
 

Quark-hadron continuity under rotation: Vortex continuity or boojum?
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Quark-hadron continuity was proposed as a crossover between hadronic matter and quark matter without
a phase transition, based on the matching of the symmetries and excitations in both phases. In the limit of a
light strange-quark mass, it connects hyperon matter and the color-flavor-locked (CFL) phase exhibiting
color superconductivity. Recently, it was proposed that this conjecture could be generalized in the presence
of superfluid vortices penetrating both phases [arXiv:1803.05115], and it was suggested that one hadronic
superfluid vortex in hyperon matter could be connected to one non-Abelian vortex (color magnetic flux
tube) in the CFL phase. Here, we argue that their proposal is consistent only at large distances; instead, we
show that three hadronic superfluid vortices must combine with three non-Abelian vortices with different
colors with the total color magnetic fluxes canceled out, where the junction is called a colorful boojum. We
rigorously prove this in both a macroscopic theory based on the Ginzburg-Landau description in which
symmetry and excitations match (including vortex cores), and a microscopic theory in which the
Aharonov-Bohm phases of quarks around vortices match.

DOI: 10.1103/PhysRevD.99.034001

I. INTRODUCTION

The presence or absence of phase transitions is the most
important issue to understand phases of matter. In the last
few decades, a lot of effort was made to understand the
phase structure of matter at high density and/or temperature
[1]. In particular, the region of high density and low
temperature is relevant for cores of compact stars such
as neutron stars, in which nuclear matter and quark matter
are present. The superfluidity of nucleon-nucleon pairing is
expected in nuclear matter, and nuclear matter consisting of
hyperons—nuclei containing strange quarks—may be
present in high-density regions [2] (see Ref. [3] for a
recent review). Quark matter is expected at higher densities;
at asymptotically high density (much higher than the
strange-quark mass) the color-flavor-locked (CFL) phase
is realized, in which three quarks [up (u), down (d), and
strange (s)] participate in a diquark pairing, exhibiting color
superconductivity as well as superfluidity [4,5] (see
Refs. [6,7] for a review). In addition to superfluid vortices
[8,9], there are non-Abelian (NA) vortices or color mag-
netic flux tubes [10–16] (see Ref. [17] for a review). The

former is dynamically split into three of the latter, with the
total magnetic fluxes canceled out [11,16].
The quark-hadron continuity conjecture was proposed as

a crossover between hadronic matter and quark matter,
based on the matching of elementary excitations and
existing global symmetries in both the matter (in particular,
hyperon matter) and CFL phases [18,19], as summarized in
Table I. The continuity was further studied in the interior of
neutron stars [20–22]. Since neutron stars are rapidly
rotating, superfluid vortices appear in both nuclear matter
and quark matter, and thereby it is natural to extend the
quark-hadron continuity in the presence of vortices pen-
etrating both phases of matter [23]. They defined a
continuity of vortices by matching the Onsager-Feynman
circulation of vortices in both phases, and suggested a
continuity to connect one hadronic vortex to one NAvortex
during the hadron-CFL crossover.
In this paper—by pointing out that the conclusion in [23]

is consistent only for the large-distance behavior of vortices

TABLE I. The properties in the CFL phase and in the
hadron phase.

Hadronic phase CFL phase

Unbroken symmetry SUð3ÞF SUð3ÞCþF
# of NG bosons 8 8
# of massive vector mesons 8 8
# of quasifermions 8 8þ 1
Vortex configurations ΛΛ ur, dg, sb
Circulation of one vortex 2π νB

2μB
2π

νq
2μq
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and is not compatible with the symmetry structures of
vortex cores—we reach the conclusion that arguably the
only possibility left is to form a connection of three
hadronic vortices in the hyperon matter of ΛΛ condensa-
tion with three NAvortices in the CFL phase, with the total
color magnetic fluxes canceled out, forming a colorful
boojum [24] analogous to a boojum in superfluid helium-3
[25,26]. We prove this both in a macroscopic theory based
on the Ginzburg-Landau (GL) description in which sym-
metry and excitations match including vortex cores, and a
microscopic theory in which the Aharonov-Bohm (AB)
phases of quarks around vortices match.

