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The properties of Δ isobars in a uniform magnetic field are investigated. General relations between the
magnetic moments of nucleons andΔ isobars in a weak magnetic field are given. In a strong magnetic field,
the masses and sizes of Δ isobars depend on the magnetic field strength in different ways: the effective
masses of Δþþ, Δþ, and Δ0 (the sizes of Δþþ and Δþ) first decrease (increase) and then increase
(decrease), whereas the effective mass of Δ− (the sizes of Δ0 and Δ−) always increases (decrease). Our
estimates show that, in the core part of the magnetar, the equation of state for Δ isobars depends on the
magnetic field, which affects the upper limit on the mass of the magnetar.
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I. INTRODUCTION

The Δ isobars play a very important role in nuclear
physics [1]. For example, a Δ baryon medium exists in
heavy-ion colliders [2] and neutron stars [3,4]. Since Δ
isobars have internal structure, the properties of Δ baryons
could be dramatically changed by the strong magnetic
fields that widely exist in heavy-ion colliders and magnet-
ars [5–7]. Thus, the magnetic responses of Δ baryons could
be measured in a heavy-ion collider or in a magnetar.
Besides their magnetic responses, another mystery of Δ

isobars is the wide range of magnetic moments that have
been experimentally measured [8,9]. Although great efforts
have been made to predict the magnetic moments of Δ
isobar states, many challenges still remain [10–15].
Until now, baryon properties in strong magnetic fields

have been hard to predict. The difficulty is that, in strong
magnetic fields, the interaction between the internal struc-
ture of a baryon and the magnetic field could be nonlinear
and hard to construct without proper guidance. The
Lagrangian of the Skyrme model, however, is constructed
using chiral perturbation theory, guided by chiral symmetry
[16], which leaves no arbitrary terms in the Lagrangian in
either weak or strong magnetic fields.
In this paper, Δ isobars in a uniform magnetic field are

studied in the semiclassical quantization approach of the
Skyrme model [17,18]. Different wave functions for Δ
isobars [19] lead to different magnetic responses. In a weak
magnetic field, the general relations between magnetic

moments of nucleons andΔ isobars are obtained. Using the
experimental measurements of μp and μn, the magnetic
moments of Δ isobars are estimated and found to be
consistent with experimental results. In a strong magnetic
field, it is found that when the magnetic field strength
increases, the effective masses of Δþþ, Δþ, and Δ0 first
become lighter and then heavier, while the effective mass of
Δ− always becomes heavier. On the other hand, the sizes of
Δþþ and Δþ first become larger and then smaller, whereas
the sizes of Δ0 and Δ− always become smaller. Finally,
since both the masses and sizes of Δ isobars depend on the
strength of the magnetic field, the equation of state for Δ
isobars is influenced by the magnetic field, which could
affect the properties of magnetars.

II. THE MODEL

The minimum action of the model for our present
purpose contains two parts:

Γ ¼
Z

d4xLþ ΓWZW; ð1Þ

where L represents the pion dynamics which is ex-
pressed as

L ¼ f2π
16

TrðDμU†DμUÞ þ 1

32g2
Trð½U†DμU;U†DνU�2Þ

þm2
πf2π
16

TrðU þ U† − 2Þ: ð2Þ

Here, g is a dimensionless coupling constant, and fπ and
mπ are the decay constant and the mass of the pion,
respectively. The covariant derivative for U is defined as
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DμU ¼ ∂μU − iLμU þ iURμ; ð3Þ

where

Lμ ¼ Rμ ¼ eQBVBμ þ eQEHμ ð4Þ

for the present purpose. Here, e is the unit electric charge,
QB ¼ 1

3
1 is the baryon number charge matrix, QE ¼

1
6
1þ 1

2
τ3 is the electric charge matrix, 1 is the rank 2 unit

matrix, and τ3 is the third Pauli matrix. The external gauge
field VBμ is associated with a Uð1ÞV baryon number
symmetry. In the symmetric gauge, the magnetic field
Hμ is expressed as

