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Large numbers of muons will be produced at facilities developed to probe the lepton-flavor-violating
process μ → eγ. We show that by constructing a suitable asymmetry, radiative muon decay μ → eγνμν̄e can
also be used to test the WWγ vertex at such facilities. The process has two missing neutrinos in the final
state, and upon integrating their momenta the partial differential decay rate shows no radiation-amplitude
zero. However, we establish that an easily separable part of the normalized differential decay rate that is odd
under the exchange of photon and electron energies does have a zero in the case of the standard model
(SM). This new type of zero has hitherto not been studied in the literature. A suitably constructed
asymmetry using this fact enables a sensitive probe for the WWγ vertex beyond the SM. With a simplistic
analysis, we find that the C- and P-conserving dimension-fourWWγ vertex can be probed atOð10−2Þ with
a satisfactory significance level.
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I. INTRODUCTION

The SUð2ÞL ⊗ Uð1ÞY theory of electroweak interactions
has been tested extensively in last few decades and there is
no doubt that it is the correct theory at least up to the TeV
scale. This conviction is largely based on the precision
measurements at LEP and the consistency of the top and
Higgs boson masses which could be predicted by taking
radiative corrections into account. The gauge boson and
Higgs boson self-interactions are, however, not as well
probed either by direct measurements or by radiative
corrections and it is possible that some deviations from
the standard model (SM) loop-level values might still be
seen. To ascertain the validity of the SM it is critical that
the WWγ vertex, which is predicted uniquely in the SM,
be probed to an accuracy consistent with loop-level
corrections to it. Several experiments [1–8] have measured
parameters that probe theWWγ andWWZ vertices, but the
accuracy achieved is still insufficient to probe one-loop
corrections to it within the SM.

In this paper, we investigate how the C- and P-conserving
dimension-fourWWγ operator can be probed experimentally
using radiative muon decays. The vertex factor for this
operator is usually denoted by κγ and is uniquely predicted in
the SM. At tree level, κγ ¼ 1 in the SM and the absolute
value of the one-loop corrections to the tree-level values of κγ
is restricted to be less than 1.5 × 10−2 [9]. However, the
current global average κγ ¼ 0.982� 0.042 [10] has too
large an uncertainty to probe the SM up to one-loop
accuracy. Of the experimentally measured values of κγ ,
only the ATLAS and CMS collaborations use the data for
real on-shell photon emission in hadron colliders [1,2],
probing the true magnetic moment of the W boson.
One can expect κγ to deviate from its SM value by only a

few percent; hence, we must choose the mode to be studied
very carefully. Radiative muon decay μ → eγνμν̄e is a
promising mode to measure the true magnetic moment (due
to a real photon in the final state) of the W boson in this
regard. At first sight the measurement of the W-boson
gauge coupling using a low-energy decay process may
seem impossible, since the effect is suppressed by two
powers of the W-boson mass. The process has two missing
neutrinos in the final state, and upon integrating their
momenta the partial differential decay rate shows no
radiation-amplitude zero [11]. Moreover, the differential
decay rate does not show enough sensitivity to a deviation
of theWWγ vertex from that of the SM. We show, however,
that an easily separable part of the normalized differential
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decay rate (odd under the exchange of photon and electron
energies) does have a zero in the case of the SM. The
vanishing of the odd contribution under the exchange of the
final-state electron and photon energies in the decay rate is
a new type of zero that hitherto has not been studied in the
literature. A suitably constructed asymmetry using this fact
enables adequate sensitivity to probe the WWγ vertex
beyond the SM. We consider a very restricted part of the
phase space where the asymmetry is larger than statistical
errors for our study. A large number of muons are expected
to be produced at the COMET [12], MEG [13], and Mu2e
[14] experiments to probe lepton-flavor-violating processes
like μ → eγ. The radiative muon decay μ → eγνμν̄e [15]
discussed in this paper is the dominant background process
for this case. The large sample of μ → eγνμν̄e produced at
such facilities makes them an ideal environment to probe
the WWγ vertex, with reduced statistical uncertainty, as
discussed in this paper. In a simulation using ηγ≡
κγ − 1 ¼ 0.01, we find that the asymmetry constructed
by us can probe this ηγ value with 3.9σ significance.
The rest of the paper is organized as follows. In Sec. II

we briefly discuss the decay kinematics and relevant
expressions for the decay rate. These results are used to
construct the observables in Sec. III, where we also explain
why a zero in the odd amplitude is expected. Section IV
deals with the numerical analysis to probe theWWγ vertex,
and finally we conclude in Sec. V.