II. VORTEX CONTINUITY
IN MACROSCOPIC THEORY

The concept of continuity is defined by the continuation of
symmetries and elementary excitations in the ground state
while going through a crossover. Now we would like to
discuss the concept of continuity in the presence of a general
background. For example, the vortices that are present in two
different phases should be joined together so that all physical
quantities remain smoothly connected and the symmetry
structure remains the same through the crossover.
On the other hand, the presence of solitonic objects may

break existing unbroken global symmetries in the ground
state. Since the condensate eventually reaches its ground-state
expectation value (modulo gauge transformations) at large
distances, the large-distance symmetry structure in general
remains the same as that in the ground state. However, this
scenario may change inside solitonic objects and the existing
bulk symmetry may be broken spontaneously. In this case,
there appear extraNambu-Goldstone (NG) zeromodes inside
the solitons, which should be carefully handled during the
crossover. In other words, to maintain the continuity of
solitonic objects along with elementary excitations, one
should check the symmetry structure everywhere.
Let us focus our interest on the crossover between the

hadronic phase to the CFL phase. At high densities, one
may expect strange quarks to appear as hyperon states on
the hadronic side. In general, the first hyperon expected to
appear is Λ, which is the lightest one with an attractive
potential in nuclear matter. For our purposes, here we
consider only flavor-symmetric ΛΛ pairing in the 1S0
channel.1 In this case we may consider the existence of
superfluid vortices since ΛΛ would break Uð1Þ baryon
number symmetry, and we may express the vortex ansatz as

ΔΛΛðr; θÞ ¼ jΔΛΛðrÞjeiθ; ð1Þ
where r is the distance from the center of the vortex and θ is
the angle around the vortex axis. The exact nature of the

profile function can be derived from the GL theory of the
system, but we are not going to discuss this here. Since
the condensate ΔΛΛ is flavor symmetric in this phase, the
SUð3ÞF flavor symmetry would be intact everywhere
including the vortex cores. The Onsager-Feynman circu-
lation, which is defined as C ¼ H

v⃗ · d⃗l ¼ 2πn
μ (where n and

μ are the winding number and chemical potential of the
condensate), can be computed for a single ΛΛ vortex as
CΛΛ ¼ 2π

2μB
, where μB is the chemical potential for a single

baryon. Here v⃗ is the superfluid velocity at large distance
from the core of the vortex.
In the CFL phase, the order parameter is a matrix Δa

i ¼
ΔLa

i ¼ −ΔRa
i, with a color index a ¼ 1; 2; 3ðr; g; bÞ and a

flavor index i¼1;2;3ðu;d;sÞ, whereΔLa
i∼ϵabcϵijkqL

j
bCqL

k
c

and ΔRa
i ∼ ϵabcϵ

ijkqR
j
bCqR

k
c. The Ginzburg-Landau formu-

lation of the CFL phase has been derived in Refs. [28–30].
The symmetries in the CFL phase are summarized in
Appendix A. The order parameter for an Abelian superfluid
vortex can be written as [8,9]

ΔAðr; θÞ ¼ ΔCFLϕðrÞeiθ13; ð2Þ
whereϕðrÞ is a profile function vanishing at the center of the
vortex, ϕð0Þ ¼ 0, and eventually reaching the ground state
valueϕðr → ∞Þ → 1 at large distances.ΔCFL is the absolute
value of the gap (condensate) at the bulk in the CFL phase.
The Onsager-Feynman circulation of Abelian vortices in the
CFL phase is found to be CA ¼ 3π

μB
, since the chemical

potential of a diquark is μCFL ¼ 2μB
3
. So a single ΛΛ vortex

cannot connect continuously to a single Uð1Þ vortex in the
CFL phase. Instead, wemay conclude that threeΛΛ vortices
would join to form one Uð1Þ CFL vortex.
Now let us discuss NA vortices or color magnetic flux

tubes. In this case, the simplest vortex ansatz can be
expressed as [10,13]