Hμ ¼ −
1

2
Byημ1 þ

1

2
Bxημ2; ð5Þ

where η is diagðþ1;−1;−1;−1Þ.
The last part of the action (1), i.e. ΓWZW ≡ R

d4xLWZW,
represents effects of the chiral anomaly, provided in
Refs. [20,21].
Following Refs. [22,23], in the elliptic coordinate

system, x, y, and z are expressed as

x ¼ cρr sinðθÞ cosðφÞ; ð6aÞ

y ¼ cρr sinðθÞ sinðφÞ; ð6bÞ

z ¼ czr cosðθÞ; ð6cÞ

where cρ and cz are positive dimensionless parameters,

r≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

c2ρ
þ y2

c2ρ
þ z2

c2z

q
, and θ and φ are polar angles with θ ∈

½0; π� and φ ∈ ½0; 2π�. In the Cartesian coordinate system,
U is expressed as

U ¼ cosðFðrÞÞ1þ i sinðFðrÞÞ
r

�
τ1
cρ

xþ τ2
cρ

yþ τ3
cz

z

�
: ð7Þ

In a semiclassical quantization approach [18,24,25], the
spin and isospin are obtained by rotating the ansatz
equations (6) and (7) in both space and isospin, i.e.,

Û ¼ AðUðRÞÞA†; ð8Þ

where A and R are rotation matrices for isospin and spatial
rotations in the x − y plane, respectively. Here A and R
satisfy

A−1 _A ¼ i
2
ωaτa; ð9aÞ

ðR−1 _RÞij ¼ −ϵij3Ω3; ð9bÞ

where a ¼ 1, 2, 3 and i, j ¼ 1, 2.

By replacing U with Û in the action (1), a new action is
obtained,

Γ̂ ¼
Z

d4xðL̂þ L̂WZWÞ ¼
Z

d4xL̂total: ð10Þ

The canonical conjugate momenta of the isospin and spin
are obtained by taking functional derivatives of the action
with respect to ωa and Ω3,

Ia ¼
∂L̂total

∂ωa

����
VBμ→0

; ð11aÞ

J3 ¼
∂L̂total

∂Ω3

����
VBμ→0

; ð11bÞ

respectively.

III. THE GENERAL RELATIONS BETWEEN
NUCLEONS AND Δ ISOBARS’ MAGNETIC
MOMENTS IN A WEAK MAGNETIC FIELD

We have made calculations to the following orders in the
number of colors (NC): fπ ∼OðN1=2

C Þ, g ∼OðN−1=2
C Þ, mπ∼

OðN0
CÞ, eB ∼OðN0

CÞ, ωa ∼OðN−1
C Þ and Ω3 ∼OðN−1

C Þ.
Thus, up to OðN−1

C Þ, the Hamiltonian is obtained as

H ¼
X

a¼1;2;3

ðωaIaÞ þΩ3J3 − L̂totaljVBμ→0: ð12Þ

The baryon mass is obtained from

MΨ ¼ hΨj
Z

dVHjΨi: ð13Þ

Here, jΨi expresses the wave functions for proton, neutron,
Δþþ, Δþ, Δ0 and Δ− as stated in Refs. [18,19]. To be
specific, the masses of nucleons and Δ isobars in the weak
magnetic field are given in Appendix A as examples.
The baryon magnetic moment is obtained from

μΨ ¼ −
∂MΨJ3≡J

∂ðeBÞ : ð14Þ

In an extremely weak magnetic field, magnetic moments of
Δ isobars are written in terms of the magnetic moments of
nucleons,

μΔþþ ¼ 3

5
ð4μp þ μnÞ þ 3μI; ð15aÞ

μΔþ ¼ 3

5
ð3μp þ 2μnÞ þ μI; ð15bÞ

μΔ0 ¼ 3

5
ð2μp þ 3μnÞ − μI; ð15cÞ
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μΔ− ¼ 3

5
ðμp þ 4μnÞ − 3μI; ð15dÞ

where μI ≡ − E3

5E2
2, and E2 and E3 are given in Appendix A.

