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Warped black holes in lower-spin gravity
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We provide a simple holographic description for a warped conformal field theory (WCFT) at finite
temperature. To this end, we study the counterpart of warped anti—de Sitter black holes in three dimensions
using a lower-spin 81(2, R) @ u(1) Chern-Simons theory proposed by Hofman and Rollier. We determine
the asymptotic symmetries, thermal entropy and holographic entanglement entropy and show that all these
quantities are in perfect agreement with the expectations from the dual WCFT perspective. In addition, we
provide a metric interpretation of our results which naturally fits with our analysis in the Chern-Simons

formulation.
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I. INTRODUCTION

For the largest part of their existence, anti—de Sitter
(AdS) spaces and conformal field theories (CFTs) have
followed fairly independent and lonesome paths. Anti—de
Sitter spaces have been around since almost the advent of
general relativity [1,2]. The origins of CFTs can be traced
back to statistical mechanics, where they were identified as
describing critical phenomena. Later, their importance was
recognized in string theory, around at the same time the
modern study of two-dimensional CFTs was initiated [3].
Signs of interactions (apart from general isometry groups
considerations) appeared in 1986 in the work of Brown
and Henneaux [4] demonstrating that the asymptotic
symmetries of pure AdS; gravity consisted in the two-
dimensional conformal algebra. This important step estab-
lishing a link between AdS and CFT led to unexpected
breakthroughs in gravitational physics, such as (if one had
to name only one) the beautiful interplay between two-
dimensional CFTs and black hole entropy, which crystal-
lizes in the famous Cardy formula [5-8] and eventually
culminates in the AdS/CFT correspondence [9-11].

Over the last years, an important collective effort has
been devoted in extending the principles of AdS/CFT to
more general setups—most notably to non-AdS back-
grounds on the gravity side. This is because the holographic
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nature of gravity in general, and the Bekenstein-Hawking
area law in particular are not supposed to be contingent to
AdS spaces (see e.g., [12]). A notorious proposal in the
context is the Kerr/CFT correspondence [13], suggesting a
holographic duality involving (the near-horizon region of)
extremal four-dimensional Kerr black holes (see also [14]
for near-extremal BHs). The relevant geometry is the so-
called Bardeen-Horowitz metric (or NHEK geometry)
with SL(2,R) x U(1) isometry [15], which turns out to
be universal [16], but importantly does not include the
generic AdS; factor familiar from the near-horizon geom-
etry of supersymmetric black holes and allowing us to
apply AdS/CFT techniques. At fixed polar angle, the
NHEK geometry reduces to a three-dimensional metric
called (self-dual spacelike) warped AdS; (WAJS;).
Geometrically, they can be understood as a Kerr-Schild-
like deformation of AdS; using a chiral Killing vector of its
SO(2,2) isometry group (see e.g., [17-19]. Depending on
the type of the latter, one obtains timelike, spacelike and
null warped AdS; spaces. The former can be identified with
Godel space [20], while performing identifications in the
latter two yields a variety of black hole solutions [21-23]
sharing similarities with the Bafiados-Teitelboim-Zanelli
(BTZ) black holes [24,25] of AdS; gravity, and reducing to
them when the deformation goes to zero. The asymptotic
behavior of WAdS; spaces differs drastically from that of
AdS; (in particular, they do not satisfy Brown-Henneaux
boundary conditions), so WAdS; black holes are often
viewed as a prototype for non-AdS black hole holography,
possibly allowing us to get insights into (the near-horizon
geometry of) their higher-dimensional cousin.

The departure from a usual AdS/CFT scenario for
WAAS; spaces is crucially reflected in their asymptotic
symmetries, consisting in the semidirect product of a
Virasoro algebra and an affine {i(1) algebra instead of
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the full two-dimensional conformal algebra [26].] This
observation has been taken as a starting point for the study
of holographic properties of WAdS;3, in particular through
that of two-dimensional field theories with the correspond-
ing symmetries. This led to the definition of a new type of
field theories: warped conformal field theories (WCFTs).
These are two-dimensional field theories breaking Lorentz
symmetry and possessing an infinite number of conserved
charges satisfying a Virasoro-Kac-Moody {i(1) algebra.
Hofman and Strominger [28] showed that under certain
generic assumptions, a two-dimensional field theory with
translation and chiral scale invariance is either a CFT or a
WCEFT (this is a warped version of the result of Polchinski
that scale invariance implies conformal invariance [29]). It
is interesting to observe that, contrary to what happened in
the unfolding of AdS/CFT (where both sides had been
independently known but did not talk to each other), here
gravity suggested the existence of a new class of integrable
field theories that had not been encountered so far, of which
the mere existence was not even guaranteed a priori. Since
then however, many steps have been taken towards defining
and analyzing the properties of WCFTs: derive a Cardy-
type formula and matching with black hole entropy [30],
finding explicit examples and calculating partition func-
tions [31], studying phase transitions [32] as well as
correlation functions [33], matching of one-loop determi-
nants [34], calculating entanglement entropy [35,36] and
the study of anomalies [37].