Δurðr; θÞ ¼ ΔCFLdiagðfðrÞeiθ; gðrÞ; gðrÞÞ; ð3Þ

Aur
i ðrÞ ¼ 1

3gs

ϵijxj
r2

ð1 − hðrÞÞdiagð2;−1;−1Þ; ð4Þ

with the gauge coupling constant gs. The profile functions
fðrÞ, gðrÞ, and hðrÞ can be computed numerically with the
boundary conditions fð0Þ ¼ 0; ∂rgðrÞjr¼0 ¼ 0; hð0Þ ¼ 1;
fð∞Þ ¼ gð∞Þ ¼ 1, and hð∞Þ ¼ 0 [13]. We call this an
up-red (ur) vortex since the ur component has a vortex
winding. We also define two other vortices by changing the
position of the vortex winding (eiθ) from Δ11 to Δ22 and
Δ33, which can be called down-green (dg) and strange-blue
(sb) vortices, respectively. At large distances, the order
parameter of these three vortices behaves as

Δ ∼ ΔCFLeiθ=3 exp

�
−igs

Z
θ

0

A⃗ · d⃗l

�
13×3; ð5Þ

1We consider the singlet channel as the most attractive one in
the SUð3ÞF limit. We use the ΛΛ pairing as an abbreviation of
−

ffiffiffiffiffiffiffiffi
1=8

p
ΛΛþ ffiffiffiffiffiffiffiffi

3=8
p

ΣΣþ ffiffiffiffiffiffiffiffi
4=8

p
NΞ pairing for a nucleon (N)

and Λ, Σ, Ξ baryons [27].
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where Ai is the large-distance configuration of the gauge
field corresponding to the color flux present inside the
vortex core. So it is easy to check that at large distances the
SUð3ÞCþF symmetry remains unbroken. In this case one
may derive the superfluid velocity at large distances by
replacing the ordinary derivative with the covariant deriva-
tive in the expression of the current. The Onsager-Feynman
circulation of NA vortices in the CFL phase is found to be
CNA ¼ π

μB
, which coincides with the circulation of a single

ΛΛ vortex. Therefore, one would expect that a single ΛΛ
vortex would be smoothly connected to a single NA vortex
during the crossover [23]. Below we show that this is true
only at large distances, and not at short distances near the
vortex core.
First let us consider the symmetry structures in the

presence of NA vortices. According to hadron-quark
continuity the unbroken SUð3ÞCþF symmetry can be
smoothly connected to the unbroken flavor symmetry in
the hadron phase. So it seems that there would also not be
any problem for the continuation of a NA vortex to a
single ΛΛ vortex. However, the missing point is that the
SUð3ÞCþF symmetry present at the bulk is spontaneously
broken at the core of an NA vortex to SUð2Þ ×Uð1Þ. This
generates CP2 ≃ SUð3Þ=½SUð2Þ ×Uð1Þ� NG modes
inside the vortex core [11,14]. The low-energy effective
theory of the CP2 NG modes was obtained along the
vortex line [14,15,31]. This helps us to distinguish two
different vortices by flavor quantum numbers. The three
kinds of vortices ur, dg, and sb, where the color part is
chosen in a particular gauge for our own convenience, lie
at three points of the CP2 moduli space, and they are
continuously connected by the flavor symmetry. This can
be understood directly from the structure of the order
parameters at the center of the vortices. We may write the
order parameters at the center of the vortices for these
three cases as

Δurð0Þ ¼ cdiagð0; 1; 1Þ;
Δdgð0Þ ¼ cdiagð1; 0; 1Þ;
Δsbð0Þ ¼ cdiagð1; 1; 0Þ; ð6Þ

where the constant c can be fixed numerically. The flavor
symmetry SUð3ÞCþF is spontaneously broken by these
matrices to three different unbroken SUð2Þ ×Uð1Þ sub-
groups of SUð3ÞCþF. Since the SUð3Þ flavor is unbroken
in the hadronic vortex, following the symmetry principle
of continuity we can say that a single ΛΛ vortex cannot
smoothly transform into any single NA vortex.
We need to have a construction where the SUð3Þ flavor

