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In this article, we study the fully differential observables of the exclusive production of heavy (charm and
bottom) quark pairs in high-energy ultraperipheral pA and AA collisions. In these processes, the nucleus A
serves as an efficient source of the photon flux, while the QCD interaction of the produced heavy-quark pair
with the target (p or A) proceeds via an exchange of gluons in a color singlet state, described by the gluon
Wigner distribution. The corresponding predictions for differential cross sections were obtained by using
the dipole S matrix in the McLerran-Venugopalan saturation model with impact parameter dependence for
the nucleus target, and its recent generalization, for the proton target. Prospects of experimental constraints
on the gluon Wigner distribution in this class of reactions are discussed.
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I. INTRODUCTION

In QCD, the hadron structure is encoded in the so-called
Wigner distributions [1–3]. These distributions are known
to provide the most detailed information on the parton
multidimensional imaging (tomography) in the target. The
five-dimensional (5D) Wigner distribution Wðx; k⃗⊥; b⃗⊥Þ
depends on both the transverse momentum k⃗⊥ of an
exchanged parton and its impact parameter b⃗⊥. While
the Wigner distribution is in impact-parameter b⃗⊥ repre-
sentation, their Fourier transform as b⃗⊥ → Δ⃗⊥ is known
as the generalized transverse momentum distribution
(GTMD) [4–7] in momentum representation.
These distributions are therefore sensitive to the angular

correlation between b⃗⊥ and k⃗⊥ whose magnitude is
determined by the elliptic Wigner distribution [8–10].
It was shown earlier that the angular dependence of the
Wigner distribution is particularly responsible for an
elliptic flow in pA collisions [11,12], the angular correla-
tions in deeply virtual Compton scattering [13] and in
quasielastic photon-nucleus scattering [10], etc. For a

comprehensive review on the fundamental role of these
distributions, see also Refs. [14,15] and references therein.
In Refs. [8,16] considering an important example of

electron-ion collisions in the high-energy limit, it was
demonstrated that the low-x GTMD

xGðk⃗⊥; Δ⃗⊥Þ ≈
x→0 2Nc

αs

�
k2⊥ −

Δ2⊥
4

�
Sðk⃗⊥; Δ⃗⊥Þ ð1:1Þ

is directly related to a Fourier transform of an impact
parameter dependent forward dipole amplitude (or dipole
S matrix), Sðr⃗; b⃗Þ, providing an important connection with
the gluon saturation phenomena at low-x (for a detailed
review of the saturation effects and the color glass con-
densate, see, e.g., Ref. [17]).
Just as for lower-dimensional descendants, the collinear

parton densities, the QCD perturbation theory cannot
predict the key characteristics of the partial dipole ampli-
tude Sðk⃗⊥; Δ⃗⊥Þ and hence the gluon Wigner distributions,
so potential possibilities for experimental measurements
of such distributions or for setting constraints on them
directly from the data gain large importance and have to be
studied in detail [8]. The basic difficulty on the extraction
of the Wigner distributions (or GTMDs) is typically
associated with the fact that the differential cross section
is not proportional to a GTMD itself but is given by its
convolution integral with the light-cone wave function for a
given projectile Fock state scattering off a target. Such an
integral originates as a remnant of the loop integral in
the exclusive production amplitude formed by the two
exchanged gluons with the target (in the color-singlet state),
and it is in general not analytically invertible.
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A particular relevant class of scattering processes at
hadron colliders, the high-energy ultraperipheral collisions
(UPCs) with fully exclusive final states, provides essential
means for accessing the hadron structure at relatively low
momentum transfers and at low x due to both a clean
environment and a complete reconstruction of kinematics
of the exchanged gluons with a target. In UPCs, the
relativistic systems scatter at typically large impact param-
eters by means of a quasireal Weiszäcker-Williams (WW)
photon exchange [18,19]. The WW flux is enhanced for
heavy nucleus as the square of its charge making it an
efficient source of photons. As was demonstrated recently
in Ref. [20], such a gluon Wigner distribution can be
constrained, or even directly extracted, from the data on
exclusive light-quark dijet photoproduction in the UPCs.
Besides the largest contribution to the dijet photoproduc-
tion signal, the use of light quarks in the final state as a
source of dijets is particularly beneficial as this channel
enables one to directly extract the gluon Wigner distribu-
tion, the data on a fully differential exclusive dijet cross
section. Indeed, the loop integral is analytically invertible
in this particular case such that the components of the gluon
Wigner distribution can be found as integrals of the
components of the differential cross section.
However, a relevant nontrivial structure of the gluon

Wigner distribution, in particular, its elliptic component,
emerges when the transverse momenta of the produced q
and q̄ are relatively low and do not significantly exceed the
saturation scale of the process. This further prompts valid
questions about the applicability of the QCD perturbation
theory for reliable computation of the γ þ ðggÞ → qq̄
matrix element in such a region of predominantly soft or
semisoft kinematics. As the only hard scale of this process
is associated with the transverse momentum of a produced
jet (in dominant nearly back-to-back dijet configurations),
going to low (below a few GeV) jet transverse momenta is
severely restricted by potentially large higher order effects,
thus, limiting the capability of this method for a reliable
extraction of the gluonWigner distribution in the domain of
its maximal enhancement and focusing on the tail high-P⊥
regions only.
Another technical challenge is related to experimental

