
 

Analysis and implications of precision near-forward TOTEM data

Simone Pacetti* and Yogendra Srivastava†

Dipartimento di Fisica e Geologia, Università degli Studi di Perugia,
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Very precise data on elastic proton-proton scattering at
ffiffiffi
s

p ¼ 7, 8 and 13 TeV have been obtained by the
TOTEM group at LHC in the near-forward region (momentum transfers down to jtj ¼ 6 × 10−4 GeV2 atffiffiffi
s

p ¼ 8 and 13 TeV). The Coulomb-nuclear interference has been measured with sufficient accuracy for
TOTEM to establish the falloff of the ρ parameter with increasing energy. The predictions from a
previously studied model are shown to be in good agreement with the data and thus allow us to draw rather
firm conclusions about the structure of the near-forward nuclear amplitude. We point out that due to a zero
in the real part of the nuclear amplitude occurring at a very small momentum transfer—that can migrate into
the Coulomb-nuclear interference (CNI) region at higher energies—much care is needed in extracting the
numerical value of ρ for such energies. Thus, the true value of ρwould be higher than the TOTEM value for
ρ found under the hypothesis that the real part of the elastic nuclear amplitude is devoid of such a zero in the
CNI region.

DOI: 10.1103/PhysRevD.99.034014

I. INTRODUCTION

The TOTEM group has produced a remarkably precise
determination of the proton-proton elastic nuclear ampli-
tude at LHC energies [1–4]. In particular, through the
Coulomb-nuclear interference (CNI) at very small momen-
tum transfer, TOTEM has reported direct measurements of
the ρ parameter (that is, the ratio of the real to the imaginary
part of the nuclear amplitude in the forward direction atffiffiffi
s

p ¼ 8 and 13 TeV). Thus, we now have data for the
modulus (through the elastic differential cross section)
and the phase (through CNI) of the near-forward nuclear
amplitude.
The energy dependence of the ρ parameter has been

extensively studied both experimentally and theoretically

for over five decades. Spanning an energy range of more
than 3 orders of magnitude, experiments performed with
the CERN intersecting storage rings up those at the Large
Hadron Collider (LHC), show the parameter to rise, with
ρp̄p apparently stabilizing its value around Tevatron ener-
gies. Asymptotically, the parameter was predicted a long
time ago by Khuri and Kinoshita (KK) in [5] to decrease as
ðπ= ln sÞ, both for pp and p̄p. The first TOTEM results at
LHC energy

ffiffiffi
s

p ¼ 7 TeV were noncommittal as to
whether the predicted asymptotic decrease had started.
By now, the reported TOTEM results at

ffiffiffi
s

p ¼ 8 and
13 TeV point to a decrease, apparently even faster than
the original KK prediction, as clearly seen from the
compilation shown by Fig. 15 in Ref. [4]. The question
as to whether this is the epiphany of a new phenomenon or
the high energy manifestation of nonleading contributions
to the pp elastic cross section, such as the odderon [3,6], is
presently under discussion.
In the present paper, we shall analyze the TOTEM results

for the CNI region at
ffiffiffi
s

p ¼ 8 and 13 TeV through a
recently studied model [7,8], which is a modified version of
a model originally proposed by Barger and Phillips (BP)
[9]. The BP amplitude was proposed as an “independent”
model to highlight the main characteristics of the elastic
diffractive cross section, namely the forward peak, the dip-
bump structure arising from the zero of the imaginary part
of the amplitude in pp, the slower, powerlike decrease at
large −t. In the original model, the parameter ρ is negative,
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in agreement with data on pp scattering at the time.
However, as the energy increases, besides the well-known
“diffraction dip” due to a zero in the absorptive part, the
amplitude must develop a zero in the real part of the nuclear
amplitude for the parameter ρ to change sign. If, at LHC
energies, the real part vanishes in the CNI region, the
extraction of the ρ parameter gets complicated.
A zero in the real part of the elastic amplitude has been

studied previously by Martin [10] and more extensively for
the LHC data at

ffiffiffi
s

p ¼ 7 and 8 TeV by Kohara et al. in
Ref. [11], who find a positive evidence for this Martin zero.
In fact, Martin [10] proved that, if at infinite energies, (i) the
total cross section tends to infinity and (ii) the differential
elastic cross section tends to zero for large −t values, then
the real part of the even-signature amplitude must change
sign near t ¼ 0. Such a circumstance necessarily questions
the assumption, underlying the present TOTEM analysis of
the CNI data, that the real part of the nuclear amplitude is a
constant. At LHC energies, data show the total cross
section to rise continuously and the differential cross
section at a fast falloff at high −t values, satisfying both
of Martin’s assumptions. Martin’s theorem then implies
that, if the real part of the amplitude is positive at t ¼ 0, due
to the existence of a zero in the CNI region, the value of ρ
obtained from an analysis assuming the real part of the
nuclear amplitude to be a constant (near t ¼ 0) would be
lower than its true value.
The paper is organized as follows. In Sec. II, the presence

of a zero in the real part of the forward amplitude is
discussed in the general case of geometrical scaling. In
Sec. III, we discuss various prescriptions for obtaining the
real and imaginary parts of the modified BP nuclear
amplitude based on our phenomenological expressions
for the parameters deduced in Ref. [7]. In Secs. IV and
V, after a brief description of the parametrization for the
nuclear amplitude used by TOTEM, we compare the results
from our model with the TOTEM data at