Facing this new challenge, a natural approach would
be to set up the simplest holographic toy-model model
capturing the properties of a WCFT and see how far one can
get. What we are looking for is the warped counterpart of
pure Einstein-Hilbert gravity with a negative cosmological
constant for three-dimensional gravity and AdS/CFT.
Thanks to the absence of degrees of freedom and the
presence of BTZ black holes in its spectrum, pure three-
dimensional gravity might be the best candidate for a
solvable model with quantum black holes. The latter theory
has been shown to exhibit an extremely rich structure
[38,39]. WAdS; spaces, on the other hand, are not Einstein
spaces. For that reason, the holographic models considered
so far for WCFTs either consist of higher-curvature gravity
theories (see e.g., [26,40—49]) or require couplings to
matter(see e.g., [19,27,50-59]). In any of the cases, the
models possess local degrees of freedom. A noticeable
exception is the model, dubbed lower-spin gravity pro-
posed in [60], that can be described using a SL(2,R) x
U(1) Chern-Simons theory. It was argued that this model
is the minimal setup for the holographic description of
WCFTs, much like the SL(2,R) x SL(2,R) Chern-
Simons theory, which is classically equivalent to the
Einstein-Hilbert action [61], is the minimal setup for

'Note that the full conformal algebra can in some embeddings
be recovered when extra matter fields are present [27].

two-dimensional CFTs. In [60], a dictionary was provided
for translating Chern-Simons gauge fields into a metriclike
object. By using this, the authors demonstrated how
vacuum WAJS; spacetimes can be encoded in the gauge
fields. However, black hole solutions on WAdS; have not
been discussed at all. In this paper, we will be concerned
with the study of how spacelike WAdS; black holes are
encoded in the SL(2, R) x U(1) Chern-Simons theory. We
will explicitly construct the configurations of the Chern-
Simons gauge fields corresponding to these black holes and
then explain how these configurations can be identified as
black holes carrying nonzero entropy. This is the first step
towards understanding of thermodynamic properties of this
theory through a holographic duality. In AdS;/CFT,,
one can essentially indistinctly work either in the metric
or in the Chern-Simons formulation, as long as one is
concerned with semiclassical considerations [38]. Most
of the quantities on one side can almost unambiguously
be defined on the other side. For instance, determining
the Hawking temperature can be done be requiring the
absence of a conical singularity in the Euclidean metric
close to the horizon, which in the Chern-Simons formu-
lation amounts to requiring that the holonomy of the
connection along a certain cycle is trivial. We will identify
the gauge connection counterparts of WAdS; black holes,
study their thermodynamics and compare to the predictions
from WCFT.

Another motivation to study warped black hole solutions
in lower-spin gravity is related to its similarity to higher-
spin gravity theories in AdS; that can also be described in
terms of a Chern-Simons connection with a specific gauge
algebra (see e.g., [62—65]). For the higher-spin theories in
AdS; this algebra is 8[(N,R) @ 3I(N,R) [62]. Since
things such as an event horizon are not gauge invariant
objects any more, as soon as higher-spin symmetries are
present, one needs to find other ways to define thermody-
namically sensible black holes with higher-spin charges.
In the Chern-Simons formulation, this is usually done by
requiring that the holonomies of the gauge connection
satisfy certain requirements (see e.g., [66,67]). These
requirements are basically that the holonomies of the
higher-spin connections have the same eigenvalues as
the corresponding connection describing the BTZ black
hole in AdS;. Thus, if one is interested in possible higher-
spin extensions of warped black holes in a Chern-Simons
formulation, one first needs to understand how to describe
an ordinary warped black hole in this setup. Providing basic
understanding of warped AdS; black holes in terms of a
lower-spin Chern-Simons theory is another motivation for
this work.

In order to describe the thermodynamics of spacelike
warped AdS black holes in the Chern-Simons formulation,
we will follow the strategy that is quite similar to the one
used for describing black holes in higher-spin theories in
AdS; (which itself is inspired by the analysis of the

026013-2



WARPED BLACK HOLES IN LOWER-SPIN GRAVITY

PHYS. REV. D 99, 026013 (2019)

thermodynamics of the BTZ black hole in AdS; in Chern-

Simons formulation [24,25])2:

(i) Mass and angular momentum are the canonical
boundary charges that are associated to translations
in a timelike and angular direction, respectively.
Thus, we impose that the following relations
between the Chern-Simons gauge parameters, &
for 81(2,R) and & for u(1), and associated Killing
vectors & holds,

e=8A4,, £=¢&C,, (1.1)
where A and C, respectively, are the 31(2,R) and
1(1) Chern-Simons gauge fields.

(i) The inverse temperature f and angular velocity
as functions of mass and angular momentum are
determined by requiring that the radially indepen-
dent parts of the Chern-Simons connections .4 and
C, denoted by a,, a,, ¢, and c,, satisfy the following
conditions™:

Eigen[h] = Eigen[2zLy], (1.2a)

Eigen[h| = Eigen[2zyS], (1.2b)

where Eigen|...] denotes the eigenvalues of ...

hzfﬂ(/dq)aﬂrg/dq)aw),
E—%(/drpc,—i—ﬂ/drpc(p),

y is an undetermined parameter (to be determined
later) and L, and S, respectively, are generators of
8[(2,R) and u(1). Thus, in order to have sensible
thermodynamics, we are requiring that the eigen-
values of & coincide with the eigenvalues of 27L
and similarly the eigenvalues of / coincide with the
eigenvalues of 2zyS.

We require that the vacuum solution of the spacelike
warped AdS; black hole in this Chern-Simons
formulation is defined by having a “warped-trivial”
holonomy around the ¢-cycle:

ef%

(1.3a)

(1.3b)

(iii)

efa“’ =-1

, = 2"t (1.4)

We will look in detail these points in the main body of
the paper.

*We provide a brief review of certain aspects of BTZ
thermodynamics in the Chern-Simons formulation that are
relevant for our work in the Appendix A.

3See (A25) for the conditions that have to be satisfied in the
BTZ case and that inspired us to impose the conditions (1.2).

This paper is organized as follows. In Sec. II, we define
our setup, calculate the asymptotic symmetry algebra and
the thermal entropy in the Chern-Simons formulation.
In Sec. III, we show how to define the vacuum state of
our configuration in the Chern-Simons formulation and
give supporting arguments for the requirement (1.2) using
WCEFT arguments as well as (1.4). Section IV will be
concerned with computing holographic entanglement
entropy using Wilson lines. This computation also provides
an independent check of the thermal entropy and thus, in
turn, also the validity of the conditions (1.2). Section V will
be focused on a metric interpretation of the Chern-Simons
results. This metric interpretation provides another explan-
ation for the validity of all the requirements and, in
addition, allows us to fix the previously undetermined
parameter y in terms of geometric variables. Finally, the
conclusion and outlook of this work are summarized in
Sec. VI. For comparison, in Appendix A, we summarized
how the usual BTZ black holes are described in the metric
formulation as well as in the Chern-Simons formulation
with 8[(2,R) @ 8[(2,R) gauge symmetry.