capabilities for exclusive dijet photoproduction measure-
ments at high energies. Such a measurement requires
reconstruction of full dijet kinematics simultaneously
triggering on large rapidity gap events only in order to
suppress backgrounds causing the leakage of energy
and transverse momentum into unreconstructed hadronic
activity originating from the breakup of the target, of the
exchanged Pomeron, and/or of the quasireal photon. For
this purpose, the forward proton (or nucleus) reconstruction
is needed to ensure exclusivity of the corresponding
diffractive reaction. While the ATLAS Forward Physics
program offers certain possibilities for such a measurement,
the acceptance in jet transverse momenta is highly limited

to high-P⊥ kinematics only, with the lowest cutoff hardly
going below 20 GeV or so.
Such a situation indicates that the use of heavy (c and b)

quarks, with measurements of exclusive open heavy flavor
(DD and BB meson pairs) photoproduction, may help in
resolving both theoretical and experimental issues with
probing the gluon Wigner distribution in the gluon satu-
ration regime. First of all, it naturally provides a hard scale
associated with the heavy quark mass, thus enabling the
use of the QCD perturbation theory, with less degree of
uncertainty, even for a vanishing quark transverse momen-
tum. Second, reconstruction of heavy-flavored mesons can
be performed at much lower transverse moments than for
jets and, despite a smaller cross section, with a much better
control of QCD backgrounds. As a price to pay for such an
improvement, for heavy quarks the convolution integral in
the diffractive amplitude is no longer analytically invert-
ible, so for now we can only make predictions for the
corresponding observables in the framework of a given
model for the gluon Wigner distribution.
These arguments motivate us to perform the first detailed

study of exclusive cc̄ and bb̄ pairs photoproduction in
UPCs in fully resolved kinematics when the target survives
the interaction and is detected in a forward region as shown
in Fig. 1. Such a process is driven by at least the exchange
of two gluons in a color singlet state, to the leading order in
QCD perturbation theory. This study is performed for a
large nucleus target in the framework of the recently
upgraded McLerran-Venugopalan (MV) incorporating the
gluon saturation phenomenon with impact parameter
dependence [11,21]. For the case of the proton target,
we have employed a recent generalization of the MVmodel
presented in Ref. [11]. We analyze the corresponding
observables particularly sensitive to the elliptic gluon
Wigner distribution in the physically relevant regions of
exchanged gluon transverse momenta close to the satu-
ration scale. While a direct reconstruction of the Wigner
distribution from the data remains a challenging task,

FIG. 1. Feynman diagram for a quark-pair photoproduction in
UPCs. The projectile nucleus denoted by a shaded blob is a
source of quasireal WW photons. The photon fluctuates into a qq̄
dipole, which interacts by means of a two-gluon exchange in a
color singlet state with the target proton or nucleus.
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we identify certain nontrivial behavior in the differential
cross section directly related to the features of the elliptic
distribution.
The paper is organized as follows. In Sec. II, the light

cone approach for heavy quark exclusive photoproduction
is formulated in terms of the dipole S matrix, and that is a
new analytic result as far as we know. In Sec. III, we
provide a short description of the MV model for both the
large nucleus target and the proton target. Section IV
contains numerical results for the structure functions for
the massive and massless cases as well as the production
cross sections for cc̄ and bb̄ in the case of lead and proton
targets. Finally, concluding remarks and a summary are
given in Sec. V.

II. LIGHT-CONE DIPOLE APPROACH FOR
EXCLUSIVE HEAVY-QUARK PAIR
PHOTOPRODUCTION IN UPCs

A. Kinematics

Wework in the nucleus-target center-of-mass frame. The
photon is collinear to the z-axis direction and carries energy
ω. Since we are working with quasireal photons (q2 ≈ 0),
its momentum can be written as q ¼ ð ffiffiffi

2
p

ω; 0; 0⊥Þ in
Sudakov (light-cone) variables and the longitudinal polari-
zation contribution to the cross section is negligible.
The incoming gluon transverse momenta are denoted as

k⃗⊥ − Δ⃗⊥=2 and −k⃗⊥ − Δ⃗⊥=2, where k⊥ is integrated as the
loop momentum. Their energy and longitudinal momenta
are neglected in the limit of x → 0. In what follows, we do
not consider QCD evolution in x variable (or rapidities).
Instead, we perform our analysis in the forward kinematics,
such that the gluonic contribution to the quark longitudinal
momentum is small, and we justify neglecting it. In this
approximation the target contributes only with a total
transverse momentum −Δ⃗⊥ to the final qq̄ pair.
The final-state heavy quarks studied here are charm

and bottom quarks, with masses mc ¼ 1.4 GeV and
mb ¼ 4.7 GeV, respectively. The quark will carry momen-
tum fraction z of the projectile photon and has transverse
momentum −P⃗⊥ þ k⃗⊥, coming from the photon splitting,
while the antiquark will carry momentum fraction (1 − z)
from the photon and have transverse momentum P⃗⊥ − k⃗⊥.
After the digluon exchange, the quark will acquire the
following light-cone momentum components:

kþ1 ¼ z
ffiffiffi
2

p
ω; k⃗1⊥ ¼ −P⃗⊥ −

Δ⃗⊥
2

;

and, analogously, for the antiquark

kþ2 ¼ ð1 − zÞ
ffiffiffi
2

p
ω; k⃗2⊥ ¼ P⃗⊥ −

Δ⃗⊥
2

:

The k−i (where i ¼ 1, 2) components are determined
from the condition that the final states are on mass shell.

