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There are six leptonic unitarity triangles (LUTSs) defined by six orthogonality conditions of the three-
family lepton flavor mixing matrix in the complex plane. In the framework of the standard model or the
minimal supersymmetric standard model, the evolutions of sides and inner angles of the six LUTs from a
superhigh energy scale Ay to the electroweak scale Agy due to the renormalization-group equation (RGE)
running are derived in the integral form for both Dirac and Majorana neutrinos. Furthermore, the LUTs
as an intuitively geometrical language are applied to the description of the RGE-induced u-7 reflection

symmetry breaking analytically and numerically.

DOI: 10.1103/PhysRevD.99.033003

I. INTRODUCTION

In the recent twenty years, a series of neutrino oscillation
experiments have definitely proved that neutrinos have
masses and lepton flavors mix with one another [1]. The
latter can be described by the well-known Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) matrix U [2,3], which
connects three neutrino mass eigenstates (v, v,,v3) and
flavor eigenstates (v,.v,.v,) by

v, Uy Upn Ugs vy
v, | = U,n Uﬂz Uﬂ3 L D (1)
v, Uy Up Ug V3

in the basis where the mass eigenstates of three charged
leptons are identical with their flavor eigenstates.
According to the orthogonality of the rows and columns
of U, one may define six leptonic unitarity triangles (LUTs)
in the complex plane as a geometrical language to intui-
tively describe lepton flavor mixing and CP violation [4].
The six triangles are

A, U”IU:1+UM2U:2+UM3U:3:()7
8,0 UqUp +UpUp, + UsUpy; =0,
Al UelU;jl + UBQU;Z + Ue3U;3 = O’ (2)
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which are insensitive to the Majorana phases; and

A3: Ue]U:2+U;¢]U;2+UT]U:2:0, (3)

whose orientations are fixed by the Majorana phases1 [5].
The areas of these LUTs are all equal to |7|/2, where J
means the Jarlskog invariant of U describing leptonic
CP violation in neutrino oscillations and can be defined
through

(U UpiUsiUpy) = T ) _eap ) _€ui (4)
b4 k

The subscripts (a, 3, y) and (i, j, k) in this paper always run
over (e,u,7) and (1,2,3), respectively, if not otherwise
specified. The six LUTs consist of eighteen vector sides in
the complex plane shown in Egs. (2) and (3) and nine inner
angles which can be expressed as

UpiUy; U/ij}?k] )

T g | T Mpdg | — o
UﬂkUyk ’ UJ’jUyk

-

'Tn the definitions of six LUTs in Egs. (2) and (3), we do not
consider the unphysical phases of U for both Dirac and Majorana
neutrinos. The orientations of LUTs correspond to possible
rotations caused by unphysical or Majorana phases of U. So
only the orientations of A; of Majorana neutrinos have physical
meaning.
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In Eq. (5), a, p and y run cyclically over e, y and z; i, j
and k run cyclically over 1, 2 and 3; Ny = 1 for 7 < 0 and
ny =—1for 7 > 0.7

The language of LUTs has been discussed in a number

of papers [6-12] since it was introduced into the
lepton sector. These papers mainly focus on the following
aspects:

(i) The reconstruction of LUTs through future precision
neutrino oscillation and non-oscillation experiments
will be a useful and intuitive geometric way to
demonstrate CP violation in the lepton sector, and
this will be complementary to the direct measure-
ments of CP asymmetries [6,7]. Furthermore, testing
whether the LUTs are close will provide tests of
the unitarity of the PMNS matrix, which might be
violated due to the existence of sterile neutrinos
[4,5,8].

(i1) One can directly use the sides and inner angles of
the LUTs to describe neutrino-neutrino oscilla-
tions, neutrino-antineutrino oscillations and neu-
trino decays, where the inner angles of the LUTs
have definite physical meaning [9,10]. The shapes
of the LUTs can be reformed either by terrestrial
matter effects, or by renormalization-group-equa-
tion (RGE) running effects, or by some other new
physics effects, implying the corrections of such
effects to lepton flavor mixing and CP violation
[11,12]. There are also discussions about the
underlying phenomenological meaning of special
shapes of the LUTs [10].

In Ref. [12], the RGE running behaviors of inner angles of
the LUTs have been discussed in the differential form.
In this paper, we aim to study how the sides and inner
angles of the LUTs evolve in the integral form due to the
RGE running from an arbitrary superhigh energy scale Ay
to the electroweak scale Agy in the framework of the
standard model (SM) or the minimal supersymmetric
standard model (MSSM). Both the cases of Dirac and
Majorana neutrinos will be considered. We get the
RGE-induced corrections to the LUTs by performing
perturbative expansions. The final analytical results are
independent of the parametrization of U. Assuming the
u-t reflection symmetry [13,14] to be satisfied at a
superhigh energy A, the corresponding 4; should be
isosceles triangles; A, and A, are congruent with each
other. When running down to Agyw, the p-t reflection
symmetry will be broken due the RGE running effects,
leading to the deviations of the LUTs from their special
shapes at A,;. So the corrections to the LUTs from A, to
Agw can be used to intuitively describe the corresponding
RGE-induced p-7 reflection symmetry breaking, and thus

*We add 114 to ensure that the inner angles are positive. In the
relevant references, 77, was often neglected.

it is meaningful to explore how the LUTs can be reformed
analytically and numerically in this case.

The rest of this paper is organized as follows. In
Sec. 1I, we derive the RGE-induced connections of the
sides and inner angles of the LUTs between Agyw and
Ay in the integral form in the framework of the SM or
the MSSM, where both Dirac and Majorana neutrinos
are considered. Section III is devoted to simplifying the
analytically approximate results in Sec. II by assuming
the p-t reflection symmetry at A,.. In Sec. IV, the
RGE-induced deviations of the LUTs from the u-z
reflection symmetry limits will be studied numerically
by scanning the complete parameter space, where the
smallest neutrino mass and the MSSM parameter tan
at Agw run in the reasonable ranges [0, 0.1] eV and
[10, 50], respectively, just as the way taken in Ref. [15].
The normal mass ordering (NMO) and inverted mass
ordering (IMO) of Dirac or Majorana neutrinos will
be considered. Finally, Sec. V is a summary of our main
results.

II. RGE RUNNING EFFECTS ON THE LUTS

A. The case of Dirac neutrinos

Before a decisive measurement of the neutrinoless
double-beta decay [16] verifies the Majorana nature of
massive neutrinos, it is meaningful to consider the
cases of both Dirac and Majorana neutrinos theoreti-
cally [17]. The evolution of the Dirac neutrino mass
matrix from Ay to Agw in the integral form can be
written as [18]

M, = 1,T,M,, (6)

where M, and M/ are the Dirac neutrino mass matrix
at Ay and Agw, respectively. Note that the notations
with a prime superscript in the following text denote
the parameters at Agw and those without such a
superscript stand for the corresponding parameters at
Ay if not otherwise specified. Here we define T; =
Diag{/,,1,.1,} and

1 0
IO = exp |:1677;2// Gdl:| s
t

C, [0
I, =exp {_ﬁﬂ y%zdt:| s (7)

where ¢t =In(u/Ay) with u being an arbitrary renorm-
alization scale between Agpyw and Ay, and 7=
In (Agw/Ay). In the SM, one has G =0.45g +
2.25¢5 — 3y? and C, = —1.5; while in the MSSM, G =
0.6g7 + 3¢5 —3y? and C; =1, where g;, denote the
gauge couplings, and y, and y, (for @ = e, u, 7) stand
respectively for the Yukawa couplings of the top quark
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* The Hermitian matrix H, =

and charged leptons.
M, M; can be diagonalized by the unitary transforma-
tion U'H,U = Diag{m?},m3,m3} with m; being the
neutrino masses. Similarly we have H, = M'M, and
U'H,U" = Diag{m?, m?,m%} at Agw. According to