II. THEORETICAL FRAMEWORK

In this section we briefly discuss the theoretical setup
for the radiative muon decay. The radiative muon decay
proceeds through three Feynman diagrams, shown in
Fig. 1, where the photon in the final state can either arise
from any of the initial- and final-state leptons or the W

boson in the propagator. The latter process is what we are
interested in. We define the four-momenta of an incoming
μ−, outgoing e−, γ, νμ, and ν̄e as pm, pe, p, k, and k0,
respectively, and the masses of the muon, electron, and W
boson are denoted by mμ, me, and mW , respectively. The
amplitudes corresponding to these three diagrams (from
top to bottom), labeled with subscripts 1 to 3, can be
expressed as

iM1 ¼
�
−ieg2

8

�
ūðpeÞγβð1 − γ5Þvðk0Þ

"
gαβ − qα

1
qβ
1

m2
W

q21 −m2
W

#

× ūðkÞγαð1 − γ5Þ
�

1

=pm − =p −mμ

�
γδuðpmÞϵ�δ; ð1Þ

iM2 ¼
�
−ieg2
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2
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#
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× Γρσδðq2; q1; pÞϵ�δ; ð3Þ
where e and g are the charge of the positron and the
weak coupling constant, respectively, qμ1 ¼ pμ

e þ k0μ, and
qμ2 ¼ pμ

m − kμ. In Eq. (3), Γρσδðq2; q1; pÞ denotes the
effective triple gauge boson vertex for electroweak inter-
actions, as shown in Fig. 2.
The most general couplings of W to the neutral gauge

bosons γ and Z can be described by the following effective
Lagrangian [16]:

LV
eff ¼ −igV

�
gV1 ðW†

μνWμ −W†μWμνÞVν þ κVW
†
μWνVμν

þ λV
m2

W
W†

λμW
μ
νVνλ þ ifV4W

†
μWνð∂μVν þ ∂νVμÞ

− ifV5 ϵ
μνρσðW†

μ∂ρ

↔
WνÞVσ

þ κ̃VW
†
μWνṼμν þ λ̃V

m2
W
W†

λμW
μ
νṼνλ

�
: ð4Þ

FIG. 1. Feynman diagrams for radiative muon decay. FIG. 2. Feynman rule for the effective WWγ vertex.
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Here, V corresponds to γ or Z, gγ ¼ e, and gZ ¼ e cot θW ,
where θW is the Weinberg angle. Wμν ¼ ∂μWν − ∂νWμ,

Vμν ¼ ∂μVν − ∂νVμ, Ṽμν ¼ 1
2
ϵμνρσVρσ, ðA∂μ

↔
BÞ ¼ Að∂μBÞ−

ð∂μAÞB, and the Bjorken-Drell metric is taken as
ϵ0123 ¼ −ϵ0123 ¼ þ1. In the SM, at tree level, gV1 ¼
κV ¼ 1 and all other coupling parameters are zero.
In the case of radiative muon decay, the vertex with a

W-boson pair and a photon field is involved, where among
the seven coupling parameters, fγ4, κ̃γ , and λ̃γ denote the
coupling strengths of CP-violating interactions in the
Lagrangian [in Eq. (4)] and are constrained to be less than
∼ð10−4Þ [17] due to the measurements of the neutron
electric dipole moment in the case of direct CP violation.
Due to the CP-violating nature of these couplings, devia-
tions from the SM contributions are proportional to the
square of these couplings and thus are highly suppressed, as
compared to CP-conserving contributions. Hence, we
neglect the CP-violating parameters for the rest of the
paper. The demand that C and P be conserved separately in
the Lagrangian allows us to choose a vanishing fγ5. It is
obvious that the muon radiative decay will not be sensitive
to the dimension six-operator involving λγ , due to an
additional m2

W suppression. The measurement of λγ is
possible only at high-energy colliders. Hence, we can
safely neglect the deviation of λγ from its SM value of
zero. Furthermore, the value of the coupling gγ1 is fixed to
be unity due to electromagnetic gauge invariance. Thus, in
momentum space the WWγ vertex can be expressed as

Γρσδðq2; q1; pÞ ¼ gρσðq2 þ q1Þδ þ gσδðp − q1Þρ
− gδρðpþ q2Þσ þ ηγðpρgσδ − pσgρδÞ;

ð5Þ
where ηγ ≡ κγ − 1 and q2, q1, and p are the four-momenta
of the incoming W−, outgoing W−, and outgoing photon,
respectively, as depicted in Fig. 2.
It is apparent from Fig. 1 and Eqs. (1)–(3) that the

amplitudeM3 containing the effective vertex Γρσδ is 1=m2
W

suppressed compared to the other two contributions M1

and M2. Hence, within the SM, the first two Feynman
diagrams in Fig. 1 are sufficient to study the process. On the
other hand, only the third diagram is sensitive to ηγ. Thus,
in order to retain sensitivity to ηγ in Γρσδ, it is necessary and
sufficient to keep contributions up to Oð1=m4

WÞ in the
amplitudes. To achieve this we expand the W-boson
propagator in power series of (q2j=m