If the quark rapidities yi ¼ lnð ffiffiffi
2

p
kþi =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2i⊥ þm2

Q

q
Þ and

transverse momenta are measured, then the quark momen-
tum fraction z and the photon energy ω are fixed.

B. Exclusive qq̄ photoproduction cross section

The cross section for a UPC between a projectile nucleus
A and a target, which can be either a nucleus or a proton,
i.e., j ¼ A, p, can be written as

dσAj

dy1dy2d2P⃗⊥d2Δ⃗⊥
¼ ω

dNγ

dω
dσγj

dy1dy2d2P⃗⊥d2Δ⃗⊥
; ð2:1Þ

where ωdNγ=dω is the photon number density. These
quasireal photons coming from the projectile heavy ion are
modeled by the WW photon distribution [18,19,22]

dNγ

dω
¼2Z2α

πω

�
ξjAK0ðξjAÞK1ðξjAÞ−

ξ2ja
2
ðK2

1ðξjAÞ−K2
0ðξjAÞÞ

�
:

ð2:2Þ

In the above expression, Z is the atomic number of the
projectile, α is the fine structure constant, and ξjA ¼
ωðRj þ RAÞ=γ is defined in terms of the Lorentz factor
γ ¼ ffiffiffiffiffiffisjA

p =2Mp, the target and nucleus radii, Rj and RA,
respectively, and the jA center-of-mass energy, ffiffiffiffiffiffisjA

p . The
Rj þ RA dependence guarantees that the photons can only
interact with the target when there is no overlap between
the projectile and the target in impact parameter space. For
a review on peripheral collisions and photon fluxes,
see Ref. [23].
The partonic cross section was calculated using the light-

cone Feynman rules [24,25]. The photon splitting into a qq̄
dipole can be calculated analytically via the photon wave
function, while the di-gluon-dipole interaction is encoded
in the transition matrix T. The latter is defined as T ¼ 1 − S
in terms of the dipole S matrix describing the quark-
antiquark dipole scattering off the target and will be
discussed in the following sections. For the parton-level
cross section, we have the following expression:

dσγj

dPS
¼ 2ð2πÞ2Ncαe2qzð1 − zÞ½ðz2 þ ð1 − zÞ2ÞjM⃗0j2

þ ðm2
Q=P

2⊥ÞjM⃗1j2�; ð2:3Þ

where the phase space element is given by dPS ¼
dy1dy2d2P⃗⊥d2Δ⃗⊥. The functions M⃗0 and M⃗1 are
expressed in terms of the T matrix as follows:
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M⃗0ðP⃗⊥; Δ⃗⊥Þ ¼
Z

d2k⃗⊥
2π

P⃗⊥ − k⃗⊥
ðP⃗⊥ − k⃗⊥Þ2 þm2

Q

Tðk⃗⊥; Δ⃗⊥Þ

ð2:4Þ

and

M⃗1ðP⃗⊥; Δ⃗⊥Þ ¼
Z

d2k⃗⊥
2π

P⃗⊥
ðP⃗⊥ − k⃗⊥Þ2 þm2

Q

Tðk⃗⊥; Δ⃗⊥Þ:

ð2:5Þ
Formally, in the above expression, it is S that should be in
place of T. However, we took out the noninteraction term 1
from the dipole S matrix, so for vanishing P⊥ we will have
M0 ¼ M1 ¼ 0 (see, e.g., Ref. [20]).

C. T matrix

It has been shown that azimuthal angular correlations
between k⃗⊥ and Δ⃗⊥ are important in the T matrix when
working in the saturation regime [16,26,27]. In the limit
where P⊥ ≫ Δ⊥, these correlations can be taken into
account by performing an expansion in Fourier harmonics

Tðk⃗⊥;Δ⃗⊥Þ¼T0ðk⊥;Δ⊥Þþcos2ðϕk−ϕΔÞTϵðk⊥;Δ⊥Þþ���:
ð2:6Þ

The main contribution to the cross section comes from the
isotropic partT0, andwe have a subleading contribution from
the elliptic part Tϵ [8]. The latter is the subject of our further
analysis, while the higher order harmonics are suppressed.
Since the T matrix contains information on the strong

interaction in the saturation regime, it is unfeasible to use
pQCD to calculate it, and we must utilize a physically
reasonable model for it that should incorporate the gluon
saturation effects. Typically, such models are formulated in
impact parameter space, where we define r⃗⊥ to be the
dipole size and b⃗⊥—the impact parameter in the transverse
plane. To connect the model with our representation in
momentum space, we define the Fourier transform as

Tðk⃗⊥; Δ⃗⊥Þ ¼
Z

d2b⃗⊥
ð2πÞ2

Z
d2r⃗⊥
ð2πÞ2 e

−ik⃗⊥·r⊥e−iΔ⃗⊥·b⃗⊥

× e−ϵbb
2⊥e−ϵrr

2⊥Tðr⃗⊥; b⃗⊥Þ: ð2:7Þ
This integral can be related to the isotropic and elliptic
contributions by expanding the Fourier exponentials in

