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We use Regge phenomenology to study the structure of the poles of the N� and Δ� spectrum.
We employ the available pole extractions from partial wave analysis of meson scattering and photo-
production data. We assess the importance of the imaginary part of the poles (widths) to obtain a consistent
determination of the parameters of the Regge trajectory. We compare the several pole extractions and
show how Regge phenomenology can be used to gain insight into the internal structure of baryons. We find
that the majority of the states in the parent Regge trajectories are compatible with a mostly compact three-
quark state picture.
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I. INTRODUCTION

The baryon spectrum is one of the main tools for
investigation of the nonperturbative QCD phenomena. In
particular, the low-lying nonstrange sector containing the
N� and Δ� resonances, which is accessible in pion-nucleon
scattering and photoproduction experiments, is a primary
source of insights into the quark model. The goal of baryon
spectroscopy is to understand the origin and structure of
resonances, e.g., to establish if a given resonance can be
classified as compact three quark (3q) state, as predicted by
the quark model or that it has other hadronic components.
This is often done through partial wave analyses, with
resonances appearing in individual partial waves that are

independently parametrized to fit the data. Such analyses
miss global constraints imposed by the Regge theory that
connect partial waves through analyticity in the angular
momentum plane [1–3]. According to Regge theory, reso-
nances appear as poles in the angular momentum plane. The
pole location, which changes as a function of the resonance
mass and defines the so-called Regge trajectory, can be used
to study the microscopic mechanisms responsible for
resonance formation [4–7].
The most noticeable feature of the hadron spectrum is

that its Regge trajectories are approximately linear. This
was first shown by Chew and Frautschi [8] who plotted
spin of resonances Jp vs their mass squared M2, which,
in the narrow width approximation corresponds to a
Regge trajectory. The patterns implied by the Chew-
Frautschi plot can be used to guide partial wave analyses.
For example, gaps in the trajectories hint to missing
states. The approximate linearity of Regge trajectories is
one the strongest phenomenological indications of con-
finement [9] and therefore states belonging to linear
trajectories are expected to be closely connected to quark
model predictions [10,11].
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Resonance decays, contribute to trajectories by intro-
ducing imaginary parts. These are constrained by unitarity
and analyticity, and are related to resonance widths [12].
Consequently, Regge trajectories are a mapping of the
complex energy plane, the s-plane, onto the complex
angular momentum, the J-plane. More specifically, since
a resonance is characterized by its complex energy sp and
spin Jp, Regge trajectory αðsÞ is a complex function such
that αðspÞ≡ ðℜðJðspÞÞ;ℑðJðspÞÞÞ ¼ ðJp; 0Þ.1 Hence, in
the general case of finite resonance widths the Chew-
Frautschi plot has to be interpreted as the relation between
ℜðspÞ vs ℜðJÞ ¼ Jp. We note that, as we are no longer
using the narrow width approximation, the Chew-Frautschi
plot no longer provides a complete description of the Regge
trajectory and when analyzing two-dimensional plots one
can consider additional relations, like ℑðspÞ vs ℜðJÞ ¼ Jp
[6], to fully characterize the Regge trajectory, or surface
plots of ℜðαðsÞÞ as a function of complex s, however, will
continue referring to the Chew-Frautschi plot as mapping
of real mass onto real spin.
In the past, resonance poles were often not computed

and, with a few exceptions [13,14], fits to the Chew-
Frautschi plots gave the only information about the
Regge trajectory. Constituent quark model predictions
for hadron masses adhere nicely to the approximately
linear behavior both in the baryon [15–22] and the meson
[22–25] sectors. Flux tube models of baryons also provide
linear trajectories [26–28].
In this article, following the analysis of the strange baryon

sector [6] we use Regge phenomenology to study theN� and
Δ� spectra. Resonance pole masses and widths are nowa-
days more prominently featured in the Particle Data Group
(PDG) tables [29]. This is because, in the last years,
amplitude analyses have become more sophisticated ena-
bling for extraction of resonance poles from the experi-
mental data.We fit complex Regge trajectories to the spectra
obtained by several partial wave analyses [30–36] of meson
scattering and photoproduction data. The objectives of this
article are: (i) to provide a comprehensive comparison of the
different N� and Δ� pole extractions based on Regge
phenomenology; (ii) to assess the impact of neglecting
the imaginary part of the poles in the computation of the
Regge trajectory, in particular in the extraction of the slope
parameter that can be compared to the one used in fits to the
high energy proton-antiproton data [37]; and (iii) to guide
future N� and Δ� pole extractions [38–40]. The paper is
organized as follows. In Sec. II, we review the N� and Δ�
spectra available in the literature that will be used in our
analysis. In Sec. III, we describe the phenomenological
models used to fit the spectrum and in Sec. IVwe explain the
fitting procedure, present the results and discuss the stat-
istical analysis. Conclusions are given in Sec. V.

II. N� AND Δ� POLE EXTRACTIONS

For a given spin and parity, resonance pole positions sp
are extracted from partial wave amplitudes analytically
continued off the real energy axis to the unphysical
Riemann sheet. On the real axis the partial wave amplitudes
are fitted to the data on meson-nucleon scattering and
meson photoproduction. This procedure carries uncertain-
ties associated to the experimental data (systematic and
statistical), the partial wave analysis model itself, and the
analytic continuation to the complex energy plane. The
differences among models in the pole extractions reflect on
some of these uncertainties and model dependencies. In
Tables I–IV, we list the poles that, in principle, conform the
leading (parent), i.e., the trajectory composed by the lowest
mass states for each spin-parity assignment, N� and Δ�
Regge trajectories, classified according to isospin I, nat-
urality η (η ¼ þ1 if P ¼ ð−1ÞJp−1=2 and η ¼ −1 if P ¼
−ð−1ÞJp−1=2 where P is the parity and Jp is the spin of the
resonance), and signature τ (η ¼ τP). The quantum num-
bers identify a given IηðτÞ trajectory, e.g., the trajectory

which contains Nð939Þ (the nucleon) corresponds to
IηðτÞ ¼ 1

2
þ
ðþÞ. We note that out of the four trajectories, three

do not contain the lowest spin 1=2 resonance. States are
absent for dynamical reasons. For example, in the case of
the Iη ¼ 3

2
− trajectory it is unlikely that QCD yields a spin

1=2− state with lower mass than theΔð1232Þ. Therefore the
isospin 3=2 spin 1=2−,Δð1620Þ, has to be associated with a
daughter trajectory. In the 1

2
− parent trajectory, the four-star

Nð1535Þ 1=2− resonance could be a candidate for the
lowest spin state, however, its position on the Chew-
Frautschi plot, where it aligns with the Nð1900Þ 3=2þ
and Nð2060Þ 5=2− states, makes it a better fit with the first
daughter trajectory. Finally, the one-star Δð1750Þ 1=2þ and
the four-star Δð1910Þ 1=2þ are most likely on a daughter,
since their masses are higher than Δð1700Þ 3=2−, which
appears on the parent trajectory. Phenomenologically, it is
observed that the leading Regge trajectories that differ only
by signature are (almost) degenerate, i.e., odd (τ ¼ −) and
even (τ ¼ þ) signatures have the same trajectory. For
subleading trajectories there is often not enough informa-
tion to disentangle both signatures. We use seven sets of
resonance poles extracted from the following analyses:

(i) CMB: Pole parameters from the Carnegie-Mellon-
Berkeley πN partial wave analysis of [30,31] as
quoted by the PDG [29];

(ii) JüBo: Pole parameters from [32] using the Jülich-
Bonn 2017 coupled-channel model. The resonance
spectrum is obtained from a combined analysis of η,
π and KΛ photoproduction off the proton together
with the reactions πN → πN, ηN, KΛ and KΣ;

(iii) BnGa: Pole parameters given in [33,34] from the
Bonn-Gatchina multichannel partial wave analysis
of πN elastic scattering data and pion and photo-
induced inelastic reactions;

1The symbols ℜ and ℑ stand for the real and imaginary parts,
respectively.