Eq. (6), we directly write out

H/ a/} _ ZmIZ U/ U/*

HI /I a/} — Zml4U/ U/*

I%)Ialﬂ(Hv)aﬂ’

Igl IﬂZF Vs

(8)

Then Eq. (8), together with the unitarity conditions of
U', can yield a full set of linear equations of Uy Uy,

111 UZ,IUZ‘]

my  my  my 2Up
m/l4 m’24 m/34 wU 21*3
Oup
511 5(H,) o (9)
T8l 2L (Hy )y (H)

1%

from which we can get exact expressions of U, Uy at

ai
Agpw. In addition, calculating the determinant of H/

” 6727272 2
m1m2m3 —IIIImm2m3,

my = Itz)zlgzm%‘[]ai
a i
2
md+ ml + ml = 132132 ’Z m2U Uy,

One can see m?? (for i =1, 2, 3 and m?? # m5 # m?
should be the solutlons of the equation of A:

mE +m} +

’

(10)

b —
Bob2+Z"S5-a=0, (11)
with a= m’,zm’zzm’gz, b=mf+m}+m} and c=

*+m5 +m4 coming from Eq. (10). The exact
but complicated expressions of m/?> have been shown
in Appendix. Here we perform some analytical
approximations of Eq. (11) to see more clearly the
dependence of m??> on the parameters at Ay. The tau-
dominance approximation 7;~ Diag{1,1,(1 —¢)} will
be taken due to the relationship y? < y2 < y? with

G
167z

which is a small quantity, at most of order ©O(0.01) [15].
Expanding Eq. (11) in € up to the first order gives rise to

0
y2dt, (12)

m/lz— Oml(l —2€|U71| ),

m/22— 0’"2(1 —2€|U72| ),

mf ~ I3m3(1 — 2¢|U 5]?).

(13)
By inserting the tau-dominance approximation of 7; and

the above approximate results of m/* into Eq. (9), and
expanding it in € up to the first order, we can arrive at the

and the traces of H! and H,H, from Eq. (8) leads to  analytical approximations of |U’,|? at Apy:
|

U U = g = m U U + 38 (U aP1U P = U PIUP),

ULaP 2 Ul + g [k = ) U P|U P + 3 (U PIUP = U PP

U5 = |Usl” — AjeA [(mim3 — m3)|U s |U 3> + m38p1 (U PUa [P = U P|UAP); (14)
and

U 2 102 = g (00308 = )0 P10+ 038510 P Ul = 0,50,

ULl 2 U0 + 5 (3 = ) U PIUP + 3 (U PO = U5 U P

ULl Ul = g 03 = m) U PP + 1381 (U1 = 0PIl (15)

3Equations (6) and (25) can also apply to the two-Higgs-doublet models (2ZHDMs) [19] only by replacing the definitions of G and C;.

For example, in type-Il 2HDM, C; =

—1.5and G = 0.45¢7 + 2.25¢5 —

— 3y? with y, being the bottom-quark Yukawa coupling [20].
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and
2 0 2 2¢|U 2,2 4 2 2 2 2
U [P = U] +m[(”’l2m3_m1)(l = |Ual?) + miAn(|Un|” = [Us]?)],
2€|U72|2
U|* = |U,2|2—m[(m%m§—m§)(l —|Ual?) +m3As,(|Un |* = [Us[?)],
2 2 26lUsf 4 2 2 2 2
(Ul = |Us|* + As A [(mim3 = m3)(1 = |Us|?) + m3Bg (|Un|* = [Una]*)], (16)
|
where Ay =m3—m?, Ay =mi—m}, and Az =  The analytical approximations of |U’;|* in Egs. (14)—(16)

m3 — m3. One can see that |U!;|? depend on |U,;|? besides  satisfy >_;|U.;|* = >_,|U:|* = 1. In the same way, we can

|U i |2 owing to the tau-dominance approximation of 7';, and obtain the analytical approximations of the vector sides of

| 2

there will be similar characteristics in the following results. Al at Apw:
|
U/ WU =UaU; +ﬁ{[(m%m% —mi)(1=2|Uy?) — miAsz(1 - 2|U12|2>]U;t1U:l_zm%A32|U‘rl|2Uﬂ3Ui3}’
U Up =2 UpUp, — ﬁ{[(m%mg —m3)(1 =2|Un*) = m3As (1 = 2|U P)|Ujn U =2m3 A5, U, [PU,3 UL },
UaUls = UpsUps + @{[(m%m% = m3)(1 = 2{Us ") + m38g1 (1 = 2|Un)|UsUp+2m3 80 U PUn Uy} (17)

for AL; and

€
U/ Ui:*l - U‘rl U:l +7{[(m%m% - m?><1 - 2‘U11|2) 2A'§2(1 - 2|U12| )]U‘rl 2m1A32|UTI| U‘L’3U }

Ay Az
UpUph =UnUs, — ﬁ%{[(’"%mg —m3)(1 =2|Up|?) = m3As1 (1 = 2|U )| U Ul =2m305 | U [PU UL},
JUs =2 UsU; ﬁ{[(m%m%—mé‘)(l—ﬂ%l )+ m3Ag (1 = 2|Un)|UnUls+2m300|Us|?Un Uy}, (18)
for A; and
UaUyy =2UaUy, — Ajzy {[(mam3 = m)|U P = miAp U PIUUsy =miAs (1 = U [P)U UL b
Ulz =2 UnU, +ﬁ{[("ﬁm§ = m3)|[Un|* = m3A5)| U [P|U U, 2 —m3 Az (1 = Uy )Ue3U;43}
UaUis = UesUys = Aj;z{[(m%mz = m)|Uns + midy|UnPIUaUpstmiAy (1= [UsP)UaUy}. (19)

for a7, where > U7, Uj: = 0 holds for (a., #) = (e, ), (u,7), (7, e). Considering the fact that the lengths of three sides of
each A/ can be derlved from Egs. (14)—(16), one can see that the six LUTs (&), and A}) of the Dirac neutrinos at Agy can be
approximately fixed from the above results. Furthermore, we can get the approximate Jarlskog invariant 7' of the Dirac
neutrinos at Agw from anyone of Eqs. (17)—(19). The result is

2¢T

T 2T = mi(m3 + m3)(|Us® = |Un?) + m3(mi + m3)(|Un|? = |Us|?) + m3(m} + m3)(|Unf® = [Unt )]
AriAz1Az,
(20)
With the help of Egs. (4) and (5), one can define
Ny * T ) )T T
cot i = jRe(UﬂJU UsUn), cotdl, = j,Re(U UsURU L), (21)
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where (a, ,7) and (i, j, k) run cyclically over (e, u, 7) and (1,2,3), respectively. We then calculate the evolutions of the nine
inner angles of LUTs for the Dirac neutrinos from Ay to Agw by combining Eqs. (17)—-(19) and (21), and obtain

2€|U1’2|2| UT3|2

O = T TR, Ky

(M3A5 U = m3A3,|U ).