ffiffiffi
s

p ¼ 8 and
13 TeV in the CNI region. Relative residuals and χ2’s are
defined and discussed in detail. In Sec. VI, we exhibit the
phases and both real and imaginary parts of all four of our
nuclear amplitudes in order to understand better qualitative
differences between them and to delineate further the
problems associated with finding the correct value of ρ
(at t ¼ 0). We shall see that our rotated BP amplitudes
move the zero in the real part of the elastic amplitude nearer
to the CNI at higher energies. Thus, at 13 TeV, the effect is
more pronounced (reducing true ρ ≈ 0.13 to an apparent
t-averaged ρ̄ ≈ 0.10; see below), than at

ffiffiffi
s

p ¼ 7 and 8 TeV
(as discussed in Ref. [11]).
As the real part has a zero in the CNI region, in Sec. VII

we define mean values of ρðs; tÞ in various t intervals to
compare our results with those from TOTEM that assumes
ρ to be a constant in that t interval. Quite good agreement is
reached with the TOTEM values. A compendium of all our
results for ρ and [σtot, σel] is presented and compared with

TOTEM data in Tables I and II. In Sec. VIII, we examine
the question whether TOTEM data in the CNI region
require QCD odderon contributions. In the concluding
Sec. IX, we present our conclusions deduced from the
model.

II. NEAR-FORWARD ZERO IN Re(A(s;t))
FROM GEOMETRIC SCALING

In this section we discuss further evidence, arising from
geometrical scaling, for the real part of the nuclear
amplitude exhibiting a zero near the forward direction.
If there is a domain in T ¼ −t within which geometric

scaling were valid, then Martin [13] showed that

ReðAðs; TÞÞ ¼ ρ
d
dT

½TImðAðs; TÞÞ�

¼ ρImðAðs; TÞÞ þ T
d
dT

ImðAðs; TÞÞ: ð1Þ

Since the imaginary part is large and positive at T ¼ 0 and
decreases to zero at T ¼ TI , then employing Eq. (1), we
have

Z
TI

0

ReðAðs; TÞÞdT ¼ ρ½TImðAðs; TÞÞ�T¼TI
T¼0 ¼ 0: ð2Þ

Since ImðAðs; T ¼ 0ÞÞ > 0, satisfaction of Eq. (2) neces-
sarily implies that the real part of the amplitude must
change sign—at least once—somewhere between T ¼ 0
and T ¼ TI . That is,

ReðAðs; T ¼ TRÞÞ ¼ 0; for 0 < TR < TI: ð3Þ

Geometric scaling is presumably a good approximation for
small T. What the above analysis shows is that it can be
valid up to TI only if the real part vanishes prior to the value
of T where the imaginary part does.
Actually, one can prove a stronger result: if geometric

scaling holds, then between any two consecutive zeroes of
the imaginary part, there must be at least one zero of the
real part. The trivial proof goes as follows, let fTI;ngn be a
set of zeros for the imaginary part of the amplitude, i.e.,

ImðAðs; TI;nÞÞ ¼ 0; n ¼ 1; 2;…;

this implies

Z
TI;nþ1

TI;n

ReðAðs; TÞÞ ¼ 0; n ¼ 1; 2;…; ð4Þ

by virtue of Eqs. (1) and (4). For the integral in Eq. (4) to
vanish, clearly the real part of the amplitude must change
sign at least once, thus proving the theorem.
The relevance of the above to the extraction of ρ at LHC

energies (and beyond) is obvious. Since the imaginary part
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of the amplitude at LHC energies has a zero at a rather
small value of T, i.e., TI ¼ ð0.45 ÷ 0.55Þ GeV2, geometric
scaling tells us the real part has a zero at an even smaller
value of T. We shall confirm such a behavior within a
specific s ↔ u symmetrized version of the model elastic
amplitude presented in Ref. [7]. This will further support
the assertion that care must be exercised in extracting a
value for ρ from small T data due to a zero in the near-
forward real part of the nuclear amplitude.

III. MODIFIED BARGER AND
PHILLIPS AMPLITUDE

Let the elastic amplitude Aðs; tÞ be defined through its
relation with the total cross section as

σtotðsÞ ¼ 4
ffiffiffi
π

p
ImðAðs; 0ÞÞ; ð5Þ

so that the elastic differential cross section reads

dσ
dt

ðs; tÞ ¼ jAðs; tÞj2; ð6Þ

(all particle masses are being ignored). The amplitude of
our modified BP model is [7]