J. A. SILVA-CASTRO et al. PHYS. REV. D 99, 034003 (2019)

034003-2



TABLE II. Summary of pole positions Mp, Γp in MeV for Iη ¼ 1
2
− states. Notation as in Table I.

Name Nð1720Þ Nð1675Þ Nð1990Þ Nð2250Þ
Status **** **** ** ****
IηðτÞJ

P
p

1
2
−
ð−Þ3=2

þ 1
2
−
ðþÞ5=2

− 1
2
−
ð−Þ7=2

þ 1
2
−
ðþÞ9=2

−

CMB 1680(30), 120(40) 1660(10), 140(10) 1900(30), 260(60) 2150(50), 360(100)
JüBo 1689(4), 191(3) 1647(8), 135(9) 2152(12), 225(20) 1910(53), 243(73)
BnGa 1670(25), 430(100) 1655(4), 147(5) 1970(20), 250(20) 2195(45), 470(50)
SAID(SE) 1668(24), 303(58) 1661(1), 147(2.4) 2157(62), 261(104) 2283(10), 304(31)
SAID(ED) 1659(11), 303(19) 1657(3), 139(5) � � � 2224(5), 417(10)
KH80 1677(5), 184(9) 1654(2), 125(4) 2079(13), 509(23) 2157(17), 412(51)
KA84 1685(5), 178(9) 1656(1), 123(3) 2065(14), 526(9) 2187(7), 396(25)

TABLE I. Summary of pole positions Mp, Γp in MeV for Iη ¼ 1
2
þ states, where Mp ¼ ℜ½ ffiffiffiffiffispp � and Γp ¼ −2ℑ½ ffiffiffiffiffispp �. I stands for

isospin, η for naturality, Jp for spin, and P for parity. Naturality and parity are related by η ¼ τP, where τ is the signature. For baryons,
η ¼ þ1, natural parity, if P ¼ ð−1ÞJp−1=2, and η ¼ −1, unnatural parity, if P ¼ −ð−1ÞJp−1=2.
Name Nð939Þ Nð1520Þ Nð1680Þ Nð2190Þ Nð2220Þ
Status **** **** **** **** ****
IηðτÞJ

P
p

1
2
þ
ðþÞ1=2

þ 1
2
þ
ð−Þ3=2

− 1
2
þ
ðþÞ5=2

þ 1
2
þ
ð−Þ7=2

− 1
2
þ
ðþÞ9=2

þ

CMB 939(1), 0 1510(5), 114(10) 1667(5), 110(10) 2100(50), 400(160) 2160(80), 480(100)
JüBo 939(1), 0 1509(5), 098(3) 1666(4), 081(2) 2084(7), 281(6) 2207(89), 659(140)
BnGa 939(1), 0 1507(3), 111(5) 1676(6), 113(4) 2150(25), 325(25) 2150(35), 440(40)
SAID(SE) 939(1), 0 1512(2), 113(6) 1678(4), 113(3) 2132(24), 550(25) 2173(7), 445(21)
SAID(ED) 939(1), 0 1515(2), 109(4) 1674(3), 114(7) 2060(11), 521(16) 2177(4), 464(9)
KH80 939(1), 0 1506(2), 115(3) 1674(3), 129(4) � � � 2127(27), 380(29)
KA84 939(1), 0 1506(2), 116(4) 1672(3), 132(5) � � � 2139(6), 390(7)

TABLE III. Summary of pole positions Mp, Γp in MeV for Iη ¼ 3
2
þ states. Notation as in Table I.

Name Δð1700Þ Δð1905Þ Δð2200Þ Δð2300Þ
Status **** **** *** **
IηðτÞJ

P
p

3
2
þ
ð−Þ3=2

− 3
2
þ
ðþÞ5=2

þ 3
2
þ
ð−Þ7=2

− 3
2
þ
ðþÞ9=2

þ

CMB 1675(25), 220(40) 1830(40), 280(60) 2100(50), 340(80) 2370(80), 420(160)
JüBo 1667(28), 305(45) 1733(47), 435(264) 2290(132), 388(204) � � �
BnGa 1685(10), 300(15) 1800(6), 290(15) � � � � � �
SAID(SE) 1646(11), 203(17) 1831(7), 329(17) � � � � � �
SAID(ED) 1652(10), 248(28) 1814(5), 273(9) � � � � � �
KH80 1643(9), 217(18) 1752(5), 346(8) � � � � � �
KA84 1616(5), 280(9) 1790(5), 293(12) � � � � � �

TABLE IV. Summary of pole positions Mp, Γp in MeV for Iη ¼ 3
2
− states. Notation as in Table I.

Name Δð1232Þ Δð1930Þ Δð1950Þ � � � Δð2420Þ
Status **** *** **** � � � ****
IηðτÞJ

P
p

3
2
−
ð−Þ3=2

þ 3
2
−
ðþÞ5=2

− 3
2
−
ð−Þ7=2

þ 3
2
−
ðþÞ9=2

− 3
2
−
ð−Þ11=2

þ

CMB 1210(1), 100(2) 1890(50), 260(60) 1890(15), 260(40) � � � 2360(100), 420(100)
JüBo 1215(4), 97(2) 1663(43), 263(76) 1850(37), 259(61) 1783(86), 244(194) � � �
BnGa 1210.5(1.0), 99(2) � � � 1888(4), 245(8) � � � � � �
SAID(SE) 1211(0), 100(2) 1845(31), 174(40) 1888(3), 234(6) � � � � � �
SAID(ED) 1211(2), 98(3) 1969(23), 248(36) 1878(4), 227(6) 1955(24), 911(24) 2320(13), 442(23)
KH80 1211(2), 98(3) 1848(28), 321(24) 1877(3), 223(5) � � � 2454(15), 462(58)
KA84 1210(2), 100(2) 1844(36), 334(26) 1878(3), 246(7) � � � 2301(7), 533(17)
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(iv) SAID(SE): Pole parameters obtained in [35] from a
fit to the single-energy SAID-GW WI08 partial
waves of πN elastic scattering [41] using the
Laurentþ Pietarinen (LP) approach;

(v) SAID(ED): Poles extracted in [35] from the energy-
dependent SAID-GW WI08 partial waves of πN
elastic scattering [41] also using the LP approach;

(vi) KH80: Pole extracted in [36] from the Karlsruhe-
Helsinki KH80 [42] partial wave analysis of πN
elastic scattering employing the LP approach; and

(vii) KA84: Pole extracted in [36] from the Karlsruhe
KA84 [43,44] partial wave analysis of πN elastic
scattering employing the LP approach.

Other pole extractions are available in the literature. These
include, the speed plot extraction from πN → πN amplitudes
by Höhler [45]; the SAID pole parameters given in [35]
obtained from the SAID-GWWI08 partial wave analysis of
πN elastic scattering [41]; the Kent State University (KSU)
pole extraction in [46] using a multichannel parametrization

of πN scattering amplitudes; the Pittsburgh-Argonne
National Lab (P-ANL) pole extraction in [47]; the Giessen
group coupled-channel analysis of η production and photo-
production data on the proton [48]; the Argonne National
Lab-Osaka (ANL-O) amplitude analysis of πN → πN, ηN,
KΛ, KΣ and γN → πN, ηN, KΛ, KΣ data [49]; and the
Zagreb analysis in [50] based on the CMB coupled-
channel approach; Höhler, SAID, KSU, P-ANL, Giessen
and ANL-O do not provide uncertainties in their pole
extractions and the Zagreb group analysis only studies the
N� spectrum, hence, we choose not to include them in our
work. Also, we do not include superseded pole extractions
within the same reaction models.
In Fig. 1, we show the Chew-Frautschi plots (ℜ½sp�,

ℜ½J� ¼ Jp) for the N� and Δ� resonances, and Fig. 2
displays the (ℑ½sp�, ℜ½J� ¼ Jp) plots introduced in [6].
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FIG. 1. Chew-Frautschi plots for the leading N� and Δ� Regge
trajectories in Tables I–IV. Solid black (blue) curves are linear fits
to the displayed positive (negative) signature data points (see
Sec. II for details.) All the curves share the same slope as required
by MacDowell symmetry [51]. We do not show a fit for the 3