Bessel functions of the first kind according to the following
relation:

eix cosϕ ¼
X∞
n¼−∞

inJnðxÞeinϕ: ð2:8Þ

The isotropic part is related to n ¼ 0, while the elliptic term
appears for n ¼ �2. The odd terms do not contribute to
UPCs, but it should be noted that they can be of importance
in other processes where the nucleus exhibits an inhomo-
geneity in the radial direction [6,28]. As a result, we obtain

T0ðk⊥;Δ⊥Þ ¼
Z

d2b⃗⊥
ð2πÞ2

Z
d2r⃗⊥
ð2πÞ2 J0ðk⊥r⊥ÞJ0ðΔ⊥b⊥Þ

× e−ϵbb
2⊥e−ϵrr

2⊥Tðr⃗⊥; b⃗⊥Þ; ð2:9Þ

Tϵðk⊥;Δ⊥Þ ¼ 2

Z
d2b⃗⊥
ð2πÞ2

Z
d2r⃗⊥
ð2πÞ2 J2ðk⊥r⊥ÞJ2ðΔ⊥b⊥Þ

× e−ϵbb
2⊥e−ϵrr

2⊥ cos 2ðϕb − ϕrÞTðr⃗⊥; b⃗⊥Þ:
ð2:10Þ

Here, the Gaussian-type exponentials act as dumping terms
to improve the convergence of the integrals, which are
highly oscillatory on the periphery. Physically, they provide
a physical cutoff accounting for confinement effects;
therefore, the ϵ parameters are inversely related to the
typical size of the bound systems (nucleon and/or nucleus)
and thus should be small compared to the hard scale of the
process. We expect the b⊥ parameter to be smaller than
the target size, such that ϵb ¼ 1=R2

j . We also set ϵr ¼
ð0.5 fmÞ−2 as the photon splitting into the quark-antiquark
pair will be suppressed when the transverse separation
within the pair is larger than a typical hadron length scale.

D. The structure functions in the massive quark case

Since the angular dependence is explicit, we can calcu-
late analytically the azimuthal integrals in Eqs. (2.4) and
(2.5). The first expression is then reduced to

M⃗0¼
P⃗⊥
P2⊥

½AðP⊥;Δ⊥ÞþBðP⊥;Δ⊥Þcos2ðϕP−ϕΔÞ�; ð2:11Þ

which is now written in terms of the following two structure
functions:

AðP⊥;Δ⊥Þ¼
Z

∞

0

k⊥dk⊥
P2⊥

k2⊥þP2⊥þm2
Qþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2⊥þP2⊥þm2

QÞ2−4P2⊥k2⊥
q

2
641þ P2⊥þm2

Q−k2⊥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2⊥þP2⊥þm2

QÞ2−4P2⊥k2⊥
q

3
75T0ðk⊥;Δ⊥Þ

ð2:12Þ
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and

BðP⊥;Δ⊥Þ ¼
1

2P2⊥

Z
∞

0

dk⊥
k⊥

ðP2⊥ − k2⊥ −m2
QÞTϵðk⊥;Δ⊥Þ

×

2
64 ðk2⊥ þ P2⊥ þm2

QÞ2 − 2k2⊥P2⊥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2⊥ þ P2⊥ þm2

QÞ2 − 4P2⊥k2⊥
q

− ðP2⊥ þ k2⊥ þm2
QÞ

3
75: ð2:13Þ

These generalize the results of Ref. [20] to the massive
case. On top of that one should consider two additional
structure functions C and D entering the amplitude in
Eq. (2.5), in proportion to the quark mass, such that

M⃗1 ¼
P⃗⊥
P2⊥

½CðP⊥;Δ⊥Þ þDðP⊥;Δ⊥Þ cos 2ðϕP − ϕΔÞ�;

ð2:14Þ

where

CðP⊥;Δ⊥Þ ¼
Z

∞

0

k⊥dk⊥
P2⊥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk2⊥þP2⊥þm2
QÞ2− 4P2⊥k2⊥

q
×T0ðk⊥;Δ⊥Þ; ð2:15Þ

DðP⊥;Δ⊥Þ ¼
Z

∞

0

dk⊥
k⊥

"
k2⊥ þ P2⊥ þm2

Q

−
ðk2⊥ þ P2⊥ þm2

QÞ2 − 2P2⊥k2⊥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2⊥ þ P2⊥ þm2

QÞ2 − 4P2⊥k2⊥
q

#

× Tϵðk⊥;Δ⊥Þ: ð2:16Þ

The C and D are defined so that all structure functions
have the same mass dimension ½A� ¼ ½B� ¼ ½C� ¼ ½D� ¼
½mass�−2. Starting from the parton-level cross section in
Eq. (2.3), the above results enable us to represent the
hadron-level cross section as follows:

dσAj

dPS
¼ ω

dN
dω

2ð2πÞ2Ncαeme2qzð1 − zÞ 1

P2⊥
×

�
ðz2 þ ð1 − zÞ2Þ½AðP⊥;Δ⊥Þ þ BðP⊥;Δ⊥Þ cos 2ðϕP − ϕΔÞ�2

þ m2
f

P2⊥
½CðP⊥;Δ⊥Þ þDðP⊥;Δ⊥Þ cos 2ðϕP − ϕΔÞ�2

�
: ð2:17Þ

III. PHENOMENOLOGICAL MCLERRAN-
VENUGOPALAN MODEL FOR THE

DIPOLE S MATRIX

In the MV model [21,29], a heavy nucleus can be treated
as a semiclassical color field, where the gluons have a high
occupation number that is controlled by the saturation
scale Qs. In a recent proposal [11], Iancu and Rezaeian
generalize the MV formalism for the target in order to
incorporate a nontrivial impact-parameter dependence fol-
lowing the other saturation models such as IP-Sat and
bCGG [30,31]. Such a generalization enables one to
analyze azimuthal asymmetries in heavy-ion collisions as
a consequence of the collective phenomena in the initial
state. In what follows, we employ this model in studies of
heavy-quark photoproduction in UPCs. Wewill work in the
picture where the dipole experiences multiple soft scatter-
ings off the target. The T matrix is, in the Glauber
approximation,