, 2e|Ua PUsP 505 2 _ 22 2
COt¢ez200t¢e2+’74)m(’”3%1|%1| —miA3|U,s/%),
2e|U 1|2|U 2|2
cotl,; = cotgh,s + ﬂ(pm (m%A§2|U”2|2 - m%A§1|Uﬂl ) (22)
and
2e|Up"|Us
cot g, = cotdh, + 'I¢mw%A§1|Uﬁ|2 —m3A5|Up),
2e|U P|U )
cote, = coteh +1 ¢M( m3AG Ui [* = miA5,|U s ?),
2€|U11| |U7:2|2
cot 3 = cotgpys +1 ¢m( miAL|UpP = myA3 U P); (23)
and
. ~cotd, & 2n4€ 2A2 U AU (1 = | UA2) — m2A2 (U AU (1 = U2
cotgy ~ cot 7JA21A31A32[m3 511U ﬂ2|( [Us|?) — m3A5,|U.s ,,3|( U l?)],
27’](/,(:' .
C0t¢;2ﬁ00t¢fz+m[ miAL|UsUi (1= [Un [P) = m3A5,|U o Uy, (1= |Uss )],
2n4€
cotg; = coteh.3 +—jA21A¢;1A32 [m%A§1|Ue1U;1|2(1 - ’U12|2) - m%A§2|U32U;2|2(1 - |U11|2)]- (24)

B. The case of Majorana neutrinos

When considering the Majorana neutrinos, one can
naturally explain their small masses through the seesaw
mechanisms [21]. The evolution of the Majorana neutrino
mass matrix from Ay to Agw in the integral form can be
written as [4,22]

M, =I3TM,T,. (25)

Note that M, and M), represent the Majorana neutrino mass
matrices at Ay and Agy, respectively. I and 7; have been
defined below Eq. (6) and in Eq. (7). We can also derive the
direct connections of the LUTs between the two energy
scales Ay and Agyw as in the Dirac case. Let us repeat the
similar calculations below for comparison. We first diag-
onalize M, and M|, through U'M,U* = Diag{m?, m3, m3}
and U""M,U"™ = Diag{m?, m,m%}. According to
Eq. (25), the Hermitian matrices H', = M,M, and H,H,
for the case of Majorana neutrinos can be expressed as

(H)p = Zm’2u' Upgy = I81,15Q..

(H,H) a/}me"‘U’ Up =Bl 03> 20,0, (26)
Y

where we have defined Q =M, T IZM; for simplicity.
With the help of Eq. (26) and the unitarity conditions of
U’, we can get

1 1 1 U/ U/* 5aﬁ

4
m? mg mf || UnUp 8 IOIaIﬂZQaﬂ
mit my ms ) \ULUp, IOIaIﬂZy:IyQayQyﬁ

(27)
Moreover, the determinant of H), together with the traces of
H', and H/ H’Jr leads to

1?2 12 74 74 14 2
mEmZms = I I mimim3,

mf + mf 13212212 Dapl’

2
ot = YD {5 0,), (0,05
(28)
where (M,),; = > ;m;U,;Up. By solving the equation

b -

Bop2rl "Ca_a=o, (29)

033003-5
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witha = mPm§mi, b = m? + m% + mf§ and ¢ = m}* + m5 + m4 coming from Eq. (28), the exact expressions of m/? for
Majorana neutrinos can be denved One may refer to Appendlx for their specific expressions. Here we calculate m'?
approximately by expanding Eq. (29) in ¢, and arrive at

ﬁlom1(1 —4€|U11| ) ﬁlomz(l —4€|U12| ), m32~ 0’"3(1 _4€|UT3| ). (30)

By inserting the tau-dominance approximation of 7; and Eq. (30) into Eq. (27), and expanding it in € up to the first order, we
can get the analytical approximations of |U’;|* at Agw:

2e
U, 1|2 |Uel|2 NV [(m%m% - m?)|Uel |2|U‘l'l|2 + m%A32(|U62|2|U,2|2 - |Ue3|2|U13|2)
—=2mymy Ay RE2 = 2mymy Ay RE],
2¢e
|U 2|2 |Ue2|2 + Ay Ay [(m%m% - m§)|Ue2|2|U72|2 + m§A31(|U61|2|U71|2 - |Ue3|2|UT3|2)
—2mymyAppRiZ + 2myms Ay RZ],
2e
|U 3|2 |Ue3|2 A A [(mzm% - m3)|Ue3| |UT3|2 - m’§A21(|UeZ| |U12|2 |Uel |2|U11|2)
+2mym3 Az RE + 2myms Ay RZ; (31)
and
2e
U P = U, = A A [(m3m3 —m})|U P|Un > 4+ miAsn (U PIUs > = U512 UsP)
—2m1m2A31R}£ - 2m1m3A21R}£],
2e
\Upo|? > U > + . [(mim3 = m5) U, P|U > + m3As (|Un [P[Unt P = U3l |Usl?)
—2m1m2A32|R —|—2m2m;A21R ]
2¢
Va2 Ual? = 55— i = md)|U,aP AUl = 3oy (U U = U0 PUAP)
+2m1m3A32R +2m2m3A31|R ] (32)
and
2e
U [P = |Un P + A Ao [(m3m3 = mD)| Ut P(1 = [Un|?) + miAgy U P(|U* = [Uss[?)

+2mymy Az R + 2mym3 Ay R,

2e
[(mim3 = m3)|Upn*(1 = U ?) + m3 851 U P (U] = |Us]?)

|U::2|2 = |U‘L'2|2 -

Ay Az
+2mymyAppREZ = 2mymy Ay R,
2¢
U = [Uss o i mims = m)| U (1= [Us ) = 380 |Un P (Usaf = [Ua )
—2m1m3A32Rn - 2m2m3A31R§3], (33)

with [R{;’ﬁ denoting the real parts of U, U,;Up Uy;. The vector sides of Al at Apw turn out to be:

033003-6
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U[/JIU;*I ~U,Uy + {[(m%m% - m?)(l —2|U,?) - m%Aw(l - 2|U12|2)]U;41U:1

€
Ay As;
—2m} Ay U [PU,U % + 2mimy Ay (U Uy U3 + UpUpU)
+2mym3 Aoy (U, Uy U3 + UsUs Ui}

€
U = UnUs, _m{[(’"%m% —m3)(1 =2|Up|?) = m3A85 (1 = 2|U,|*)|U,n Uz,

—2m5031 U [PU,3U% + 2mymyAsy (U Uy Ui + U U Ul

—2mam3 Ay (U,nU U + U,sUsUS) Y,
€
U =2UpU5+ Avds {{mim3 = m3)(1 = 2|U 5]?) + m385 (1 = 2|U|*)]|U 53U
+2m3 001 |U 52U, Usy = 2moms s (Upy U U + UsUsU3)

—2mim3A3 (U Uy U3 + UsUsUi) Y

for A; and

€
Ay Ay
—2miAp|U [PUS U + 2mymyAsy (U UL U2, + U Ui Uz)
+2mym3 g (U, Ui Ul + UisUs Uz b,

U, U ~UyUp, + {[(m3m3 —m?)(1 = 2|U,|?) — miAs(1 = 2|Un|)]U, U,

€
U/TzU/e*z ~U,Up, — m{[(m%m% - mé)(l - 2|U12|2) - m%Aﬂ(] - 2|U11|2)]U12Uz2

—2m5051|Un[PU 3 Ul + 2mymy Ay (U U Uz, + Ui Ui UZ)
—2mym3 0y (U Ui Us + Uiy UisUp) b,