2
þ
ðþÞ

states because theΔ9=2− pole is unreliable as will be discussed in
Sec. IV B 4. In order to make the plots readable, the poles are
slightly displaced from the correct ℜ½J� ¼ Jp value.
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FIG. 2. (ℑ½sp�, ℜ½J� ¼ Jp) plots introduced in [6] for the
leading N� and Δ� Regge trajectories in Tables I–IV. Solid black
(blue) curves are square-root fits to the displayed positive
(negative) signature data points (see Sec. II for details.) We do
not show a fit for the 3

2
þ
ðþÞ states because the Δ9=2− pole is

unreliable as will be discussed in Sec. IV B 4. The different pole
sets are labeled as in Fig. 1. In order to make the plots readable,
the poles are slightly displaced from the correct ℜ½J� ¼ Jp value
as in Fig. 1. SAID(ED) Δ9=2− pole in the unnatural parity
trajectory has a very large ℑ½sp� value and it is not shown
in plot (b).
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These figures provide a qualitative description of the
spectrum. We note the spectrum exhibits the approximate
linear behavior in (ℜ½sp�, Jp) and the square-root-like
behavior in (ℑ½sp�, Jp). This was also observed in the
spectrum of the hyperons [6]. To highlight the linear
trend of the poles in Fig. 1 we show linear fits,
Jp ¼ aþ bℜ½sp�, to each 1

2
�
ð�Þ,

3
2
�
ð−Þ, and 3

2
−
ðþÞ Chew-

Frautschi plot with a common slope b as required by
MacDowell symmetry [51]. We do not show a fit for the
3
2
þ
ðþÞ states because the Δ9=2

− pole is unreliable as will be

discussed in Sec. IV B 4. To highlight the square-root
trend of the poles in the (ℑ½sp�, Jp) plots we show
square-root fits, Jp ¼ cþ d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ℑ½sp�

p
, to each 1

2
�
ð�Þ,

3
2
�
ð−Þ,

and 3
2
−
ðþÞ set of states in Fig. 2 with c and d parameters

unconstrained. We remark that these fits to (ℜ½sp�, Jp)
and (ℑ½sp�, Jp) plots were performed separately. Hence,
we do not provide further information on these naive fits
as they are just exploratory computations to remark the
linear and square-root trends of the poles in the plots. A
quantitative analysis of the Regge trajectories has to be
performed within a model fitting to the real and imagi-
nary parts of the poles simultaneously as it is done in the
analysis that follows. We defer the rest of the discussion
of these plots to Sec. IV, where we present the quanti-
tative analysis of the spectrum.

III. MODELS FOR THE PARENT REGGE
TRAJECTORIES

In what follows, the working hypothesis is that the
square-root-like behavior displayed in Fig. 2 is the leading
singularity of the trajectories as implied by unitarity [52].
This stems from the fact that the leading two-body decay
channels, i.e., those that account for most of the cross
section, give the imaginary part proportional to the relative
momentum q ∼ ffiffiffiffiffiffiffiffiffiffiffi

s − st
p

, where s is the two-body invariant
mass squared and st is the threshold. Contribution from
multi-body final states can effectively be absorbed into
model parameters. Near a Regge pole, partial wave
amplitudes are proportional to

tlðsÞ ∝
1

l − αðsÞ ; ð1Þ

where αðsÞ is the Regge trajectory and l is the total angular
momentum of the partial wave that matches the spin Jp of
the resonance. This can be compared to the Breit-Wigner
amplitude close to the sp pole under the approximation of
elastic two-body scattering,2

tlðsÞ ∝
g2

M2 − s − ig2ρðs; stÞ
; ð2Þ

where M is real, sometimes referred to as the Breit-Wigner
mass. Resonance decay is determined by g2, which can be
used to define coupling to open channels and ρðs; stÞ which
is the phase space factor. With the determination of ρðs; stÞ
that is analytical across the real axis for s > st one finds
poles of tlðsÞ located on the lower half s-plane that are
analytically connected to the physical region at sþ iϵ. How
deep a pole is in the complex plane depends on two factors,
the dynamics of QCD and the phase space. The phase space
dependence ρðs; stÞ is explicitly built in through unitarity
and QCD dynamics are hidden in the parameters, M and g.
At the pole sp, Eqs. (1) and (2) have to be equal; hence,

l − αðspÞ ¼
M2

g2
−
sp
g2

− iρðsp; stÞ ¼ 0: ð3Þ

This equation is used to relate the imaginary part of the
Regge trajectory to resonance decay parameters. Without
loss of generality, we can parametrize the Regge trajectory
as [6,53,54]

αðsÞ ¼ α0 þ α0sþ iγϕðs; stÞ; ð4Þ

where α0, α0, and γ are real constants, and ϕðs; stÞ contains
information about resonance decay. The slope α0 is often
related to the tension of the confining string in flux tube
models [26–28] and to the range of the strong interaction in
Veneziano models [55]. The square-root-like behavior in
Fig. 2 hints that ρðs; stÞ is the dominant component of
ϕðs; stÞ. As previously stated, the position of the pole in
the complex plane depends on the dynamics of QCD
and the phase space, so, both contribute to the functional
form of ϕðs; stÞ. As a first approximation, we can model
γϕðs; stÞ ¼ ρðs; stÞ, and fit the trajectory in Eq. (4) at the
poles s ¼ sp to ℜ½αðspÞ� ¼ ℜ½J� ¼ Jp and ℑ½αðspÞ� ¼
ℑ½J� ¼ ℑ½Jp� ¼ 0 obtaining α0, α0, γ and st. The parameter
α0 is dimensionless, the slope α0 has units of GeV−2, st acts
as an effective threshold that has units of GeV2. In this way,
ϕðs; stÞ has the phase space contribution to the pole
position explicitly build in, and any difference with the
actual functional form of the Regge trajectory has to be
due to additional QCD dynamics. The systematic uncer-
tainties of the model associated with the description of the
phase space factor far away from the threshold can be
studied by considering different models for ϕðs; stÞ. In
particular, we use

iϕ0ðs; stÞ ¼ 0; ð5aÞ

iϕIðs; stÞ ¼ i
ffiffiffiffiffiffiffiffiffiffiffi
s − st

p
; ð5bÞ

iϕIIðs; stÞ ¼ iβðs; stÞ þ 2iτðs; stÞ; ð5cÞ
2We note that both Eqs. (1) and (2) are written in the second

Riemann sheet of the complex s plane, where the resonant poles
in the amplitude appear.
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where

iβðs; stÞ ¼
s − st
π

Z
∞

st

τðs0; stÞ
s0 − st

ds0

s0 − s

¼ 2

π

s − stffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðst − sÞp arctan

ffiffiffiffiffiffiffiffiffiffiffi
s

st − s

r
ð6Þ

is the analytic continuation of the two-body phase space3

τðs; stÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − st=s

p
to the complex s plane. It follows

that, in Eq. (4), γ has units of GeV−1 for model I and is
dimensionless in model II. Model 0 is the customary linear
dependency that ignores the existence of the imaginary part
of the resonance poles. Although essential physics is
ignored in such model, we fit it to ℜ½sp� for completeness
and to provide a comparison to previous works. We note
that once the width of the resonance pole is taken into
account it is clear that a Regge trajectory cannot be linear.
Linear Regge trajectories can only happen for zero-width
resonances, e.g., resonances computed as bound states in a
constituent quark model, or the tower of states in the
Veneziano amplitude [56]. Models I and II do incorporate
such physics by adding an imaginary part to αðsÞ in a
simple way. Model I is a customary approach to add the
imaginary part to αðsÞ which has been used to account for
unitarity effects in Veneziano-type amplitudes [57–59].
Model II is the most physically motivated as it is guided
by the relation between Eqs. (1) and (2), βðs; stÞ is the
analytic continuation of the phase space, Chew-Mandelstam
dispersive approach [52], and ϕðs; stÞ is the analytic
continuation of βðs; stÞ to the second Riemann sheet, as
dictated by unitarity. However, we will compute the three
models for the sake of completeness and comparison
purposes.
Our hypothesis to interpret the nature of the resonances

in terms of the Regge trajectory is that a state that is located
on a linear trajectory in the Chew-Frautschi plot and a
square-root-like behavior in (ℑ½sp�, Jp) plot would be
mostly a compact 3q state candidate. Hence, most of the
width, i.e., the contribution to ϕðs; stÞ, would be due to the
phase space. This assessment can by strengthen by a more
quantitative analysis in which we fit the poles to the models
in Eq. (5). If the states are truly 3q states, the poles should
adhere nicely to our Regge trajectory models; i.e., phase
space dominates how deep the pole is in the complex plane
and there is little room for additional QCD dynamics. If the
resonance pole is not well described by our models, it is an
indication that additional QCD dynamics are important,
signaling that the state has significant physics beyond the
compact 3q picture. To summarize, the way we proceed in

the quantitative analysis is as follows: (i) We fit the poles in
a given trajectory to the models; (ii) on average the
description must be approximately correct because of the
linear and square-root-like behaviors; (iii) however, our
Regge trajectory model only accounts for the phase space
contribution, so it is incomplete; (iv) deviations from the
models are associated to the physics that our model lacks,
i.e., additional QCD dynamics, which we interpret as
physics that go beyond the 3q picture.