2
W) as

−i

"
gαβ −

qαj q
β
j

m2
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q2j −m2
W

#
≈

i
m2

W

"
gαβ þ q2j

m2
W

 
gαβ −

qαj q
β
j

q2j

!#
: ð6Þ

The total amplitude can be expressed as M ¼ M1 þ
M2 þM3 and we calculate the differential cross section

keeping all the amplitudes up to Oð1=m4
WÞ. Since the

neutrinos νμ and ν̄e cannot be observed, we integrate the νμ
and ν̄e momenta, and define the νμν̄e invariant momentum
as q. As the decay now looks like a three-body decay, it is
meaningful to define effective Mandelstam-like variables
constructed from the invariant momentum squared of the
e−νμν̄e system, denoted as t, and that of the γνμν̄e system,
denoted as u. Hence, ðpe þ qÞ2 ¼ t and ðpγ þ qÞ2 ¼ u.
Notice that q2 is not a constant for our decay. It is, however,
much more convenient to define the normalized parameters

xp ¼ tþ u
2ðq2 þm2

μÞ
;

yp ¼ t − u
2ðq2 þm2

μÞ
;

q2p ¼ q2

ðq2 þm2
μÞ
; ð7Þ

which can be written in terms of the observable quantities–
the photon energy Eγ, the electron energy Ee, and the angle
between the electron and photon θ—as follows:

xp ¼ mμðmμ − Ee − EγÞ
2½m2

μ − Eγmμ − Eemμ þ EeEγð1 − cos θÞ� ; ð8Þ

yp ¼ mμðEe − EγÞ
2½m2

μ − Eγmμ − Eemμ þ EeEγð1 − cos θÞ� ; ð9Þ

q2p ¼ m2
μ − 2Eγmμ − 2Eemμ þ 2EeEγð1 − cos θÞ

2½m2
μ − Eγmμ − Eemμ þ EeEγð1 − cos θÞ� : ð10Þ

The parameters of interest for the derivation xp, yp, and q2p
can easily be inverted in terms of the observables Ee, Eγ ,
and cos θ as

Ee ¼
mμ

2

�
1 − q2p − xp þ yp

1 − q2p

�
; ð11Þ

Eγ ¼
mμ

2

�
1 − q2p − xp − yp

1 − q2p

�
; ð12Þ

cos θ ¼ ðq2p − xpÞ2 þ 2xp − y2p − 1

ð1 − q2p − xpÞ2 − y2p
: ð13Þ

We notice that replacing yp by −yp while keeping q2p and
xp unchanged actually results in swapping the energies of
the photon and electron while keeping the angle between
them unaltered. This feature will play a very crucial role in
defining the observable asymmetry in Sec. III.
We have ignored the electron mass me starting from

Eq. (7) as it results in a significant simplification of the
analytic expressions. It is of course well known that
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neglecting the electron mass results in the persistence of a
wrong-helicity right-handed electron [18,19] in this decay
as a result of inner bremsstrahlung from the electron (see
second diagram of Fig. 1). The results are in obvious
disagreement depending on whetherme is retained. We will
therefore very carefully consider the issue of electron mass
to justify the neglect of me for our limited purpose of
extracting ηγ , while acknowledging that me should not be
ignored in general. In order to retain maximum sensitivity
to ηγ the kinematic domain is chosen to minimize the soft
photon and collinear singularity contributions; the effect of
me is found to be insignificant in the kinematic domain
sensitive to ηγ. Our calculations have been verified while
retaining me throughout. Critical expressions including me
contributions are presented in the Appendix for clarity.
Expressions for xp and yp are modified to accommodate the
effects of me, while retaining an apparent exchange
symmetry between Eγ and Ee under the newly defined
variables xn and yn in Eq. (A6).
We consider only the normalized differential decay rate

Γ̄ðxp; yp; q2pÞ obtained after integrating the νμ and ν̄e
momenta, which is defined as

Γ̄ðxp; yp; q2pÞ ¼
1

Γμ
·

d3Γ
dq2pdxpdyp

; ð14Þ

where Γμ is the total decay width of the muon. In terms of
these new normalized variables, the phase space for this
process is bounded by three surfaces: q2p ¼ 0, xp ¼ 1=2,
and ðq4p − q2p þ x2p − y2pÞ ¼ 0. It is easily seen from
Eq. (13) that the plane xp ¼ 1=2 corresponds to θ ¼ 0°
and the curved surface ðq4p − q2p þ x2p − y2pÞ ¼ 0 signifies
θ ¼ 180°. The physical region in q2p, xp, and yp parameter
space is given by

qp
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − q2p

q
≤ xp ≤

1

2
;

jypj ≤
�
1

2
− q2p

�
;

ðq4p − q2p þ x2p − y2pÞ ≥ 0;

0 ≤ q2p ≤
1

2
: ð15Þ

Form Eqs. (7) and (15) it is clear that both q2p and xp are
positive-valued functions, whereas yp can have a positive
value or a negative value and the physical region allows yp
to have a range symmetric about yp ¼ 0. So, if (xp, yp, q2p)
is a point inside the physical region, (xp, −yp, q2p) will also
lie inside the allowed region. This motivates us to inves-
tigate the properties of the odd and even parts of
Γ̄ðxp; yp; q2pÞ under the variable yp. In the next section
(Sec. III) we construct such an observable as the ratio of the

odd part in yp divided by the even part in yp of
Γ̄ðxp; yp; q2pÞ and demonstrate its heightened sensitivity
to ηγ.