€
U/ U/* ~ U U* -
3% e3 3% e3 + A3]A32

F2m3001|U 5 PU 1 Uy = 2mym3Asy (Uny U Uy + Uiy Ui Us)
—2m1m3A32(U21U:1 U%s + UZansUzl)}’

for AI’,; and

U/ U/* NU U* _ 26
el “ul — Yel™yl A21A31

—miAz (1 = Uy ) UsUss = mymyAzy (U Un Uiy Ul + U U Uy U7y

—mim3Ag (U UnUpzUy + UsUs U, Uy ) 1

{[((m3m3 = m)|Un|* = miAg|Unl*)U. Uy,

2e
I U~ * 2,2 _ 4 2 _ 2 2 *
UpUp=UnU, + Ay As {[(mim3 = m3)|Un|* = m385,|Un| ]Uerﬂz

—m%Aﬂ(l—|U12|2)Ue3U;3—m1m2A32<Ue1U11 ;2 :2+U62U72U;1U:1)
+mym3 Ay (UpUnU,3Us + UpsU U, Uy ) b
* 2e *
wUs=2UsUs, _m{[(’”%m% —m3)|Us]* + m§A21|U72|2]Ue3U,43
Fm3 8,1 (1 = [UsP)U o Uy + mym3Asp (U Un U Uy + U sU s Us Uiy

" ul™~ 7l
+mym3As31 (U UnU,sUly + UnsUns U, Uy b,

033003-7
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1%

for a7 The above analytical approximations of [U[* and U, Uj satisfy > ,|U,[* =>,|U> =1 and
ZiUfﬁUZ‘i =0. The LUTs A/, of Majorana neutrinos can be fixed from Egs. (34)-(36) though the vector sides
Uy, Uy; of A} cannot be derived in this way, implying that it is impossible to get any information on the Majorana
phases at Agw. However, we can calculate |U’0”-U’Oj‘j|2 from Eqgs. (31)-(33) and fix the shapes of A/ without their

orientations. With the help of Eq. (4) and the vector sides in Eqgs. (34)—(36), the Jarlskog invariant J' at Agy for
Majorana neutrinos can be given by

2¢e
J=J —m{j[’"?("fz‘ + m})(|Usl* = |Up|?) + mj(mt + m3)(|Ua|* = |Us|*)

—|—m§(m‘1‘ + m%)(|U72|2 - |U11|2)} + m1m2A31A32[(|U72|2 - \U,1|2)]Ié$
~(|Upa* = Ut P)LZ] 4+ mymsAgy Ay [(|U 4 P = U5 P)1E = (U > = [U 5]
+mymzAy; Ag [(|U‘L'3|2 - |U12|2)]I§3 - (‘Ue3|2 - ‘U62|2)]I12'3]} (37)

where Hff)} denote the imaginary parts of UaiUyUpi Uy,
The nine inner angles of LUTs at Agw running from Ay can be derived from Egs. (34)—(36) and (21), and
expressed as:

2n4€
T Dr1A31A5,
+mymy Ay Ay [(|Ua |* 4 U )Rz + (U > + U PR
+mym3 Do Ay [(|Ua|* 4 [Us )R + (U > + U517 R
FmymyAg; Mg [(|Uns | = U )R + ([Us]* = |U0)RE]
+cot gy [mymy Az Agy ((|U |2 - |U12|2)]I}4% - (|U;41 |2 - |U,42|2)Hl72)
+m1m3A21A32((|U73|2 - |U71|2)H;]¢2 - (|Uﬂ3|2 - |Uu1 |2)le3)
Fmymy Ay Mgy ((|Una|* = U2 = (U = U P)ED)]}

2]1{/)(;'
Ty iy iy UUnlIUsP 303, U = miadlUal)

—mimyAy i Ay [([U 4 P + U )R + (U |* + U )R]
+mimAg Ay [(|U 2 = U )R + (|U,8)* = U P)RE]
Fmymy Ay Mgy [(|Un? + [UsP)REE + (U2 + U, )RE]
+cot ey [mymy Az Agy ((|U- |2 - |U12|2)]I/14% - (|U,41 |2 - |UM2|2)]I¥)
+mlm3A21A32((|UT3|2 - |U71|2)H;142 - (|Uﬂ3|2 - |U,41 |2)]I%13)
+mamyAg Az ([Un|* = U P2 = (102 = U, )ED)]}

2]1{/)(;'
7NN (UaP|UP(m3A%|U o2 = m3A2 U, P)

+myimy Ay Ag [(|Up|* = U P)RE: + (U = U [)RE]

—mim3Ag Ay [([U 4P + U )R + (U |* + U517 RE]

—mym3As; Az [(|UT2|2 + |U1’3|2)R/242 + (|Uﬂ2|2 + |Uﬂ3|2)R3ﬂ

+cot s [mimyAs Ay (U P = U )z = (U [P = U P)7)

+m1m3A21A32((|U13|2 - |U11|2)H;142 - (|U;43|2 - |U,41 |2)H5’)

+mymyAg Mgy (U |* = U )2 = ([U 2 = U, P)ED)] (38)

cotd,, ~cote, +

{lUnPUsP(m3A5, U5 — m3A3|U )

cotg,, ~cote,, +

cotg,, ~coteh,; +
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and

2n4€
cot ¢y = coth,; + 2 As {{UP|Us(m3A5,|Us]* = m3A35, U, )

T Ds14A3

+mimaAs Ap[(|Ua [P + [UnP)RE + ([Ual? + [Un )R]
+mims Ay Ay (U 2 + | UsP)RE + ([Ual® + U P)RE]
+mymy Ay Ay (U > = [UnP)RE + (IUs [ = |Una*)RE)
_00t¢y1[mlmZASIASZ((‘Uﬂ'z - |U12|2)]I£ - (‘Uel|2 - |Ue2|2)ﬂg)
+mym3 Ao A (U = [UaP)LE = ([Ues* = Ut P
+m2m3A21A31(<|U12|2 - |UT3|2)H§2 - <|Ue2|2 - IUeslz)HZE’)]},

2]’1456
m{|U71|2|UT3|2(m§A§1|Uel|2 — m2A%L|U )

—mymy Az Ap[(|Un > + |Un )R +

+mimz Ay An[(|Usl” = [Un )RS +

+mym3Ag Mgy [(|Un]* + [UsP)RE + (|Ues|* + |Us*)RE]

—00t¢ﬂ2[m1m2A31A32((‘U11|2 - |Urz|2 ]Ii% - (‘Ue1|2 - |Ue2|2)]u$)

+m1m3A21A32(<|U13|2 - |U11|2)H£ - <|Ue3|2 - |Uel|2)]I‘L1"?)

+m2m3A21A31(<|U12|2 - |UT3|2)H%2 - <|Ue2|2 - |Ue3|2)]I$§)]},
2n4€

T B8543,

+mimy Az An[(|Un ] = U )R + (U = [Uat|*)RE]

—mym3Ay Ap[(|Un > + |UsP)RE + (U [ + [UsP)RE]

—mym3 Aoy Agi [(|U o] + [UsP)RE + (|Uea|? + [U s |*)RE]

—00t¢ﬂ3[m1m2A31A32((\U11|2 - |U12|2)]I£ - (‘Uel|2 - |Ue2|2)]13)

+m1m3A21A32(<|UT3|2 - |U71|2)H£ - <|Ue3|2 - |Uel|2)]I‘L1"?)

