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I discuss the matching relations for the running renormalizable parameters when the heavy particles
(top quark, Higgs scalar, Z and W vector bosons) are simultaneously decoupled from the standard model.
The complete two-loop-order matching for the electromagnetic coupling and all light fermion masses is
obtained, augmenting existing results at four-loop order in pure QCD and in complete two-loop order for
the strong coupling. I also review the further sequential decouplings of the lighter fermions (bottom quark,
tau lepton, and charm quark) from the low-energy effective theory.
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I. INTRODUCTION

The discovery of the Higgs scalar boson at the Large
Hadron Collider has put the standard model of particle
physics on a firm footing. At the same time, searches for
physics beyond the standard model have not produced
confirmed hints of any more fundamental structure. It
therefore seems worthwhile to consider the standard model
as quite possibly valid and complete up to well above the
TeV energy scale, and to study its precise parameters and
predictions, assuming that the next layer of fundamental
new physics particles is heavy enough to be irrelevant at
energy scales now within direct reach at colliders.
The standard model has within it an interesting hier-

archy, with four fundamental particles (the top quark, the
Higgs scalar, and the Z and W vector bosons) having
masses within a factor of 2.2 of each other, and heavier than
all others by well over an order of magnitude. This makes it
sensible to consider a low-energy effective theory consist-
ing of the b, c, s, u, d quarks, the τ, μ, e leptons, and their
neutrinos, with renormalizable interactions coming from
the unbroken SUð3Þc ×Uð1ÞEM gauge group, and non-
renormalizable four-fermion couplings to describe the
weak interactions. This low-energy effective field theory
can be matched onto the full SUð3Þc × SUð2ÞL ×Uð1ÞY
high-energy theory with no particles decoupled, by con-
sidering common physical observables calculated in each
theory in terms of parameters defined in the MS renorm-
alization scheme [1,2] based on dimensional regularization
[3–7].

In this paper, I will consider the decoupling relations that
govern the matching at an arbitrary MS renormalization
scale, denoted by Q. Specifically, the pertinent running MS
parameters of the full standard model will be called

g3; g; g0; yt; yb; yc; ys; yu; yd;

yτ; yμ; ye; λ; v: ð1:1Þ

Here, g3, g, and g0 are the gauge couplings, the yf’s are the
Yukawa couplings, λ is the Higgs self-interaction coupling,
and v is the Higgs vacuum expectation value (VEV),
defined in this paper as the minimum of the effective
potential in the Landau gauge. This definition implies that
scalar tadpole subgraphs vanish identically when summed
to all orders in perturbation theory (including the tree-level
tadpole), and so can be omitted from all Feynman dia-
grams.1 The very small effects of Cabibbo-Kobayashi-
Maskawa mixing and neutrino masses are neglected. The
running MS squared masses of the standard model states
are then denoted as follows:

Z ¼ ðg2 þ g02Þv2=4; ð1:2Þ
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1The Landau gauge standard model effective potential and its
minimization condition are presently known to full two-loop
[8,9] and three-loop [10,11] orders, and the four-loop part is
known only at leading order in QCD [12]. These results make use
of Goldstone boson resummation [13,14] and employ three-loop
vacuum integral basis functions defined and evaluated by
Ref. [15]; for an alternative evaluation method, see Ref. [16].
In particular, Refs. [11,12] provide the formulas relating the VEV
v used here to the tree-level VEV vtree ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−m2

H=λ
p

used in many
other works, which therefore must [17] include tadpole graphs.
Outside of the Landau gauge, the effective potential is much more
complicated at two-loop order [18], and is not known at three-
loop order.
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W ¼ g2v2=4; ð1:3Þ

h ¼ 2λv2; ð1:4Þ

t ¼ y2t v2=2; ð1:5Þ

b ¼ y2bv
2=2; etc: ð1:6Þ

Due to the choice of the definition of the VEV v, these
quantities are specific to the Landau gauge. As a matter of
preference, I find the convenience (and increased accuracy)
of not having tadpole graphs (with their associated 1=λ
factors in perturbation theory, coming fromzero-momentum
Higgs propagators) to be well worth the price of a Landau-
gauge-specific VEV and running masses, especially since
these are not renormalization group scale-invariant observ-
ables anyway. The high-energy nondecoupled electromag-
netic coupling is defined by

e≡ gg0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

q
: ð1:7Þ

In the low-energy SUð3Þc ×Uð1ÞEM effective field
theory, the renormalizable MS parameters will be denoted
in this paper as

αS; α; mb; mc; ms; mu; md; mτ; mμ; me: ð1:8Þ

To avoid confusion, αS and α are only used for the
low-energy effective theory, and never for the gauge
couplings of the nondecoupled full standard model theory.
Conversely, the symbols g3, g, g0, and e are used exclu-
sively to refer to quantities in the full nondecoupled theory.
Note also that α is used in this paper to refer to the MS
quantity, not the so-called “on-shell” electromagnetic
coupling. All of the parameters in Eqs. (1.1)–(1.8) depend
on the MS renormalization scale Q.
There are several complementary paths that one can take

to relating these parameters to experimental results. In one
approach, one makes direct use of low-energy experimental
observables as the basic inputs, which then determine the
parameters in Eq. (1.8), and then infers the full standard
model parameters in Eq. (1.1) from them. In this paper, I will
instead take the basic input parameters to be those of
Eq. (1.1); then the low-energy observable data can be
derived and used as the subjects of global fits. The purpose
of this paper is limited to finding the matching relations that
give the parameters of Eq. (1.8) as functions of those in
Eq. (1.1). This will be done by treating the matching scaleQ
as arbitrary, with the assumption that, typically, it should be
chosen to be not much smaller than the W-boson mass and
not much larger than the top quark mass, in order to avoid
unnecessarily large logarithms. Note that lnðMt=MWÞ ¼
0.77, so that any choice ofMW ≲Q≲Mt for the matching
scale should be fine. (It is not necessary that each particle be

automatically decoupled at the scale Q equal to its mass,
which is ambiguous in any case.)
Some observables, notably the pole masses of the top,