Here, μI can be determined numerically to be about
−0.045½μN �, which is much smaller than the magnitude
of μp and μn.
At present, there are only limited and rough results

available for the magnetic moments of Δ isobars. By taking
the central value of experimental results [8,9], i.e. μΔþþ ¼
5.6½μN � and μΔþ ¼ 2.7½μN �, one can verify that the exper-
imental results satisfy the relation

3μΔþ − μΔþþ

μp þ μn
¼ 3

1.056
≃ 3; ð16Þ

which is consistent with Eqs. (15).

IV. NUMERICAL RESULTS

The equation of motion for a baryon is obtained from
hΨjΓ̂jΨi at order OðNCÞ. The equations of motion for Δ
isobars in the weak magnetic field are given in Appendix B.
We consider a standard set of parameters for the NB ¼ 1

sector in which mπ ¼ 138 ½MeV�, fπ ¼ 108 ½MeV�, and
g ¼ 4.84 [18,26]. With no loss of generality, cρ is deter-
mined to be cρ ¼ 1=

ffiffiffiffiffi
cz

p
[23]. For aΔ isobar state of a given

jeBj, the parameter cz is fixed tominimize the corresponding
Δ mass. The jeBj dependence of cz for Δ isobar states is
shown in Fig. 1. We see that a stronger magnetic field
corresponds to a bigger cz. The reason for this is that a
strongermagnetic field generates a larger restriction force on
a chargedmeson πþ;− in the x − y plane, which stretches the
shapes of Δ isobars more along the z axis.
The jeBj dependence of the masses of Δ isobar states is

shown in Fig. 2. The curves show that by increasing the
strength of the magnetic field, the masses of Δþþ, Δþ, and

Δ0 first become lighter and then heavier, whereas Δ−

always becomes heavier. The reason is that the Hamiltonian
of Δ isobar states contains linear terms of ðeBÞ and higher-
order terms of ðeBÞ. The sign of the linear terms of ðeBÞ for
Δþþ, Δþ, and Δ0 states is different from that of the Δ−

state; i.e., there is a minus sign before the linear terms of
ðeBÞ for Δþþ, Δþ, and Δ0 states, while there is a plus sign
before the linear terms of ðeBÞ for theΔ− state [as shown in
Eqs. (A3)]. This difference causes the corresponding
masses of Δþþ, Δþ, and Δ0 states to decrease, and the
Δ− state to increase, when the magnetic field is weak.
Meanwhile, the higher-order terms of ðeBÞ always enhance
the masses of Δ isobars, which makes their masses larger
when the magnetic field is stronger.
The electric charge density for a Δ isobar state is defined

as [27]

ρE ¼ 1

2
ρI¼0 þ hΨjI3jΨiρI¼1; ð17Þ

where

ρI¼0 ≡ ðj0BjeB→0Þ ¼
∂L̂WZW

∂ðeVB0Þ
����
VB0→0;eB→0

; ð18aÞ

ρI¼1 ≡ 1

3

X
a¼1;2;3

Λa

hΨj R dVΛajΨi
; ð18bÞ

and

Λa ≡ ∂2L̂
∂ω2

a
: ð19Þ

The Δ isobar mean square (MS) electric charge radius is
defined asFIG. 1. jeBj dependence of cz for Δþþ, Δþ, Δ0 and Δ−.

FIG. 2. jeBj dependence of MΔþþ , MΔþ , MΔ0 , and MΔ− .
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hR2
ΔiE ≡ hΨj

Z
dVR2ρEjΨi; ð20Þ

where R≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
.

The jeBj dependence of the MS electric charge radii ofΔ
isobars is shown in Fig. 3. We see that for all ranges of the
magnetic field strength, hR2

ΔiE of Δþþ and Δþ are always
above zero, whereas for Δ0 and Δ− it is always below zero.
Since the electric charges of different Δ isobars are
different, the MS electric charge radii should be different.
If Δ isobars do not have internal structure, the MS electric
charge radii of Δ isobars should satisfy