symmetry is recovered in a vortex core while connecting
to the hadronic phase. In other words, we have to
terminate the CP2 NG modes. This is possible only when
three different NA vortices combine into one Uð1Þ CFL
vortex in whose core the SUð3Þ flavor symmetry is

not broken.2 The CP2 NG modes of the three different
kinds of NA vortices describe fluctuations from the three
different points of the CP2 moduli space. When we
combine them, these NG modes can smoothly move from
one patch to another patch at the junction. As we already
discussed, one Uð1Þ CFL vortex can be connected to three
ΛΛ vortices during the hadron-CFL crossover, and then
we reach Fig. 1. The junction point was called a colorful
boojum [24], analogous to those in helium-3 superfluids
[25,26].
One important point is that we do not require the

cancellation of color magnetic fluxes at the junction point.
Instead, we only require the termination of the CP2 NG
modes. The color of a NA vortex is gauge dependent as
emphasized in Ref. [23], but the termination of the CP2 NG
modes implies the cancellation of the color magnetic fluxes
in our gauge choice.
We comment that the present treatment of the symmetry

breaking at the vortex is based on the mean-field approxi-
mation. The quantum fluctuations recover the spontane-
ously broken symmetry at the vortex core [32,33], due to
the Coleman-Mermin-Wagner theorem forbidding the
existence of spontaneous symmetry breaking or long-range
order in 1þ 1 dimensions. While NGmodes with quadratic
dispersion relations in nonrelativistic theories survive at the
quantum level [34], NG modes in our case have a linear
dispersion relation and consequently become massive.

III. VORTEX CONTINUITY
IN MICROSCOPIC THEORY

We now prove the same result from a microscopic point
of view, by requiring the continuity of quark wave
functions in the presence of vortices penetrating the CFL
and hadronic phases. More precisely, we achieve the
continuity of phases of quarks encircling vortices.
Fermions ψ belonging to the fundamental representation

of SU(3) acquire an AB phase by

ψ → P exp
�
igs

I
C
A⃗ · d⃗l

�
ψ ð7Þ

ur

dg

sb
Hadronic phase CFL phase

FIG. 1. A schematic diagram of connection of three ΛΛ
vortices in the hadronic phase with three different CFL vortices
via a single Uð1Þ CFL vortex.

2The reasoning behind the above proposal is related to the fact
that a Uð1Þ CFL vortex is energetically unstable to break into
three NA vortices [11,16].
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for the closed path C in the presence of the gauge field A⃗.
Notice that the AB phase is the gauge-independent quantity.
Let us consider the casewhereC encircles a urNAvortex. In
an appropriate gauge for the SU(3) gauge symmetry, the
transformation from θ to θ þ α can be written as

ψ → P exp

�
igs

Z
θþα

θ
A⃗ · d⃗l

�
ψ : ð8Þ

For the rotation around the ur, dg, and sb NA vortices, this
reduces to

ψ → diagðe−i2α=3; eiα=3; eiα=3Þψ ;
ψ → diagðeiα=3; e−i2α=3; eiα=3Þψ ;
ψ → diagðeiα=3; eiα=3; e−i2α=3Þψ ; ð9Þ

respectively. When the fermion circulates by a 2π rotation
(α ¼ 2π), the phase of the fermion changes as

ψ → ωψ with ω ¼ ei2π=3 ð10Þ
for all cases. Heavy quarks not participating in the conden-
sation, such as charm quarks, feel only this AB phase of Z3

[35]. The independence of the Wilson loops from the species
of NA vortices was emphasized in Ref. [23]. On the other
hand, since up, down, and strange quarks participate in the
condensation, they acquire another phase in addition to the
AB phase when they encircle the vortex, as we see below.
In the hadronic phase, we consider the vortex ΔΛΛ in