III. OBSERVABLE AND ASYMMETRY

The “odd” and “even” parts Γ̄oðxp; yp; q2pÞ and
Γ̄eðxp; yp; q2pÞ, respectively, of the normalized differential
decay rate (14) with respect to yp are defined as

Γ̄oðxp; yp; q2pÞ ¼
1

2
½Γ̄ðxp; yp; q2pÞ − Γ̄ðxp;−yp; q2pÞ�

≈ Foðxp; yp; q2pÞ þ ηγGoðxp; yp; q2pÞ; ð16Þ

Γ̄eðxp; yp; q2pÞ ¼
1

2
½Γ̄ðxp; yp; q2pÞ þ Γ̄ðxp;−yp; q2pÞ�

≈ Feðxp; yp; q2pÞ þ ηγGeðxp; yp; q2pÞ; ð17Þ

where the small η2γ terms are ignored.
As we have obtained Γ̄ðxp; yp; q2pÞ by integrating a

positive-valued function jMj2, it is obvious that both
Γ̄ðxp; yp; q2pÞ and Γ̄ðxp;−yp; q2pÞ will be positive. Hence,
Γ̄eðxp; yp; q2pÞ [which is proportional to the sum of
Γ̄ðxp; yp; q2pÞ and Γ̄ðxp;−yp; q2pÞ] as well as Feðxp;
yp; q2pÞ [which is the ηγ → 0 limit of Γ̄eðxp; yp; q2pÞ] will
always be greater than or equal to zero inside the physical
region. On the other hand, Γ̄oðxp; yp; q2pÞ [which is pro-
portional to the difference between two positive quantities]
as well as Foðxp; yp; q2pÞ [which is the ηγ → 0 limit of
Γ̄oðxp; yp; q2pÞ] could be positive, zero, or negative inside
the allowed region.
We now define an observable Rη as

Rηðxp; yp; q2pÞ ¼
Γ̄o

Γ̄e
≈
Fo

Fe

�
1þ ηγ

�
Go

Fo
−
Ge

Fe

��
ð18Þ

and the asymmetry Aηðxp; yp; q2pÞ in Rη as

Aηðxp; yp; q2pÞ ¼
�

Rη

RSM
− 1

�
≈ ηγ

�
Go

Fo
−
Ge

Fe

�
; ð19Þ

where

RSM ¼ Γ̄o

Γ̄e

����
ηγ¼0

¼ Fo

Fe
:

Since, Fo and Go are the zeroth-order and first-order
terms, respectively, in the expansion of the odd part of
Γ̄ðxp; yp; q2pÞ with respect to ηγ [see Eq. (16)], both of them
are expected to be proportional to odd powers of yp,
rendering the ratio (Go=Fo) finite at yp ¼ 0.
We will now show that Fo, i.e., the odd part of the SM,

has a zero for this mode for all q2p. For simplicity, to
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describe the situation mathematically we consider only the
dominant contributions arising from the first and second
Feynman diagrams in Fig. 1. Retaining only relevant terms
up to Oð1=m4

WÞ, we can write

Fo ∝ yphðxp; yp; q2pÞfðxp; yp; q2pÞ; ð20Þ

where

h ¼
�

1þ q2p
ð1 − q2pÞ5ð1 − 2xpÞfð1 − q2p − xpÞ2 − y2pg2

�
; ð21Þ

f ¼ ½7q8p − 4ð4 − xpÞq6p þ ð11 − 4xp þ 6x2p − 6y2pÞq4p
− 2q2pð1 − xp þ 8x2p − 6x3p − 4y2p þ 2xpy2pÞ
þ 3x4p − 12x3p þ x2pð11 − 2y2pÞ − xpð2 − 4y2pÞ
− y2pð3þ y2pÞ�: ð22Þ