IV. RESULTS

A. Fits and error analysis

To determine the parameters α0, α0, γ, and st in Eq. (4)
for a given pole extraction, we use the least-squares method
by minimizing the distance squared d2 between the
trajectory αðsÞ evaluated at the complex pole position sp
and the angular momenta J,

d2 ¼
X
poles

f½ℜ½J� −ℜ½αðspÞ��2 þ ½ℑ½J� − ℑ½αðspÞ��2g;

with ℜ½J� ¼ Jp and ℑ½J� ¼ ℑ½Jp� ¼ 0 for the resonance
poles. The value of st should be compatible with its
interpretation as an effective threshold in the resonance
region. This is used as the criterion to select the physically
meaningful minimum if several local minima appear in the
fits. We estimate the errors in the parameters through the
bootstrap technique [60–62]. In doing so, we perform 104

fits to pseudodata generated according to the pole uncer-
tainties. The expected value of each parameter is computed
as the mean of the 104 samples and the uncertainty is given
by the standard deviation. This method is described in
detail in [6,63] and allows to propagate the uncertainties
from the poles to the parameters accounting for all the
correlations. The systematic errors associated with model
dependence in the amplitude analyses are not considered in
the pole extractions, hence, we take the differences among
models as an indication of such uncertainties. The fit results
are provided and discussed in Sec. IV B.

B. Regge trajectories

1. 1
2
+ Regge trajectory

In Regge analyses of the hadron spectrum, it is custom-
ary to consider as the Iη ¼ 1

2
þ parent trajectory the one

containing the states in Table I and higher spins if available.
This trajectory contains two nearly degenerate Regge
trajectories corresponding to odd and even signatures.
The degeneracy appears when the exchange forces are
weak and, then, both trajectories overlap [1]. This was the
case for bothΛ and Σ trajectories in [6], but it is not the case
for the 1

2
þ states as is apparent in Fig. 1(a), where the

degeneracy is broken and the signature τ ¼ þ (the nucleon
trajectory with Nð939Þ, Nð1680Þ, and Nð2220Þ states) and

3We assume elastic two-body scattering, and hence, all poles
are considered to be in the second Riemann sheet. That is also the
reason why we fit an effective threshold st instead of using the
actual physical thresholds.
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τ ¼ −ðNð1520Þ and Nð2190Þ states) trajectories have
different parameters. In particular, from Fig. 1(a), it is
apparent that α0 has to be different for each signature.
Hence, we treat both trajectories separately. We expect both
fits to share approximately the same slope parameter α0 [1]
and a different α0 that encodes information on the breaking
of the degeneracy, i.e., on the exchange forces.
The inspection of the natural parity poles in Figs. 1(a)

and 2(a) highlights the agreements and disagreements
among the pole extractions. All the extractions reasonably
agree for ℜ½sp� for all the states poles but either disagree or
have very large uncertainties for Nð2190Þ and Nð2220Þ
widths. We note how BnGa and SAID(SE) extractions of
Nð2190Þ separate from the expected straight line depicted
in Fig. 1(a). This is interesting because IηðτÞ ¼ 1

2
þ
ðþÞ and

1
2
þ
ð−Þ

trajectories are expected to have the same slope α0 [1], and
the position of Nð2190Þ for both extractions is at odds with
this expectation. Considering both Figs. 1(a) and 2(a), only
JüBo and CMB provide a Nð2190Þ extraction that con-
forms to the expected position of the pole within uncer-
tainties, although the CMB error is very large. For
Nð2220Þ, all the analyses coincide on ℜ½sp� but differ
wildly regarding the width.4

The comparison between our fitted Regge trajectories
and the resonances at the pole positions sp (αðsÞ vs Jp) are
provided by the consistency checks as described in [6].
Specifically, once we have the fit parameters, we can use
them to compute the value of the Regge trajectory at the
pole positions; hence, for a resonance with pole position sp
and spin Jp, we should recover ℜ½αðspÞ� ¼ ℜ½J� ¼ Jp and
ℑ½αðspÞ� ¼ ℑ½J� ¼ ℑ½Jp� ¼ 0. This provides a direct com-
parison of αðsÞ (both real and imaginary parts) to the poles,
and better assesses visually the quality of the fit by
comparing the fit to Jp at the poles. The ℑ½αðspÞ� ¼ 0

condition is particularly stringent. Moreover, the consis-
tency check plot constitutes the appropriate figure to
compare the fit results to the fitted poles. Consistency
checks for trajectories with only two poles do not provide
any information because they are overfitted (four exper-
imental points, two masses and two widths, fitted with four
parameters). Hence, we only compute the consistency
checks for trajectories with more than two poles. The
uncertainties in the poles and the parameters are propagated
to the calculation of αðsÞ.
Figure 3 shows the consistency checks for 1

2
þ
ðþÞ for CMB,

JüBo, BnGa, and SAID(ED) which provide a sharper
comparison. The consistency checks for SAID(SE),
KH80 and KA84 are redundant and we do not show them.
The 1

2
þ
ð−Þ consistency checks are not shown because they are

overfitted and do not provide any information. The 1
2
þ
ðþÞ

does provide insight, showing how the poles deviate from
the proposed model. If we ignore model 0, which misses
the resonant physics, the nondispersive model (I) provides,
on average, a better consistency check than the dispersive
one (II) for all the extractions. However, this better
description of Nð1680ÞJPp ¼ 5=2þ and Nð2220Þ9=2þ
states is achieved by spoiling the agreement with the
nucleon Nð939Þ1=2þ. These are clear indications that there
is tension between the states and our trajectory paramet-
rization. The Nð2220Þ has large uncertainties for all
the extractions and its weight on the determination of
the Regge trajectory is smaller than the nucleon and the
Nð1680Þ states, which have small errors. Besides, all the
extractions agree fairly well regarding the pole position of
the Nð1680Þ. Hence, there is a strong indication that the
approximation of γϕðs; stÞ ¼ ρðs; stÞ is not valid for the
Nð1680Þ, signaling a sizeable contribution from physics
beyond the compact 3q picture. We note that constituent
quark models have problems reproducing the mass of this
state and they usually overestimate it [17,19,20].
These differences are more apparent if we compare the

fits to the pole sets with the three models. We provide the fit
parameters in Tables V–VII. First, the value of st represents
an effective threshold for the phase space and its fitted value

1/2

5/2

9/2

CMB JuBo BnGa SAID(ED)

ℜ [α(sp)]

CMB JuBo BnGa SAID(ED)

0

0

0

ℑ [α(sp)]

FIG. 3. Consistency checks (see Sec. IVA) for IηðτÞ ¼ 1
2
þ
ðþÞ poles

from CMB, JüBo, BnGa, and SAID(ED) extractions. The left plot
shows ℜ½αðspÞ� (see Table I and Sec. IV B 1 for their definition),
computed at the poles of the resonances (sp) for models 0 (black),
I (red) and II (blue). The result should be equal to the
corresponding angular momentum ℜ½J� ¼ Jp (vertical axis)
for a given resonance. The right plots depict the same calculation
for ℑ½αðspÞ�, which should be equal to ℑ½J� ¼ ℑ½Jp� ¼ 0. In this
latter case, we do not show model 0 because ℑ½αðspÞ� ¼ 0 by
definition. The yellow (green) bands represent up to 0.1 (from 0.1
to 0.3) deviation from the label in the vertical axis. The white
band represents from 0.3 to 0.5 deviation.