Aðs; tÞ ¼ i½F2ðtÞ
ffiffiffiffi
A

p
eBt=2 þ eiϕ

ffiffiffiffi
C

p
eDt=2�: ð7Þ

In Fagundes et al. [7], pp data for the elastic differential
cross section in the energy range

ffiffiffi
s

p ¼ ð24 ÷ 7000Þ GeV
had been fitted with the above model. Using values from
these fits, values of the parameters in Eq. (7), based on
asymptotic theorems and sum rules [14–16] had been put
forward, as shown in the following.
(1) The s dependence of A was chosen so as to saturate

the Froissart bound

4
ffiffiffiffiffiffiffiffiffiffiffiffi
πAðsÞ

p
¼ ð0.398L2ðsÞ − 3.80LðsÞ þ 47.8Þ mb

ð8Þ

where

LðsÞ ¼ lnðs=s0Þ; s0 ≡ 1 GeV2: ð9Þ

(2) The proton form factor is defined in terms of the
standard dipole

FðtÞ ¼ 1

ð1 − t=t0ðsÞÞ2
: ð10Þ

(3) While the phase ϕ, introduced in Eq. (7), is very
slowly varying with s, the pole t0ðsÞ of the form
factor has a not negligible dependence on the energy,

as it is shown in Fig. 3 of Ref. [7]. However, for large
values of s, it appears to approach the usual value
of 0.71 GeV2. Hence, for high energies, we had
frozen both phase and pole position as

ϕ ¼ 2.74; t0 ¼ 0.71 GeV2: ð11Þ

(4) Based on two asymptotic sum rules [16], which were
shown to be almost saturated at

ffiffiffi
s

p ¼ 7 TeV [7],
the two slope parameters in the model were para-
metrized as

BðsÞ ¼ ð0.028L2ðsÞ − 0.230Þ GeV−2;

DðsÞ ¼ ð0.29LðsÞ − 0.41Þ GeV−2: ð12Þ

(5) The s dependence of the C term is more complicated
due to its large variation from low to high energies.
Phenomenologically, we had chosen for an asymp-
totically constant C, the following form

4
ffiffiffiffiffiffiffiffiffiffiffiffi
πCðsÞ

p
¼ 9.60 − 1.80LðsÞ þ 0.01L3ðsÞ

1.200þ 0.001L3ðsÞ mb:

ð13Þ

Before discussing our application to the recent
ffiffiffi
s

p ¼
13 TeV TOTEM data, we stress that the asymptotic
behavior of the slope BðsÞ chosen above differs from
the usual lnðsÞ behavior expected from Regge or Pomeron
pole trajectories. Namely, in this empirical model, the
recent TOTEM observation that the slope in the forward
region increases faster than a logarithm is not a surprise.
Our observation is also in agreement with an earlier study
by Shegelsky and Ryskin [17]. For a very comprehensive
study of the slope—covering different regions of t—see
Okorokov [18]. Our choice for BðsÞ in Eq. (12) is
consistent with solution (d) of [18]. A recent analysis by
Jenkovszky et al., in the context of the dipole model, also
confirms the acceleration of the slope with energy [19].
To study the CNI region, in light of Martin’s observation

mentioned in the Introduction [10], we first notice that
neither the original BP amplitude nor the amplitude of
Ref. [7] were s ↔ u symmetric. In this paper we shall
consider modifications of our proposed amplitude, such
that the resulting amplitude Aðs; tÞ would be invariant
under s ↔ u, namely we study the even-signature compo-
nent of the above model.
Let us first consider the transformation rule fs→se−iπ=2g,

valid for a C ¼ þ1 amplitude, as discussed thoroughly by
Block in Sec. 10. 3 etc., of his review [20]. For the present
parametrizations, this implies the substitution LðsÞ →
½LðsÞ − iπ=2� in AðsÞ and CðsÞ. For example, it gives for
the contribution of the A term into the real and imaginary
parts of Aðs; tÞ to be
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Imð4i
ffiffiffiffiffiffiffiffiffiffiffiffi
πAðsÞ

p
Þ ¼ ð0.398L2ðsÞ − 3.8LðsÞ þ 47.8Þ mb;

ð14Þ

Reð4i
ffiffiffiffiffiffiffiffiffiffiffiffi
πAðsÞ

p
Þ ¼ ð0.398πLðsÞ − 1.9πÞ mb ð15Þ

so that their ratio

ρ̂ðsÞ≡ Reði ffiffiffiffiffiffiffiffiffi
AðsÞp Þ

Imði ffiffiffiffiffiffiffiffiffi
AðsÞp Þ ≲

π

LðsÞ ; ð16Þ

similarly for
ffiffiffiffiffiffiffiffiffiffi
CðsÞp

. Of course, such a choice leaves the
slope parameters BðsÞ and DðsÞ unrotated.
One may entertain the possibility that the slope param-

eters BðsÞ and DðsÞ also get rotated using the above rule
fs → se−iπ=2g. Namely, for a C ¼ þ1 amplitude, what is
really required is to preserve the symmetry s ↔ u at fixed t
of the entire amplitude [10]. For large s and u at fixed
−t ≪ 0 (neglecting the masses), this reduces to setting
u → −s ¼ se−iπ .
In the following, we have considered all four possibilities

with the following four sets of nuclear amplitudes:

A0ðs; tÞ∶ no rotation at all;

A1ðs; tÞ∶ onlyA andC rotated

no rotation of the phasesB andD;

A2ðs; tÞ ¼ Aðse−iπ=2; tÞ∶ complete rotation;

A3ðs; tÞ ¼
1

2
½Aðs; tÞ þAðse−iπ; tÞ�: ð17Þ

As we shall see, both the real and imaginary parts of the
nuclear amplitude are practically identical for A2 and A3,
but they are substantially different from A0 and A1.
Moreover, the predictions from the amplitudes A2 and
A3 are in remarkable accord with the TOTEM data in the
CNI region, whereas those from A0 and A1 are decidedly
inferior. In the following Sec. IV, we shall use the
amplitudes and parameters of Eqs. (8)–(12) for the four
nuclear amplitudes of Eq. (17) to make predictions and
compare them with the TOTEM data in the CNI region at
the two representative energies

ffiffiffi
s

p ¼ 8 and 13 TeV.