Higgs, Z, and W, are only accessible in the high-energy
theory. The Higgs boson mass has been connected to the
self-coupling λ including two-loop QCD corrections [19]
and at full two-loop order in terms of interpolating formulas
[20,21]. Analytical results and computer code for the Higgs
mass at complete two-loop order have been presented in the
tadpole-free scheme consistent with the present paper in
Ref. [22], which also includes leading three-loop correc-
tions, and in the scheme with a tree-level VEVand tadpoles
in Refs. [23,24].Multiloop corrections to theW andZ boson
masses, their ratio (the ρ parameter), and their relationships
with other observables have been discussed in Refs. [23–
58]. In particular, Refs. [57,58] provide the complete two-
loop analytic results for the W and Z pole masses, respec-
tively, in the tadpole-free MS scheme consistent with the
conventions and notations of the present paper. For the top
quark pole mass, the pure QCD contributions are known at
the one-loop [59], two-loop [60], three-loop [61–63], and
four-loop [64,65] orders; these results also apply to the light
quark pole masses in the decoupled theory. Contributions
and uncertainty estimates from higher orders in QCD are
discussed in Refs. [66–70]. The non-QCD one-loop cor-
rections to fermion pole masses were given in Refs. [71,72].
Mixed two-loopQCD corrections to the top quark polemass
were obtained in Refs. [73–77], and the two-loop electro-
weak corrections in the “gaugeless” limit (where W, Z
masses are neglected compared to the top quark mass) are
given inRefs. [78,79]. The full two-loop top quark polemass
corrections have been given in the tree-level VEV scheme in
Ref. [23], and in the tadpole-free scheme used in the present
paper in Ref. [80].
For computations at characteristic energies much lower

or much higher than the matching scale, one should use the
renormalization group equations to run the MS parameters
to an appropriate comparable Q, thus resumming the
potentially large logarithms that would otherwise occur.
For the full standard model, the beta functions are presently
known at full two-loop [81–85] and three-loop [86–93]
orders. The beta function for the Higgs self-coupling is also
known at four loops in the leading order in QCD [12,94].
For the strong gauge coupling, the pure QCD contributions
to the beta function are known at the four-loop [95,96] and
five-loop [97,98] orders, and the QCD contributions to the
beta functions of the quark Yukawa couplings (or equiv-
alently, the running quark masses) are likewise known at
the three-loop [99], four-loop [100,101], and five-loop
[102] orders. These QCD results also apply to the αS
and quark masses of the low-energy effective theory, by
changing the variable number of active quarks.
There are also already extensive multiloop results on the

decoupling matching relations involving the strong inter-
actions. The one-loop and two-loop decouplings of the
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QCD coupling at quark thresholds were discussed long ago
in Refs. [103–105], respectively. The pure QCD three-loop
and four-loop threshold corrections for αS were obtained in
Refs. [106–109], respectively. The complete two-loop
threshold corrections for αS including electroweak and
top quark Yukawa effects were given in Ref. [110] and have
been checked as part of the present work. For the pure QCD
contributions to quark mass threshold relations, the three-
loop results were obtained in Refs. [106,107], and the four-
loop results in Ref. [111]. All of the pure QCD results for
the running and decoupling of αS and quark masses have
been incorporated into the RunDec [112] computer soft-
ware packages.
The electromagnetic coupling is usually related to the

very precisely known low-energy Thomson scattering value
αThomson ¼ 1=137.0359991… as the basic input parameter,
through radiative corrections to the photon self-energy
function [23,25,32,56,113–126]. The bottleneck to accu-
racy in running α to very high energies (where it can be
matched to g, g0) comes from the nonperturbative hadronic

contributions, often parametrized as Δαð5ÞhadðmZÞ. For recent
evaluations of this important quantity, see Refs. [127–129]
and references therein. In this paper, I will instead concen-
trate on the connection to the far-ultraviolet, fundamental
definition of the standard model by obtaining the complete
two-loop relationship between the MS parameters g; g0;…
of the standard model and theMS running coupling αðQÞ in
the low-energy theory when t, h, Z, W are simultaneously
decoupled.2 The relationship between αðQÞ and the very
low-energy input αThomson is in this paper left as a separate
issue, as addressed in Refs. [23,25,32,56,113–126].
The other new result to be obtained below is the

complete two-loop matching for all of the light fermion
masses listed in Eq. (1.8). The relation between the Yukawa
couplings and the pole masses of the lightest five quarks
were obtained to order αSα in Ref. [130]. In Ref. [79], the
relationship between the bottom quark on-shell mass and
its Yukawa coupling and running mass were obtained at
two-loop order in the gaugeless limit, for both a tree-level
VEV scheme and an “on-shell” definition of the VEV,
v2on-shell ≡ 1=

ffiffiffi
2

p
GF. This has been extended to full two-

loop order in Ref. [23], with results given in terms of
numerical linear interpolation formulas. In Ref. [131], the
matching formulas for decoupling were given for the

bottom quark mass, again using numerical interpolation
formulas. In this paper, I will give the analytic results for
the matching relations for the bottom quark as well as all
other light quark masses, using the tadpole-free scheme to
define the standard model VEV (and thus the running
masses) in the nondecoupled theory.
The method used to find each decoupling matching

relation is to compute a gauge-invariant physical quantity
two ways, in terms of the parameters of the decoupled and
the nondecoupled theories, and then require that the results
agree. For the gauge couplings, the physical quantity is the
residue of the pole in a scattering amplitude at p2 ¼ 0,
where pμ is the four-momentum of the gauge boson
mediating the interaction. In the case of the fermion masses
mf, the physical quantity is the pole mass. The methods
used here for the necessary calculations are very similar to
those in Refs. [11,22,57,58,80], and all notations are
chosen to be consistent with those papers. In particular,
logarithms involving the renormalization scale will be
denoted by

lnðxÞ≡ lnðx=Q2Þ; ð1:9Þ

where x ¼ t; h; Z;W;… are MS squared masses. In the
following, only vacuum graphs occur in the final results, so
they can be written in terms of lnðxÞ and the two-loop
renormalized vacuum basis integral function [8,132]. The
notation used here is, in terms of dilogarithms, for x; y ≤ z,

Iðx; y; zÞ ¼ 1

2
ðx− y− zÞlnðyÞlnðzÞ þ 1

2
ðy− x− zÞlnðxÞlnðzÞ

þ 1

2
ðz− x− yÞlnðxÞlnðyÞ

þ 2xlnðxÞ þ 2ylnðyÞ þ 2zlnðzÞ− 5

2
ðxþ yþ zÞ

þ r

�
Li2ðk1Þ þLi2ðk2Þ− lnðk1Þ lnðk2Þ

þ 1

2
lnðx=zÞ lnðy=zÞ− ζ2

�
; ð1:10Þ

with r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðx; y; zÞp

and k1 ¼ ðzþ x − y − rÞ=2z and
k2 ¼ ðzþ y − x − rÞ=2z, where

λðx; y; zÞ≡ x2 þ y2 þ z2 − 2xy − 2xz − 2yz: ð1:11Þ

The function Iðx; y; zÞ implicitly depends onQ through the
ln functions, and it is symmetric under the interchange of
any of its arguments x, y, z. Some useful special cases are as
follows:

Ið0; 0; xÞ ¼ −
1

2
xln2ðxÞ þ 2xlnðxÞ − 5

2
x − ζ2x; ð1:12Þ

2Note, however, that the α̂ð5ÞðMZÞ quoted as the MS coupling
in the Review of Particle Properties (RPP) [126] decouples the
top quark but not the W boson, and so is not the same as the MS
scheme αðQÞ as defined here within the five-quark, three-lepton
SUð3Þc ×Uð1ÞEM gauge theory. In fact, strictly speaking, α̂ð5Þ as
defined in the RPP (following Refs. [113,115]) is not really an
MS coupling in the usual sense, because once the top quark has
been decoupled, SUð2ÞL gauge invariance is explicitly and
irretrievably broken, so that the W, Z bosons should also be
decoupled in order to have a renormalizable effective theory.
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Ið0; x; xÞ ¼ −xln2ðxÞ þ 4xlnðxÞ − 5x; ð1:13Þ

Ið0; x; yÞ ¼ ðy − xÞ
�
Li2ð1 − y=xÞ þ 1

2
ln2ðxÞ

�

þ ylnðyÞ½2 − lnðxÞ� þ 2xlnðxÞ − 5

2
ðxþ yÞ:

ð1:14Þ

For use below in the matching relations for gauge cou-
plings, it is convenient to define a Q-independent combi-
nation function:

Fðx; yÞ≡ Iðx; x; yÞ þ ðx − y=2Þln2ðxÞ þ ylnðxÞlnðyÞ
þ ð4x − 2yÞlnðxÞ − 8xlnðyÞ
þ ½ð4x − yÞ2=6x� lnðy=xÞ
− x=3þ 31y=6 − y2=3x; ð1:15Þ

which has the nice property that the following limit is finite:

lim
y→4x

Fðx; yÞ=ðy − 4xÞ3 ¼ ½2 lnð2Þ − 1�=60x2: ð1:16Þ

Although the definitions in terms of ordinary dilogarithms
are convenient for computer numerical evaluation, it is
perhaps worth noting that for y ≤ 4x, one can also write

Fðx; yÞ ¼ ð4x − yÞ
�
1

2
Φðy=4xÞ þ

�
4

3
þ y
6x

�
lnðx=yÞ

−
4

3
þ y
3x

�
; ð1:17Þ

where

ΦðzÞ ¼ 4

ffiffiffiffiffiffiffiffiffiffi
z

1 − z

r
Cl2ð2 arcsinð

ffiffiffi
z

p ÞÞ; ð1:18Þ

with the Clausen integral function defined by

Cl2ðxÞ ¼ −
Z

x

0

dt lnð2 sinðt=2ÞÞ: ð1:19Þ

II. DECOUPLING RELATIONS
IN THE STANDARD MODEL

Consider the simultaneous decoupling of t, h, Z, and W
from the standard model at a scale Q. The matching
relations for the low-energy effective theory renormalizable
parameters in the MS scheme can be written as

α ¼ e2

4π

�
1þ

X∞
l¼1

1

ð16π2Þl θ
ðlÞ
α

�
; ð2:1Þ

αS ¼
g23
4π

�
1þ

X∞
l¼1

1

ð16π2Þl θ
ðlÞ
αS

�
; ð2:2Þ

mf ¼ yfvffiffiffi
2

p
�
1þ

X∞
l¼1

1

ð16π2Þl θ
ðlÞ
mf

�
;

ðf ¼ b; c; s; u; d; τ; μ; eÞ; ð2:3Þ

where the l-loop contributions θðlÞX on the right sides are
functions of the parameters g3, g, g0, yt, v, and the matching
renormalization scale Q. The effects of yf for f ≠ t are
negligible and therefore neglected, except of course for the
leading factor of yf in Eq. (2.3). Results below are
expressed3 in terms of the running MS squared masses
defined in Eqs. (1.2)–(1.5).

A. Matching of α

To determine the matching condition for α in the low-
energy theory, consider the residue of the pole at p2 ¼ 0 in
the neutral current channel amplitude for the scattering of
charged particles, as depicted in Fig. 1. This is done first in
the full standard model including both γ and Z contribu-
tions to the neutral current, and then in the low-energy

FIG. 1. The decoupling matching relation for α in the standard
model is obtained from the residue of the pole at p2 ¼ 0 in the
amplitude for neutral current scattering of charged particles,
represented by the straight lines. By choosing the scattering
charged particles to be vectorlike singlets under SUð2ÞL and to
have infinitesimal Uð1ÞY charges, the one-particle irreducible
vertex corrections and external state propagator corrections
(depicted as the smaller light gray blobs) are parametrically
suppressed by an arbitrary amount, so that only the mixed γ, Z
propagator corrections (larger, darker gray blob) contribute.

3It is also easy to reexpress these results in terms of pole
squared masses M2

h, M2
W , M2

Z, M2
t , by using the one-loop

expressions relating them to h, W, Z, t (found, e.g., in
Refs. [22,57,58,80], in the notations and VEV convention of
the present paper), but that will not be done explicitly here.
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effective theory where only γ exchange contributes.
Requiring that the results of the two calculations agree
gives the matching condition.
In order to avoid complications involving charged

particle propagator and vertex corrections, it is convenient
to use a trick by taking the charged particles to be vectorlike
singlets under weak isospin SUð2ÞL and to carry infini-
tesimal electric charges, which are therefore also equal to
their Uð1ÞY charges. This ensures that the one-particle-
irreducible vertex corrections and the charged particle
propagator corrections to the amplitude are parametrically
suppressed by an arbitrary amount relative to the bosonic
propagator corrections, due to higher powers of the
infinitesimal charges, and so they can be neglected. The
result for the matching of the electromagnetic coupling then
follows only from consideration of the corrections to the
γ, Z system propagator. The idea behind this trick is that
Uð1ÞEM gauge invariance guarantees that the matching
condition for the electromagnetic coupling cannot depend
on the quantum numbers of the charged states to which the
neutral current couples, so the same result must obtain for
other scattering processes involving chiral fermions includ-
ing SUð2ÞL doublets such as those in the standard model,
where vertex and fermion propagator corrections are
nontrivial.
The propagator matrix for the γ, Z system can be written

in terms of the components of the (transverse) one-
particle-irreducible self-energy functions ΠabðsÞ for a; b ¼
γ; Z and s ¼ −p2, as iGðημν − pμpν=p2Þ, where

G−1 ¼
� s − ΠγγðsÞ −ΠγZðsÞ

−ΠγZðsÞ s −m2
Z − ΠZZðsÞ

�
: ð2:4Þ

It follows that

Gγγ ¼
1

s − Π̃γγ

; ð2:5Þ

GγZ ¼ ΠγZ

ðs −m2
Z − ΠZZÞðs − Π̃γγÞ

; ð2:6Þ

GZZ ¼ s − Πγγ

ðs −m2
Z − ΠZZÞðs − Π̃γγÞ

; ð2:7Þ

where

Π̃γγ ≡ Πγγ þ ðΠγZÞ2=ðs −m2
Z − ΠZZÞ: ð2:8Þ

Now, the neutral current interaction amplitude between
two SUð2ÞL singlet states with infinitesimal Uð1ÞY charges
is just proportional to