Δþþ∶Δþ∶Δ0∶Δ− ¼ 2∶1∶0∶ − 1: ð21Þ

However, the electric charge of a Δ baryon is constructed
by two parts: one part is related to the baryon number
current density ρI¼0 and another part is related to the
isovector current density ρI¼1. For all ranges of the
magnetic field strength, the distribution of ρI¼1 is further
apart from the central point of the soliton than that of ρI¼0.
This means that MS electric charge radii ofΔþþ andΔþ are
always above zero, whereas Δ0 and Δ− are always below
zero. For example, when the magnetic field is extremely
weak, i.e. jeBj ∼ 0,

hΔj
Z

dVR2ρI¼0jΔi ¼ 0.826 ½fm2�; ð22aÞ

hΔj
Z

dVR2ρI¼1jΔi ¼ 1.8 ½fm2�; ð22bÞ

thus, the MS electric charge radii of Δþþ, Δþ, Δ0, and
Δ− are 3.113 ½fm2�, 1.313 ½fm2�, −0.487 ½fm2�, and
−2.287 ½fm2�, respectively. When the magnetic field is
extremely strong,

hΔj
Z

dVR2ρI¼0jΔi≲ hΔj
Z

dVR2ρI¼1jΔi: ð23Þ

Therefore, the MS electric charge radii of Δ isobars
satisfies

Δþþ∶Δþ∶Δ0∶Δ− ≃ 2∶1∶0∶ − 1: ð24Þ

Figure 3 also shows that, in a weak magnetic field, the
magnitudes of the MS electric charge radii of Δþþ and Δþ

states become larger, while that of the Δ0 and Δ− states
become smaller. This fact is understandable from the
equations of motion for Δ isobars shown in Eqs. (B1):
there is a plus sign before the linear terms of ðeBÞ for Δþþ
and Δþ states, while there is a minus sign before the linear
terms of ðeBÞ for Δ0 and Δ− states. This difference leads to
the result that the corresponding profile functions of Δ
isobars are modified by the magnetic field, and therefore
their electric charge distributions are modified. As a result,
the sizes of Δþþ and Δþ states increase, whereas Δ0 and
Δ− states decrease when the magnetic field is weak. When
the magnetic field is strong, the restriction force on the
charged meson πþ;− in the x − y plane is enhanced, and
therefore the sizes of Δ isobars will be reduced.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, the masses, magnetic moments, and MS
electric charge radii of Δ isobar states in a uniform
magnetic field were studied in the semiclassical quantiza-
tion approach of the Skyrme model.
In the vacuum, i.e. jeBj ∼ 0, it was shown that the

magnetic moments ofΔ isobars can be rewritten in terms of
the magnetic moments of the proton and neutron. The
comparison of our calculations of the magnetic moments
for nucleons and Δ isobars with other models and experi-
ment is shown in Table I. It shows that the theoretical
predictions of μΔþþ and μΔþ in the present model are
consistent with the experimental measurements and that the
relation shown in Eq. (16) can also fit for other models and
experiments.
In a nonzero magnetic field, when the strength of the

magnetic field increases, it was found that
(i) The masses of Δþþ, Δþ, and Δ0 states first become

lighter and then heavier, whereas the mass of the Δ−

state always becomes heavier. The minimal mass of
Δþþ

J3¼3=2 is about 1147 [MeV] when jeBj ∼ 3.2m2
π .

(ii) The magnitudes of MS electric charge radii corre-
sponding to Δþþ and Δþ states first become larger
and then smaller, whereas the magnitudes of MS

FIG. 3. jeBj dependence of the Δ isobar MS electric charge
radius hR2

ΔiE.
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electric charge radii corresponding to Δ0 and Δ−

states always become smaller.
Since both themasses and sizes of theΔ baryonsdependon

the strength of the magnetic field, the density ofΔ baryons in
the core part of the magnetar (jeBj ∼ 10−2 ½GeV2�) can be
estimated directly, as shown inTable II. Table II shows that the
density ofΔþþ

J3¼3=2 decreases by about 8.5%and the density of
Δ−

J3¼3=2 increases by about 19.7% compared to that in a
vacuum.Thus, the equation of the state of aΔ baryonmedium
depends on the strength of the magnetic field, which also
affects limits on the mass and size of the magnetar.
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APPENDIX A: THE MASSES OF NUCLEONS
AND Δ ISOBARS UP TO O(eB) IN THE WEAK

MAGNETIC FIELD

In the weak magnetic field, i.e. jeBj ∼ 0, the shape
deformation of a baryon caused by the magnetic field is
negligible (as shown in Fig. 1), and thus cρ ¼ cz ≡ 1.