Eq. (1). Because ΔΛΛ ∼ ΛΛ, the rotation around the vortex
from the angle θ to θ þ α induces the phase for the Λ
particle component uB and the Λ hole component vB:
ðuB; vBÞ → ðeiα=2uB; e−iα=2vBÞ. We find that this trans-
formation indeed satisfies the Bogoliubov–de Gennes
(BdG) equation in Eq. (B1) in Appendix B 1. A complete
encircling (α ¼ 2π) yields a phase factor �π for both the
particle and hole components. This is not an AB phase,
because there is no gauge field in the ΛΛ vortex. This is
induced purely by the angle dependence of the vortex, and
so we call this quantity a vortex phase of the Λ baryon
around the vortex. This phase factor forms a Z2 group.
Let us understand this vortex phase factor at the quark

level. Since the u, d, s quarks are confined inside the Λ
baryon in a symmetric way, each quark’s quasiparticles qαi
in ΔΛΛ should have vortex phases QΛΛðqÞ given by

QΛΛ¼
π

3

0
B@
þ1 þ1 þ1

þ1 þ1 þ1

þ1 þ1 þ1

1
CA for ðqÞai ¼

0
B@

ur dr sr
ug dg sg
ub db sb

1
CA:

ð11Þ
The matrix QΛΛ is defined so that the component
ðQΛΛÞai represents the vortex phase for the quark qia; qia →
eiðQΛΛÞaiqia for a rotation by 2π. In fact, QΛΛ is obtained by
setting α ¼ 2π for the vortex phase change eiα=6 of quarks

in the Λ baryon for an angular transformation from θ to
θ þ α. Thus, the vortex phase of the u, d, s quarks in the
hadronic phase forms a Z6 group. Notice that the phase
should be independent of flavor and color. Here, we
indicated the vortex phases of the particle components,
but the hole components simply have the opposite sign: the
hole components obtain the vortex phase −π=3. The heavy
quarks not participating in the condensation receive no
vortex phases. The question is then how the phases of
quarks can be connected smoothly from the hadronic phase
to the CFL phase.
Before investigating the vortex phases and AB phases of

quarks in the CFL phase, we recall the simpler case of a
single-component Dirac fermion (ψ) in the BdG equation
which has a vortex phase π because of the phase α=2, as in
ψ → eiα=2ψ for the rotation θ → θ þ α, as shown in
Appendix B 2.
Now, let us investigate the vortex phases and AB phases

for u, d, s quarks around NA vortices, where the quarks
couple to the gap profile functions differently. We remem-
ber that the color and flavor structure in the gap is Δai ∼
ϵabcϵ

ijkqjbCq
k
c (with indices a, b, c for color and i, j, k for

flavor). In general, the phases of the u, d, s quarks in the
NA vortex change as

q → eiα=6P exp

�
igs

Z
θþα

θ
A⃗ · d⃗l

�
q; ð12Þ

for a rotation by α; θ → θ þ α. The important point is that
the vortex phase factor eiα=6, which is a contribution from
the global transformation of Uð1ÞB and is missing in the
case of heavy quarks in Eq. (8), must be present to be
consistent with the condensation with the vortex; since a
diquarkΔ receives eiα=3, the u, d, s quarks receive eiα=6 [see
Eq. (5)]. The remaining part is the usual AB phase coming
from the gauge symmetry where A⃗ is the color gauge field
around a NA vortex [note the difference in signs between
Eqs. (12) and (5)]. We call this total phase introduced in
Eq. (12) a generalized AB phase.
Let us consider the cases of the ur, dg, and sb NA

vortices for illustration. In the appropriate gauge, the above
transformation is reduced to

q → eiα=6diagðe−i2α=3; eiα=3; eiα=3Þq
¼ diagðe−iα=2; eiα=2; eiα=2Þq;

q → eiα=6diagðeiα=3; e−i2α=3; eiα=3Þq
¼ diagðeiα=2; e−iα=2; eiα=2Þq;

q → eiα=6diagðeiα=3; eiα=3; e−i2α=3Þq
¼ diagðeiα=2; eiα=2; e−iα=2Þq; ð13Þ

for the ur, dg, and sb NA vortices, respectively. We can
easily confirm that these transformations satisfy the BdG
equation for the quarks in the ur, dg, and sb NA vortices.
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The explicit form of the BdG equation is presented in
Eq. (B3) in Appendix B 3. Thus, by setting α ¼ 2π, we
obtain the common value for the generalized AB phases
QurðqÞ,QdgðqÞ,QsbðqÞ of u, d, s quarks around the ur, dg,
and sb vortices, respectively, as