A ¼ g02GYY ¼ g02½c2WGγγ − 2cWsWGγZ þ s2WGZZ�; ð2:9Þ

where cW ¼ g=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

p
and sW ¼ g0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

p
. It fol-

lows that

A ¼ e2
�
1þ ðg0=gÞ2ðs − ΠγγÞ − ð2g0=gÞΠγZ

s −m2
Z − ΠZZ

�
=½s − Π̃γγ�:

ð2:10Þ

The existence of a massless photon pole in the amplitude at
s ¼ 0 therefore implies

Π̃γγð0Þ ¼ 0; ð2:11Þ

and the residue of the pole in A is a gauge-invariant
physical observable:

resðAÞ ¼ e2
�
1þ ðg0=gÞΠγZð0Þ

m2
Z þ ΠZZð0Þ

�
2

=½1 − Π̃0
γγð0Þ�: ð2:12Þ

Here Eq. (2.11) has been used to eliminate Πγγð0Þ from the
numerator. So far, no perturbative expansions or approx-
imations or assumptions about the particular choice of
gauge-fixing scheme have been used.
The calculation of the ΠabðsÞ is then performed in the

Landau gauge in a loop expansion in terms of bare
parameters (with no counterterm diagrams) in d ¼ 4 −
2ϵ dimensions, and at the end, the result for the residue of
the pole, resðAÞ, is translated to the MS scheme by the
standard parameter redefinitions that give bare parameters
(including the VEV) in terms of MS ones.4 This procedure
is simpler and easier than using separate counterterm
Feynman rules from the start, and the cancellation of poles
in ϵ provides a check. The verification of Eq. (2.11) through
two-loop order gives another check.
The calculation of resðAÞ is then repeated in the

low-energy theory with t, h, Z, W absent, and therefore
no ΠγZ or ΠZZ, so that Πγγð0Þ ¼ 0, and resðAÞ ¼ 4πα=
½1 − Π0

γγð0Þ�. Requiring that the two results for the observ-
able resðAÞ be equal gives the matching condition for the
electromagnetic coupling, after taking into account the one-
loop matching for the light fermion masses between the two
theories, from Sec. II C below. Note that nonperturbative
effects from confined light quarks are common to the two
versions of resðAÞ, and so cancel out.
At one-loop order, one obtains the well-known result

θð1Þα ¼ e2
�
2

3
− 7lnðWÞ þ 16

9
lnðtÞ

�
: ð2:13Þ

4In the same notations and conventions as the present paper,
they can be found in Eqs. (2.5)–(2.24) of Ref. [22], Eqs. (2.3)–
(2.12) of Ref. [57], and Eqs. (2.5)–(2.8) of Ref. [58].
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For the two-loop contribution to the matching, I obtain

θð2Þα ¼ e2g23

�
−
64

9
lnðtÞ − 208

27

�
þ e2y2t

�
16tðh − tÞ
3hð4t − hÞ2 Fðt; hÞ −

16t
9h

½1þ lnðh=tÞ�

þ 16t
9ð4t − ZÞ3 ½tð80W=Z − 7 − 64W2=Z2Þ þ 8Z − 40W þ 32W2=Z�Fðt; ZÞ

þ 4½ð80W=Z − 64W2=Z2Þ½1þ lnðZ=tÞ� þ 2þ 3lnðhÞ − 7lnðZÞ − 14lnðtÞ�=27þ 22lnðtÞ − 43

4

�

þ e2g2
�
3Wð3h2 − 12hW þ 4W2Þ

hð4W − hÞ3 FðW; hÞ þ
�
W
h
− 2

�
lnðhÞ þ 9Wð4W2 − 4WZ þ 3Z2Þ

Z2ð4W − ZÞ2 FðW;ZÞ

þ
�
661Z
108W

−
491

27
þ 319W

27Z
þ 12W2

Z2

�
lnðZÞ þ

�
20

3
þ 37W

3Z
−
12W2

Z2
−
W
h

�
lnðWÞ þ 5t

3ðt −WÞ lnðt=WÞ

þ 31

81
−

3h
4W

þW
h
þ 12W2

Z2
−
799W
27Z

−
1057Z
324W

�
þ e4

�
49ln2ðWÞ − 224

9
lnðtÞlnðWÞ þ 256

81
ln2ðtÞ

�
: ð2:14Þ

The g23 part of Eq. (2.14) can be checked to be consistent with
previously known results for the relation between the Thom-
son scattering value of α and itsMS version, e.g., in Ref. [23].
The presentation of Eq. (2.14) is made simpler by the use

of the function Fðx; yÞ defined in Eq. (1.15) above.

Equation (1.16) shows immediately that θð2Þα is finite and
well defined for h ¼ 4t and Z ¼ 4t and for h ¼ 4W and
Z ¼ 4W, as well as for t ¼ W, despite the presence of
denominators proportional to ð4t − hÞ2 and ð4t − ZÞ3 and
ð4W − hÞ3 and ð4W − ZÞ2 and t −W in Eq. (2.14). This is a
useful check, since there is no physical reason why anything
untoward should happen at these special cases, even though,
of course, none of them are close to being realized in our
world. Additional checks are provided by the absence of
poles 1=ϵ and 1=ϵ2, and by the cancellation5 of dependence
on the Landau gauge Goldstone boson squared mass, after
Goldstone boson resummation [13,14]. I have further
checked that renormalization group invariance is satisfied

by Eqs. (2.1), (2.13), and (2.14), by computing the Q
derivative of each side using the known beta functions of
the low-energy and high-energy theories and the direct Q
dependence of the function lnðxÞ. [Note that Fðx; yÞ has no
Q dependence.] In principle, this check should be merely
equivalent to requiring the absence of poles in ϵ, but in
practice it also checks intermediate steps in the calculations.