As can be seen from the inequalities in Eq. (15),
hðxp; yp; q2pÞ is always positive inside the physical region.
Hence, the deciding factor for the sign of Fo is only
fðxp; yp; q2pÞ. Now, on the xp ¼ 1=2 surface we have

f

�
1

2
; yp; q2p

�
¼ 7

16
ð1 − 2q2pÞ4 −

3

2
ð1 − 2q2pÞ2y2p − y4p;

which after using the upper limit of jypj from Eq. (15)
implies that

f

�
1

2
; yp; q2p

�
≥ 0; ð23Þ

⇒ Fo

�
1

2
; jypj; q2p

�
≥ 0; ð24Þ

Fo

�
1

2
;−jypj; q2p

�
≤ 0: ð25Þ

Similarly, for any point on the curved surface ðq4p − q2p þ
x2p − y2pÞ ¼ 0 denoted as C, we have y2p ¼ ðq4p − q2p þ x2pÞ
and hence

fðxp; yp; q2pÞjC ¼ ð1 − q2pÞð1 − 2xpÞ2ðq2p − 2xpÞ: ð26Þ

Upon using the limits of xp and q2p from Eq. (15), it can be
easily shown that

fðxp; yp; q2pÞjC ≤ 0; ð27Þ

⇒ Foðxp; jypj; q2pÞjC ≤ 0; ð28Þ

Foðxp;−jypj; q2pÞjC ≥ 0: ð29Þ

We have concluded that fðxp; yp; q2pÞ < 0 along the curve
C and fðxp; yp; q2pÞ > 0 at the other boundary surface
xp ¼ 1=2. It is therefore obvious that there must be at least
one surface within the allowed phase space region where
fðxp; yp; q2pÞ ¼ 0. In the first plot of Fig. 3, the blue region
indicates fðxp; yp; q2pÞ < 0 and the brown region indicates
fðxp; yp; q2pÞ > 0, whereas the black curve indicates
fðxp; yp; q2pÞ ¼ 0. In the second plot of Fig. 3, the yellow
region indicates Foðxp; yp; q2pÞ < 0 and the green region
indicates Foðxp; yp; q2pÞ > 0, while the red curve indi-
cates Foðxp; yp; q2pÞ ¼ 0.
The odd (Γ̄o) and even (Γ̄e) parts of the differential rate

as well as the four functions Fo, Fe,Go, andGe contain soft
collinear divergences arising due to Eγ ¼ 0 or cos θ ¼ 1

and a divergence due to the vanishing Ee ifme is ignored. It
is obvious form Eq. (12) that soft photons dominate in the
region corresponding to ðxp þ ypÞ ≈ ð1 − q2pÞ, which
implies that (xp þ yp) is close to its maximum value.
Hence, events with small photon energies lie in the top
corner of Fig. 3 where the blue curve meets the xp ¼ ½
line. Similarly, one can see from Eq. (11) that small electron
energies implies ðxp − ypÞ ≈ ð1 − q2pÞ, and these events lie
in the bottom corner of Fig. 3 where the blue curve meets
the xp ¼ ½ line. For any value of q2p, the collinear
divergence occurs along the xp ¼ ½ line as can easily
be seen from Eq. (13). These singularities are evident from
Eq. (21) and occur in each of Γ̄, Γ̄o, and Γ̄e as well as the
four functions Fo, Fe,Go, andGe. It is only in these regions
that an expansion in powers of me=mμ is not valid: the
electron mass needs to be retained, and ignoring it alters the

FIG. 3. The variations of the functions fðxp; yp; q2pÞ and
Foðxp; yp; q2pÞ are shown in the xp-yp plane in the left and right
panels, respectively, where q2p ¼ 0.01. The blue line in both
panels indicates one boundary of the phase space with cos θ ¼
−1 or ðq4p − q2p þ x2p − y2pÞ ¼ 0. In the left panel, the blue
region indicates a negative-valued fðxp; yp; q2pÞ, the brown
region indicates a positive-valued fðxp; yp; q2pÞ, and the black
curve indicates fðxp; yp; q2pÞ ¼ 0. In the right panel, the yellow
region indicates a negative-valued Foðxp; yp; q2pÞ, the green
region indicates a positive-valued Foðxp; yp; q2pÞ, and the red
curve indicates Foðxp; yp; q2pÞ ¼ 0.
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differential decay rates. To deal with the xp ¼ ½ collinear
singularity we choose an appropriate cut on xp which is
also necessitated by experimental resolution. It can be seen
from Eq. (19), however, that within the SM Aη is finite and
zero, even in the regions plagued by collinear soft photon
singularities and the ones that arise due to the neglect ofme.
Note that in Aη the h function in Eq. (21) carrying the
singular denominator cancels. The zero observed in Fo and
the consequent singularity in the asymmetry Aη has nothing
to do with the well-known collinear soft photon and
me → 0 singularities. The zero observed in Fo is genuine
and looks like an apparent exchange symmetry between Ee
and Eγ only for appropriately chosen parameters xp and yp
[or xn and yn defined in Eq. (A6)] with me retained.
We have explicitly demonstrated that there exists a sur-