II. SPACELIKE WAdS; BLACK HOLES IN A
CHERN-SIMONS FORMULATION

In order to describe spacelike warped AdS; black holes,
we use a 81(2, R) @ 1 (1) Chern-Simons formulation, very
similar to the one presented in [60]. In accordance with
[60], we also call it lower-spin gravity. The action is given
as follows:

Icszﬁ/M<A/\dA+§AAAAA>

K

where (...) is an appropriate invariant bilinear form, k is
the Chern-Simons coupling, « the 1t(1) coupling and M a
2 + 1-dimensional manifold. The gauge field A takes
values in 8[(2,R) and the second gauge field C in u(1).
We take the topology of the manifold M to be a
cylinder with coordinates 0 < p < o0, —00 <t < o0 and
@ € [0,2x]. Here ¢ is a temporal coordinate while p and ¢
are spatial. Choosing the basis* of 8[(2, R) (L,,) and u(1)
(S) generators as

(2.1)

[Lm Lm] = (}’l - m)Ln+m’ (223)

[L,. 8] =0, (2.2b)

A matrix representation of the 8[(2,R) part is given by

(3 0 (00 (0 =1
Lo={o —1)- B=l10) ==\lo o)

=
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[S,s] =0, (2.2¢)
the invariant bilinear form in (2.19) is given by
| Ly Ly L
Iy 0 0 -1
L,L,,) = = ,
< n m> LO 0 % Mum
L, -1 0
(ss) = 1. (2.3)

Some comments are in order regarding the way we
present the gauge algebra here, especially the u(1)-part.
Introducing explicitly the generator S and the correspond-
ing invariant bilinear form (2.3) might seem unnecessary at
first sight. However, we stress that one of our motivations
for this work is to provide a reference example of spacelike
warped AdS; black holes in the Chern-Simons formulation
that can be possibly extended to include higher-spin
excitations. The above choice is useful for this purpose.
In the well-known AdS; higher-spin case, the embedding
of the pure gravity sector into the higher-spin sector
determines what kind of higher-spin fields are present
in the resulting higher-spin theory (see e.g., [63]). In a
similar spirit, we suggest that the field content of possible
higher-spin extensions of spacelike warped AdS; black
holes is determined by how the basic symmetries (2.2)
are embedded into the higher-spin symmetries, 8[(2, R) &
u(l) & 8[(N,R).

A. Boundary conditions and asymptotic symmetries

After the introduction of the basic setup for describing
spacelike warped AdS; black holes in this work, the next
step is to write down boundary conditions that include such
black hole solutions. Since it has already been shown in
[60] that a model like (2.19) can describe spacelike,
timelike and null warped AdS;, we will take the boundary
conditions presented in [60] as an inspiration to write down
suitable boundary conditions for a spacelike warped AdS;
black hole.’

First we will use some of the gauge freedom to fix the
radial dependence of the gauge fields .4 and C as

Alp.t.9) = b~ (p)la(t. @) +d]b(p),  (2.4a)
Clp.t,p) = c(t. @), (2.4b)

with
a(t, @) = a,(t,)de + a,(t. ¢)dt, (2.5a)

SLater on, we will argue that depending on the choice of
chemical potentials the boundary conditions of [60] even include
spacelike warped AdS; black holes.

c(t.p) = c,(t.@)de + c,(t, p)dt. (2.5b)
From the Chern-Simons perspective, the exact form
of the group elements b does not have any relevance
for computing asymptotic symmetries as well as thermal
properties of the physical system described by the Chern-
Simons theory. The exact form of this group element,
however, is important for the geometrical interpretation
of the boundary conditions presented in this subsection.
Since we will also present a metric interpretation in Sec. V,
we fix the group element to be
b(p) = e™. (2.6)
There are in fact two reasons to choose this specific
expression. The first reason is that this is a very common
choice® for AdS; gravity in the Chern-Simons formulation
since the resulting metric takes the form of a Fefferman-
Graham expansion. The second one is that this kind of
gauge has also been used in [60] and, thus, is helpful when
making contact with the results in this work.
Using this gauge, we propose the following boundary
conditions:
a, = Ll - 2]—_‘_1,

P (2.7a)

a; = ,MLI + wlLO + 0)2L_1, (27b)

4 4
Cp= %ICS, c, = (1/ —|—%IC/4>S, (2.7¢)

Here & := 2% (£ — 22K?) and the functions £, K, y and v
are in principle arbitrary functions of ¢ and ¢. With a bit of
hindsight, we interpret the functions £ and K as functions
characterizing the physical state and the functions ¢ and v
as chemical potentials.7 This means in particular that
we assume those chemical potentials to be fixed, i.e.,
op = ov = 0. The functions w, are fixed by the equations
of motion, i.e., dA + [A, A] = 0 and dC = 0. For arbitrary
but fixed chemical potentials, the equations of motion
determine the time evolution of the state-dependent func-
tions as well as w, as

0L =pul +2Lu — %//’/ + KV, (2.8a)
8K = uk! + Ku' + %y', (2.8b)

®There are also other possible choices such as in e.g., [68].