Tðb⃗⊥; r⃗⊥Þ ¼ 1 − exp ð−ANðb⃗⊥; r⃗⊥ÞÞ; ð3:1Þ

where Nðb⃗⊥; r⃗⊥Þ is the single dipole scattering amplitude.
We use A ¼ 1 for the proton target. The angular correla-
tions in configuration space are generated by expanding
the single scattering amplitude in Fourier harmonics, as
done in the previous section Nðb⃗⊥; r⃗⊥Þ ¼ N0ðb⊥; r⊥Þþ
cos 2δϕrbNϵðb⊥; r⊥Þ.
For a nucleus target, one gets [11]

N0ðb⊥; r⊥Þ ¼ πR2Q2
0;sr

2⊥ ln

�
1

r2⊥m2
g
þ e

�

×

�
TAðb⊥Þ þ R2

�
T 00
Aðb⊥Þ þ

1

b⊥
T 0
Aðb⊥Þ

��

þ πR2

3m2
g
Q2

0;sr
2⊥
�
T 00
Aðb⊥Þ þ

1

b⊥
T 0
Aðb⊥Þ

�

ð3:2Þ
and

Nϵðb⊥; r⊥Þ ¼
πR2

6m2
g
Q2

0;sr
2⊥
�
T 00
Aðb⊥Þ −

1

b⊥
T 0
Aðb⊥Þ

�
: ð3:3Þ
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In the above equations, the parametermg is an IR regulator,
which acts as an effective gluon mass. We set it to
0.25 GeV. We define the saturation scale at the zero impact
parameter as Q0;s ¼ 1=R, where R is a scale related to the
width of the proton color-charge distribution. We use
R ¼ 2 GeV−1, based on best fit values obtained in differ-
ent saturation models to the HERA and NMC data
[32,33]. The proton radius is fixed as Rp ¼ 0.8 fm, while
that of the nucleus is given by RA ¼ ð1.12 fmÞA1=3. The
TA is the thickness function of the nucleus target found as
follows:

TAðb⊥Þ ¼
Z

dzρA

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2⊥ þ z2

q �
; ð3:4Þ

where ρAðrÞ is the Woods-Saxon nuclear density distribu-
tion, ρAðr⃗Þ¼NA½1þexpððr−RAÞ=δÞ�−1, and NA is deter-
mined by the normalization condition

R
d3r⃗ρAðr⃗Þ¼1. In

numerical analysis, we use δ ¼ 0.54 fm.
The T matrix for a lead (Pb, A ¼ 208) nucleus is plotted

in Fig. 2. The isotropic part falls very fast withΔ⊥ and has a
larger contribution from soft gluon momentum
(k⊥ ≲ 2 GeV). The elliptic part falls slower, becoming
more important at higherΔ⊥. Note that its peak is kept at an
almost constant k⊥, as expected, since this is controlled by
the saturation scale.
For a proton target, the single scattering amplitudes are

given by an integral over the relative transverse momentum
between the soft gluons p⊥, and we have evaluated
analytically one of the integrals given in Ref. [11]. Namely,

N0ðb⊥; r⊥Þ ¼
Q2

0;sr
2⊥

4
e−b

2⊥=4R2

ln

�
1

r2⊥m2
g
þ e

�
þQ2

0;sR
2r2⊥

Z
∞

0

p⊥dp⊥e−p
2⊥R2

× J0ðb⊥p⊥Þ
p⊥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2⊥ þ 4m2

g

q
− 2ðp2⊥ þ 2m2

gÞarctanh
�

p⊥ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2⊥þ4m2

g

p
�

2p⊥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2⊥ þ 4m2

g

q ; ð3:5Þ

Nϵðb⊥; r⊥Þ ¼ Q2
0;sR

2r2⊥
Z

∞

0

p⊥dp⊥e−p
2⊥R2

J2ðb⊥p⊥Þ ×
p⊥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2⊥ þ 4m2

g

q
− 4m2

garctanh

�
p⊥ffiffiffiffiffiffiffiffiffiffiffiffiffi

p2⊥þ4m2
g

p
�

2p⊥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2⊥ þ 4m2

g

q : ð3:6Þ

The Gaussian-like exponentials in impact parameter, b⊥,
and relative momentum, p⊥, are introduced in the model
due to the color distribution in the transverse plane of the
proton. The first term of Eq. (3.5) is the usual one presented
in the original MV model [21].
We present the T matrix for the proton in Fig. 3. While

the isotropic component falls much slower than in the
case of a nucleus target, the elliptic one rises up to Δ⊥ ≈
0.7 GeV and then starts to decrease.