4We remind the reader that the deeper in the complex plane the
pole is, the larger the systematic uncertainties associated to the
models and to the analytic continuation into the unphysical
Riemann sheets.
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should be consistent with such interpretation, i.e.,
st ∼ ðmπ þmNÞ2 ≃ 1.17 GeV2. This is used as a criterion
to select the physically meaningful minimum if several
local minima appear in the fits, and to partly assess the
quality of the Regge parameters. For the 1

2
þ
ðþÞ trajectory, all

st in Table VII are reasonable for model II (between 0.92
and 1.3 GeV2) while they are larger for model I (between
1.8 and 2.65 GeV2.) This asserts the better physical
motivation of model II compared to model I. Therefore,
we consider the parameters provided by model II as more
reliable. For 1

2
þ
ð−Þ, we only have two states to estimate the

trajectory parameters; however, it is enough to test, together
with the information on 1

2
þ
ðþÞ, how well the states conform to

the γϕðs; stÞ ¼ ρðs; stÞ hypothesis. Both models provide a
large value for st ranging from 2.17 to 2.9; hence, the slope
extraction is not as reliable as for the 1

2
þ
ðþÞ trajectory.

The slope parameter α0 links low-lying resonances and
high-energy scattering physics, e.g., nucleon-antinucleon
annihilation, as it drives the Reggeon exchange amplitude
under the single pole exchange approximation [1]. Its value
is usually taken from linear fits to the Chew-Frautschi
plot using model 0 or estimated from proton-antiproton
scattering as α0 ≃ 0.98 GeV−2 [37]. For 1

2
þ
ðþÞ, we find that

the α0 extraction is very consistent across the pole extrac-
tions. Restricting ourselves to model II, we can estimate the
slope as

α01
2
þ
ðþÞ

¼ 0.99� 0.12 GeV−2;

where the best value and the uncertainty have been
computed averaging through a bootstrap the seven α0 in
Table VI. These values are not very different from the ones
obtained with model 0, α0ð0Þ ≃ 1 GeV−2, and neglecting the
widths does not have a large impact in α0. These results are
also in agreement with what is expected from algebraic
[17,18] (α0 ¼ 1.07� 0.02 GeV−2) and relativistic [20]
(α0 ≃ 1 GeV−2) quark models, despite the fact that they
miss dynamics [64] that are present in the actual Regge
trajectories. The 1

2
� trajectories should have the same slope

[1]; hence, once we have a robust determination from the
1
2
þ
ðþÞ, we can use it to benchmark and assess the parameters

extracted from other trajectories.
Regarding the 1

2
þ
ð−Þ slope, all pole extractions agree for

model I and are consistent with 1
2
þ
ðþÞ. However, we find

large differences for model II. The only extractions that
provide a consistent picture throughout the three models
of the trajectory are BnGa and JüBo; i.e.,

ffiffiffiffi
st

p ≃
1.45–1.55 GeV is closer to the expected value of

ffiffiffiffi
st

p ∼
mπ þmp ≃ 1.08 GeV than the other pole sets and α0 ∼
1 GeV−2 close to the extracted value from 1

2
þ
ðþÞ trajectory,

although JüBo has model II slope slightly larger than
expected. TheNð1520Þ state is very well established and all
the pole extractions agree. Hence, a better knowledge of
this trajectory and an assessment on the nature of its states
based on Regge phenomenology requires a better deter-
mination of the Nð2190Þ state and the N11=2− state.

TABLE V. Parameter α0 obtained for 1
2
þ trajectories and

models 0, I, and II.

IηðτÞ Pole set αð0Þ0 αðIÞ0 αðIIÞ0

1
2
þ
ðþÞ CMB −0.4ð1Þ 0.3(2) 0.3(3)

JüBo −0.3ð1Þ 0.6(1) 0.9(3)
BnGa −0.46ð5Þ 0.20(7) 0.1(2)
SAID(SE) −0.42ð1Þ 0.25(3) 0.22(6)
SAID(ED) −0.41ð1Þ 0.29(2) 0.30(3)
KH80 −0.50ð4Þ −0.1ð2Þ −0.2ð1Þ
KA84 −0.48ð1Þ 0.05(3) −0.09ð3Þ

1
2
þ
ð−Þ CMB −0.6ð1Þ −0.8ð3Þ −3.5ð7Þ

JüBo −0.71ð3Þ −0.79ð4Þ −1.53ð6Þ
BnGa −0.44ð7Þ −0.53ð7Þ −1.5ð5Þ
SAID(SE) −0.53ð7Þ −0.9ð1Þ −4.6ð3Þ
SAID(ED) −0.86ð4Þ −1.25ð6Þ −5.54ð3Þ

TABLE VI. Parameter α0 obtained for 1
2
þ trajectories.

IηðτÞ Pole set α0ð0Þ α0ðIÞ α0ðIIÞ

1
2
þ
ðþÞ CMB 1.06(7) 0.85(6) 0.9(1)

JüBo 1.00(8) 0.72(6) 0.8(1)
BnGa 1.07(3) 0.87(3) 1.04(6)
SAID(SE) 1.04(1) 0.85(1) 0.99(1)
SAID(ED) 1.036(4) 0.84(1) 0.97(1)%
KH80 1.10(2) 0.98(6) 1.14(5)
KA84 1.08(1) 0.93(1) 1.10(1)

1
2
þ
ð−Þ CMB 0.94(7) 0.95(9) 1.6(2)

JüBo 0.97(1) 0.98(1) 1.23(2)
BnGa 0.85(3) 0.86(3) 1.15(6)
SAID(SE) 0.89(3) 0.92(3) 2.0(1)
SAID(ED) 1.03(2) 1.06(2) 2.27(2)

TABLE VII. Parameters γ and st obtained for 1
2
þ trajectories.

IηðτÞ Pole set γðIÞ γðIIÞ sðIÞt sðIIÞt

1
2
þ
ðþÞ CMB 0.49(7) 0.66(7) 2.4(2) 1.04(9)

JüBo 0.62(8) 0.67(5) 2.65(5) 1.3(1)
BnGa 0.46(3) 0.65(4) 2.4(1) 0.96(3)
SAID(SE) 0.46(2) 0.64(2) 2.44(3) 0.98(1)
SAID(ED) 0.48(1) 0.65(1) 2.46(3) 1.00(1)
KH80 0.39(3) 0.65(3) 1.8(4) 0.91(1)
KA84 0.41(1) 0.64(1) 2.06(7) 0.92(1)

1
2
þ
ð−Þ CMB 0.5(2) 1.9(5) 2.3(4) 2.9(6)

JüBo 0.39(1) 0.95(3) 2.17(2) 2.34(1)
BnGa 0.38(3) 1.0(1) 2.17(3) 2.42(4)
SAID(SE) 0.72(5) 3.0(2) 2.39(2) 2.79(2)
SAID(ED) 0.82(3) 3.15(5) 2.40(1) 2.78(3)
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As expected, α0 is different for the two signatures
(Table V). Considering 1

2
þ
ðþÞ, the values of α0 are very

similar for models I and II across the different pole sets and
different from model 0. Here, we appreciate the impact in
the trajectory parameter extraction due to the inclusion of
the resonant nature of the states. However, the values of α0
for 1