The reason why the functions £ and K characterize the
physical state is that they appear in the canonical boundary
charges. In addition, the equations of motion only fix the time
evolution of the functions £ and C but not of y and v, thus
specifying £ and K as the dynamical variables.
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"

a)l :_ﬂls a)zz—gl,{ +/l_7

> (2.8¢)

where prime denotes a derivative with respect to ¢.
The next step is to find the gauge transformations that
preserve the boundary conditions (2.7). They are given by

6. A, = 0,6+ [A,. €], 6:C, = 0,8, (2.9)
where
1
e(t,p) =b7! [Z (1, (p)La:| b, (2.10a)
a=-—1
&(t,p) = €5(1.9)S, (2.10b)
with
6//
el =, e = —¢, el =8¢ —0—5, (2.11a)
4
S =0+ — Ke. (2.11b)
K

These gauge transformations lead to the following
infinitesimal transformation behavior of the functions £
and K:

k
6L = eL! + 2L + Ko/ — ¢, (2.122)
T

5K = eK' + Ke' + 4£0’. (2.12b)
T

In addition, the gauge parameters have to satisfy

4z

0,6 = ue, 0,0 = —?,u(elC)’ —ev. (2.13)

Accordingly the variation of the canonical boundary charge
is given by8

50e] + 50lé] :% / dp(es A,) +% / dg(&5C,)
—/drp(éﬁe—i—élCa), (2.14)

which can be directly integrated to obtain the canonical
boundary charge

0= /d(p(ﬁe + Ko). (2.15)

Using this canonical boundary charge as well as (2.12), one
can readily determine the following Dirac bracket algebra:

8For more details, see e.g., [69,70].

(L(0), L(§)} = 2L6 — 5L — %5 (2.16a)
{L(p). K(9)} = K& — 6K, (2.16b)
{Klg).K(@)} = -9 (2.16¢)

where all functions appearing on the r.h.s are functions
of ¢ and prime denotes differentiation with respect to
the corresponding argument. We have also defined 6 =
8¢ - @) and &' = 9,6(p - @).

One can also expand the functions £, X and delta
functions in terms of Fourier modes as

1 . 1 )
=— ) L e " =— ) K,e " 2.1
L 27[2 g€ e, K 2”2 Le” (2.17a)

nez nez

1 oo
5:Z26 (o-0),

nez

(2.17b)

and then replace the Dirac brackets with commutators using
i{-,-} = [-,*]. In the end, we obtain the following commu-
tation relations:

c
[Ln’ Lm] = (I’l - m)er+m + En(n2 - 1)5n+m,01 (21821)
L K] = =My, (2.18b)
[Knv Km] = E n5n+m,0, (2 18C)

2

with ¢ = 6k. This algebra is a semidirect sum of a Virasoro
algebra and an affine 1i(1) current algebra, matching with
the basic symmetry for WCFTs. This also coincides with
the asymptotic symmetry algebra found in [60]. This is not
a surprise, since the @-part of the connections A and C
coincide with that of the corresponding gauge fields in [60].

B. Variational principle and holographic
Ward identities

An important consistency check of the boundary con-
ditions (2.7) is to see whether or not they lead to a well-
defined variational principle.9 Varying the action (2.19),
one obtains on-shell

51cs:£ 8M<5¢4/\A>+%/6M <5C/\C>. (2.19)

It is straightforward to check that this term does not vanish
for the boundary conditions (2.7) with fixed chemical
potentials and that one has to add an additional boundary

*We would like to thank an anonymous referee for suggesting
that we perform the additional checks found in this subsection.
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term Iy to the action (2.19). This does not come as a
surprise since the necessity of such a boundary term has
already been discussed for a subset of our boundary
conditions—albeit using a slightly different notation—in
[60]. In terms of the components of the gauge fields a and ¢
that are independent of the radial coordinate p, the
necessary boundary term is given by

k K
IB :E 8M<(a¢, —2L] —2k<cé>L_l>at>

K

(cicy)- (2.20)

87 Jom
It should be noted that the form of this boundary
term closely resembles the form of the boundary terms
encountered in Chern-Simons models of higher-spin AdS,
theories; see e.g., [62,71,72]. The variation of the total
Chern-Simons action [ = Ics + Iy then vanishes for
fixed chemical potentials, as expected.

In holographic setups where the gravity side can be
described in terms of a Chern-Simons theory, there is an
intimate relation between the Ward identities of the dual
quantum field theory and the flatness conditions of the
Chern-Simons gauge field (see e.g., [73,74]). This relation
is crucial for setting up the holographic dictionary between
the functions £ and K and the corresponding expectation
values (EVs) in the dual WCFT. In [60], it has been shown
that this relation also extends to WCFTs that are described
via lower-spin gravity theories i.e., the flatness conditions
of the Chern-Simons gauge fields exactly reproduce the
WCFT Ward identities. If in addition to that the variation of
the total Chern-Simons action Ig takes the following
schematic form on-shell

Sl ~ / (EVs)é(sources), (2.21)
oM

one obtains a functional that automatically solves the
WCFT Ward identities and one can uniquely identify
which functions in the Chern-Simons connection (2.7)
correspond to the expectation values of the dual WCFT
currents and which functions correspond to the correspond-
ing sources [72,73]. Thus, in order to set up this dictionary
in the case at hand we will proceed with first deriving
the WCFT Ward identities in the presence of sources'® and
then determine the exact form of (2.21) for the boundary
conditions (2.7).