IV. NUMERICAL RESULTS

A. Structure functions

As one of the main new results of our analysis, we show
the structure functions A, C, B,D in Figs. 4–7, respectively,
for heavy (c, b) quarks exclusively produced off a lead
(Pb) nucleus target as functions of the quark-antiquark
relative transverse momentum, P⊥. Since the A, B structure
functions are present also for a massless quark case,

FIG. 2. Left: Isotropic component of the T matrix for the lead (Pb) nucleus. We fix the values of Δ⊥ at 0.1, 0.2, 0.25, and 0.5 GeV, and
make the plot as a function of the gluon transverse momentum k⊥. Right: The same plot is made for the elliptic component.
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previously studied in Ref. [20], these are shown by dash-
dotted curves in addition to the corresponding ones for
heavy quarks. These results are shown for two distinct
values of Δ⊥ ¼ 0.1 and 0.2 GeV, on left and right panels,
respectively. Because of the presence of the additional
structure functions, the information that can be obtained by
probing the nucleus structure by means of heavy quarks is
clearly richer than for the case of massless quarks.
When analyzing absolute values, one notices that the

structure function C is comparable to A, both determined in
terms of the isotropic Wigner distribution, as is D to B,
given in terms of the elliptic Wigner distribution. Therefore,
the introduction of quark masses is not a matter of only
correcting the standard A and B functions but surely the

new C andD structure function considered here for the first
time to our knowledge must be included.
Figures 4–7 show that, as the quark mass increases,

absolute values of the peaks of the structure functions get
smaller. This behavior is similar to a rescaling of P⊥
accompanying a “stretch” of the shape of the distributions
along the horizontal axis such that the decreasing (due
to a mass suppression) peaks of the structure functions
move to larger P⊥. More specifically, in the large quark
mass limit, the position of the peaks approximately scales
with the quark mass as Ppeak

⊥ ∼mQ, while this dependence
is violated for small quark masses.
The effect of going from Δ⊥ ¼ 0.1 to 0.2 GeV is

basically a change of the sign and a reduction of the

FIG. 3. Same as in Fig. 2, but for a proton target instead of a nucleus.

FIG. 4. The structure function A for the lead (Pb) nucleus target for heavy (c, b) and massless quarks as a function of P⊥. Two values
ofΔ⊥ ¼ 0.1 and 0.2 GeVare shown on left and right panels, respectively. As the quark mass increases, the peak of the structure function
gets smaller and moves to larger P⊥.

FIG. 5. Same as Fig. 4, but for the C structure function.
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absolute value. However, for larger Δ⊥, the elliptic struc-
ture functions B and D become more relevant when
compared to A and C, as the latter have a stronger reduction
in absolute values. These features are a direct consequence
of oscillations and the general behavior of the T0 and Tϵ

functions in the MV model, as it is shown in Fig. 2. It is
important to notice that the P⊥ values of the peaks are
kept almost constant for the different Δ⊥. This is the
same as for the T matrix: the peaks are controlled by the
saturation scale.
Analogously, we show the structure functions for

the proton target in Figs. 8 and 9 for heavy (c, b) and
massless quarks as functions of the relative quark-antiquark

momentum P⊥ for Δ⊥ ¼ 0.2 GeV. These are also new
results, but now regarding the proton structure. The proton
has structure functions with smaller absolute values than
the nucleus as our results are not normalized by the number
of nucleons.
The absolute value of structure functions C and A are

again comparable, while in here D is even larger than B.
The behavior with respect to the quark masses is analogous
to the nucleus case.
In contrast to the nucleus, the MV model for the proton

target presents a smaller difference in the A and C structure
functions for different Δ⊥, i.e., just a small decrease in the
absolute value and no sign flip within the kinematic range

FIG. 6. Same as Fig. 4, but for the B structure function.

FIG. 7. Same as Fig. 4, but for the D structure function.

FIG. 8. Left: The structure function A. Right: The structure function C. Both cases correspond to the proton target and are shown for
massless and heavy (c, b) quarks as functions of P⊥ for a fixed Δ⊥ ¼ 0.2 GeV.
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considered here. That is why in this case we chose not to
show any figures with different Δ⊥, as such a behavior can
be directly inferred from Fig. 3.
Also for larger Δ⊥, the elliptic structure functions B and

D become even more relevant than in the nucleus case.
Comparing Figs. 2 and 3, we see that they will increase
with Δ⊥ in the proton case, while in the nucleus case they
decrease. Of course, this depends on the Δ⊥ range we work
with. If very large, the proton structure functions may show
a similar behavior. Our choices of Δ⊥ are reasonable within
the detector constraints available at the LHC.

B. Exclusive quark-pair photoproduction
cross sections

Now we present our cross section results. We calculate
the hadron cross section integrated in an angle with exact
kinematics. However, it is instructive to understand what
happens in the limit k1;2⊥ → P⊥. In this limit, azimuthal
integration produces terms proportional to 2A2 þ B2 or
2C2 þD2. We numerically investigated this approximation
and found that it has a negligible impact on the final result
for our choice of small Δ⊥.
For all plots we chose the quark rapidities y1;2 equal to 1.