IV. COULOMB-NUCLEAR INTERFERENCE
AT

ffiffi
s

p
= 8 AND 13 TeV

As stated earlier, the CNI has been measured with great
precision by the TOTEM group at

ffiffiffi
s

p ¼ 8 and 13 TeV.
Numerical values of the elastic differential cross section
for the momentum transfer region 6 × 10−4 < jtj <
0.1 GeV2 for the

ffiffiffi
s

p ≡ ffiffiffiffiffi
s8

p ¼ 8 TeV data are presented
in Table 3 of Ref. [2] and for the

ffiffiffi
s

p ≡ ffiffiffiffiffiffi
s13

p ¼ 13 TeV
data in Table 3 of Ref. [4].

To isolate CNI, TOTEM shows the
ffiffiffi
s

p ¼ 13 TeV data in
the following way [4].
(1) Figure 13 of Ref. [4] shows the cross section data

with momentum transfer up to jtj ≤ 0.15 GeV2.
(2) Figure 14 of Ref. [4] shows cross section data up

to jtj ≤ 0.07 GeV2.
(3) In both figures, along with data, is also plotted the

fractional quantity

Xðs; tÞ ¼ ðdσ=dtÞdata − Ref4ðs; tÞ
Ref4ðs; tÞ

: ð18Þ

The reference value Ref4ðs; tÞ at ffiffiffiffiffiffi
s13

p ≡ 13 TeV is
defined as

Ref4ðs13; tÞ ¼ 633e
20.4t
GeV2 mbGeV−2 þ

�
dσ
dt

�
C

ð19Þ

with the Coulomb cross section

�
dσ
dt

�
C
¼ jACðs; tÞj2;

defined as

ACðs; tÞ ¼ 2
ffiffiffi
π

p
α

t
F2ðtÞ: ð20Þ

The above is the reference nuclear amplitude for
jtj ≤ 0.2 GeV2. To investigate the CNI, TOTEM [4] uses
the following parametrization for the nuclear amplitude,
called AN ,

ANðs; tÞ ¼ jANðs; tÞjeiΦðs;tÞ;

jANðs; tÞj ¼ ffiffiffi
a

p
exp

�
1

2

XNb

n¼1

bntn
�
;

Φðs; tÞ ¼ π

2
− tan−1½ρðs; tÞ� ¼ ½Constant�: ð21Þ

It depends on the set of Nb þ 1 parameters fa; b1;
b2;…; bNb

g. In particular, b1 is the “large” diffraction
slope and b2;3 are supposed to account for minor fluctua-
tions in the low-jtj data. It is interesting to note that, in
Ref. [4], for the data covering a smaller t interval, jtjmax ¼
0.07 GeV2, for Nb ¼ 1, 2, 3, the χ2 per degree of freedom,
χ̄2, have roughly the same value: χ̄2 ¼ 0.7, 0.6, 0.6,
respectively; whereas data that cover a larger t interval,
jtjmax ¼ 0.15 GeV2, the fit with just one term Nb ¼ 1 has a
much larger χ̄2 ¼ 2.6 compared to χ̄2 ¼ 1.0 forNb ¼ 2 and
χ̄2 ¼ 0.9 for Nb ¼ 3. In fact, as the authors of Ref. [4] note
themselves, the quality of fit is bad and no values for ρ
are displayed for Nb ¼ 1 and jtjmax ¼ 0.15 GeV2. Notice
that their chosen parametrization of the nuclear amplitude
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leaves no room for the real part of the nuclear amplitude to
vanish in the CNI region. It cannot be excluded that this
assumption is responsible for the poor fit in the case
Nb ¼ 1, since, as Martin’s theorem indicates, the existence
of a zero is highly likely. To investigate the existence of a
zero, in the following Sec. V, we shall follow the steps of
the TOTEM analysis but using our rotated asymptotic
model in lieu of their parametrization, which excludes
a priori the possibility of ρðs; tÞ to change sign in the CNI
region.

V. DIFFERENTIAL CROSS SECTION AND
RESIDUALS AT

ffiffi
s

p
= 8 AND 13 TeV

We now show our results in Figs. 1 and 2 for the
complete elastic differential cross section in the CNI region
at

ffiffiffi
s

p ¼ 8 and 13 TeV covering the t region up to jtjmax ¼
0.2 GeV2. It is obtained from the modified nuclear BP
amplitude discussed above in Sec. III. We emphasize that in
Figs. 1 and 2, all four theoretical curves are drawn using
the energy behavior of the parameter from Eqs. (8)–(12)
obtained without changing any parameters from Ref. [7]
and implementing the rotation proposal of Eq. (17). Hence,
these are predictions for the absolute differential cross
section at

ffiffiffi
s

p ¼ 8 and 13 TeV as well as for the total cross
section σtot, the elastic one σel and ρ parameter, that are
discussed later.
Figures 1 and 2 show differential cross sections data,