B. Matching of αS

For the decoupling relation of αS, the result has already
been obtained in pure QCD to one-loop [103], two-loop
[104,105], three-loop [106], and four-loop order [108,109],
and at complete two-loop order by Bednyakov [110]. I have
recalculated the latter result, finding complete agreement:

θð1ÞαS ¼ 2

3
g23lnðtÞ; ð2:15Þ

θð2ÞαS ¼ g43

�
22

9
þ 22

3
lnðtÞ þ 4

9
ln2ðtÞ

�
þ g23y

2
t

�
2tðh − tÞ
hð4t − hÞ2 Fðt; hÞ −

2t
3h

½1þ lnðh=tÞ�

þ 2t
3ð4t − ZÞ3 ½tð80W=Z − 7 − 64W2=Z2Þ þ 8Z − 40W þ 32W2=Z�Fðt; ZÞ

þ ½ð80W=Z − 64W2=Z2Þ½1þ lnðZ=tÞ� þ 2þ 3lnðhÞ − 7lnðZÞ − 14lnðtÞ�=18
�

þ g23g
2

�
8ðW − ZÞ

9Z
lnðtÞ þ 3lnðWÞ þ

�
25Z
18W

−
13

9
þ 14W

9Z

�
lnðZÞ

þ t
t −W

lnðt=WÞ − 49

27
−

W
18Z

−
163Z
216W

�
: ð2:16Þ

5More generally, in the Landau gauge tadpole-free scheme, this check is a nontrivial counterpart to the gauge-invariance check that
one would obtain by instead working in a general gauge fixing with a tree-level VEV and nonvanishing tadpoles.
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Although equivalent, the presentation in Eq. (2.16) is
somewhat more compact than the expression given in
Ref. [110]. This is due in part to the use of the function
Fðx; yÞ defined in Eq. (1.15) above, and also because the
results are given in terms of running MS squared masses
here, rather than pole masses as in Ref. [110]; converting to
the top quark pole mass in Eq. (2.15) just contributes some
additional two-loop terms involving the one-loop top quark
on-shell self-energy.
The pure QCD contributions to decoupling the top quark

at three-loop [106] and four-loop [108,109] order are also
reproduced here for the sake of completeness:

θð3ÞαS ¼ g63

�
8

27
ln3ðtÞ − 3ln2ðtÞ þ 620

9
lnðtÞ þ 35.123151

�
;

ð2:17Þ

θð4ÞαS ¼ g83

�
16

81
ln4ðtÞ þ 4706

81
ln3ðtÞ − 1231

27
ln2ðtÞ

þ 245.856958lnðtÞ − 109.765121

�
: ð2:18Þ

The coefficients involving irrational numbers (available in
their full glory in Refs. [106,108,109,133]) have been
reduced to decimal approximations here and in similar
expressions below, for the sake of brevity.

C. Matching of running fermion masses

Now, consider the decoupling relations for the masses of
the fermions lighter than the top quark. The matching
functions can be given generically for fermions other than
the bottom quark, which is different because it has a direct
coupling to the top quark and W boson. For a generic
fermion,

ðQf; I
f
3 ; CfÞ ¼

8<
:

ð2=3; 1=2; 4=3Þ ðf ¼ t; c; uÞ;
ð−1=3;−1=2; 4=3Þ ðf ¼ b; s; dÞ;
ð−1;−1=2; 0Þ ðf ¼ τ; μ; eÞ

ð2:19Þ

are the notations for electric charge Qf, I
f
3 for the third

component of weak isospin of the left-handed fermion, and
Cf for the SUð3Þc Casimir invariant.
The method used is to require equality between two

computations of the pole mass for each light fermion, first
in the full standard model theory and then again in the low-
energy effective theory without t, h, Z,W. The strategy and
details of the calculation of the light fermion pole masses
that I have used are very similar to those described already
in Ref. [80] for the top quark, and so they will not be
reviewed here.
The resulting one-loop-order threshold corrections to the

light fermion masses are

θð1Þmf ¼
9g2þ3g02

16
þQfg02½If3þQfðW=Z−1Þ�½3lnðZÞ−5=2�;

ð2:20Þ

θð1Þmb ¼ θð1Þmd þ
3

4
y2t

�
5

6
− lnðtÞ þ

�
W

t−W

�
2

lnðt=WÞ− W
t−W

�

ð2:21Þ

for a generic fermion other than the bottom quark, and for
the bottom quark, respectively. In the case of the bottom
quark, only the leading order in an expansion in y2b has been
kept. The next term in the expansion is

Δθð1Þmb ¼ y2b

�
3

4
lnðhÞ þ 1

4
lnðtÞ þW2ð3t2 þ 4tW −W2Þ

4ðt −WÞ4 lnðt=WÞ −W2ð7t −WÞ
4ðt −WÞ3 þ 7Z2 þ 16WZ − 32W2

36Z2
lnðZÞ

−
4ðZ −WÞð2W þ ZÞ

9Z2
lnðbÞ − 91

216
−

8W
27Z

þ 16W2

27Z2

�
: ð2:22Þ

However, since y2b=16π
2 < 2 × 10−6, this contribution is negligible.

The two-loop-order threshold function for the bottom quark mass takes the form

θð2Þmb ¼
4

3
g43

�
ln2ðtÞ þ 5

3
lnðtÞ þ 89

36

�
þ g23y

2
t ½ð8t2 − 8tW þ 6W2ÞIð0; t;WÞ þ tð7t2 − 17tW þ 22W2Þln2ðtÞ

þ 2tWð4t − 7WÞlnðtÞlnðWÞ þ ð35t2W − 23t3 − 56tW2 þ 16W3ÞlnðtÞ − ð2t − 3WÞð7t − 3WÞWlnðWÞ

þ 92t3=3 − 19t2W þ 17tW2 þ 4W3=3�=ðt −WÞ3 þ 4

3
g23

�
g02

6
ð1þ 2W=ZÞ½lnðZÞ − 17=12� þ 9

4
g2lnðWÞ

þ 9

8
ðg2 þ g02ÞlnðZÞ − 15

32
ð3g2 þ g02Þ

�
þ
X12
j¼1

bð2Þj I ð2Þ
j þ

X4
j¼1

Xj

k¼1

bð1;1Þj;k I ð1Þ
j I ð1Þ

k þ
X4
j¼1

bð1Þj I ð1Þ
j þ bð0Þ: ð2:23Þ
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The part that does not contain the strong coupling g3 involves coefficients of two-loop integral functions and logarithms
from the lists

I ð2Þ ¼ fζ2; Ið0; h;WÞ; Ið0; h; ZÞ; Ið0;W; ZÞ; Iðh;W;WÞ; Iðh; Z; ZÞ;
Iðt; t; ZÞ; IðW;W; ZÞ; Ið0; t;WÞ; Iðh; t; tÞ; Iðh; t;WÞ; Iðt;W; ZÞg; ð2:24Þ