In this way, we work in the forward region accessible
by ATLAS and CMS (which also justifies our choices of

center of mass energies). This choice is justified also by the
fact that the MV model is fitted for low x. Therefore, the
forward moving nucleus will provide the photons while the
target (backward moving) will provide the small x gluons.
First, we present our cross section results for bb̄ pro-

duction in lead-lead UPCs, where A¼208 and Z¼82. The
hadron cross section is depicted in Fig. 10 as a function of
P⊥. Two plots are shown for Δ⊥ ¼ 0.1 and 0.2 GeV, on left
and right panels, respectively. The behavior at large P⊥
resembles an exponential decay and is expected because the
MV model does not take into account QCD evolution.
When looking closer at the Δ⊥ variation, it is seen that

there is no substantial difference in the shape of the cross
section other than it is roughly divided by a factor of the
order of 100. In the previous section, it was shown that
in going from Δ⊥ ¼ 0.1 to 0.2 GeV the sign of all the
structure functions flips and their magnitudes reduce by a
factor of the order of 10. As the cross section is dominated
by A2, the sign is irrelevant. The observation that there is a
larger cross section for smaller Δ⊥ is just a result of the fact
that the quark pair will more likely be created in a back-to-
back configuration.
In Fig. 10 we also show what happens if one sets to

zero some of the structure functions. For instance, with
C ¼ D ¼ 0, the elliptic part B plays an insignificant role

FIG. 9. Left: Structure function B. Right: Structure function D. Both cases correspond to the proton target and are shown for massless
and heavy (c, b) quarks as functions of P⊥ for a fixed Δ⊥ ¼ 0.2 GeV.

FIG. 10. The fully differential bb̄ photoproduction cross section in lead-lead UPCs as a function of the quark-antiquark transverse
momentum difference P⊥. The azimuthal angles are integrated. Here, full means all terms in the cross sections were considered (solid
line), while A, B, C means D was set to zero (dashed line), and so on. In the left (right) plot Δ⊥ ¼ 0.1 GeV (0.2 GeV).
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compared to the A contribution. The same can be said
about the other elliptic structure function D. However,
when C is turned on, there is a small but significant
difference at P⊥ ≈ 10 GeV and a relatively large contri-
bution at small P⊥. Therefore, the contribution proportional
to C2 can be directly measured with an appropriate choice
of kinematical cuts.
In Fig. 11 charm production in Pbþ Pb collisions for

Δ⊥ ¼ 0.2 GeV is depicted. Overall, it has the same features

as for bottom production, but it is a larger cross section,
especially at small P⊥ when it becomes a factor of 103

larger. Another point is that at P⊥ ≈ 10 GeV the relative
size of the C structure function contribution is larger when
compared to the bottom quark case.
So it appears that charm quark pair production would

be a better observable than bottom quark pair for our
purposes. It has a much higher cross section, and it
discerns the C structure function better. However, there is
an important issue: quark-meson fragmentation. The
detectors will be able to measure transverse momentum
of D and B mesons only, i.e., they do not access quark
level variables. In spite of that, for a large heavy quark
mass, there is a well known effect: the produced meson
will have most of the momentum of the heavy quark.
Therefore, the bottom quark observables have the advan-
tage that fragmentation does not wash away too much of
the momentum distributions [34]. For the charm quark
case, the c → D fragmentation may be relevant for a
comparison with future measurements. But since the
corresponding calculations become very difficult to
perform numerically, and their theoretical interpretation
becomes less transparent, we leave this point for future
studies.
The next Fig. 12 shows the same bb̄ and cc̄ production

cross sections but as functions of the target final transverse
momentum Δ⊥. The variable P⊥ is fixed at 10 GeV. We
remark that the dips (minima) are not affected by changing
the center of mass energy. They are a direct result of the
oscillations in the MV model, whose scale is related to the
saturation scale. It is still important to state that they also do
not depend on whether bottom or charm quarks are being
produced, and thus exhibit important probes for the proton
or nucleus structure.
At this point we turn our attention to a different

observable. As seen above, the angular-integrated cross
sections discussed above are not very convenient for getting
any physics information about the elliptic part. Therefore,
instead we would like to use the cosine-weighted angle
average determined as follows:

FIG. 11. The same plot as in Fig. 13 but for cc̄ production.

FIG. 12. The fully differential cross section of bb̄ and cc̄ pair
photoproduction in lead-lead UPCs as a function of the final target
transverse momentum Δ⊥. The azimuthal angles are integrated.
The dips are not affected by a change in center of mass energy.

FIG. 13. The ratio between the angular cosine-weighted average over the angle integrated cross section as a function of P⊥ with fixed
Δ⊥ ¼ 0.2 GeV in the case of a lead target. Left: Bottom quark case. Right: Charm quark case.
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dσpA

dPS
cos 2ðϕP − ϕΔÞ




¼
Z

2π

0

dϕP⊥

Z
2π

0

dϕΔ⊥
dσpA

dy1dy2d2P⃗⊥d2Δ⃗⊥
cos2ðϕP − ϕΔÞ:

ð4:1Þ

Roughly speaking, the more positive this observable is, the
more P⊥ and Δ⊥ are parallel (or antiparallel); the negative
case correlates with perpendicular vectors.
An azimuthal angle distribution is relatively easy to

measure, besides not being influenced by fragmentation.
Also, Eq. (4.1) is a ratio of the cross sections implying
largely reduced theoretical and experimental uncertainties.
For instance, the luminosity as well as the overall nor-
malization are canceled out in such a ratio. We conclude
that this is a very reliable observable.
Again, we use exact kinematics, but if we set the quark

momenta to be equal to P⊥, the integration over the
differential cross section multiplied by cos 2ðϕP − ϕΔÞ lets
only terms A · B or C ·D survive. As such, the study of this
observable is relevant to determine the size of the elliptic
contribution, and to determine which kinematic region is
more interesting to obtain phenomenological information
on the Wigner distribution.