Let us assume a two-dimensional WCFT with coordi-
nates x and y such that by introducing ¢ = x —y and ¢ =
x + y the basic symmetries of the WCFT are [30]

o= f(p) t—1t—g(e), (2.22)

OAs far as we are aware, these Ward identities were not
computed anywhere else before in the literature.

where ¢ € [0,27] and —oco < ¢ < co. Analytically contin-
uing11 Xx — —ix one can introduce complex coordinates
@ — —zand t — Z. One way to compute the Ward identities
in the presence of sources as shown for example in [66] is to
add appropriate source terms to the euclidean path integral
and to compute the one point functions of the WCFT spin-2
current 7 (z) and spin-1 current P(z). The insertion of the
additional source terms causes the WCFT currents to pick
up an additional 7 dependence. Therefore, we are interested
in computing

82—<T(Z, Z_)>;4,U’ 82<P(Z’ Z_)>/4.w (223)
where (...),, denotes an insertion of o BTHP) jnside the
expectation value. Using

c/2 27 (w) 0,7 (w)
T(2)T (w) ~ 2.24
@7 (z—w)“—i_(z—w)2+ z—w ' (2242)
Pw) . 0,Pw)
T , 2.24b
PO~ ot (2.24b)
K/2
P(z)P(w) ~ C—np? (2.24c¢)
and the relation
1 Ny =
0: <Z) =2726?)(z, 2), (2.25)

as well as expanding in powers of y and v, one obtains

(T )y = ~(W0.T + 2T 0= 0%+ PO) |
%%
(2.26a)

Py = —<uc’)z7’ +POp+ gazu> (2.26b)

v

Inverting the analytic continuation that lead to z and Z,
i.e., going back to ¢ and ¢ coordinates, one obtains

OT),, = <ﬂa¢:r +2T O~ 55 O + P8¢v> ,

Hv

(2.27a)

O (P)yw = <u8¢73 + POyp + §8¢u> (2.27b)

7

"For more details on analytic continuations in WCFTs, see
e.g., [30,31,33,37].
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Upon identifying 7 = 2zL, one obtains precisely the
field equations (2.8). It is also straightforward to check that
the Ward identities in the presence of sources (2.27) reduce
to the usual WCFT Ward identities 9,7 = 0 and 0,7 =0
[30] when setting p and v to zero. This shows that the
Chern-Simons equations of motion—as in the more well-
known AdS; case—indeed correctly encode the Ward
identities of the dual quantum field theory.

In addition to this, one still has to prove that £ and KC
represent indeed the correct one point functions in the
presence of the chemical potentials ¢ and v [73]. For that,
one has to show that for arbitrary and most importantly not
fixed, i.e., ou # 0 and v # 0, the variation of the total
action I, on-shell has to satisfy the schematic relation
(2.21). For the boundary conditions (2.7), one obtains

Slg = —/ (Lép + Kov), (2.28)
oM

and thus one can identify £ and K with the vacuum
expectation values of the WCFT energy-momentum tensor
and 1i(1) current and p and v as the corresponding sources.

C. Thermal entropy: Mass, angular momentum
and holonomies

We now proceed in showing that the boundary con-
ditions (2.7) do contain spacelike warped AdS; black
holes. In this section, we do this by determining the
thermal entropy of the configuration (2.7). We note that
from now on we will assume that the chemical potentials y
and v as well as the state-dependent functions £ and C are
constant. Under this assumption, the connections «, and c,
simplify as

4
a, = puly — ul._;, ¢, = (1/ + —ﬂ’Cﬂ> S. (2.29)
K

Starting with this setup, the procedure in determining the
thermal entropy of such solutions is roughly as follows:

(i) Identify mass and angular momentum with the

charges that generate time and angular translations,
respectively.

(ii) Impose suitable holonomy conditions to fix the
inverse temperature and angular velocity as func-
tions of mass, angular momentum.

Integrate the first law of black hole thermodynamics
to obtain the thermal entropy.

Some comments are in order. The first comment is related
to determining the mass and angular momentum of the
configuration (2.7). In the usual metric formulation of
Einstein gravity, the mass and angular momentum are
associated with the charges of the Killing vectors 9, and 9,,,
respectively, and there is a precise way of relating these
charges with the ones determined in the Chern-Simons
formulation (see e.g., [75-77]). This, however, requires

(iif)

some geometric input to be sure that one is identifying the
correct quantities as mass and angular momentum in the
Chern-Simons formulation. In this section, we will require
that a similar relation holds also in the case at hand. We will
show later in Sec. V that this requirement is indeed valid.

The second comment is related to the holonomy con-
ditions we are proposing below in this section. At first, we
will motivate these conditions based on the first law of
black hole thermodynamics. We stress that the exact form
of these conditions at this point of the computation is,
similar to the way we determine mass and angular
momentum, an educated guess in the absence of a geo-
metric interpretation. In Sec. V, we will argue that these
holonomy conditions are, indeed, a sensible choice by
determining the inverse temperature and angular velocity
using a metric interpretation of the boundary conditions
(2.7) and showing that these expression match precisely
with the ones obtained from the Chern-Simons description
with the proposed holonomy conditions. In addition, one
can also use WCFT arguments to show that the proposed
holonomy conditions yield the expressions for inverse
temperature and angular velocity expected from a WCFT
perspective.

Now we move to determining the mass and angular
momentum. In a Chern-Simons description of three-
dimensional spacetimes such as AdS;, the gauge param-
eters ¢ preserving the connection A are related on-shell
to the Killing vectors & of the corresponding spacetime
via the relation € = £ A,. Since the description used in
this work is similar to the situations encountered in e.g.,
[75-77], it is reasonable to that the gauge parameters (2.10)
preserving the connection (2.7) are related to the corre-
sponding Killing vectors via e = & A,,, € = £“C,. With this
requirement one can determine (the variation of) mass and
angular momentum of the solutions (2.7) via

M = 5Qlel, ] + 60él,]

k K

6] =6Q[e|_5,| +60[&]_y,]

k K
— —ﬂ/d¢<A¢5Aw> —E/dmcwacqa). (2.30b)

For the boundary conditions (2.7) one obtains the
following expressions

M = 2x(usL + vok), 8J = =2x5L. (2.31)
Fixing the chemical potentials x4 and v is tantamount to
fixing “units” to measure the energy. One possible choice
for example is 4 = 0 and v = 1 for which mass and angular

momentum are given by
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M =2zk, J=-=2zL. (2.32)
For this choice of u and v, one exactly recovers the
boundary conditions of [60]. Thus, in this case the
boundary conditions found in [60] also contain spacelike
warped black hole solutions. We would also like to stress
that the existence of these black hole solutions was not
realized in [60].