model predictions dσj=dtðs8;13; tÞ and the corresponding
residuals Rjðs; tÞ, in the four cases labeled with j ¼ 0, 1, 2,
3 and at

ffiffiffi
s

p ¼ 8 and 13 TeV. The jth differential cross
section is obtained as

dσj
dt

ðs; tÞ ¼ jAjðs; tÞ þACðs; tÞj2; ð22Þ

where the nuclear jth and Coulomb amplitudes are given in
Eqs. (17) and (20) respectively, and residuals for the two
datasets at s ¼ s8 and s ¼ s13,�

tk;
dσ
dt

ðs; tkÞdata; δ
�
dσ
dt

ðs; tkÞdata
��

MðsÞ

k¼1

; ð23Þ

consisting of Mðs8Þ and Mðs13Þ points, are defined as

Rjðs; tkÞ ¼
dσ
dt ðs; tkÞdata −

dσj
dt ðs; tkÞ

dσj
dt ðs; tkÞ

;

s ¼ s8; s13;

j ¼ 0; 1; 2; 3;

k ¼ 1;…;MðsÞ:
ð24Þ

As one can see, the agreement with data is excellent for the
nuclear amplitudes A1;2;3ðs; tÞ (red, green, blue areas and
lines), whereas A0 (black area and line) is essentially ruled
out. The corresponding residuals R1;2;3ðs; tÞ both at

ffiffiffi
s

p ¼ 8

and 13 TeV are practically zero all the way up to
jtjmax ¼ 0.1 GeV2.
Figure 3 shows, for the datasets of Eq. (23), the χ2jðs; tÞ

per degree of freedom

χ̄2jðs; tkÞ ¼
1

k

Xk
l¼1

�dσj
dt ðs; tlÞ − dσ

dt ðs; tlÞdata
δ½dσdt ðs; tlÞdata�

�2

;

with s ¼ s8, s13 and 0 < jtkj < 0.2 GeV2. The remarkably
low value of χ̄21;2;3ðs8;13;tÞ, which is less than 0.3 for all jtj≤
0.1GeV2, tells us that the nuclear amplitudes A1;2;3ðs; tÞ

FIG. 1. (Upper) Data on the differential cross section at
ffiffiffi
s

p ¼
8 TeV and superimposed the predictions corresponding to the
parametrizations of the nuclear amplitude given in Eq. (17).
(Lower) Residuals as defined in Eq. (24).

FIG. 2. (Upper) Data on the differential cross section at
ffiffiffi
s

p ¼
13 TeV and superimposed the predictions corresponding to the
parametrizations of the nuclear amplitude given in Eq. (17).
(Lower) Residuals as defined in Eq. (24).
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describe both
ffiffiffi
s

p ¼ 8 and 13 TeV data extremely well. We
can then conclude that our model in the proposed analytic
and crossing-symmetric version is very appropriate to
describe present low-jtj data, in the CNI region, and
eventually predict future trends.
Figure 4 shows the residuals

ðdσ=dtÞexp − Xj

Xj
ðsÞ; j ¼ 0; 1; 2; 3; 4; s ¼ s8; s13;

ð25Þ

between data ðdσ=dtÞexp and the sum of Coulomb and
nuclear cross sections with no interference, i.e.,

Xjðs; tÞ ¼ jAjðs; tÞj2 þ jACðs; tÞj2; ð26Þ

where the first four nuclear amplitudes, with j ¼ 0, 1, 2, 3,
are given in Eq. (17), while the fifth one, with j ¼ 4, is
obtained by using for the nuclear cross section the best
exponential fits of Refs. [2,4]. The expression at

ffiffiffi
s

p ¼
13 TeV is given in Eq. (19), while the one at

ffiffiffi
s

p ¼ 8 TeV
reads

Ref4ðs8; tÞ ¼ 527.1e
19.39t
GeV2 mbGeV−2 þ jACðs8; tÞj2:

Figure 4, showing residuals between data and models
without the CNI term, is the same as Figs. 16 and 17 of
Ref. [2] and Fig. 14 of Ref. [4].

VI. COMPLEX NUCLEAR AMPLITUDE
AT

ffiffi
s

p
= 8 AND 13 TeV

As seen in the previous Secs. IV and V, nuclear
amplitudes A1;2;3ðs; tÞ describe the differential cross sec-
tion data in the CNI region very well. Here we shall exhibit
the phases and both real and imaginary parts of all four of
our nuclear amplitudes, in order to understand better
qualitative differences between them and delineate further
the problems associated with finding the correct value of
the ρ parameter.
In Fig. 5 we show the phases predicted by the present

model for all the four amplitudes previously described.
Figures 6 and 7 show imaginary and real parts of the

amplitudes. From Fig. 6, we see that the imaginary part

FIG. 3. χ2 per degree of freedom in the four cases of Eq. (17),
labeled with j ¼ 0, 1, 2, 3, and for the two sets of data at

ffiffiffi
s

p ¼
8 TeV (top) and 13 TeV (bottom).

FIG. 4. Residuals between data and Refjðs; tÞ, the noninterfer-
ing nuclear and Coulomb cross section defined in Eqs. (26) and
(19), at

ffiffiffi
s

p ¼ 8 TeV (upper) and at
ffiffiffi
s

p ¼ 13 TeV (lower).