face (besides the yp ¼ 0 plane) where Foðxp; yp; q2pÞ ¼ 0;
we refer to this surface corresponding to the “new type of
zero” as the “null surface.” This means that at each point on
this surface the differential decay rate Γ̄ðxp; yp; q2pÞ remains
unaltered if we interchange the energies of the photon and
electron. Hence, Aηðxp; yp; q2pÞ diverges on the null surface
for any nonzero value of ηγ and becomes zero everywhere
in the phase space when ηγ is zero. The null surface divides
the phase space into two regions: one where Aη is positive
and one where Aη is negative. For ηγ > 0, Aη < 0 for xp
values smaller than the values indicated by the null surface,
whereas Aη > 0 for xp values larger than the values
indicated by the null surface. However, if ηγ < 0 the
opposite behavior in the signs of Aη is seen. This feature
can be used to determine the sign of ηγ . To measure the
value of ηγ experimentally, one must average Aη over
specified regions of phase space where it could be positive
or negative. Such averages are necessitated by the exper-
imental resolutions for q2p, xp, and yp and will in general
reduce the asymmetry. Hence, it is convenient to use jAηj as
the asymmetry.
In the next section (Sec. IV) we probe the feasibility of

measuring ηγ using the asymmetry obtained in this section.

IV. SIMULATION AND ANALYSIS

In order to study the sensitivity of the muon radiative
decay mode we need to include the resolutions of the
photon energy, electron energy, and the angle between
them. We take them to be 2%, 0.5%, and 10 mrad,
respectively [20]. As can be seen from Eqs. (11)–(13),
the resolutions for xp, yp, and q2p will also vary at different
points in phase space due to the functional forms of these
parameters. We begin by evaluating the resolutions for xp,
yp, and q2p for the entire allowed phase space. We find that
the resolutions for xp, yp, and q2p are always less than 0.01,
0.02, and 0.02, respectively. For simplicity, in our simu-
lation we take the worst possible scenario and assume
constant resolutions for xp, yp, and q2p corresponding to

their largest values of 0.01, 0.02, and 0.02, respectively,
throughout the entire allowed phase space, which allows us
to choose equal-size bins. Hence, the phase space region
0 ≤ q2p ≤ ½, 0 ≤ xp ≤ ½, −½ ≤ yp ≤ ½ is divided into
25 bins in q2p and 50 bins in both xp and yp, all of equal
size. Among these bins, only 6378 bins lie inside the
physical phase space region. We next estimate the system-
atic and statistical errors for jAηj in each of these bins,
assuming ηγ ¼ 0.01.
To find the systematic error in jAηj for the ith bin, we

evaluate it at 62 500 equally spaced points in that bin to
estimate jAηjji , where j is the index of a point inside the ith
bin. However, for the bins near the boundary of the phase
space, all of these points will not be inside the physical
region and hence we denote the number of physical points
inside the ith bin as ni. We now calculate the average of
jAηjji inside a bin, i.e.,

hjAηjii ¼
1

ni

X
j

jAηjji ;

and take this as the asymmetry of that bin. Then we take the
systematic error as the average deviation of jAηjji , i.e.,

σsysi ¼ 1

ni

X
j

jhjAηjii − jAηjji j:

Ideally, the errors can and should have been calculated
using a standard Monte Carlo technique with a larger
number of sample points. The approach followed in this
paper is to express the integral as a Riemann sum only for
simplicity.
The statistical error for jAηj in each bin is also estimated

by averaging it at the same 62 500 equally spaced points.
Note that while Aη is divergent on the null surface, the
average value of jAηj for the ith bin, i.e., hjAηjii estimated
from Monte Carlo studies is never larger than 10−6 for any
bin. Hence,

σstai ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − hjAηjii2

Ni

s
≈

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiðNSMÞi
p ;

where i is the index of the bins and Ni represents the
number of events inside the ith bin, which is almost the
same as ðNSMÞi, the number of SM events for the ith bin.
We have also assumed that both Aη and the effects of ηγ on
Ni are small and can be ignored. If this were not the case,
Ni would itself be sensitive to ηγ , contrary to our simulation
results. Hence, we simply take the statistical error for all
practical purposes to be the same as that in SM events. The
number of events in each bin is calculated by taking the
total number of muons to be 1019. To avoid the singularities
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in the number of SM events for the bins near the xp ¼ ½
plane, we ignore the bins with 0.49 ≤ xp ≤ 0.5.
The total error in jAηj for any particular bin is then given

by δjAηji ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσstai Þ2 þ ðσsysi Þ2

p
. This error in jAηjwill affect

the measurement of ηγ . Using Eq. (19), the error in the
measurement of ηγ in each bin is