Qur ¼ π

0
B@

−1 −1 −1
þ1 þ1 þ1

þ1 þ1 þ1

1
CA;

Qdg ¼ π

0
B@

þ1 þ1 þ1

−1 −1 −1
þ1 þ1 þ1

1
CA;

Qsb ¼ π

0
B@

þ1 þ1 þ1

þ1 þ1 þ1

−1 −1 −1

1
CA: ð14Þ

They give the same phases because e�iπ ¼ −1. Therefore,
the generalized AB phases of any of the u, d, s quarks
around any NA vortex forms a Z2 group. Hereafter, we
write QNA ¼ fQur;Qdg; Qsbg.
Now we consider the connection of the vortices in the

hadronic and CFL phases, by requiring the continuity of
quark wave functions, that is, the matching of generalized
AB phases (including vortex phases) in both phases. The
generalized AB phase π=3 of quarks around a ΛΛ vortex in
Eq. (11) is apparently different from the phase π of quarks
in any single NA vortex (either ur, dg, or sb) in Eq. (14):

eiðQΛΛÞai ≠ eiðQNAÞai : ð15Þ
This mismatch can also be understood by the differences
between the groups for u, d, s quarks: the Z6 group in the
hadronic phase and the Z2 group in the CFL phase.
Therefore, one NA vortex cannot be connected to one
ΛΛ vortex without discarding the continuity at the quark
level, although such a connection could be consistent only
at large distance scales in the GL equation [23].
To achieve a smooth connection with the generalized AB

phases in Eq. (14), we may consider the matching of the
generalized AB phase: ei3ðQΛΛÞai ¼ eiðQurÞai , ei3ðQΛΛÞai ¼
eiðQdgÞai , or ei3ðQΛΛÞai ¼ eiðQsbÞai. However, those cases vio-
late the circulation matching, and hence they should be
discarded (cf. Sec. II).
Alternatively, we consider the case where the quark

encircles a bundle of three NA vortices simultaneously.

We notice that all of the quarks acquire the generalized
AB phase QNA irrespective of the flavor and color compo-
nents. For example, the ur quark acquires the phaseQNA for
the path around each vortex, and hence it acquires 3QNA in
total. The generalized AB phases in the path encircling the
three NAvortices simultaneously are equal to the sum of the
generalized AB phases in the paths encircling each of them:
Q3NA ¼ 3QNA. As a result, the quarks with any flavor and
color acquire a common charge, which is equal to the
generalized AB phase in the presence of three ΛΛ vortices,

eiðQ3NAÞaið¼ ei3ðQNAÞaiÞ ¼ ei3ðQΛΛÞai : ð16Þ
Therefore, the continuity of the generalized AB phases of
quarks is allowed only when the bundle of three NAvortices
is connected to the bundle of threeΛΛ vortices. Eq. (16) does
not imply species of NA vortices. On the other hand, one
Abelian vortex is unstable to decay into three NA vortices
with different color magnetic fluxes with total color flux
canceled out [11,16]. In fact, we have a more precise relation

3QΛΛ ¼ Qur þQdg þQsb: ð17Þ

It is interesting to point out that this relation holds without an
exponential function.
We prove that the three NA vortices and the three ΛΛ

vortices meet at one point in transverse directions (see
Fig. 1). First of all, we notice that the quarks can take an
arbitrary path. One may think of a path that does not
necessarily encircle all of the NA vortices when those
vortices are separated in space. However, such a path
precludes the continuity of the quark wave functions
between the CFL and hadronic phases. Therefore, only
the paths that simultaneously encircle the three NAvortices
should be allowed to exist: the three NA vortices meet at
one point. There, they are connected to a Uð1ÞB Abelian
vortex (a boojum), as shown in Fig. 1. In summary, the
continuity of the quark wave function induces that the
bundle of the three NA vortices and the three ΛΛ vortices
are connected via the Uð1Þ vortex.
In Table II, we summarize the (generalized) AB phases

for heavy quarks and u, d, s quarks. The AB phases in both
a ΛΛ vortex in the hadronic phase and an Abelian vortex in
the CFL phase are the trivial group (1) because these
vortices have no color magnetic fluxes. From this table, we
immediately find that three ΛΛ vortices and three NA
vortices should be connected in order to achieve the