2
þ
ð−Þ change a lot from model to model and from pole

extraction to pole extraction. This is mostly due to the
discrepancies among models in the extraction of the width
of Nð2190Þ. In Table VIII, we provide the difference
Δα0 ¼ α0ðτ ¼ þÞ − α0ðτ ¼ −Þ, for each model and pole
extraction as a way to quantify the degeneracy breaking.
The fact that each amplitude analysis provides a different
value for Δα0 shows that the strength of the exchange
forces are different among them. These forces are related
to the left-hand cut of the amplitudes and are not well
known. Hence, the range of values for Δα0 quantifies the
magnitude of the uncertainties associated to this particu-
lar model dependency. Inspecting Table VIII, it is
noticeable that Δα0 for BnGa and model 0 is negative.
This is related to the difference in the extraction of the
slope parameter α0 (1.07(3) and 0.85(3) in Table VI).
However, if we introduce the widths in the analysis,
Δα0 becomes positive [as expected from Fig. 1(a)] and
the slopes become compatible within errors (0.87(3) and
0.86(3) for model I and 1.04(6) and 1.15(6) for model II).
This again shows the importance of including the width
in the analysis, and, moreover, how its inclusion leads to
a better and more consistent estimation of both α0 and
the slope parameter α0. Our best estimation of α0, using
the same technique as for α0 and model II, is

α0;1
2
þ
ðþÞ

¼ 0.21� 0.38:

The two remaining parameters are

γ1
2
þ
ðþÞ

¼ 0.651� 0.040; st;1
2
þ
ðþÞ

¼ 1.02� 0.13 GeV2;

with the effective threshold close to the expected value
of ðmπ þmpÞ2 ≃ 1.17 GeV2.

2. 1
2
− Regge trajectory

In Table II, we provide the lowest-lying states for each
spin Jp compatible with the 1

2
− Regge trajectory except for

the Nð1535Þ (JPp ¼ 1=2−) which belongs to a daughter
trajectory [1]. As for 1

2
þ trajectory, we have two nearly

degenerate trajectories with opposite signatures. However,
the (ℑ½sp�, Jp) plot in Fig. 2(a) provides conflicting
information about the Nð1720Þ3=2þ state. The large
widths obtained by BnGa, SAID(SE) and SAID(ED),
Γp ∼ 300–430 MeV, would place this state in the daughter
trajectory. However, CMB is compatible with Nð1720Þ
(Γp ¼ 120 MeV) belonging to the parent trajectory, and
JüBo, KH80, and KA84 (Γp ∼ 185 MeV) are in between
both possibilities. If we look into the other pole extractions
that we do not consider in our analysis, we see that SAID
obtains 334 MeV [35], similar to BnGa, SAID(SE) and
SAID(ED). Other pole sets are closer to the JüBo, KH80
and KA84 extractions, e.g., Höhler 187 [45], KSU 175 [46],
and Zagreb 233 MeV [50]; while others obtain smaller
widths compatible with the CMB result, e.g., P-ANL 94
[47], Giessen 118 [48], and ANL-O 70 MeV [49]. We note
that the discrepancies among pole extractions, together with
constituent quark models predicting several 3=2þ states in
the Nð1720Þ energy range [16,17,19,20], make it possible
that the different amplitude analyses are reporting not just
one resonant state but an effective pole that accounts for a
more complicated picture. Moreover, the recent ANL-O
pole extraction finds two states with masses 1703 and
1763 MeV and widths 70 and 159 MeV, respectively
[49]. Further research on this energy range is necessary to
establishmass andwidth of the state(s) with precision before
discussing its (their) nature. In what follows, we include
Nð1720Þ in our calculations as a member of the parent 1

2
−
ð−Þ

trajectory.
Contrary to 1

2
þ resonances, 1

2
− states that belong to the

leading Regge trajectory are not that well known, what
predates any conclusion on the internal structure of the
states that we can derive from fits. At this stage, Regge
phenomenology can be used more effectively as a guide to
improve amplitude analyses and pole extraction than to
elucidate the nature of the resonances.
Figures 1 and 2 make apparent how different are the

poles from one extraction to another. There is consensus
only on the Nð1675Þ5=2− state. This is a direct challenge to
the four-star status of Nð1720Þ and Nð2250Þ resonances in
the PDG [29]. We fit two trajectories 1

2
−
ðþÞ (Nð1675Þ and

Nð2250Þ states) and 1
2
−
ð−Þ (Nð1720Þ and Nð1990Þ states).

The obtained fit parameters are provided in Tables IX–XI.
For the 1

2
−
ðþÞ, none of the pole extractions provides a good

result for st. Besides, MacDowell symmetry [1,51] imposes
that the slopes for 1

2
þ
ðþÞ and

1
2
−
ð−Þ (

1
2
þ
ð−Þ and

1
2
−
ðþÞ) should be

equal. Hence, we should obtain α0 ∼ 1 GeV−2 to agree with
the results in Sec. IV B 1, a condition only SAID(SE)

TABLE VIII. Δðα0Þ≡ α0ðτ ¼ þÞ − α0ðτ ¼ −Þ for the 1
2
þ tra-

jectories and the three models. Uncertainties obtained adding
errors in quadrature.

Pole set Model 0 Model I Model II

CMB 0.2(1) 1.1(4) 3.8(8)
JüBo 0.4(1) 1.4(1) 2.4(3)
BnGa −0.02ð9Þ 0.7(1) 1.6(5)
SAID(SE) 0.11(7) 1.2(1) 4.8(3)
SAID(ED) 0.45(4) 1.54(6) 5.84(7)
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fulfills for the three models, despite the fact that its st ¼
2.7 GeV2 is larger than expected. Regarding negative sig-
nature, onlyBnGa andSAID(ED) are close to st ∼ 1.2 GeV2.
If we also consider the expected slope, the only pole

extraction that provides reasonable parameters is SAID
(ED). Finally, JüBo provides a higher st ¼ 2.3 and a slightly
large but reasonable slope. We do not provide plots with the
consistency check as both trajectories are overfitted.
In summary, none of the pole sets provides a convincing

picture of the 1
2
− trajectory and there is a reasonable

possibility that Nð1720Þ actually belongs to the parent
trajectory. This state is a doublet partner of the Nð1680Þ,
which we identified in Sec. IV B 1 as a state with physics
beyond the compact 3q picture. This makes Nð1720Þ a
prime candidate to look for additional dynamics, and
explains why it might be displaced from the expected
pattern and can be missidentified as a member of a daughter
trajectory. This state also shows how the inclusion of the
width and the patterns in the (ℑ½sp�, Jp) allows to better
identify if a state is in the leading trajectory or in a
subleading one. Again, a better determination of this state
would allow further investigation on its nature.

3. 3
2
+ Regge trajectory

This is the least known parent trajectory, with two well
established states–Δð1700Þ and Δð1905Þ–and only CMB
and JüBo reporting additional resonances. Hence, not much
information can be obtained from this trajectory.
Comparing all the extractions for Δð1700Þ and Δð1905Þ
we see in Figs. 1(b) and 2(b) that ℜ½sp� is reasonably
established for both but the width presents large uncer-
tainties. If we consider the CMB and JüBo 7=2− state and
CMB 9=2þ in Fig. 1(b) a degeneracy breaking is hinted.
Hence, we first fit the 3

2
þ trajectory without considering

the degeneracy breaking for all the pole extractions and we
also fit 3

2
þ
ðþÞ for JüBo and 3

2
þ
ð�Þ for CMB. We provide the

parameters in Tables XII–XIV. Because we assume degen-
eracy in 3

2
þ fits, the α0 parameter provides no information.

Also, the value of st is highly correlated with α0, so it is not
possible to use its value as a way to assess the quality of the
extracted parameters. It is clear that degeneracy is a bad
approximation to obtain the Regge parameters. Hence, we
do not provide consistency checks for this trajectory as they

TABLE IX. Parameter α0 obtained for 1
2
− trajectories.