+m2m3A21A31(<|U12|2 - |Uf3|2)]1?2 - (|Ue2|2 - |Ue3|2)]I%3)]}; (39)

coteh,, = cot,y +

|Uel |2 + |U32‘2)R‘£ﬂ
|Ue3|2 - |Uel |2)Ril'ﬂ

~— ~ T

cot 3 = cot s + {{UAPIU P (miAL|Upl* = m3A5, U, ?)

and

2ng€
T By1A31A5
+mymy By Ag (U P + (U )R + (U |* 4 [UnP)R,2]
+mym3 By Agy (U [P + [Us P )RE + (U |* 4 [U s PR3]
+mym3 g Ay [([Uys* = U P)RE + (|Ues? = Ui |*) R}
+ cot oy [mymy Ay Ay (U P = |U )z = (U > = U P
Fmims Ao Ay ((|Uys]* = U P = ([Ues* = Ut P)L)
Fmyms Ao Agi ((|Ujal? = [Us)E = (U = |Ues )LD}

C0t¢;1 2C0t¢71 + {m%A%l|Ue2|2|Uﬂ2|2(1 - |UT3|2) - m%A%I |Ue3|2|U/43|2(1 - |U12|2)
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2n4€

t o, ~ cot _
COt ey = colper + J B A31A3,

{miAL|U s P|U s P (1 = [Un ) = m3A3,|UaP|U

al2(1=1Us%)

—mimy A3 A [(|Un > + U P)RE + (U + [Unl) R

+mym3 Ay Ay [(|U 517 — |U,

HRE + (U7 - |Ue1|2>R,52]

+mym3 Ao Asy (U] + |U 5P )RS + (|Un* + |Ues|?)RZ]
+cot o [mymyAs i Ay (|U1 [P = Uo7 = (|Uet P = U P)2)
+myim3 A Mgy (U 5> = [Up )12 = (U3 * = Ut P)I3)
+mym3Ag Az ((|U o] = U )12 = (Ul = [UsE)]

2ﬂ¢€
JA21A31A32

+mymyAs; Ay [(|U 0> — |U,

cotgh, ~coth; +

{m3A5,|U i PIULP(1 = |Unal?) = miAL| U P|U (1= U4 ?)

DR + (U - |Ue1|2>R,ﬁ]

—mim3 Ay Ay [(|U 1> 4 [U s )RS + (U 1> + [UsP)R,S]

—mym3Ag; A [(|U 0?4 |U s )RS + (|U ] + [Us|*)RZ]

+00t¢13[m1m2A31A32((|U;41|2 - |Uu2|2)]13 — (U - |Ue2|2>]1;1¢%

+mim3Ag Az ((|Us]* = U P)L2 = (U = [Ual)L2)

+mzm3A21A31((|U,42|2 - |U;43|2)]I§2 — (Ul - |Ue3|2>]122)]}' (40)

Some discussions about the analytical results above for
both Dirac and Majorana neutrinos are as follows:
(i) The approximate expressions of |U,,|* and U},U%;
are similar to those of |U},[* and U,U’;, respec-
tively. The analytical results for Majorana neutrinos
are not equivalent to those for Dirac neutrinos even if
one turns off the Majorana phases by setting their
values to be zeros. In both cases, the corrections to
the LUTs depend a lot on the magnitudes of the
lightest neutrino mass and the small quantity €. The
evolutions of the sides U7; Uy, and the inner angles
¢z are more stable against the RGE running.

(ii) Different from the Dirac case, J' of Majorana
neutrinos is in general nonzero even assuming J at
Ay to be zero, and vice versa. One can conclude from
Eq. (37) that there may exist leptonic CP violation at
Agw unless all the Dirac and Majorana phases at the
superhigh energy vanish. This observation is consis-
tent with the analysis in Refs. [12,23].

(ii1)) The direct connections of the LUTs between two
energy scales, which have been established above,
are independent of the parametrization of U and
complementary to the differential forms in Ref. [12].
They can also reproduce the analytical approxima-
tions of neutrino masses, flavor mixing angles and
the Dirac CP phase in other references [15,18,24] by
taking a specific parametrization. Note that the
accuracy of the approximate results above and in
Sec. I will be very poor if the neutrino masses are
strongly degenerate, i.e., the smallest neutrino mass
is big enough. Considering the fact that the combi-
nation of Planck and baryon acoustic oscillation

(BAO) measurements gives the limit of the sum of
three light neutrino masses as » ..m; < 0.12 eV at
95% confidence level [25], one can use the analyti-
cal approximations to understand most part of the
parameter space. We plan to explicitly study the case
of nearly degenerate neutrino masses elsewhere.

III. LUTS AND RGE-INDUCED pg-r REFLECTION
SYMMETRY BREAKING

The p-t reflection symmetry of the neutrino sector
serving as the minimal discrete flavor symmetry to explain
the lepton flavor mixing and CP violation has been
extensively studied for both Dirac and Majorana neutrinos
[14]. One of the usual ways is that by assuming the u-z
reflection symmetry at a superhigh energy scale A,
we confront its RGE-induced breaking effects at Agy with
current experiment data [14,18,24,26,27]. This can be
connected with the corresponding reformations of the
LUTs below.

A. The case of Dirac neutrinos

If massive neutrinos are the Dirac particles, the u-z
reflection symmetry means that the effective Dirac neutrino
mass term is invariant under the flavor and charge-
conjugation transformations below:

Vg, <> (UML)C’

N‘:R(_) (NuR)C’ (41)

Vel <> (UeL>C’ l/uL <~ (UrL)C’

N < (Ner)S. N < (Ng)S,

where v, and N i for a = e, u, 7 denote the left-handed
and right-handed neutrino fields, respectively. This results
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in the constraint conditions of (H,),,,=(H,);,and (H,),,, =
(H,),, with (H,),s = ;miUyUyj being defined in
subsection IT A. To be specific, we have U,;U,; = U, U;
and|U,;| = |U,|fori = 1,2, 3, which can also be expressed
as U,; = n;Uy; and U,; = n;U;; with ; = &1. There are
eight choices of (1, 7,,n3) while all of them are identical
with one another through redefining the relevant phases of
charged lepton and Dirac neutrino fields. Given the u-t
reflection symmetry of Dirac neutrinos at a superhigh energy
scale A, we have |U,;| = |U,|. Hence the corresponding
A; are isosceles triangles, each with two equal sides
|U,jUsil = |U;;Uy s and the two LUTs 4, and A, are
congruent with each other with three pairs of equal sides
\U.Uy;| = |U,;Uy,|. The deviations of the LUTs at Agw
from these special shapes at A,,; due to the RGE running can
demonstrate the RGE-induced pu-tr reflection symmetry
breaking intuitively. Let us define

SZ = ‘U;,zU,/f3|2 -
SIZ‘; = ‘U/ U/*1|2

S/i: = ‘U/ U/2|2

|U/ /* 2
|UU
|U/ U/2|2

’

(42)

to describe the deviations of A’ from their -7 reflection
symmetry limits, and

S]Ayr =|U, U, - |U21U;4*1|27
Sim’ = |U/ U/*2|2 - |U/ U/*2|2
=|U UL = [UsU % (43)

to show how the LUTs Aj, and A} can be reformed as
compared with their y-7 reflection symmetry limits. With the
help of |U,| = |U,| together with Egs. (14)-(16), the
analytical approximations of the six asymmetries in
Egs. (42) and (43) can be expressed as:

Sﬂ‘f 2A2 U 2 1-|U 2
A A21A;1A3 [ m; 31| €3| ( | e3| )
A%1|Ue2|2(1 - |U€2|2)]?
Sl” 2A2 U 2 1-|U 2
Ay A21A31A3 [ m3 21| e1| ( | el| )
- m2A%2|Ue3|2(1 - |Ue3|2)]’
sz [ %A%2|U€2|2(1 - |Ue2|2)

A21A31A3
—m3A3|UaP(1 = [Ua?)];

and

e|lU 1|2

81 ~ e 2.2 _ .4 1-|U

By Ay Ay [<m2m3 mi)( |U1]?)
_m%A32(|U32’2_|Ue3|2)]’
e|lU 2|2

82 ~— e 2.2 _ .4 1—-|U 2

Dy Ay A [(m1m3 mz)( | e2|)
_m%A3l(|Uel’2_|Ue3‘2)]’
€|U 3|

S3 e 2 N1 = UAI?