The ratio of the cosine-weighted angle integrated over
the angular-integrated cross section as a function of P⊥ is
shown in Fig. 13. We show both the bb̄ and the cc̄
production cross sections, with fixed Δ⊥ ¼ 0.2 GeV. We
see that with appropriate choices of P⊥ the information can
be extracted about both B and D structure functions.
It is expected from Figs. 4 and 6 that the contribution

from the elliptic term rises as Δ⊥ increases. This can be

FIG. 14. The ratio of the angular cosine-weighted average to the angle integrated cross section as a function of Δ⊥ with fixed
P⊥ ¼ 10 GeV in the case of a lead target. Left: Bottom quark case. Right: Charm quark case.

FIG. 15. The fully differential cross section of bb̄ (left) and cc̄ (right) pair photoproduction in lead-proton UPCs as a function of the
quark-antiquark relative transverse momentum P⊥, with quark and antiquark rapidities y1;2 ¼ 1.

FIG. 16. The fully differential cross section of bb̄ and cc̄ pair
photoproduction in lead-proton UPCs as a function of the final
proton transverse momentum Δ⊥. The azimuthal angles are
integrated.
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seen better by fixing P⊥ and varying Δ⊥, as in Fig. 14.
Besides, we see an oscillation as expected.
What would change if the target were a proton? In

Figs. 15–18, we show this case as well. Of course, the cross
sections are smaller since in the heavy ion case we did
not divide by A. The dependence on P⊥ is pretty much the
same as in the nuclear case. However, the dependence on
Δ⊥ does not show oscillations for the ranges studied. For
instance, the cosine-weighted average increases steadily
with Δ⊥ as is seen in Fig. 18.

V. CONCLUSIONS

In this work we have analyzed exclusive heavy quark
photoproduction in the forward region in pA and AA UPCs
with quasireal WW photons as a mean to constrain the
gluon Wigner distribution. Our new results can be sum-
marized in three main points.
First, we derived the analytic expressions at leading

order for the calculation of the observable. In doing so,
we introduced two new structure functions CðP⊥;Δ⊥Þ and
DðP⊥;Δ⊥Þ due to the fact that the quarks have mass,
besides adding mass corrections to the already known

AðP⊥;Δ⊥Þ and BðP⊥;Δ⊥Þ. By using the generalized MV
model for lead and proton targets, we studied the nontrivial
features of these functions, especially the ones related to the
elliptic component of the Wigner distribution, B and D.
These are of definite importance to understand the angular
correlations between the transverse momenta k⊥ and Δ⊥ in
the GTMD and can be related to elliptic flow in hadron
and/or nuclei collisions.
Second, we numerically calculated the bottom and

charm pair production cross sections in a fully differential
form using the above structure functions, for both proton
and nucleus targets. We provided results in the forward
region, which is accessible by ATLAS and CMS.
Regarding the azimuthal-angle integrated cross section,
we showed that the new C structure function has a big
impact in the low-P⊥ region (P⊥ ≲ 4 GeV), while A
dominates the differential cross section in the range
4≲ P⊥ ≲ 7 GeV. The C function starts to be relevant
again for P⊥ ≳ 7 GeV. We also compared heavy and light
quark results, and as a side effect we calculated the pA
cross section for light quarks using the Iancu-MV model,
not done before to the best of our knowledge.

FIG. 17. The ratio between the angular cosine-weighted average over the angle integrated cross section as a function of P⊥ with fixed
Δ⊥ ¼ 0.2 GeV in the case of the proton target. Left: Bottom quark case. Right: Charm quark case.

FIG. 18. Ratio of angle integrated cosine-weighted average over angle integrated cross section with the proton as a target as a function
of Δ⊥ with fixed P⊥ ¼ 7.5 GeV. Open bb̄ (cc̄) production in the left (right).
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Finally, in a more phenomenological minded investiga-
tion, we defined the cosine-weighted angular average of the
differential cross section in order to access the elliptic part
of the hadron structure. This special average can help to
constrain the elliptic distribution, since it is directly con-
nected to the products A · B and C ·D. As neither of the
products dominates in the considered kinematic regions,
they can be probed simultaneously by a measurement.
Having these new results, we want to state again why

they are important. From the phenomenological point
of view, the study of heavy-quark dijets is relevant
in comparison to its light quark equivalent, since it is
less affected by fragmentation effects and has a
cleaner QCD background. Also, it has much smaller
theoretical uncertainties with respect to higher order
corrections, as light quark jets suffer from potentially
huge corrections.
From the experimental point of view, measurements can

be done at lower transverse momenta than for jets emerging
from the light quarks. The cross sections calculated here
can have transverse momentum of the order of the
saturation scale, where most of the nontrivial features of
the Wigner distribution are predicted. Such low p⊥ has
never been achieved before and can be technically reached
by tagging on open heavy flavored mesons. We hope that
the observables of this paper will be taken into account by

the forward physics experimental groups when planning for
new measurements and analysis, since they are highly
relevant and measurable, for instance, at ATLAS, CMS,
and LHCb.
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[6] C. Lorcé and B. Pasquini, J. High Energy Phys. 09 (2013)

138.
[7] M. G. Echevarria, A. Idilbi, K. Kanazawa, C. Lorcé, A.
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