TABLE II. The groups for the (generalized) AB phases around a ΛΛ vortex in the hadronic phase and a NA vortex in the CFL phase.

Hadronic phase CFL phase

Vortex ΛΛ vortex Abelian vortex NA vortex

Heavy quarks AB phase 1 1 Z3

u, d, s AB phase 1 1 Z3

generalized AB phase Z6 Z2 Z2

QUARK-HADRON CONTINUITY UNDER ROTATION: … PHYS. REV. D 99, 034001 (2019)

034001-5



matching of the generalized AB phases of the u, d, s quarks
between the hadronic and CFL phases. This is explained as
follows. Let us consider the AB phase for heavy quarks,
and the generalized AB phase for u, d, s quarks in each
vortex. First, the bundle of three ΛΛ vortices can be
connected to one Abelian vortex, because three Z6’s in
three ΛΛ vortices become equivalent to Z2 in an Abelian
vortex. Second, the bundle of three NA vortices can be
connected to one Abelian vortex, because three Z3’s in
three NA vortices become equivalent to 1 for the Abelian
vortex. Thus, three ΛΛ vortices should be connected to
three NA vortices through one Abelian vortex (a boojum).
Therefore, we have proven (i) a three-to-three correspon-
dence between ΛΛ vortices and NA vortices, and (ii) the
existence of the boojum.

IV. SUMMARY AND DISCUSSION

In this paper we have discussed the continuity of vortices
during the crossover between the hadronic and CFL phases.
By using macroscopic (GL) and microscopic (quark)
descriptions, we have proved that three ΛΛ vortices in
the hadronic phase must combine and transform into three
different NA vortices (ur, dg, sb) in the CFL phase to
maintain a smooth connection [see Eq. (16)]. The colorful
boojum is inevitable for quark-hadron continuity.
We have ignored (strange) quark masses and electro-

magnetic interactions, whose effects on an NA vortex were
investigated in Refs. [15] and [36–38], respectively. We
should take them into account for more realistic situations.
One question is whether fermion zero modes in a vortex
core in the CFL phase [39,40] and their braiding statistics
[41,42] have a continuous transition to the hadron phase.
Another interesting question is what role a confined
monopole in the CFL phase [32,33] plays for quark-hadron
duality. It is also interesting to study how vortex lattices
[43] are connected during continuity. Finally, it will be
important to study the impacts of the presence of vortex
junctions (boojums) on the dynamics of neutron stars.
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APPENDIX A: SYMMETRIES
OF THE CFL PHASE

We summarize the symmetries of the CFL phase. The
color-flavor-locked phase can be expected when the density
becomes asymptotically high. The order parameters in the
CFL phase are defined by the diquark condensates (close to
the critical temperature Tc) as ΔL

i
a ∼ ϵabcϵ

ijkqL
j
bCqL

k
c and

ΔR
i
a ∼ ϵabcϵ

ijkqR
j
bCqR

k
c, where qL=R are left-/right-handed

quarks carrying fundamental color indices a, b, c [SUð3ÞC]
and fundamental flavor indices i, j, k [SUð3ÞL=R]. The chiral
symmetry is spontaneously broken in the ground state
ΔL ¼ −ΔR ≡ Δ. The order parameter Δ transforms
as Δ0 ¼ eiθBU�

CΔU
†
F; e

iθB ∈ Uð1ÞB; UB ∈ SUð3ÞC, and
UC ∈ SUð3ÞC. After subtracting the redundant discrete
symmetries, the actual symmetry group is given by
G ¼ SUð3Þc×SUð3ÞF×Uð1ÞB