A, = Ay As [(m m; —m3)( |U.31%)
—m3As(|Uy [ = U )], (45)

where |U,|* =|U,|*> has been be replaced by

(1=1U.l?)/2. We can see that S, —and S are most
sensitive to the neutrino mass ordering. The absolute values
of S’g and Si should be smaller because of the smallness of
A5, and |Ue3|2 The Jarlskog invariant 7' at Agw running
from A, can be written as

eJ

j/:j_7m2m4+m4 Ue Z_Uez
s+ (VP = V)

- m%(mélL + mg)(|Uel|2 - |U€3|2)

+mi(m} +m3)(|Uei|* = [Unal?)]. (46)

whose magnitude is proportional to the area of the LUTs
at Agw. Taking account of

Mg
wmrm%,du%UM|ww|><m

one obtains (cote; —cotg,,) = —n,Ss /T, where only
the first order of € is kept and S’ have been shown in
Eq. (44). Noticing that bigger ¢; — ¢;; lead to bigger
(cotgy; —cotgp,) and S, we can also use the more
intuitive asymmetries ¢, — ¢, to replace S, . The asym-
metries of these three pairs of inner angles satisfy

Zi( 1”‘ - 4’;1') -

B. The case of Majorana neutrinos

When it comes to the Majorana neutrinos, the u-7
reflection symmetry implies the effective Majorana mass
term should stay unchanged under the flavor and charge-
conjugation transformations of neutrino fields: v, < 5z,
VL <> Vig, and vy, <> Vg, This results in the limits to the
elements of neutrino mass matrix M,: (M,),, = (M,)?,,
(M,), = (M)}, (M), = (M,)%. and (M), = (M)},
with (M Jap = MU U belng defined in subsection II B.
Furthermore, the constraint conditions can be expressed as
U.i=nU;; and U, = n;U;; with n; = 1. Four of the
eight choices of (1, 1,, n3) are independent because we can
not redefine the Majorana neutrino fields to change the sign
of arbitrary column of U just like the Dirac case. Given the
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u-t reflection symmetry at A

o> one gets |U

uil =|Uy|,  the deviations of LUTs of the Majorana neutrinos at Agy
which results in three isosceles LUTs A; with [U, jU;k| =  from their special shapes at A,,. The analytical approx-
|U,;Uz,| and a pair of congruent triangles (A, and A,) with imations of these asymmetries in this case can be obtained
|U.iUy| = |U,iUy,| just as the Dirac case. So the asym- with the help of U, =n;U;; and Egs. (31)-(33). The

metries defined in Eqs. (42) and (43) can be used to denote ~ Tesults are

- €
3’21 T A ['72m2A31(772m2A31 - ﬂ1m1A32)|Ue3|2(1 - |Ue3|2) - ’13m3A21(’11m1A32
Ay 1Az Az,

+13m300))| U *(1 = U2 |?) + manzsmyms Ay Az (|U o[> = |Ues|*) Ui 7],
S\~

€
82143183 [3m3 801 (3m3 801 = 112ma831) | Ut (1 = [Uer ) + mmy A (2ma gy

—’71m1A32)|Ue3|2(1 - |Ue3|2) +’11’73’"1’"3A21A32(|Ue1|2 - |Ue3|2>|Ue2|2]’

€
Sy —————[mm  Agp (mymy Mgy + 13m3800)|U 2 [*(1 = [U o) + namyAgy (n3ms3 Ay
Ar1 Az Az,

—amy A3 )| U i |*(1 = [Ut[*) + mimamymyAzy Agy (|U 1> = |Ua )| Ul (48)

demonstrating the deviations of A} at Agy from their isosceles shapes at A,; and

elUa|?
LM = A21A1_31 [(m§m§ - m‘f)(l - |Uel|2) - m%A32(|Ue2|2 - |Ue3|2) - 2’71’"1(772’”2A31|Ue3|2 + 773’"3A21|Ue2|2>]’
e|Uq|?
Si;w == AZIZ_32 [(m%m% - m%)(l - |Ue2|2) - ’”%A31(|Ue1|2 - |Ue3\2) - 2’72’"2(’71’”1A32|Ue3|2 - ’13m3A21|Ue1|2)L
e|Ues|?
S < [(m%m% - m§)(1 - |Ue3|2) - ’”%A21(|Ue1|2 - |Ue2|2) + 2’73m3('llm1A32|Ue2|2 + '72m2A31|Uel|2>]’ (49)

showing the deviations of Aj, and A’ at Agy from their congruent shapes at A,,.. From Egs. (48) and (49), we find that SLW
and SZAW are most sensitive to the neutrino mass ordering; Siw and S’f} are smaller due to the suppression of A, and |U 5 /°.

This conclusion is the same as the Dirac case. The connection of the Jarlskog invariants of Majorana neutrinos between Agy
and A, can be written as

eJ
J =T = —————{[mi(m3 + m3) — mnzmams By Ay (| U s |* = U 5]?)
Ay AzAs,
— [m3(mt + m3) + mpsmymy Mgy Ag J(|U . P — U s)?)
+m3(mt + m3) = nipummyAz Az (U, | = U 2|} (50)

From Egs. (47), (48), and (50), we can get (cot¢; — cot¢h),;) ~ —1,S4 /J. The magnitude of (cot¢,; —cot /) always
keeps consistent with that of ¢; — ¢/, or Sy..

It is clear to see that the analytical approximations of S, S ’Aﬂ and 7' for the Majorana neutrinos include more odd terms
of n; (i.e., nn; for i # j) compared with their counterparts for the Dirac neutrinos. These terms can be directly connected
with the Majorana phases and have complicated influence on the LUT reformations at Agy.

IV. NUMERICAL ANALYSIS
Before we start the numerical analysis, let us first parametrize U as
C12€13 S12€13 s13¢70
U= | —sipc23 — c1281353€°  C1pCo3 — 510513523€°  ¢13503 (51)

is s
—S12823 + C12813€23€° 12823 + S12813C3€°  —C13C23
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TABLE I The correspondences between (3, p, o) and (171, 72, 113) for the Dirac neutrinos with ¢;; = cos 6;; and s;; = sin0;;.
in the p-7 reflection symmetry limit for the Majorana neutrinos. For the Majorana neutrinos, one has to add the Majorana
phase matrix P, = Diag{e”, e, 1} on the right side of

(8.p.0) (1,12 113) Eq. (51). U’ at Agw has the same form as U with the
(£%.,0.0) (1,1,-1) corresponding set of flavor mixing angles and CP phases
(£2.2.0) (=1, 1,—1) (0,605,055, ,p',0'). According to the specific paramet-

rization of U in Eq. (51), we interpret the constraints of the
(£3.0.3) (1-1,-1) u-t reflection symmetry as two conditions for the Dirac
(£%2.3.9 (-1-1.-1) neutrinos: 6,3 = /4 and § = +x/2, and four conditions

for the Majorana neutrinos: 6,3 = z/4, 6 = +7/2, p =0,

TABLEII. The numerical analysis of deviations of the six LUTs at Agy from their y-7 reflection symmetry limits
at A, for the Dirac neutrinos in the framework of the MSSM, by inputting (6,3,6) = (z/4,-x/2) at A,, and
allowing the smallest neutrino mass (/] for the NMO case and m} for the IMO case) and the MSSM parameter tan /3
to vary in the ranges [0, 0.1] eV and [10, 50], respectively.