I ð1Þ ¼ flnðtÞ; lnðhÞ; lnðZÞ; lnðWÞg; ð2:25Þ

respectively. It cannot be simplified to a length reasonable
for printing, and so it is not given explicitly above in its full
form, but instead in an ancillary electronic file distributed
with this paper, called theta2mb. The file theta2mb
contains the coefficients in Eq. (2.23). The individual

coefficients bð2Þj , bð1;1Þj;k , bð1Þj , and bð0Þ are rational functions
of the input parameters t, h, Z, W, and v. Many of them
have poles in one or more of the quantities t −W, 4W − h,
4Z − h, 4t − Z, λðt;W; ZÞ, and λðt;W; hÞ, but I have

checked that the total θð2Þmb is nevertheless finite when each
of these quantities vanishes. The format used in the
ancillary file theta2mb is compatible with inclusion in
computer code for easy numerical evaluation using
Eqs. (1.9)–(1.15). Additional checks follow, as usual, from
the absence of poles 1=ϵ2 and 1=ϵ upon translating to the
MS scheme, and by the cancellation of contributions
involving the Landau gauge Goldstone boson mass.
For generic fermions f ¼ ðc; s; u; d; τ; μ; eÞ, the two-

loop threshold functions are similarly found to be

θð2Þmf ¼ Cfg43

�
ln2ðtÞ þ 5

3
lnðtÞ þ 89

36

�
þ Cfg23

�
3g02Qf½If3

þQfðW=Z − 1Þ�½lnðZÞ − 17=12�

þ 9

4
g2lnðWÞ þ 9

8
ðg2 þ g02ÞlnðZÞ − 15

32
ð3g2 þ g02Þ

�

þ
X8
j¼1

cð2Þj I ð2Þ
j þ

X4
j¼1

Xj

k¼1

cð1;1Þj;k I ð1Þ
j I ð1Þ

k

þ
X4
j¼1

cð1Þj I ð1Þ
j þ cð0Þ; ð2:26Þ

where the contributions independent of g3 involve coef-
ficients that are again too complicated to show in print, and
so are relegated to an electronic file called theta2mf
distributed as an ancillary to this paper. The file the-
ta2mf contains the coefficients in Eq. (2.26). Note that the
last four functions in the list in Eq. (2.24) do not appear in

Eq. (2.26). The individual coefficients cð2Þj , cð1;1Þj;k , cð1Þj , and

cð0Þ are again rational functions of t, h, Z, W, and v, with
pole singularities at 4Z − h and 4t − Z, but the total is free
of these singularities.
The pure QCD threshold corrections for light quark

masses were already known up to three-loop order from

Chetyrkin, Kniehl, and Steinhauser in Ref. [106] and from
Liu and Steinhauser at four-loop order in Ref. [111]. They
are listed here for the sake of completeness. For each quark
q ¼ ðb; c; s; u; dÞ,

θð3Þmq ¼ g63

�
−
152

27
ln3ðtÞ þ 700

27
ln2ðtÞ

þ 111.047973lnðtÞ þ 126.160947

�
; ð2:27Þ

θð4Þmq ¼ g83

�
830

27
ln4ðtÞ − 10984

81
ln3ðtÞ − 543.379386ln2ðtÞ

þ 452.388432lnðtÞ þ 236.908052
�
: ð2:28Þ

Note that the preceding equations apply specifically to the
decoupling of the top quark from the theory. Again, the
known irrational parts have been replaced by decimal
approximations.

III. DECOUPLING OF LIGHTER FERMIONS IN
THE QCD+QED EFFECTIVE THEORY

In this section, I provide the decoupling relations
appropriate for further sequential decoupling of fermions
within the QCDþ QED theory. None of the results in this
section are new, as the QCD parts of these are now well
known, and the QED contributions at up to two-loop order
and certain light mass expansions can be easily inferred
from those found in the existing literature. They are
collected here for the sake of completeness.
The notation adopted here assumes that a generic

fermion, denoted F, is to be decoupled.6 The charge and
QCD Casimir quantum numbers of F are to be denoted QF
and CF, respectively, just as in Eq. (2.19), and the index TF
equals 1=2 when the decoupled fermion F is a quark and 0
when it is a lepton, while the number of colors NF is 3
when F is a quark and 1 when F is a lepton. The decoupling
scaleQ associated with the matching of parameters is again
arbitrary, but typically should be chosen to be comparable
to the mass of F, in order to avoid large logarithms in

6In the standard model, the formulas below are not practically
applicable with F ¼ u, d, s, because QCD perturbation theory is
not under control. Instead, the RPP [126] quotes the MS masses
at Q ¼ 2 GeV.
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observables calculated after using the renormalization
group equations to run the surviving parameters to lower
energies. The running MS parameters of the high-energy
SUð3Þc × Uð1ÞEM theory will be denoted α, αS, F≡m2

F,
and mf, where f runs over the list of the lighter fermions
which are not being decoupled. For the low-energy theory
with F decoupled, the parameters are distinguished by an
underline, so they are α, αS, and mf. The number of light
quark flavors among the fermions f in the decoupled theory
(which will also include leptons) will be denoted nq.
The decoupling relations can then be written in the form

αðQÞ ¼ αðQÞ
�
1þ

X∞
l¼1

1

ð4πÞl ϑ
ðlÞ
α

�
; ð3:1Þ

αSðQÞ ¼ αSðQÞ
�
1þ

X∞
l¼1

1

ð4πÞl ϑ
ðlÞ
αS

�
; ð3:2Þ

mfðQÞ ¼ mfðQÞ
�
1þ

X∞
l¼1

1

ð4πÞl ϑ
ðlÞ
mf

�
ðf ≠ FÞ: ð3:3Þ

(Note that the symbol ϑ is used to denote the threshold
corrections within the QCDþ QED theory in this section,
in distinction from the symbol θ used in the previous
section for decoupling t, h, Z, W.) Then, for the matching
coefficients for the electromagnetic coupling, one has at the
scale Q where F is decoupled

ϑð1Þα ¼ 4

3
NFQ2

FαlnðFÞ; ð3:4Þ

ϑð2Þα ¼
�
4

3
NFQ2

FαlnðFÞ
�
2

− NFQ2
FαðCFαS

þQ2
FαÞ

�
4lnðFÞ þ 13

3

�
: ð3:5Þ

For the QCD coupling, the results through two-loop order
including QED effects are

ϑð1ÞαS ¼ 4

3
TFαSlnðFÞ; ð3:6Þ

ϑð2ÞαS ¼
�
4

3
TFαSlnðFÞ

�
2

−TFαSðCFαSþQ2
FαÞ

�
4lnðFÞþ13

3

�

þTFCAα
2
S

�
20

3
lnðFÞþ32

9

�
; ð3:7Þ

where TF ¼ 1=2 when F is a quark, and TF ¼ 0 when F is
a lepton, and CA ¼ 3. The pure QCD contributions at three-
loop and four-loop order, which apply only if F is a quark,
are found from Refs. [106,108,109]:

ϑð3ÞαS ¼ α3S

�
8

27
ln3ðFÞ þ

�
53

9
−
16

9
nq

�
ln2ðFÞ

þ
�
955

9
−
67

9
nq

�
lnðFÞ þ 62.211628 −

2633

486
nq

�
;