FIG. 5. Phases of the four amplitudes Aj, at s ¼ s8 and s13, with
j ¼ 0 (black lines) highest at t ¼ 0, j ¼ 1 (red) lowest at t ¼ 0,
j ¼ 2, 3 undistinguishable.
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is basically unaffected by the crossing implementation.
On the contrary, as it is shown in Fig. 7, the real part of
the amplitude with no rotation A0 is clearly different from
the other three real parts, that still are quite similar.
In addition, and most importantly, Fig. 7 shows that
when rotated, the real part of the amplitude develops a
zero, whereas the original unrotated expression for the real
part is negative throughout the entire forward peak region,
up to jtj ≃ 1 GeV2. Furthermore, even for the three rotated
amplitudes, there are differences in the position of the zero
of the real part. In particular, we notice that (i) in the cases
j ¼ 2 and j ¼ 3, the two amplitudes are indistinguishable,

with the real part developing a zero around jtj ¼
0.12 GeV2; (ii) for the j ¼ 1 case, with no rotation of
slopes BðsÞ ad DðsÞ, the real part, and hence the ρ para-
meter, as a function of t, changes sign around jtj ¼
0.25 GeV2, already outside the CNI.
We now turn to an estimate of the ρ parameter in the

small jtj region. We will have to distinguish the case when
the zero of the real part of the amplitude is within the CNI
region, where the TOTEM experiment assumes a constant
value [4]. By considering different physics assumptions
and mathematical modeling, TOTEM has extracted by the
same set of data on the proton-proton differential cross
section, two values for the ρ parameter, i.e., [4]

ρT1 ¼ 0.09� 0.01;

ρT2 ¼ 0.10� 0.01: ð27Þ

In Fig. 8 the ρ parameters

ρjðs; tÞ ¼
ReðAjðs; tÞÞ
ImðAjðs; tÞÞ

; ð28Þ

for the four amplitudes with j ¼ 0, 1, 2, 3, at s ¼ s8 and
s ¼ s13, are plotted as a function of t in the momentum
transfer region 0 ≤ jtj ≤ 1 GeV2.

VII. AVERAGES OVER MOMENTUM
TRANSFER AND COMPARISON

WITH TOTEM RESULTS

As discussed above and explicitly seen in Fig. 7 for
models j ¼ 1, 2, 3, the real part of the amplitude has a zero
near or inside the CNI region. Thus, it is useful to define a

FIG. 6. Imaginary parts of the nuclear amplitudes at s ¼ s8
(upper) and s ¼ s13 (lower).

FIG. 7. Real parts of the nuclear amplitudes,with j ¼ 0, 1 (black,
red) lowest and highest at t ¼ 0, j ¼ 2, 3 undistinguishable.

FIG. 8. The ρðs; tÞ values, with j ¼ 0, 1 (black, red) lowest and
highest at t ¼ 0, j ¼ 2, 3 undistinguishable.
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mean value of ρ that could be used to compare to the
constant ρ’s used by TOTEM to analyze their data in the
CNI region.
For this purpose, we consider a range of momentum

transfer through the region covered by the TOTEM data atffiffiffi
s

p ¼ 8 and 13 TeV and average the model predictions for
ρjðs; tÞ in such ranges; namely, we define

ρ̄jðs;tÞ¼
R
0
−tρjðs;t0Þdσjdt ðs;t0Þdt0R

0
−t

dσj
dt ðs;t0Þdt0

; j¼0;1;2;3; ð29Þ

that are mean values depending on the t interval (0 ≤ jt0j ≤
jtj)—over the CNI region—as chosen by TOTEM.
The obtained ρ̄jðs; tÞ for the most relevant three cases
j ¼ 1, 2, 3 are shown in Fig. 9.
It is satisfactory that

ρ̄2;3ðs13;−0.15 GeV2Þ ≃ 0.09;

i.e., in the cases j ¼ 2, 3, the mean value of ρ in the
momentum transfer region 0 ≤ jtj ≤ 0.15 GeV2, atffiffiffi
s

p ¼ 13 TeV, is remarkably close to the value found by
TOTEM for ρ, namely ρT1 and ρT2 of Eq. (27), assumed to
be constant quantities in this t interval.
In Tables I and II, we report the values obtained for the

quantities of interest in this paper, i.e., the ρ parameter at
t ¼ 0, its average value in the t interval corresponding to
the one investigated by TOTEM, and the total and elastic
cross section at the two LHC energies.
A more comprehensive analysis of the model, tuned

for a larger t interval covering the bump-dip region
(jtj ≤ 1 GeV2) is left for future work after definitive

TOTEM results become available with proper overall
normalization over the entire momentum transfer interval.