Normal mass ordering (NMO) Inverted mass ordering (IMO)
Best-fit 30 range Best-fit 30 range
)(fnm ~ (.01 <9 )(fnin ~7.94 72 <9
S'A”/IO‘2 6.60 (0.03, 13.73) 0.11 (0.10, 0.64)
Si;/lO‘2 0.25 (—=0.15,1.34) —-0.08 (—0.52,-0.08)
Si;T/IO‘3 —2.26 (=5.16,-0.03) 0.03 (0.03, 0.18)
l’“ - ¢, 59.45° (0.03°,178.71°) 1.60° (1.55°,9.79°)
/’42 - ¢, —54.09° (—178.53°,0.60°) —1.58° (=9.70°, —1.54°)
;43 - ¢, —5.36° (—8.20°,-0.05°) -0.02° (—0.10°,0.07°)
J'/1072 -2.85 (—3.48,-0.04) -3.32 (—3.39,-3.25)
m) or m}/eV 0.085 0, 0.1) 0.001 (0, 0.078)
tan 32 (10, 50) 10 (10, 24)

TABLE III.  The numerical analysis of deviations of the six LUTSs at Agy from their y-7 reflection symmetry limits
at A, for the Majorana neutrinos in the framework of the MSSM, by inputting (053,68, p.0) = (x/4,-r/2,0,0) at
A, and allowing the smallest neutrino mass at Agy (7 for the NMO case and m} for the IMO case) and the MSSM
parameter tan f to vary in the ranges [0, 0.1] eV and [10, 50], respectively.

Normal mass ordering (NMO) Inverted mass ordering (IMO)
Best-fit 30 range Best-fit 30 range
72 =077 7 <9 i =794 2 <9
SL”T/IO‘Z 2.03 (0.03, 6.75) -0.03 (—=0.18,-0.03)
SZAW/IO‘2 2.10 (0.04, 7.02) -0.03 (—0.18,-0.03)
$3,./107 -2.15 (=7.25,-0.03) 0.03 (0.03, 0.19)
= P 1.23° (—=1.95°,4.30°) —-0.02° (—=0.19°,-0.02°)
o — 2.39° (0.08°,8.56°) -0.02° (=0.15°,-0.02°)
s — P -3.62° (—12.69°, —0.06°) 0.04° (0.05°,0.32°)
J'/1072 —3.27 (—3.48,-3.03) -3.32 (—3.39,-3.25)
m} or mj/eV 0.081 0, 0.1) 3.5x 1073 (0, 0.053)
tan 24 (10, 50) 10 (10, 24)
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TABLE IV. The numerical analysis of deviations of the six LUTs at Agy from their u-z reflection symmetry limits
at A, for the Majorana neutrinos in the framework of the MSSM, by inputting (63,6, p,6) = (z/4,-7/2,0,7/2)
at A, and allowing the smallest neutrino mass at Agy (m] for the NMO case and n)y for the IMO case) and the
MSSM parameter tan f to vary in the ranges [0, 0.1] eV and [10, 50], respectively.

Normal mass ordering (NMO) Inverted mass ordering (IMO)

Best-fit 30 range Best-fit 30 range
7o =027 <9 22 = 7.94 2 <9

S‘Lﬂr/lo‘2 6.48 (0.03, 10.37) 0.23 (0.22, 1.33)
.S‘im/lo‘2 -1.19 (—4.46,0.73) -0.14 (-0.78,-0.13)
S3Am/10‘3 -1.18 (—1.54,-0.01) 0.03 (0.03, 0.16)

i~ P 71.91° (0.11°,179.99°) 3.16° (3.05°,18.01°)

o — —-68.10° (=179.99°,-0.07°) -3.08° (=17.56° —2.98°)

i — P -3.81° (—4.52°,-0.00001°) —-0.08° (—0.45°,-0.06°)
J'/1072 —2.66 (—3.48,-8.65 x 1079) -3.32 (-3.38,-3.25)
m) or m}/eV 0.030 0, 0.1) 9.7 x 1073 (0, 0.097)
tan 50 (10, 50) 10 (10, 22)

TABLE V. The numerical analysis of deviations of the six LUTs at Agyw from their y-7 reflection symmetry limits
at A, for the Majorana neutrinos in the framework of the MSSM, by inputting (6,3.6, p,6) = (z/4,-x/2,7/2.0)
at A, and allowing the smallest neutrino mass at Agy (] for the NMO case and mj for the IMO case) and the
MSSM parameter tan f to vary in the ranges [0, 0.1] eV and [10, 50], respectively.

Normal mass ordering (NMO) Inverted mass ordering (IMO)

Best-fit 30 range Best-fit 30 range
22 ~0.01 7 <9 i =2 7.96 <9

S‘AW/IO‘2 6.59 (0.03, 14.47) 0.24 (0.23, 1.24)
Sim/IO‘2 0.24 (-0.19,2.40) -0.14 (—0.76,-0.14)
S3AW/10‘3 -2.25 (—6.01,-0.03) 0.03 (0.03, 0.17)

= P 59.41° (=2.70°,179.81°) 3.22° (3.13°,16.94°)

o — —-54.07° (—=179.79°,4.80°) -3.14° (—16.56°, —3.05°)

3~ P —5.34° (=9.64°,-0.02°) —-0.08° (—=0.41°,-0.06°)
J'/1072 -2.85 (—3.48,-0.006) -3.32 (-3.38,-3.25)
m} or mj/eV 0.097 0, 0.1) 1.3x 107 (0, 0.062)
tan f 24 (10, 50) 10 (10, 22)

or #/2 and ¢ = 0 or z/2. The correspondences between the

eight choices of (8, p, o) and the four independent cases of
(11,12, 13) have been listed in Table I. Given the fact that the
global-fit analysis of current neutrino oscillation data has
implied a preference of § around —z/2 [28,29], we only
focus on the case 6 = —x/2 at A, for both Dirac and
Majorana neutrinos. The framework of the MSSM is
typically chosen because the RGE-induced u-z reflection
symmetry breaking is always very small in the SM [30].
To show the deviations of the six LUTs at Agy from their
special shapes at A,., which can be described by the
asymmetries defined in Sec. III, the numerical analysis
similar to that in Ref. [15] has been done. Both the NMO
(m(l/) < mg) < mgl) ) and IMO (mg/) < mﬁ’) < m(zl) ) cases of
the Dirac or Majorana neutrinos will be taken into account.

Note that there are four choices of the two Majorana phases

at A,,;, which need to be considered separately, too. In each

case, we first run the relevant RGEs from A, ~ 10 GeV
down to Agy ~ 10? GeV in the framework of MSSM. Here
we roughly take the MSSM breaking scale Ayggy around
AEW-4 In the case of the Majorana neutrinos, we assume
that all the heavy singlet neutrinos have a mass spectrum at

“The Amssm, Where all superpartners are integrated out at
once, is just the matching scale of SM and MSSM. It is usually
assumed to be around the MSSM particle mass scales, i.e., from
1 TeV to 10 TeV. Because the range from Ayggy t0 Agw is much
smaller than the one from A,,; to Agy and the RGE running effect
on neutrino mass parameters from Ayggy to Agyw is very small,
we can roughly take Ayissm =~ Apw-
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TABLE VI

The numerical analysis of deviations of the six LUTs at Agy from their -7 reflection symmetry limits

at A, for the Majorana neutrinos in the framework of the MSSM, by inputting (6,3,6.p,0) =
(m/4,—x/2,7/2,7/2) at A,, and allowing the smallest neutrino mass at Agy (m} for the NMO case and m
for the IMO case) and the MSSM parameter tan f to vary in the ranges [0, 0.1] eV and [10, 50], respectively.