ð3:8Þ

ϑð4ÞαS ¼ α4S

�
16

81
ln4ðFÞ þ

�
3766

81
þ 508

81
nq −

64

81
n2q

�
ln3ðFÞ

þ
�
4354

27
−
2966

81
nq −

77

81
n2q

�
ln2ðFÞ

þ
�
2157.863053 − 335.316171nq −

6865

729
n2q

�
lnðFÞ

þ 1323.608830 − 258.542470nq − 5.626464n2q

�
:

ð3:9Þ

These can be used with nq ¼ 4when F is the bottom quark,
and with nq ¼ 3 when F is the charm quark. The formulas
with nq ¼ 5, of course, coincide with that for decoupling
the top quark, as in Eqs. (2.27) and (2.28) above.
The one-loop and two-loop threshold corrections for

each light fermion massmf when decoupling the fermion F
in the SUð3Þc ×Uð1ÞEM theory are

ϑð1Þmf ¼ 0; ð3:10Þ

ϑð2Þmf ¼ 2ðTFCfα
2
S þ NFQ2

FQ
2
fα

2Þ
�
ln2ðFÞ þ 5

3
lnðFÞ

þ 89

36
þ Δ2ðf=FÞ

�
; ð3:11Þ

where the last term is the power-suppressed mass correc-
tion, with f, F being the MS squared masses and

Δ2ðrÞ¼ r

�
8

15
lnðrÞ−76

75

�
þr2

�
9

70
lnðrÞ−1389

9800

�
þOðr3Þ:

ð3:12Þ

This effect is mentioned because the squared mass ratios
occurring in the decoupling of the light fermions (notably,
c=b ∼ 0.1) are not quite as suppressed as b=t in the
decoupling of the top quark in the previous section, but
its numerical impact is still quite small. It can be obtained
from the two-loop result for a quark pole mass in the
presence of other massive and massless quarks in Ref. [60].
The pure QCD corrections are also known at three-loop and
four-loop orders from Refs. [106,111], respectively:
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ϑð3Þmf ¼ α3S

��
16

27
nq −

232

27

�
ln3ðFÞ þ 700

27
ln2ðFÞ þ

�
212

27
nq þ 71.788714

�
lnðFÞ

þ 118.248112þ 1.582567nq þ Δ3ðf=FÞ
�
; ð3:13Þ

ϑð4Þmf ¼ α4S

��
8

27
n2q −

80

9
nq þ

610

9

�
ln4ðFÞ þ

�
184

9
nq −

19264

81

�
ln3ðFÞ þ

�
496

81
n2q −

15650

81
nq þ 269.583577

�
ln2ðFÞ

þ ð286.364218þ 39.625147nq − 1.284061n2qÞlnðFÞ þ 14.375890n2q − 375.221169nq þ 1753.616640
�
: ð3:14Þ

In the three-loop part, the small mass correction is

Δ3ðrÞ ¼
8

9
ð2nq − 31ÞlnðFÞΔ2ðrÞ þ r

��
64

135
nq −

451

81

�
ln2ðrÞ þ

�
84887

7290
−
128

135
nq

�
lnðrÞ þ 2.77670 − 0.22452nq

�

þ r2
��

4

35
nq −

239

270

�
ln2ðrÞ þ

�
580157

396900
−

6

35
nq

�
lnðrÞ þ 0.52092þ 0.03556nq

�
þOðr3Þ; ð3:15Þ

which can be gleaned from the expansion of the pole mass
given in Ref. [131] based on the results in Refs. [134,135].
In the four-loop part, the expansion is not known beyond
the lowest order in r ¼ f=F.
In applications of the above formulas, the renormaliza-

tion group running between scales requires the beta
functions for the two gauge couplings and the fermion
masses, which are known in the SUð3Þc ×Uð1ÞEM theory
at full three-loop order including electromagnetic effects;
see, for example, Ref. [131] (and the Appendix of
Ref. [136]) for a general product gauge group with an
arbitrary reducible fermion representation. The higher-
order QCD corrections to the beta function for α are given
in Ref. [123] at order α2α3S and in Ref. [137] at order α2α4S.
The four-loop and five-loop pure QCD contributions to the
αS beta function are found in Refs. [95,96] and [97,98],
respectively. The three-loop, four-loop and five-loop pure
QCD contributions to the quark mass beta functions are in
Refs. [99–102]. Also useful in this context are the fermion
pole masses, which are given for a general product gauge
group with an arbitrary reducible fermion representation
(but assuming just one nonzero fermion mass) in the
Appendix of Ref. [136], with four-loop pure QCD con-
tributions in Refs. [64,65]. In the case of more than one
nonzero quark mass, expansions for small and large mass
ratios in the three-loop pole masses have been given in
Refs. [134,131].

IV. NUMERICAL RESULTS

In this section, I will illustrate the numerical impact of
the matching conditions, concentrating on the new results
of this paper—i.e., the shifts in the electromagnetic
coupling and the light fermion masses from decoupling

t, h, Z, W in the standard model, as a function of the
matching scale Q. For a benchmark model, I consider the
following numerical values for standard model parameters
at a reference scale Q0 ¼ 173.34 GeV:

g3 ¼ 1.1666; ð4:1Þ

g ¼ 0.647550; ð4:2Þ

g0 ¼ 0.358521; ð4:3Þ

yt ¼ 0.93690; ð4:4Þ

λ ¼ 0.12597; ð4:5Þ

v ¼ 246.647 GeV: ð4:6Þ

These are then run to a matching scale 80 GeV <
Q < 180 GeV, and the figures below show the resulting
matching corrections obtained in Secs. II A and II C.
First, Fig. 2 shows results for the various contributions to

the fractional shift in α:

δα=α≡ 1

16π2
θð1Þα þ 1

ð16π2Þ2 θ
ð2Þ
α þ � � � : ð4:7Þ

The left panel of Fig. 2 shows the dominant one-loop
contribution from Eq. (2.13), as well as the total from
Eqs. (2.13) and (2.14). The right panel shows the break-
down of the two-loop contribution in Eq. (2.14) into the
part proportional to g23, the part proportional to y2t , the
remaining pure electroweak part, and the total of these two-
loop corrections. As might be expected, the pure
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electroweak two-loop contributions are quite small over the
entire range of Q, never exceeding 1 part in 105. The two-
loop g23 and y2t parts are larger, but for lower Q there is
significant cancellation between them. The total two-loop
contribution ranges from about −3 × 10−5 to −9 × 10−5,
depending on the choice of Q. This is comparable to the

present uncertainty on Δαð5ÞhadðmZÞ estimated in the RPP
[126], which is 7 × 10−5. Therefore, the total two-loop
correction is just barely numerically relevant at the present
time. If improvements in the hadronic uncertainty are
forthcoming, then the two-loop corrections will become
correspondingly more significant. However, it seems
unlikely that further three-loop corrections to the matching
of α from decoupling t, h, Z, W will be needed in the
foreseeable future.
The fractional shifts