���� δηγηγ
����
i
¼ δjAηji

jAηji
; ð30Þ

where jAηji ≡ hjAηjii and we take the theoretical function
ðGo=Fo −Ge=FeÞ to be free from experimental uncertain-
ties. It is obvious from Eq. (30) that the highest sensitivity is
achieved in bins close to the null surface where jAηji is the
largest. Hence, we consider only the region along the null
surface by applying a cut δjAηji=jAηji ≤ 10 to determine ηγ .
In Fig. 4 we indicate the bins that satisfy the above cut by

red dots for different q2p values, whereas the green dots
indicate all of the other bins inside the physical region; the
purple curve indicates the null surface where Fo ¼ 0 for the
corresponding q2p value. Including only the bins that satisfy
the above cut for a simulated value of ηγ ¼ 0.01 (at one
loop in the SM, jηγj≲ 0.015), we estimate an error of
δηγ ¼ 2.6 × 10−3, implying a 3.9σ significance for the
measurement. With a long-term goal of producing 1019

muons, the next round of experiments aim to produce 1018

muons/year. This reduces the sensitivity from 3.9σ to 1.4σ.
To appreciate the advantage of radiative muon decays in
measuring the WWγ vertex, one needs to note that the
current global average of κγ differs from unity by only 0.4σ.
We note that the significance of the measured value of ηγ

may in principle be improved by optimizing the chosen cut
and binning procedure. However, we refrain from such
intricacies as our approach is merely to present a proof of
principle.
We have shown that the sensitivity to ηγ arises due to the

vanishing of the odd differential decay rate in the standard
model, denoted by Fo. The observed singularity in Aη is
unrelated to the soft photon and collinear singularities or
the singularity arising due to neglecting me in calculations.
The most sensitive region to measure ηγ is where Aη is large
and obviously lies along the zero of Fo, as indicated by
Eq. (19). The region around Fo ¼ 0, for which δjAηji=
jAηji ≤ 10, is where a legitimate expansion in powers of
me=mμ can be carried out and is distinct from the singular
regions in the differential decay rates where such an
expansion cannot be done. However, in order to verify
the accuracy of the sensitivity achievable in ηγ measure-
ments the calculations have been redone by numerically
retaining me. We found that for the bins represented by red
dots in Fig. 4 the maximum correction in ηγ is Oð10−4Þ,
which is an order of magnitude smaller than its
error, δηγ ¼ 2.6 × 10−3.
Finally, we discuss possible sources of inaccuracies in

our estimation of the uncertainty. Higher-order electroweak
corrections to the process considered will modify the decay
rate and alter Fo. While higher-order electroweak correc-
tions have not been included in our analysis, they have been
worked out in detail [21]. However, this is unlikely to affect
our analysis technique as we have selected bins to be
included in estimating ηγ based purely on the criterion
δjAηji=jAηji ≤ 10 and not on the location and validity of the
null surface. A possible source of uncertainty that we have

FIG. 4. The variation of Foðxp; yp; q2pÞ for different q2p in the xp-yp plane. Each green dot represents a bin according to the
experimental resolutions of the photon energy, electron energy, and the angle between them. The red dots stand for the bins with
δjAηj=jAηj ≤ 10 in that bin. The purple curve indicates Fo ¼ 0 in a different q2p plane. Our numerical analysis includes the bins
corresponding to the red dots only. This results in an optimal sensitivity to ηγ .
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ignored in our analysis is the assumption that the muon
decays at rest or with known four-momenta. While facili-
ties that produce large numbers of muons are designed
to bring the muons to rest, a fraction of them may decay
with a finite but unknown four-momenta, rendering the
exact measurement of q2p inaccurate. This effect can in
principle be considered by including additional systematic
errors in q2p.

V. CONCLUSION

In order to probe the lepton-flavor-violating process
μ → eγ facilities that produce large numbers of muons are
being designed. We have shown that radiative muon decay
μ → eγνμν̄e is a promising mode to probe loop-level cor-
rections in the SM to the C- and P-conserving dimension-
fourWWγ vertex with good accuracy. The process has two
missing neutrinos in the final state, and upon integrating
their momenta the partial differential decay rate removes
the well-known radiation-amplitude zero. However, we
have shown that the normalized differential decay rate,
which is odd under the exchange of photon and electron
energies, does have a zero in the case of the SM. This new
type of zero has hitherto not been studied in the literature. A
suitably constructed asymmetry using this fact enables a
sensitive probe for the WWγ vertex beyond the SM. The
large number of muons produced keeps the statistical error
in control for a tiny part of the physical phase space,
enabling us to measure ηγ ¼ 0.01 with 3.9σ significance.

ACKNOWLEDGMENTS

We thank Yoshitaka Kuno, Marcin Chrząszcz, Thomas
G. Rizzo, and Jernej F. Kamenik for valuable suggestions
and discussions. The work of R. M. is supported in part by
Grants No. FPA2014-53631-C2-1-P, No. FPA2017-84445-
P, and No. SEV-2014-0398 (AEI/ERDF, EU) and by
PROMETEO/2017/053.