Z3×Z3
. In theground state the full symmetry

group G is spontaneously broken down to H ≃
SUð3ÞCþF=Z3 and the order parameter is defined as
hΔi ¼ ΔCFL13, where ΔCFL depends on the GL parameters
[28–30]. The elements of the unbroken group SUð3ÞCþF are
defined by the relation U�

C ¼ UF ¼ U ∈ SUð3ÞCþF. The
quarks transform as adjoint fields under SUð3ÞCþF as
q0 ¼ UqU†. The existence of stable vortices can be con-
firmed by a nontrivial first homotopy group of the order
parameter space π1ðG=HÞ ≃ Z.

APPENDIX B: BDG EQUATION

1. Hadronic matter

The BdG equation in the ΛΛ vortex [ΔΛΛ in Eq. (1)] can
be written as

�− ∇⃗2

2mB
− μB eiθjΔΛΛj

e−iθjΔΛΛj ∇⃗2

2mB
þ μB

��
uB
vB

�
¼ E

�
uB
vB

�
ðB1Þ

for the Λ baryon (with particle component uB and
hole component vB) in the Nambu-Gor’kov formalism.
Here, mB is the Λ baryon mass and jΔj is the profile
function of the vortex. The transformation ðuB; vBÞ →
ðeiα=2uB; e−iα=2vBÞ satisfies the BdG equation.

2. Single-component Dirac fermion

We consider a single-component (massless) Dirac fer-
mion in the presence of a vortex with winding number 1.
The explicit form of the BdG equation is

�
−iγ0γ⃗ · ∇⃗−μ eiθjΔjγ0γ5
−e−iθjΔjγ0γ5 −iγ0γ⃗ · ∇⃗þμ

��
u

v

�
¼ E

�
u

v

�
; ðB2Þ

with particle component u and hole component v in the
Nambu-Gor’kov representation. Here μ is the chemical
potential. The rotation of the quark around the vortex
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changes θ to θ þ α. This is compensated by the phase rotations for u and v, to maintain the above equation, by changing
ðu; vÞ to ðeiα=2u; e−iα=2vÞ. Therefore, the particle (hole) in the presence of the vortex has a vortex phase �π for the
rotation α ¼ 2π.

3. Quarks in an NA vortex

The BdG equation HΨ ¼ EΨ in the presence of a sb vortex is given by [39,40] (see also Ref. [44])
0
BBBBBBBBBBBBBBBBBB@

Ĥ0 Δ̂1 Δ̂0 0 0 0 0 0 0

Δ̂1 Ĥ0 Δ̂0 0 0 0 0 0 0

Δ̂0 Δ̂0 Ĥ0 0 0 0 0 0 0

0 0 0 Ĥ0 −Δ̂1 0 0 0 0

0 0 0 −Δ̂1 Ĥ0 0 0 0 0

0 0 0 0 0 Ĥ0 −Δ̂0 0 0

0 0 0 0 0 −Δ̂0 Ĥ0 0 0

0 0 0 0 0 0 0 Ĥ0 −Δ̂0

0 0 0 0 0 0 0 −Δ̂0 Ĥ0

1
CCCCCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBBBBB@

ur
dg
sb
dr
ug
sr
ub
sg
db

1
CCCCCCCCCCCCCCCCCCA

¼ E

0
BBBBBBBBBBBBBBBBBB@

ur
dg
sb
dr
ug
sr
ub
sg
db

1
CCCCCCCCCCCCCCCCCCA

; ðB3Þ

where we have used the notation, e.g., ur in the Nambu-Gor’kov representation.3 We define Ĥ0 ¼ diagð−iγ0γ⃗ · ∇⃗ − μq;

−iγ0γ⃗ · ∇⃗þ μqÞ and
Δ̂i ¼

�
0 Δiγ0γ5

−Δ†
i γ0γ5 0

�
ði ¼ 0; 1Þ; ðB4Þ

where Δ1ðr; θÞ ¼ jΔ1ðrÞjeiθ corresponds to the vortex configuration with winding number 1, and Δ0ðrÞ does not have a
winding number.
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