In such a case, the masses of nucleons and Δ isobars up to
OðeBÞ are obtained as

Mp ¼ E1 þ
3

8E2

þ eB
E4

2E2

− eB
ðE2

3 − E3Þ
6E2

2
; ðA1aÞ

Mn ¼ E1 þ
3

8E2

þ eB
E4

2E2

þ eB
ðE2

3 − E3Þ
6E2

2
; ðA1bÞ

MΔþþ
J3¼3=2

¼E1þ
15

8E2

þeB
3E4

2E2

−eB
3ðE2

3−3E3Þ
10E2

2
; ðA1cÞ

MΔþ
J3¼3=2

¼E1þ
15

8E2

þeB
3E4

2E2

−eB
ðE2

3−3E3Þ
10E2

2
; ðA1dÞ

MΔ0
J3¼3=2

¼E1þ
15

8E2

þeB
3E4

2E2

þeB
ðE2

3−3E3Þ
10E2

2
; ðA1eÞ

MΔ−
J3¼3=2

¼E1þ
15

8E2

þeB
3E4

2E2

þeB
3ðE2

3−3E3Þ
10E2

2
; ðA1fÞ

MΔþþ
J3¼1=2

¼E1þ
15

8E2

þeB
E4

2E2

−eB
ðE2

3−7E3Þ
10E2

2
; ðA1gÞ

MΔþ
J3¼1=2

¼E1þ
15

8E2

þeB
E4

2E2

−eB
ðE2

3−7E3Þ
30E2

2
; ðA1hÞ

MΔ0
J3¼1=2

¼E1þ
15

8E2

þeB
E4

2E2

þeB
ðE2

3−7E3Þ
30E2

2
; ðA1iÞ

MΔ−
J3¼1=2

¼E1þ
15

8E2

þeB
E4

2E2

þeB
ðE2

3−7E3Þ
10E2

2
; ðA1jÞ

with

TABLE I. Comparison of our calculations (Skyr A) and (Skyr B) of the magnetic moments for nucleons and Δ isobars with other
models and experiment (Exp.) when jeBj → 0. The present work has two ways of obtaining the magnetic moments for Δ isobars: first,
the experimental values of the proton and neutron magnetic moments may be taken as inputs in Eqs. (15) (Skyr A); alternatively, the
masses of the nucleon and Δ may be taken as inputs to fix the model parameters (Skyr B). The other models are the Skyrme model
constructed by the second and sixth order of the chiral Lagrangian [Skyrð2þ 6Þ]; the simple nonrelativistic quark model (NQM); and
the lattice QCD (Latt.). All numbers are given in units of the nuclear magneton.

Magnetic moment Skyr A Skyr B [27] Skyrð2þ 6Þ [10] NQM [11] Latt. [13,28] Exp. [8,9]

μp Input 1.94 2.29 Input 3.12� 0.07 2.793
μn Input −1.21 −1.70 Input −1.98� 0.02 −1.913
μΔþþ 5.42 3.80 4.53 5.56 3.70� 0.12 5.6� 1.9
μΔþ 2.69 2.00 2.09 2.73 2.40� 0.06 2.7� 3.6
μΔ0 −0.05 0.20 −0.36 −0.09 0.001� 0.016
μΔ− −2.78 −1.61 −2.80 −2.92 −1.85� 0.06
3μΔþ−μΔþþ

μpþμn
3.01 3.01 2.95 2.99 3.07 2.84

TABLE II. The density of Δ isobars when jeBj ∼ 10−2 ½GeV2�
compared to that in vacuum.