IηðτÞ Pole set αð0Þ0 αðIÞ0 αðIIÞ0

1
2
−
ðþÞ CMB −0.4ð3Þ −0.7ð3Þ −3ð2Þ

JüBo −4ð1Þ −4ð1Þ −7ð3Þ
BnGa −0.1ð2Þ −0.5ð2Þ −6ð1Þ
SAID(SE) 0.25(3) 0.16(4) −0.5ð2Þ
SAID(ED) 0.01(3) −0.21ð3Þ −2.3ð1Þ
KH80 −0.4ð1Þ −0.6ð1Þ −4ð1Þ
KA84 −0.19ð3Þ −0.41ð5Þ −3.0ð5Þ

1
2
−
ð−Þ CMB −6ð1Þ −6ð2Þ −9ð2Þ

JüBo −1.7ð1Þ −1.8ð1Þ −2.1ð1Þ
BnGa −3.6ð5Þ −3.0ð6Þ −3.0ð6Þ
SAID(SE) −1.5ð4Þ −1.5ð4Þ −0.38ð3Þ
KH80 −2.2ð1Þ −2.9ð2Þ −10.2ð4Þ
KA84 −2.5ð1Þ −3.2ð2Þ −11.2ð4Þ

TABLE X. Parameter α0 obtained for 1
2
− trajectories.

IηðτÞ Pole set α0ð0Þ α0ðIÞ α0ðIIÞ

1
2
−
ðþÞ CMB 1.1(1) 1.1(1) 1.8(5)

JüBo 2.3(5) 2.3(5) 3(1)
BnGa 0.97(7) 0.99(7) 2.1(2)
SAID(SE) 0.81(1) 0.82(1) 1.03(4)
SAID(ED) 0.91(1) 0.93(1) 1.46(2)
KH80 1.04(3) 1.07(4) 1.8(2)
KA84 0.98(1) 0.99(1) 1.6(1)

1
2
−
ð−Þ CMB 2.6(4) 2.6(4) 3.4(5)

JüBo 1.13(3) 1.13(3) 1.28(4)
BnGa 1.8(2) 1.6(2) 1.9(2)
SAID(SE) 1.1(1) 1.1(1) 1.18(1)
KH80 1.32(4) 1.37(4) 3.2(1)
KA84 1.40(5) 1.50(5) 3.5(1)

TABLE XI. Parameters γ and st obtained for 1
2
− trajectories.

IηðτÞ Pole set γðIÞ γðIIÞ sðIÞt sðIIÞt

1
2
−
ðþÞ CMB 0.6(2) 3(1) 2.6(2) 3.0(3)

JüBo 1.0(4) 2(1) 2.2(5) 2.5(4)
BnGa 0.70(9) 3.2(4) 2.73(4) 3.4(1)
SAID(SE) 0.34(3) 0.9(1) 2.44(7) 2.7(1)
SAID(ED) 0.56(1) 1.84(5) 2.69(2) 3.07(2)
KH80 0.67(8) 1.14(5) 2.72(4) 3.1(1)
KA84 0.59(3) 1.8(2) 2.71(2) 3.0(1)

1
2
−
ð−Þ CMB 1.4(5) 3(1) 2.6(4) 2.7(3)

JüBo 0.31(4) 0.8(1) 1.3(4) 2.3(1)
BnGa 0.6(1) 1.3(1) 1.02(4) 1.1(1)
SAID(SE) 0.3(1) 0.63(2) 0.8(1) 1.52(1)
KH80 1.2(1) 5.0(2) 2.84(3) 3.31(3)
KA84 1.3(1) 5.5(2) 2.92(2) 3.31(2)

TABLE XII. Parameter α0 obtained for 3
2
þ trajectory.

IηðτÞ Pole set αð0Þ0 αðIÞ0 αðIIÞ0

3
2
þ CMB −1.2ð4Þ −1.3ð4Þ −1.6ð6Þ

JüBo −1.3ð2Þ −1.0ð2Þ −1.0ð3Þ
BnGa −5.7ð6Þ −5.7ð6Þ −6.0ð8Þ
SAID(SE) −2.7ð3Þ −3.2ð3Þ −7ð1Þ
SAID(ED) −3.4ð3Þ −3.5ð3Þ −4.5ð6Þ
KH80 −5.9ð6Þ −7.2ð8Þ −22.7ð2Þ
KA84 −2.9ð2Þ −3.0ð2Þ −3.5ð1Þ

3
2
þ
ðþÞ CMB −0.5ð5Þ −0.5ð4Þ −1.2ð6Þ

3
2
þ
ð−Þ CMB −2.1ð4Þ −2.2ð5Þ −4ð1Þ

Jübo 1.0(7) −1.2ð6Þ −1.8ð9Þ
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do not provide insight. We note that CMB and JüBo
provide a reasonable slope α0 ≃ 1 GeV−2. JüBo (CMB)
provides a consistent slope parameter for 3

2
−
ð−Þ (

3
2
−
ðþÞ) once

degeneracy breaking is considered with α0 ≃ 1 GeV−2.
However, CMB provides a very large slope for 3

2
−
ð−Þ. The

overall picture, makes the JüBo extraction of 3
2
þ the most

consistent one, although with very large error bars.

4. 3
2
− Regge trajectory

In this trajectory, there are three four-star resonances,
namely Δð1232Þ, Δð1950Þ, and Δð2420Þ, all of them with
even signature. The first two are obtained by all the pole
extractions and agree on both mass and width. The higher
mass state is found by CMB, SAID(ED), KH80, and
KA84 analyses. SAID(ED) and KA84 agree on ℜ½sp�; see
Fig. 1(b), while KH80 is at odds with their result. If we
look into ℑ½sp�, Fig. 2(b), SAID(ED) and KH80 disagree,
while KA84 extraction overlaps both of them due to its
large uncertainty. The CMB extraction of this pole has
large uncertainties too and agrees with the other three pole
sets within errors.
We perform fits to the odd and even signatures. The fit

parameters are reported in Tables XV–XVII. The param-
eters for 3

2
−
ðþÞ are completely at odds with the Regge

expectation and the obtained st are not physically sensible,
i.e., st ≫ ðmp þmπÞ2. The reasons are obvious if we
inspect Fig. 1(b), the position of the 9=2− pole obtained
by JüBo and SAID(ED) has a very low ℜ½sp� value given
the position of Δð1930Þ. Also, in the case of SAID(ED),
ℑ½sp� is too large. Hence, the position of this pole is
completely unreliable, both in mass and width, as the large
uncertainties in the JüBo width hint and no further con-
clusions can be derived.
Regarding the 3

2
−
ð−Þ (the Δ trajectory), the effective

threshold is at odds with the expected value only for
model I in SAID(ED) and KA84 poles. For the rest of pole
sets and for model II, we obtain reasonable values. The
slopes are close to unity as expected and only the α0 value

TABLE XIII. Parameter α0 obtained for 3
2
þ trajectory.

IηðτÞ Pole set α0ð0Þ α0ðIÞ α0ðIIÞ

3
2
þ CMB 1.0(1) 1.0(1) 1.2(2)

JüBo 1.0(1) 1.01(4) 1.0(1)
BnGa 2.5(2) 2.5(2) 2.7(3)
SAID(SE) 1.6(1) 1.6(1) 1.38(8)
SAID(ED) 1.8(1) 1.8(1) 2.2(2)
KH80 2.7(2) 2.9(2) 7.6(1)
KA84 1.7(1) 1.7(1) 2.00(2)

3
2
þ
ðþÞ CMB 0.9(1) 0.9(1) 1.1(2)

3
2
þ
ð−Þ CMB 1.3(1) 1.3(1) 1.9(4)

Jübo 0.9(2) 0.9(2) 1.1(3)

TABLE XIV. Parameters γ and st obtained for 3
2
þ trajectory.

IηðτÞ Pole set γðIÞ γðIIÞ sðIÞt sðIIÞt

3
2
þ CMB 0.5(1) 1.2(3) 2.0(6) 2.3(4)

JüBo 0.5(2) 1.1(3) 2.0(2) 2.5(4)
BnGa 0.9(1) 1.8(3) 0.9(2) 1.4(5)
SAID(SE) 1.0(1) 3.0(5) 2.5(1) 2.8(1)
SAID(ED) 0.7(1) 1.6(3) 1.3(7) 2.1(4)
KH80 2.4(3) 9.4(1) 2.7(1) 2.94(2)
KA84 0.6(1) 1.4(1) 0.8(5) 1.8(2)

3
2
þ
ðþÞ CMB 0.4(1) 1.3(4) 1.7(5) 2.7(4)

3
2
þ
ð−Þ CMB 0.6(2) 2.0(1) 1.9(6) 2.7(3)

Jübo 0.6(3) 1.3(6) 2.5(1) 2.5(3)

TABLE XV. Parameter α0 obtained for 3
2
− trajectories.