VIII. DO TOTEM DATA REQUIRE ODDERONS?

The precise TOTEM data in the CNI region at
ffiffiffi
s

p ¼
13 TeV give us rather accurate values of the ρ parameter [4]
reported in Eq. (27). We have presented in the previous
sections an analysis which confirms the measured low
value of the ρ parameter at

ffiffiffi
s

p ¼ 13 TeV, through an
empirical model based on analyticity, crossing symmetry,
and which satisfies known asymptotic theorems. As the
existence of a zero in the CNI region, which is found to be
consistent with TOTEM results, was connected in [10] to
the asymptotic behavior of the total cross section, we shall
now discuss this issue.
Specifically, we shall consider the possibility that the

imaginary part of the scattering amplitude at t ¼ 0 may not
saturate the Froissart bound. Let us compare the above with
an assumed high energy total cross section increasing as
some power of LðsÞ ¼ lnðs=s0Þ [see Eq. (9)]. Using the
nomenclature from the soft-gluon resummation work
reviewed in Ref. [8], we may write the forward elastic
amplitude—using the rule discussed in Sec. III—as fol-
lows. Considering the amplitude

Aðs; 0Þ ¼ iK½lnðse−iπ=2=s0Þ�1=p; ð30Þ

where K is a positive constant, in the limit of large s=s0,
i.e., LðsÞ ≫ 1, the imaginary and real parts of the amplitude
read

ImðAðs; 0ÞÞ ≃ KL1=pðsÞ;
ReðAðs; 0ÞÞ ≃ K

π

2p
L1=p−1ðsÞ; ð31Þ

so that the total cross section and the ρ parameter are

σtotðsÞ ¼ KL1=pðsÞ; ρðsÞ ¼ π

2pLðsÞ : ð32Þ

In such a model the parameter p, varying in the interval
½1=2; 1�, describes the level of saturation of the Martin-
Froissart bound. The limit is reached for p ¼ 1=2 leading
to the well-known Khuri-Kinoshita bound ρ ¼ π=L [5].
Of course, care should be exercised in applying such

expressions and comparing them to data due to finite
corrections as well as due to the occurrence of a zero in
the real part of the nuclear amplitude in the near-forward
CNI region, as it is only after averages over the t intervals
are taken that we obtain ρ̄ ≈ ð0.09 ÷ 0.1Þ, in agreement with
the TOTEM values.
Just for illustration, consider our analysis at 13 TeV. Our

nuclear amplitudes are chosen to saturate the Froissart
bound (i.e., p ¼ 1=2 in the notation above). Thus, asymp-
totically, ρ should have the KK value. Numerically, at
13 TeV, ρKK ¼ 0.166. On the other hand, after finite

FIG. 9. Mean values of ρjðs; tÞ at s ¼ s8 (upper) and s ¼ s13
(lower), with j ¼ 1 (red line) highest for all jtj values considered.
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corrections, this value is reduced to ρ̂ ≈ 0.15 [see Eq. (16)].
Consideration of our complete nuclear amplitude (i.e.,
including contributions also from the

ffiffiffiffi
C

p
term), reduces

it further to our actual value of ρ ≈ 0.133 (see Table I).
Using Eq. (32), this would be obtained for an effective

p ≈ 0.62 (modulo further finite corrections, if any). And
for this value of p, σtotðsÞ ∼ L1.61ðsÞ, a slower rate than
σtotðsÞ ∼ L2ðsÞ.
A similar trend is also reflected in other phenomeno-

logical analyses, such as in the soft-gluon resummation
model of Ref. [21], as shown in [22]. Another example can
be found in Table 13 of Block’s review of Ref. [20], σtot is
parametrized with the leading term c2L2ðsÞ, where c2 ¼
þ0.275 mb is a (small) positive coefficient, accompanied
by a nonleading term c1LðsÞ, where c1 ¼ −1.3 mb is
instead a large negative coefficient. While TOTEM has
not released a total cross section expression using a power
series in LðsÞ, the following parametrization of the LHC
elastic cross section data—attributed to Compact Muon
Solenoid—can be found in the TOTEM report of Ref. [1]

σelðsÞ ¼ ½0.130L2ðsÞ − 1.5LðsÞ þ 11.4� mb: ð33Þ

The above expression suggests that indeed the proton-
proton total, elastic and inelastic cross sections might be
increasing at a rate lower than L2ðsÞ, as s increases.
The modified crossing symmetric BP near-forward

nuclear amplitude discussed at length in the previous
sections is also anchored upon two leading terms,

ffiffiffiffiffiffiffiffiffi
AðsÞp

and
ffiffiffiffiffiffiffiffiffiffi
CðsÞp

, with the dominant L2ðsÞ term in AðsÞ with a
positive coefficient followed by a nonleading term with a
negative coefficient [−3.8LðsÞ in Eq. (8)] and by the nextffiffiffiffiffiffiffiffiffiffi
CðsÞp

term, as seen from Eq. (13). The success of this
model in describing TOTEM data in the CNI region also
suggests a similar patternwithout on the other hand invoking
a C ¼ −1 odderon contribution [23]. Theoretical QCD
models for C ¼ −1 three gluon color singlet Regge trajec-
tories obtain a very low intercept, even lower than the ω
trajectory [23]. Also, at HERA, the H1 group [24] has ruled
out an odderon Regge intercept above 0.7. Thus, the
prognosis for QCD odderons with intercepts equal to or
greater than 1 seems exceedingly dim. The odderon hypoth-
esis may also have difficulties with unitarity and the black
disk limit as recent QCD model calculations [25] show a
contradiction between unitarity and a maximal odderon
[26], namely the one which would give a contribution to the
total cross section rising ∼ ln2ðsÞ. Also, a calculation in the
color glass condensatemodel [27] estimates the contribution
of the C-odd amplitude to ρ to be of order 1%, namely
Δρodderon ∼ ð1 mbÞ=σtot ≲ 1%.
Further evidence that TOTEM results do not force the

existence of a C ¼ −1 contribution in the CNI region can
be found in a recent paper by Jenkovszky and co-workers
[28]. It is to be hoped that further TOTEM differential cross
section data (not just total cross section data) covering a
larger t interval would help resolve this issue.