If the connection (2.7) describes a warped AdS; black
hole, then the thermal entropy also has to satisfy the first
law of black hole thermodynamics

6Sth = p(6M — Q8J), (2.33)
where Sty is the thermal entropy, f the inverse temperature
and Q the angular velocity. We have already determined
what (the variation of) mass and angular momentum is in
the previous paragraph. The only missing ingredients in
order to determine the variation of the thermal entropy 65ty
are the functional relations between the inverse temperature
p, the angular velocity € and the mass M and angular
momentum J. Once these relations are identified, one can
functionally integrate (2.33) to obtain the thermal entropy.

In a Chern-Simons theory, these functional relations are
usually determined by looking at the holonomy of the
connection (see e.g., [66,67,71,78]). Thus, in what follows
we will be choosing certain holonomy conditions that will
fix # and Q in terms of the state-dependent functions £ and
KC. Before stating those conditions, it will be illuminating to
rewrite the first law (2.33) as

k k
35m =5 [ dotasa,) +5-p2 [ dola,sa,)
K K
+ Eﬂ de(c,oc,) + EﬂQ do(c,bc,).
(2.34)
or, in a little bit more suggestive manner as

K -
5STh = k<h5(1(l,> + E <h5C[ﬂ>, (235)

with

h=5_ (/ doa, +Q/d(pa¢>, (2.36a)
h= 2% ( / dopc, + Q / d(pc(/,>. (2.36b)

One can see already at this stage that if / is proportional
to the elements of the center of the relevant gauge algebra
then two things happen:

(1) The expression for the variation of the entropy (2.35)

can be trivially integrated.

(ii)) One makes manifest that all the relevant information
regarding entropy is encoded in the connections
along the noncontractible cycle that wraps around
the horizon. Or, in other words, the thermal entropy
can be computed by using a Wilson line wrapping
around the horizon [79,80].

Moreover, the holonomies of the rotating BTZ black
hole for example also take the form (2.36a) (see (A25)
in Appendix A). Thus, a suggestive choice of holonomy
conditions in the current case is

Eigen[h] = Eigen[2xyS],
(2.37)

Eigen[h| = Eigen[27Ly],

where Eigen[...] denotes a set of eigenvalues for ... and y is
some constant. Imposing these conditions, one finds that
the holonomies of 4 and % are given by

b~leihh = -1, el = e, (2.38)
Therefore, if y is an integer for example one finds that the
holonomy lies in the center of the gauge group, in close
analogy to the BTZ case. However, since our goal is to
describe a warped geometry, we do not assume that this has
to be necessarily the case. The reason is that warped AdS;
spacetimes are deformations of AdS; spacetimes and, as
such, it is suggestive that a similar kind of “deformation”
also happens at the level of holonomies.

Enforcing the conditions (2.37) fixes the inverse temper-
ature and angular velocity as

2 2xiC v
= (=22, Q=— -y 2.39
87 (- 07%) ekt )

Both the inverse temperature and the angular velocity are
theory-independent quantities and only depend on the
geometry in question. Thus, we will use the metric
interpretation of Sec. V later on to fix the exact value of y.

After this, one can directly proceed in determining the
thermal entropy via functionally integrating (2.35) to obtain

212
Spy = 27 <2ﬂlC}/ n \/ % (2n£ - 4”K’C )) (2.40)

For the choice u =0 and v =1, the thermodynamic
potentials are given by

(2.41)

ﬁ:2ﬂ<y—2ﬁlc>, 1

K/ 8 :2}/\/5—%’

and one obtains the following thermal entropy in terms of
mass and angular momentum:
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Spy = 27 (My n ,/% (—J —M72>> (2.42)

where ¢ = 6k. This is exactly the form of the entropy for a
spacelike warped AdS; black hole and at the same time
that of a WCFT at finite temperature [30]. Since for this
choice of chemical potentials the mass and angular
momentum are directly related to the zero modes of the
functions £ and C, we will assume thaty = O and v = 1 in
everything that will follow from now on. This expression
for the entropy is already a strong evidence supporting that
the connection (2.7) correctly describes spacelike warped
AdS; black holes.

In the rest of this paper, we will show that the holonomy
conditions (2.37) are sensible choices for spacelike warped
AdS; black holes.

III. VACUUM STATE AND WCFT ENTROPY

The expression for the entropy (2.42) takes the form
expected for the thermal entropy of a WCFT. A natural
question is then how to relate these two quantities to each
other. The general formula for the thermal entropy for a
WCEFT at finite temperature is given by [30]

AmiMM® M) M>
St = —L+4n\/<JV+u> (J+—).
K K K

In this expression, M and J are mass and angular
momentum, respectively, and M" and J" are those of the
vacuum. Thus, in order to make contact with this formula,
one first needs to determine what the vacuum solution of
(2.19) is.

In the usual metric formulation of Einstein gravity, one
way to determine the vacuum is via the maximal number of
globally well-defined Killing vectors. Looking at the BTZ
black hole for example one finds in general six linearly-
independent Killing vectors.'> However, out of these six
Killing vectors, only two are globally well defined for
general values of mass and angular momentum: the ones
associated to time and angular translations. One possible
definition of a vacuum state is that it is the state with the
highest amount of symmetry. Thus, in this case it should be
the state where all the six Killing vectors are well defined
globally. For the BTZ black hole, this happens for very
specific values of the mass and angular momentum (see
(A18) and yields global AdS;.

