)

H(ETT - Xity) = ? (2py —2p.),
u(E = Xy) = g (Hu + pa = 24),
p(EL - Zy) = ? (2uq = 2u.),
u(E:t - Efy) = g (Hu + 15 = 2pc),
H(EL - Ey) = ? (i + pa = 24c),
p(QP — Qly) = ? (2us = 2u.). (B2)

Both the light and heavy quarks contribute to the transition
magnetic moments.

APPENDIX C: THE LOOP INTEGRALS

In this section, we list the loop integrals involved in this
work.

a4 1
A=i =2
l/ (2r)? P —m? + ie "

1 m?
2L+ ——1m
( <’1)+32ﬂ2n/12>’

(C1)

where
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L(ﬂ)—ﬂd_4 L V@ 140,
Tl |d—4 2T
d 14—d
) =i [ G, — |
2r)¢ (2 —m? +ie)((1 + q)* — m* + ie)
— 1oz <1—ln——rln li) +2L(4) (¢> <0),
Iy(q?) = —ﬁ (1 1n——2rarctan—> +2L(A) (0 < g% < 4m?),
— oz <1 —InZ — rln| 12| + in’r) +2L(2) (g* > 4m?).

)

where r =

l_/ddlxl“‘d (1, Ly, Lol )

(2ﬂ)d (lz —m?+ ie)(a) +u-l+ ie) = [JO(w)v Ua-ll(w)v ga/}-]2(a)) + U(IU/J’J3(CO)]-

=5 (1 - ln’f—;> + ”” 7 (arccosh 2 — iz) + 4wL(2) (@ > m),
Jo(w) = { 5% (1 —ln’;f> ”” 5 arccos =2 + 4wl (1) (@? < m?),
o5 (1 —InZ ) - —”ﬁ;”‘zarccosh%” +4wL(4) (0 < —m).

Ji(w) = —oJy(w) + A.

1

J2 () = -1

[(m? — @*)Jo(w) + wA].
J3(w) = —oJ(0) = (o).

Ja(w;) —Jz(wz).

A0y, 0,) = o — o
2 — W

The loops that contain a heavy baryon and two meson propagators can be expressed as

, /ddl,14—d (1, Ly Lol L1 1g)
Q) (P —m? +ie)((I + q)* = m? + ie) (@ + v - [ + ie)

with f=w—-v-qgand v-gq > 0.
— g @ 2 . \ P=m*+p
8,,217),([ {% [(arccosh%) — (arccosh%) ] - mln\/ai;f—'Thﬂi . (B> m)
2
Ly(w) = 16” a [(arccos ) - (arccos%) ], (B < m?)
2
[(arccosh ) (arccosh%’) } (B < —m)

Los = n'g.s + nlzlqaqﬂ + nYv,vs + ngvaqﬂ + n¥q,vp,

16ir v-q

034021-18
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Lva/} = nIIHquqaqﬂ + nIZqu‘Iavﬁ + ngnquﬂva + nglanﬂvv + ngncbga/} + nlﬁnqﬁgua + nI7HCIagu/3

1T I 1T 1T 1 1 1T
+ ng q,VaVp + Ng qqU,Vp + n10qp0, Vg + 1198 Va + n1590aVp + 139050y + 40,V Vg-

JIN 11

(C14)

The explicit forms of the n}, n;" and so on are quite complex. We list their relations with some simple integrals.

_ —BJo(B) + Jo(@)w + 2Lo(w, f)m*(w — JB)

nil(w, p) 2d=2)(w—p) ) (C15)
_ _Jo(B)((d =2)w = p(d = 3)) = Jy(@)@ + 2Lym* (B — @)
(@, p) = n(w, ) == 2d—2)(w _Oﬂ)z 0 : (C16)
(o, ) = — Jo(B)[H(d2 = 5d + 6) + (d* — 3d + 2)* = 2p(d> — 4d + 3)w + 2(d — 2)m?]
B 2(d-2)(d - 1)(w—p)’
_Am* (0 = p)[(d = 2)Iy = (d = 1) Lo(w, f)o] = 2Jo(o)[(d = 2)m* + o] (17)
2(d=2)(d = 1)(o-p)’ ’
Mwwﬁ)ZZme—ﬂMM—ZHMQG—(d—ULduﬂMﬂ
T 2(d=2)(d - 1)(0 - p)?
L JoB)d=2)m? + 2 = p(p + @)(d = )] = Jo(@)[(d = 2)m* + o] (C18)

2(d=2)(d - 1)(w - p)?
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