IX. CONCLUSIONS

Modified BP nuclear amplitudes, called models j ¼ 2, 3
in the text, appear to describe the CNI data rather well, thus
allowing us to draw the following conclusions.
(1) At LHC energies, the real part of the nuclear

amplitude vanishes at a momentum transfer value
t ≃ −0.12 GeV2.

(2) As TOTEM CNI data at
ffiffiffi
s

p ¼8TeV [2] were analy-
zed over the interval 6 × 10−4 ≤ jtj ≤ 0.19 GeV2,
the zero in the real part of the nuclear amplitude was
within this interval. This might explain the choice of
a peripheral phase with double zeroes in both the real
and the imaginary parts (see solution KL/peripheral
in Table 5 of Ref. [2]), which, however, violates
analyticity and positivity. Such a peripheral phase
solution can be ruled out on rigorous grounds. An
analysis of the 8 TeV data, based on a simple Regge
model [29], argued that the nonexponential behavior

TABLE I. Values for the ρ parameter at zero transfer momen-
tum and average over the interval ½−t;0�, at ffiffiffi

s
p ¼8 and 13 TeV

from the rotated empirical model of Eq. (17) and Ref. [7]. The
corresponding TOTEM experimental values are also included
together with the bibliographic references.
ffiffiffi
s

p
(Tev) j ρjðs; 0Þ ρ̄jðs; tÞ

−t
(GeV2) ρexpTOTEM

8 1 0.1352 0.1256 0.2 0.12� 0.03 [2]
2 0.1352 0.0865
3 0.1365 0.0874

13 1 0.1330 0.1285 0.07 0.09� 0.01 (Nb ¼ 1) [4]
0.09� 0.01 (Nb ¼ 2) [4]
0.10� 0.01 (Nb ¼ 3) [4]

2 0.1330 0.1050
3 0.1341 0.1062

13 1 0.1330 0.1247 0.15 0.09� 0.01 (Nb ¼ 2) [4]
0.10� 0.01 (Nb ¼ 3) [4]2 0.1330 0.0877

3 0.1341 0.0885

TABLE II. Values of σjtot, σ
j
el in the four cases j ¼ 0, 1, 2, 3 atffiffiffi

s
p ¼ 8 and 13 TeV from the rotated empirical model of Eq. (17)
and Ref. [7]. We also include TOTEM experimental values
together with the bibliographic references.
ffiffiffi
s

p
(Tev) j σjtot (mb) σexptot (mb) σjel (mb) σexpel (mb)

8 0 103.44 103.2� 2.3 [2] 26.82 27.1� 1.4 [12]
1 102.68 102.9� 2.3 [2] 26.85
2 102.68 27.06
3 101.64 26.85

13 0 113.66 110.6� 3.4 [3] 30.76 31.0� 1.7 [3]
1 112.87 30.81
2 112.87 31.03
3 111.84 30.84
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at low jtj could be explained by the existence of a
threshold singularity [19,30], required by t-channel
unitarity. On the other hand, the empirical model
discussed here with a single zero in both the real and
the imaginary parts is able to adequately describe the
CNI data at

ffiffiffi
s

p ¼ 8 TeV (as well as that at 13 TeV).
(3) For LHC energies, the zero in the real part lies in the

CNI region, thus rendering a precise determination
of ρ parameter rather problematic. For example,
TOTEM analyzed its

ffiffiffi
s

p ¼ 13 TeV data assuming
that

ρðs; tÞ ¼ ReðAðs; tÞÞ
ImðAðs; tÞÞ≡ ρðsÞ; ð34Þ

i.e., that the ρ parameter is a constant in t over
the region 0 ≤ jtj ≤ 0.15 GeV2, whereas we expect
ρðs; t ≈ −0.15 GeV2Þ ¼ 0. To make a comparison,
we defined a mean value, see Sec. VII etc., over
this interval and found good agreement with the
TOTEM value.

(4) The need of a QCD odderon contribution to explain
the TOTEM data in the CNI region is not compel-
ling, in particular for what concerns the energy rise
of the total cross section and the nonsaturation of the
Froissart bound at present LHC energies. Thus,
model-independent analyses of the entire t region

covered by future TOTEM data are likely to clarify
this important issue.

(5) Both elastic and total cross sections appear to be
approaching their asymptotic limits from below. For
example

σel
σtot

½LHC energies� < 1

3
<

σel
σtot

½black disk�≡ 1

2
:

(6) Also, the values for the ρ parameter obtained by
TOTEM at

ffiffiffi
s

p ¼ 13 TeV, ρT1 and ρT2 of Eq. (27),
are much lower than the Khuri-Kinoshita bound

π

Lðs13Þ
≃ 0.165;

having Lðs13Þ ≃ 18.95.
(7) Both items 5 and 6 above suggest that cross sections

very likely rise less fast than L2ðsÞ [8]. Clearly,
further data are required to settle this crucial issue.
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