For spacelike warped AdS; black holes, the situation is
similar; the only difference is that one generically has four
Killing vectors out of which two are again globally well

(3.1)

“For more details, please take a look at Appendix A,
specifically (A7).

defined for any value of mass and angular momentum. In a
Chern-Simons theory, the role of Killing vectors is taken by
the gauge parameters (2.12) and as such one might expect
that one encounters similar features at the level of the gauge
parameters. Another way to look for the vacuum in a
Chern-Simons formulation is to use the holonomies. Taking
again the BTZ black hole as inspiration (see (A17), it is
straightforward to check that the holonomies around the ¢-
cycle are in general nontrivial. Only for very specific values
of mass and angular momentum—the ones that give global
AdS;—these holonomies become trivial. In the following,
we will use this as a guiding principle to determine the
vacuum state of the solution (2.7).

Inspired by this, we require that, for the vacuum state of
the warped AdS; case, the holonomy along the ¢-cycle
obeys

efeo

ple$p = 1, —nir (3.2)

This leads to the following restrictions of the state-depen-
dent functions,

el +2n)? _7/2_1<
487 81’

iK
kv =21

L= = (33)

or on terms of mass and angular momentum (again for the
choice y =0, v=1)

_c(1+2n)?

iKy
JV = =",
24

r’k .
+ 1 MY = > (3.4)
The integer n accounts for the periodicity of the complex
exponential function and leads to additional possible
branches of solutions.'® In the following, we will choose
the branch with n = 0 in order to make contact with the
WCFT vacuum values found in [30]. We note that this is a
natural choice which avoids a multiple cover around the
@-cycle.

In order to check if the vacuum values lead to some kind
of symmetry enhancement at the level of the gauge
parameters, we first determine these gauge parameters
satisfying 5,4 = §,C = 0. From these equations, one finds
that the gauge generators defined in (2.10) satisfy

_87r
ok

"
€

2
(E - %I@) e, 0,e = pe', (3.5a)

4
0,6 = ——ﬂlee’ = uo'. (3.5b)
K

For y = 0 and v = 1, the solutions to these differential
equations are given by

“This also happens already in the BTZ case, see (A18).
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e2\/§‘/’C1 - e—2\/§wC2
€= + C3,
2vV8

(3.6a)

o= —4?”IC€+C4. (3.6b)

Since the manifold M has the topology of a solid
cylinder whose ¢ coordinate is 2z-periodic, one also has to
require that €(¢) ~ (¢ + 27) as well as 6(¢p) ~ o(p + 27).
However, looking at (3.6) one sees that for generic values
of & this is only true if C; = C, = 0. This fits perfectly into
the picture of a spacelike warped black hole: out of the four
linearly independent Killing vectors, only two are globally
well defined. On the other hand, if £ and /C take the values

found in (3.4), one sees that v/ = £ and, thus,

e =—i(eCy —e™C,) + Cs, (3.7a)

o = —iye + Cy. (3.7b)

These gauge parameters are 2z-periodic for any values of
the four integration constants C,. This fits perfectly with
what we expected at the beginning of this section: there
should be four linearly independent globally well-defined
gauge parameters for the vacuum state.

After having determined the vacuum, one can now make
contact with the general formula of a WCFT at finite
temperature (3.1). Plugging the vacuum values (3.4) into
that expression, one obtains

F— (My n % (—J —M72)> (3.8)

This is exactly the same form as the entropy derived in the
gravitational setup (2.42). We note that (3.4) indicates the
parameter y introduced in (2.37) is related to the vacuum
value of the mass.

Having shown that the vacuum values (3.4) in combi-
nation with the general WCFT formula (3.1) yields the
same expression as the thermal entropy (2.42), we will now
present a WCFT argument that supports the choice of
holonomy conditions (2.37). Starting from the WCFT
formula (3.1) one can determine its variation with respect
to the charges J and M. This allows one to identify the
inverse temperature f and angular velocity £ completely in
terms of vacuum values and charges by using the first law
(2.33). This yields the following expressions:

4ri A (=7 — M2y
B = —ﬂMV + 7 - 7" ) =, (3.9a)
S e s
2m(—J — OL°
pQ = — ad = ) (3.9b)

Inserting the vacuum values (3.4), one immediately
recovers (2.41). This is additional evidence supporting
the validity of (2.37).

IV. HOLOGRAPHIC ENTANGLEMENT ENTROPY
AND THERMAL ENTROPY FROM WILSON LINES

In this section, we compute the holographic entangle-
ment entropy of our setup by using Wilson lines'* as des-
cribed in [35]. With the Wilson line method, we will also
give an alternative way of computing the thermal entropy of
the configuration (2.7). As we will see, this computation
also helps us to understand the physical meaning of the
parameter y. In addition, this computation gives an addi-
tional nontrivial check that the holonomy conditions (2.37)
are, indeed, a sensible choice.

A. Holographic entanglement entropy

The concept that entanglement entropy can be holo-
graphically computed by using extremal surfaces in the
bulk has been first made precise in [82,83] and then
subsequently generalized in [84]. The fact that one can
compute entanglement entropy holographically gives a
very beautiful and intriguing relation between geometry
and quantum information. In order to extend these original
ideas of holographic entanglement entropy also to higher-
spin theories in three dimensions, it turns out that the
natural generalization in the context of Chern-Simons
theories is to use Wilson lines. For Chern-Simons theories
with 8[(N,R) @ 3I(N,R) symmetries, the basic idea to
use Wilson lines for computing holographic entanglement
entropy has been first made precise in [79,80]." For
8[(2,R) @ u(1) Chern-Simons theories that should be
dual to WCFTs, slight modifications of the methods by
[79,80] are necessary and have been done in [35]. Since one
can find the detailed construction already very well
explained in [35], we will in the following only review
the main ideas of the construction and focus on the parts
that are essential for the purpose of our work.