APPENDIX: EXPRESSIONS WITH ELECTRON
MASS RETAINED

In the presence of the electron mass me, we have
sþ tþ u ¼ q2 þm2

μ þm2
e, where the Mandelstam varia-

bles are defined as ðpe þ pγÞ2 ¼ s, ðpe þ qÞ2 ¼ t, and
ðpγ þ qÞ2 ¼ u. The physical region is determined by the
following inequalities [22]:

m2
e ≤ s ≤

�
mμ −

ffiffiffiffiffi
q2

q 	
2
; ðA1Þ

q2 ≤ u ≤ ðmμ −meÞ2; ðA2Þ
�
meþ

ffiffiffiffiffi
q2

q 	
2
≤ t≤m2

μ; ðA3Þ

G½s; u;m2
μ; 0; m2

e; q2� ≤ 0; ðA4Þ

where

G½x; y; z; u; v; w� ¼ −
1

2

������������

0 1 1 1 1

1 0 v x z

1 v 0 u y

1 x u 0 w

1 z y w 0

������������
: ðA5Þ

We define the variables xn, yn, and q2n, which reduce to
xp, yp, and q2p in the me → 0 limit, in the following way:

xn ¼
tþ u

2ðq2 þm2
μ þm2

eÞ
;

yn ¼
t − uþm2

e

2ðq2 þm2
μ þm2

eÞ
;

q2n ¼
q2

ðq2 þm2
μ þm2

eÞ
: ðA6Þ

The energies of the electron and photon are obtained from
the above definitions as

Ee ¼
ð2m2

μ þm2
eÞð1 − q2n − xn þ ynÞ −m2

eðxn − ynÞ
4mμð1 − q2nÞ

;

ðA7Þ

Eγ ¼
ð2m2

μ þm2
eÞð1 − q2n − xn − ynÞ −m2

eðxn þ ynÞ
4mμð1 − q2nÞ

:

ðA8Þ

Under the replacement yn → −yn, the electron and photon
energies get exchanged and one can separate the odd and
even parts of the differential decay rate as follows:

Γ̄oðxn; yn; q2nÞ ¼
1

2
½Γ̄ðxn; yn; q2nÞ − Γ̄ðxn;−yn; q2nÞ�;

Γ̄eðxn; yn; q2nÞ ¼
1

2
½Γ̄ðxn; yn; q2nÞ þ Γ̄ðxn;−yn; q2nÞ�: ðA9Þ

The h function in Eq. (21) containing a singular denom-
inator now becomes

h ∝
1

E2
eE2

γðm2
μð1 − 2xnÞ þm2

eðq2n − 2xnÞÞ
: ðA10Þ

In the region around Fo ¼ 0 (denoted by red dots in
Fig. 4), a legitimate expansion in powers of (me=mμ) for
the expressions of Γ̄o and Γ̄e can be carried out in the
following way:

Γ̄o ≈ ðFo þ ðme=mμÞ2δFoÞ þ ηγðGo þ ðme=mμÞ2δGoÞ;
ðA11Þ
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Γ̄e ≈ ðFe þ ðme=mμÞ2δFeÞ þ ηγðGe þ ðme=mμÞ2δGeÞ; ðA12Þ

where the small η2γ terms are ignored. Here, δFo, δGo, δFe, and δGe are the leading-order correction terms due to the
nonzero electron mass. The observable Rη is modified as

Rηðxn; yn; q2nÞ ¼
Γ̄oðxn; yn; q2nÞ
Γ̄eðxn; yn; q2nÞ

≈
�Fo þ ðme

mμ
Þ2δFo

Fe þ ðme
mμ
Þ2δFe

��
1þ ηγ

�Go þ ðme
mμ
Þ2δGo

Fo þ ðme
mμ
Þ2δFo

−
Ge þ ðme

mμ
Þ2δGe

Fe þ ðme
mμ
Þ2δFe

��
: ðA13Þ

Hence, the asymmetry Aηðxp; yp; q2pÞ in Rη becomes

Aηðxn; yn; q2nÞ ¼
�

Rη

RSM
− 1

�

≈ ηγ

�Go þ ðme
mμ
Þ2δGo

Fo þ ðme
mμ
Þ2δFo

−
Ge þ ðme

mμ
Þ2δGe

Fe þ ðme
mμ
Þ2δFe

�

≈ ηγ

�
Go

Fo
−
Ge

Fe

�
þ ηγ

�
me

mμ

�
2
�
GeδFe

F2
e

−
GoδFo

F2
o

þ δGo

Fo
−
δGe

Fe

�
; ðA14Þ

where

RSM ¼ Γ̄o

Γ̄e

����
ηγ¼0

¼
�Fo þ ðme

mμ
Þ2δFo

Fe þ ðme
mμ
Þ2δFe

�
:

Note that the above expansion in Oðme=mμÞ fails in the region where collinear or soft photon divergences occur.
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