IηðτÞ Pole set αð0Þ0 αðIÞ0 αðIIÞ0

3
2
−
ðþÞ JüBo −8ð8Þ −11ð10Þ −9ð12Þ

SAID(ED) 13(9) −75ð1Þ 34.3(8)
3
2
−
ð−Þ CMB 0.1(2) −0.1ð4Þ −0.4ð5Þ

JüBo −0.02ð8Þ −0.1ð1Þ −1.1ð6Þ
BnGa 0.10(1) 0.05(1) −0.45ð4Þ
SAID(SE) 0.10(1) 0.06(1) −0.39ð3Þ
SAID(ED) −0.03ð3Þ −0.9ð3Þ −0.43ð5Þ
KH80 0.28(3) 0.25(3) 0.13(4)
KA84 −0.07ð1Þ −2.1ð3Þ −0.51ð3Þ

TABLE XVI. Parameter α0 obtained for 3
2
− trajectories.

IηðτÞ Pole set α0ð0Þ α0ðIÞ α0ðIIÞ

3
2
−
ðþÞ JüBo 4(3) 4(3) 5(4)

SAID(ED) −3ð2Þ 8.0(2) −4.1ð3Þ
3
2
−
ð−Þ CMB 0.97(8) 1.0(1) 1.2(2)

JüBo 1.03(5) 1.04(5) 1.4(2)
BnGa 0.95(1) 0.95(1) 1.19(1)
SAID(SE) 0.953(4) 0.958(4) 1.17(1)
SAID(ED) 1.02(1) 1.18(5) 1.23(2)
KH80 0.87(1) 0.87(1) 1.00(2)
KA84 1.04(1) 1.36(5) 1.28(1)

TABLE XVII. Parameters γ and st obtained for 3
2
− trajectory.

IηðτÞ Pole set γðIÞ γðIIÞ sðIÞt sðIIÞt

3
2
−
ðþÞ JüBo 4(4) 4(5) 3(3) 4(5)

SAID(ED) 28.(2) −8ð1Þ 6.6(1) 10(2)
3
2
−
ð−Þ CMB 0.5(1) 0.9(2) 1.6(3) 1.5(1)

JüBo 0.35(7) 0.9(3) 1.34(9) 1.7(2)
BnGa 0.29(1) 0.67(2) 1.34(1) 1.54(1)
SAID(SE) 0.28(1) 0.63(2) 1.32(1) 1.52(1)
SAID(ED) 0.70(9) 0.98(3) 2.8(3) 1.49(1)
KH80 0.39(3) 0.80(6) 1.39(2) 1.40(1)
KA84 1.2(1) 1.16(2) 3.5(2) 1.48(1)
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shows a large variation among models and pole sets. We
can compare our Regge parameters to those used in fits to
high energy proton-antiproton annihilation, where the Δ
Regge trajectory αΔðsÞ ¼ −0.37þ 0.98s (s in GeV2) is
one of the main contributions [37]. We note that the slope is
close to unity and that the α0 parameter agrees with the one
we obtain for 3

2
−
ð−Þ using model II. Hence, model II provides

the result compatible with the high energy information and
our most reliable determination of the parameters.
Consequently, as we did in Sec. IV B 1, we can estimate
α0 from model II values in Table XVI as

α03
2
−
ð−Þ

¼ 1.21� 0.15 GeV2:

We note that this slope is compatible within errors with the
one obtained from the 1

2
þ
ðþÞ trajectory in Sec. IV B 1. The

remaining parameters are

α0;3
2
−
ð−Þ

¼ −0.45� 0.44;

γ3
2
−
ð−Þ

¼ 0.86� 0.22;

st;3
2
þ
ð−Þ

¼ 1.52� 0.12 GeV2;

with the effective threshold slightly above the expected
value of ðmπ þmpÞ2 ≃ 1.17 GeV2.
Figures 1(b) and 2(b) show a clear linear and square-

root-like pattern for the 3
2
−
ð−Þ trajectory hinting that these

states are compact 3q structures. The consistency check in
Fig. 4 provides a sharper image. The deviations are clear
and only CMB provides an approximate agreement
between theory and data, mostly due to the large uncer-
tainties. Considering that CMB overlaps with the pole

extractions by other analyses, its deviation from the
trajectory models in Eq. (5) signals the effects of beyond
compact 3q physics, even for the well-studied Δð1232Þ
state. The 3

2
−
ð−Þ poles are known well enough to be sensitive

to these beyond compact 3q effects.

V. SUMMARY AND CONCLUSIONS

We have studied the structure of the N� and Δ� spectra
from the perspective of Regge and complex angular
momentum theory following the work done for the strange
baryon sector in [6]. We have considered seven pole
extractions [30–36]. In our analysis, we have taken into
account the fact that poles are complex quantities, and we
go beyond the standard studies that focus only in the Chew-
Frautschi plot (ℜ½sp�, Jp) and linear trajectory fits to said
plot. In doing so, we also study the (ℑ½sp�, Jp) plots
introduced in [6]. We find many discrepancies among the
pole extractions, in particular for the widths, but a clear
pattern, similar to the one in the strange sector, appears
where the Chew-Frautschi plots follow the well-known
approximate linear behavior, while the (ℑ½sp�, Jp) plots
show a square-root-like behavior.
Our working hypothesis has been that the square-root-

like behavior appreciated in Fig. 2 is due to the con-
tribution of the phase space to the scattering amplitude
[52], which is proportional to the momentum q ∼ ffiffiffiffiffiffiffiffiffiffiffi

s − st
p

.
The phase space is the main contribution to how deep in
the complex plane the poles are. Major deviations from
that pattern would signal an important component of
beyond compact 3q physics, i.e., additional QCD dynam-
ics. Under this hypothesis, a state that presents a linear
trajectory in the Chew-Frautschi plot and a square-root-
like behavior would be mostly a compact 3q state.
Besides the qualitative analysis of the plots, we performed
a quantitative one, modeling the Regge trajectories, fitting
the poles and cross checking the consistency of the
results. The results support the qualitative conclusions
but also signal sizable physics beyond the compact 3q
picture for the Nð1680Þ, the Nð1720Þ and some of the
members of the 3

2
−
ð−Þ trajectory. The last poles are known

well enough that our analysis is sensitive to beyond
compact 3q effects.
We find that exchange degeneracy is very clearly broken

in the nonstrange sector, contrary to the strange sector. This
degeneracy breaking shows the importance of exchange
forces in the determination of the low-lying nonstrange
baryon spectrum. We also find that the 1

2
− and 3

2
þ trajecto-

ries are poorly known and Regge phenomenology cannot
provide insight into the internal structure of the baryons.
However, Regge phenomenology serves as a guide for
resonance searches. Particularly, as a way to explore if the
fits to the experimental data are improved by including
resonances close to the expected positions in both Chew-
Frautschi and (ℑ½sp�, Jp) plots.

3/2

7/2

11/2

CMB SAID(ED) KH80 KA84

ℜ [α(sp)]

CMB SAID(ED) KH80 KA84

0

0

0

ℑ [α(sp)]

FIG. 4. Consistency checks for 3
2
−
ð−Þ poles from CMB, SAID

(ED), KH80 and KA84 extractions. Notation as in Fig. 3. See
Sec. IV B 4 for trajectory definition.
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The parameters of the 1
2
þ
ðþÞ (nucleon) and

3
2
−
ð−Þ (Δ) Regge

trajectories can be well established from the poles. We
estimate α0 ¼ 0.99� 0.12 GeV−2 for the nucleon trajec-
tory and α0 ¼ 1.21� 0.15 GeV−2 for the Δ. We note that
both slopes are compatible within errors. This range is
consistent with α0 obtained from fits to the Chew-Frautschi
plots, with what is predicted by constituent quark models
and with fits to high energy proton-antiproton annihilation.
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