δmf=mf ≡ 1

16π2
θð1Þmf þ

1

ð16π2Þ2 θ
ð2Þ
mf þ � � � ð4:8Þ

are shown in Figs. 3–5. For each of the quark masses, the
solid line is the total matching fractional shift, and the
separate contributions from one-loop (to which QCD does
not contribute) and the combined two-, three-, and four-
loop QCD contributions are shown as the long-dashed and
short-dashed lines, respectively. In the case of the bottom
quark as shown in Fig. 3, the remaining two-loop mixed
QCD and non-QCD contributions are each comparable in
magnitude to the three-loop pure QCD part and much larger
than the four-loop pure QCD part (not shown separately),
but they have opposite signs from each other and have a
significant cancellation. The total fractional shift in mb

from decoupling t, h, Z, W is always less than 5 × 10−3,
and it happens to be very small for Q near MZ due to
accidental cancellation between the different contributions.

(A similar numerical study of the threshold correction for
mb was conducted in Ref. [131], but with different details,
because that reference uses a different definition of the
high-energy running bottom quark mass, based on the VEV
definition v2on-shell ¼ 1=

ffiffiffi
2

p
GF.)

In Fig. 4, the results for the down and strange quark
masses are shown in the left panel, and those for the charm
and up quark masses are shown in the right panel. In both
cases, the two-loop non-QCD corrections are quite tiny, in
part because there is no yt enhancement as there was for the
bottom quark. The two-loop mixed QCD corrections are
larger in magnitude than the four-loop ones and are
comparable to the three-loop QCD corrections, but still
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the matching renormalization scaleQ. The left panel shows the dominant one-loop contribution (dashed line) from Eq. (2.13), as well as
the total (solid line). The right panel shows the breakdown of the total two-loop contribution from Eq. (2.14) (solid line) into the
part proportional to g23 (long-dashed line), the part proportional to y2t (short-dashed line), and the remaining electroweak part
(dot-dashed line).
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FIG. 3. Contributions to the matching relation fractional shift in
the MS bottom quark mass from decoupling t, h, Z, W in the
standard model, as a function of the matching renormalization
scale Q. The long-dashed line is the one-loop contribution from
Eq. (2.21). The short-dashed line is the total QCD (two-, three-,
and four-loop) contribution, from the g43 part of Eq. (2.23) and
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from the g23 (mixed QCD) and g03 (non-QCD) parts of Eq. (2.23),
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less than 2 × 10−4 over most of the range of choices of Q.
For each of the c, s, u, d quark masses, the total fractional
shifts are slightly larger than 2 × 10−3 for Q near MZ, and
they decrease with increasing Q. So, they are considerably
smaller than the present experimental uncertainties in the
masses. This situation is likely to persist for some time,
pending dramatic improvements in the low-energy MS
quark mass determinations from, e.g., lattice QCD.
Figure 5 shows the results for the charged lepton ðτ; μ; eÞ

masses, for which there are, of course, no QCD-enhanced
corrections through two-loop order. As expected, thematch-
ing is dominated by the one-loop part, which contributes on
the order of 2 × 10−4 to 2 × 10−3 to δme=me ¼ δmμ=mμ ¼
δmτ=mτ, depending on the choice of matching scaleQ. The
two-loop contribution to the fractionalmatching shift is seen

to be always less than 6 × 10−6. This can be compared to the
fractional experimental uncertainty in the physicalmasses of
the charged leptons from Ref. [126]. For the tau lepton, this
is presently about 7 × 10−5, showing that the two-loop
contribution is already safely smaller than the accuracy
needed under the most optimistic of circumstances. For the
muon, the fractional uncertainty in the physical mass is
about 2 × 10−8, and for the electron is about 6 × 10−9, so in
those cases the two-loop (and perhaps even higher-loop)
threshold matching contributions are worthwhile, at least in
principle. However, this does not yet take into account more
subtle parametric uncertainties that are beyond the scope of
this paper—for example, the low-energy nonperturbative
hadronic contribution to their pole masses induced through
photon self-energy corrections, and even small loop effects
from GF-suppressed four-fermion couplings in the low-
energy effective field theory.

V. OUTLOOK

In this paper, I have discussed the matching relations for
the renormalizable couplings in the low-energy effective
SUð3Þc ×Uð1ÞEM gauge theory with five quarks and three
leptons, when the top quark, Higgs scalar, and Z and W
vector bosons are decoupled together at an MS renormal-
ization scale Q. This simultaneous decoupling ensures that
the low-energy effective field theory has marginal and
relevant couplings as part of a consistent renormalizable
gauge theory. Also present in the low-energy theory are
nonrenormalizable couplings including four-fermion terms
for the effective weak interactions; the matching relations
for those are not discussed in the present paper. The
matching relations provide a connection to the far ultra-
violet, fundamental, and complete definition of the standard
model. The new results for the matching of the electro-
magnetic coupling α and the light quark and lepton masses
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FIG. 4. Contributions to the matching relation fractional shift in the MS quark masses from decoupling t, h, Z, W in the standard
model, as a function of the matching renormalization scale Q. The left panel shows δms=ms ¼ δmd=md, and the right panel shows
δmc=mc ¼ δmu=mu. In each case, the long-dashed line is the one-loop contribution from Eq. (2.20). The short-dashed line is the total
QCD (two-, three-, and four-loop) contribution, from the g43 part of Eq. (2.26) and Eqs. (2.27) and (2.28), and the lower and upper dash-
dotted lines are from the g23 (mixed QCD) and g03 (non-QCD) parts of Eq. (2.26), respectively. The solid line is the total.
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FIG. 5. Contributions to the matching relation fractional shift in
the MS charged lepton masses from decoupling t, h, Z, W in the
standard model, as a function of the matching renormalization
scaleQ. The solid line is the total, and the long-dashed line hiding
just beneath it is the dominant one-loop contribution from
Eq. (2.20). The small difference is the two-loop contribution
from Eq. (2.26), shown as the dot-dashed line.
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augment previously known results for the strong coupling
and the bottom quark mass, and the latter is given here in
the tadpole-free scheme for the VEV, as part of a larger
program [11–13,22,57,58,80] to relate standard model
observables to the underlying Lagrangian parameters in
that scheme. The matching corrections found here are
reassuringly small, and in some cases much smaller than
the present experimental uncertainties in the corresponding
observables. They nevertheless are at least useful in
providing informed bounds on the possible sources of
theoretical error. They could become considerably more

significant in the future when experimental uncertainties on
input parameters, notably the low-energy quark masses and
nonperturbative contributions to the fine-structure constant,
are reduced.
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