Normal mass ordering (NMO)

Inverted mass ordering (IMO)

Best-fit 30 range Best-fit 30 range
7o =117 7 <9 =176 7 <9

S,‘AM/10‘2 1.10 (0.001, 1.15) —0.002 (-=0.17,-0.001)
Sim/IO‘2 0.69 (0.001, 0.74) —-0.002 (—0.18,-0.001)
S3Am/10‘3 —0.85 (=0.92,-0.001) 0.002 (0.001, 0.18)

i~ P 4.23° (0.001°,4.31°) —-0.002° (—0.15°,-0.0004°)

o — -2.67° (—2.82°,0.13°) —-0.001° (—0.18°,-0.001°)

i~ P -1.56° (—1.65°,-0.002°) 0.003° (0.003°,0.31°)
J'/1072 -3.29 (—-3.48,-3.09) -3.32 (—=3.39,-3.24)
my or mf/eV 1.4 %1073 (0, 0.1) 0.098 (0, 0.1)
tan 50 (10, 50) 10 (10, 50)

A,,; and are all integrated out at AW.5 The initial values at A,
include the corresponding p-7 reflection symmetry con-
straint conditions of flavor mixing angles and CP phases.
Furthermore, the smallest neutrino mass (m) for the NMO
case and m/ for the IMO case) at Agw and the MSSM
parameter tan f vary in the reasonable ranges [0, 0.1] eV and
[10, 50], respectively. For each given values of m or m’ and
tan 3, the other parameters (sin” 65, sin” 0,3, Ay, Ayem) at
A, are scanned over wide enough ranges by means of
the MultiNest program [33], where Ay, = m3 —m?,
Ay = m3 — (m} + m3)/2, and their counterparts at Agy

li=mE—m? and AL, =mf — (m?+m5)/2 have
been defined to keep consistent with the notations in
Ref. [28]. From each scan, we can get a set of parameters
at Agw which will be confronted with the latest global-fit

results of current neutrino oscillation data by

i=1

)(2

where &; € {sin’ 0, sin® 05, sin” 05, &', A, Ajyy, } stand

for the oscillation parameters yielded from the scan; ¢;
and o; denote the best-fit values and averaged 1o errors of
&; from the global-fit analysis in Ref. [28], respectively.
The best-fit values and 30 ranges of ng, i — P and

Ti?

J’' are listed in Tables II-VI, corresponding to the

SIf the heavy neutrino masses are below A, we need to
integrate out them successively and take into account different
effective theories corresponding to different ranges of the
renormalization energy scale. Thus the final results of neutrino
mass parameters at Agw running from A,; may be very different

from our scenario under consideration [20,27,30-32].

minimal values y2. of y* and y*> <9 for one degree of
freedom, respectively. Considering that the two asymme-
tries Sy and ¢/,; — ¢; imply consistent deviations of the
LUTs, we only demonstrate the numerical results of the
latter. Some discussions about the numerical results are
as follows:

(i) Complementary to the analytical approximations in
Sec. III, the numerical results generally reveal how
the six LUTs can be reformed at Agyw by assuming
the y-7 reflection symmetry at A,,;. The reformations
depend a lot on the lightest neutrino mass, the
neutrino mass ordering, the Majorana phases and
tan 3. From Tables II-VI, we find that the parameters
running from A,; and their corresponding best-fit
values from the global analysis in Ref. [28] can not
fit very well in the IMO case, leading to big values of
x> This is mainly because the running direction of
03 from A, to Agy is opposite to its best-fit value
in this case [15,18]. The lightest neutrino mass m}
and tan 8 are limited to smaller ranges by y*> <9 in
Tables II-V.

(ii)) The deviations of the six LUTSs are small for the
case (p,0) = (x/2,7/2) in Table VI but their
values can be very big in some other cases. For
example, the two asymmetries ¢, — ¢, and ¢, —

', may reach about 180° in magnitude because of
the smallness of the corresponding 7'. We also
notice that J’ running from A,,, cannot be zero due
to the nonzero value of J constrained by the u-7
reflection symmetry conditions. It is easy to under-
stand this point from Egs. (46) and (50).

(iii) The smallest y2. for the Dirac and Majorana neutri-
nos come from the best-fit results of the NMO case in
Table IT and Table V, respectively. The corresponding
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FIG. 1.

angles belong to the blue LUTs at Agy-.
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LUTs together with their counterparts at A,,; have been
specifically shown in Figs. 1 and 2. The blue triangles
with y2. =~ 0.01 stand for the LUTS at Agy and almost
overlap the LUTs implied by the best-fit values of the
global analysis in Ref. [28], while the red ones denote
the corresponding LUTs at A,,;. When comparing the
two figures, we find that the blue LUTs at Ay differ
with each other only in the orientations of A; caused by
the Majorana phases, while the red ones are very
different.

V. SUMMARY

The neutrino physics has promisingly entered the era
of precision measurements, providing us more informa-
tion to understand the large-angle lepton favor mixing
pattern and potentially big CP-violating phases. From the
perspective of model construction, we usually introduce
heavy degrees of freedom and flavor symmetry at a super-
high energy scale to explain the smallness of neutrino
masses and the observed results of neutrino oscillation
parameters at Agw. In this paper, we use the LUTs to
describe the RGE running effects of lepton flavor mixing.
The analytical results in the integral form can directly
connect two LUTs at Ay and Agw, and they complement to
the corresponding results of the differential form in
Ref. [12]. We also apply the LUT language to the descrip-
tion of the p-7 reflection symmetry, whose RGE-induced
breaking effects can be intuitively interpreted as the devia-
tions of the LUTSs from their special shapes at A,;. The
reformations of the six LUTs from A, to Agy have been
analytically and numerically studied in a general way. Their
dependence on the lightest neutrino mass, neutrino mass
ordering, Majorana phases and the MSSM parameter tan j3
have been revealed, corresponding to the dependence
of specific flavor mixing parameters on these factors
[14,15,18,24,26,27]. We hope this work can enrich the
neutrino phenomenology and help to understand the rel-
evant underlying physics.
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APPENDIX: THE EXACT EXPRESSIONS OF m/?

By solving Eq. (11), we get the exact expressions of
Dirac neutrino mass squares m'?> at Agy and write them as

mp :g— X23_ 2 [Z—i— 3(1 —zz)},
m’ZZ:;—C— x23_3y [Z_ 3(1_22)}’
mp =T EVE N (A1)
where x = b, y = (b* — ¢)/2 and
Z = cos E arccos 2)623():29_)6—2}:;32761] (A2)

The Majorana neutrino mass squares m}> at Agy can also
be exactly shown as the same form of Eq. (A1) by replacing
the definitions of (a,b,c) with those defined below
Eq. (29). Note that Eq. (Al) applies to the NMO case
and in the IMO case, we need to do the replacements
mE — m, m? - m} and m? - m?. One can find that
the three Dirac or Majorana neutrino mass squares m'> at
Agw running from Ay look similar to the effective neutrino
mass squares in constant density matter [34] except the
different expressions of x, y and z therein.
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