J3 ¼ 3=2 J3 ¼ 1=2

ρΔþþ −8.5% −0.1%
ρΔþ −0.9% þ2.4%
ρΔ0 −7.4% −5.6%
ρΔ− þ19.7% þ9.8%
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E1 ¼
Z

πF02ð−4 cosð2FÞ þ f2πr2g2 þ 4Þ
2g2

þ 2πsin2ðF
2
ÞðcosðFÞð2f2πr2g2 þ 1Þ − 2 cosð2FÞ − cosð3FÞ þ 2f2πr2g2ð2þm2

πr2Þ þ 2Þ
2g2r2

dr; ðA2aÞ

E2 ¼
Z

2πsin2ðFÞð4r2F02 − 2 cosð2FÞ þ f2πr2g2 þ 2Þ
3g2

dr;

ðA2bÞ

E3 ¼
Z

2πr2 sin4ðFÞ
3g2

dr; ðA2cÞ

E4 ¼
Z

r2F0 sin2ðFÞ
3π

dr: ðA2dÞ

By using the parameter set mπ ¼ 138 ½MeV�, fπ ¼
108 ½MeV�, and g ¼ 4.84, the masses of nucleons and Δ
isobars corresponding to Eqs. (A1) can be numerically
determined as

Mp ¼ 0.939 − 1.033eB; ðA3aÞ

Mn ¼ 0.939þ 0.644eB; ðA3bÞ

MΔþþ
J3¼3=2

¼ 1.230 − 2.034eB; ðA3cÞ

MΔþ
J3¼3=2

¼ 1.230 − 1.065eB; ðA3dÞ

MΔ0
J3¼3=2

¼ 1.230 − 0.106eB; ðA3eÞ

MΔ−
J3¼3=2

¼ 1.230þ 0.857eB; ðA3fÞ

MΔþþ
J3¼1=2

¼ 1.230 − 0.628eB; ðA3gÞ

MΔþ
J3¼1=2

¼ 1.230 − 0.341eB; ðA3hÞ

MΔ0
J3¼1=2

¼ 1.230 − 0.053eB; ðA3iÞ

MΔ−
J3¼1=2

¼ 1.230þ 0.240eB; ðA3jÞ

where the masses and eB are in units of [GeV] and [GeV2],
respectively.

APPENDIX B: THE EQUATIONS FOR Δ
ISOBARS UP TO O(eB) IN THE WEAK

MAGNETIC FIELD

In the weak magnetic field, i.e. jeBj ∼ 0, the shape
deformation of a baryon caused by the magnetic field is
negligible (as shown in Fig. 1), and thus cρ ¼ cz ≡ 1. In
such a case, the equations of motion for Δ isobars up to
OðeBÞ are obtained as

F00
Δþþ

J3¼3=2
¼ E5 þ eB

9E6

5
; ðB1aÞ

F00
Δþ

J3¼3=2
¼ E5 þ eB

3E6

5
; ðB1bÞ

F00
Δ0

J3¼3=2
¼ E5 − eB

3E6

5
; ðB1cÞ

F00
Δ−

J3¼3=2
¼ E5 − eB

9E6

5
; ðB1dÞ

F00
Δþþ

J3¼1=2
¼ E5 þ eB

3E6

5
; ðB1eÞ

F00
Δþ

J3¼1=2
¼ E5 þ eB

E6

5
; ðB1fÞ

F00
Δ0

J3¼1=2
¼ E5 − eB

E6

5
; ðB1gÞ

F00
Δ−

J3¼1=2
¼ E5 − eB

3E6

5
: ðB1hÞ

Here,

E5 ¼
−4r3F0 − 2r2F02 sinð2FÞ þ sinðFÞðð4r2 þ 1Þ cosðFÞ − cosð3FÞ þ 2m2

πr4Þ
2r2ð− cosð2FÞ þ r2 þ 1Þ ; ðB2aÞ

E6 ¼
sinðFÞ

36ð− cosð2FÞ þ r2 þ 1Þ2 × ð8rF0ðr3F0 cosðFÞ þ 4sin3ðFÞÞ

− 4m2
πr4 cosð2FÞ þ ð4r2 þ 3Þ cosð3FÞ − 2ð4r4 þ 2r2 þ 1Þ cosðFÞ − cosð5FÞ þ 4m2

πr4Þ: ðB2bÞ
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