The main idea of computing holographic entanglement
entropy in WCFTs is using Wilson lines. To be more
precise, the negative logarithm of the trace of a Wilson
line taken in an appropriate representation computes the
entanglement entropy of the boundary region bounded
by the endpoints of the Wilson line. In the case of WCFTs,
this means

"“Wilson lines are, in general, very versatile objects to consider
in gauge theories. Another interesting application can for exam-
ple be found in [81] where the authors used Wilson lines to probe
Lorentzian eternal higher-spin black holes in AdS;.

“For the case of i8I(N,R) that is relevant for flat space
holography see [85,86]. For the dual CFT computation including
spin-3 currents that put the proposal of [79,80] on an even more
solid footing see e.g., [87,88].
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Ser = —log Wy *¥(C A) = Tog VRV (C50)], (41)
where C denotes the path of the Wilson line and R is the
chosen representation (usually an infinite-dimensional
representation). A more physical interpretation of this pro-
cedure is based on a massive (and spinning) particle
travelling along the bulk: the path C describes the world
line of the massive particle. For WCFTs, it was argued
in [35] that the appropriate representations for the
8[(2,R) part are given by a single particle living on
AdS,. Following the construction in [35], one can find
that the leading order piece for the entanglement entropy of
the 31(2, R) part of the Wilson line that is attached to some
cutoff surface p, very close to the boundary is essentially
given by

SHER) — _2¢,Aa (4.2)
Here ¢, is the quadratic Casimir of 8[(2,R) and A« is
determined via
2cosh [Aay/2¢,] = 24/1 — tr(ML, (ML), (4.3)
with
M = g;'L(po, pss 1)L (po @i 1) (4.4)
where
n
w=g=ew|-f0 -1 @S
L(p, . t) = exp [—pLo| exp [~a,¢ — a,t]. (4.5Db)

At this point it is important to note that a WCFT is not a
relativistic quantum field theory. As such entanglement
entropy will look different for different observers. Thus, the
Wilson line is attached at the initial point (p, ¢;, t;) and the
final point (py, @, t). See Fig. 1 for a graphic depiction.
For the connection (2.7), under the assumption that the
entangling interval ¢ — ¢; = Ag is very large compared to
the UV cutoff € = 2¢7° i.e., % > 1, one finds that

2 cosh [Aay/2¢;| = 2%smh [ﬂ;f] , (4.6)
where
7 r
ﬁfp—\/—g_ g(—J—MTZ)’ (4-7)

and ¢ = 6k. Identifying the quadratic Casimir in terms of
the central charge as ¢, = "2—2 = ;—; and taking the semi-

classical limit i.e., kK — oo, one can solve for Aa and, thus,

FIG. 1. Boosted (A, B) and equal time (A’, B’) entangled
intervals and the corresponding Wilson line (C) used to determine
holographic entanglement entropy for WCFTs.

obtain the following exﬁpression for the 8[(2, R) part of the
entanglement entropy’

SI2R) _ € 4
sit ):glog LZmnh[ﬁ ”

@

(4.8)

The (1) part of the computation is simpler to perform
since the Wilson line in this case is given by the integral
along the world line of the massive particle as'’

W%(I)(C; C) =exp [z’MV /CC] (4.9)

Thus, one obtains as the full expression for the holographic

entanglement entropy
6 log [ﬂZ sinh [ ﬁf] ] .

(4.10)

M
K

"Since the cosh is an even function one obtains different signs
depending on the sign of Aa. Here we chose to solve for the
branch where the entanglement entropy has a positive overall
s1gn

"One might wonder why the prefactor in front of the integral
is proportional to the vacuum value of the mass. One way to see
this is by arguing that the resulting expression for the entangle-
ment entropy should be in accordance with the general for-
mula (4.12).
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After using the vacuum expressions for M” found in (3.4),
this turns into

A
Spp = y<gAt+MA(p> —I—%log [’%Sinh [”ﬁ—(pH (4.11)
@

It is instructive to compare the expression (4.10) with the
general expression18 derived in [36]

-0
Py

+ (i%MV—MV) log[ zsmh[ﬂ‘””. (4.12)

4

In this formula, & is a parameter related to the tilt of the
cylinder on which the dual WCFT is defined. One can
reproduce our expression (4.10) for entanglement entropy
by substituting # (2.39) and S, (4.7) into (4.12) and then
using the identification 6 = 2zy. Thus, the (seemingly)
arbitrary parameter y encountered before is nothing but the
tilting parameter of the cylinder. This is also in good
agreement with the vacuum values (3.4), since the origin of
the nonzero vacuum value of the mass is precisely the tilt of
the WCFT cylinder.

The holographic entanglement entropy of our configu-
ration (2.7) provides us with additional evidence for the
validity of the holonomy conditions (2.37). To see this, we
notice that the thermal entropy (2.42) can also be recovered
from the entanglement entropy at a given constant time
slice in the limit where the entanglement entropy becomes
extensive (see e.g., [80]). That is, in the limit where ﬂq’ > 1
one has

S
SEE N%A?) (4.13)

Thus, one has a way of determining the thermal entropy
without any reference to the chosen holonomy conditions.
Performing this extensive limit one obtains

M2
Spp ~ (My n % <—J - —) ) Ap.  (4.14)
K

Thus, the extensive limit of the entanglement entropy
(4.11) yields again exactly the thermal entropy found
previously (2.42), justifying the validity of the holonomy
conditions imposed for the derivation of the thermal
entropy in Sec. IIC.

The extensive limit is not the only interesting limit
that can be taken from the entanglement entropy of our

'8please note that there is a sign difference with respect to the
time interval AT used in [36] and the time interval Ar used here.
The conventions for time used in this work are consistent with the
ones used in [35].

configuration. Another interesting limit is the one of small
intervals i.e., 29 « 1. In this limit, the entanglement
entropy (4.11) simplifies to

K c Ag
SEENyzAt+6log[€], (4.15)
and becomes completely temperature independent.
Precisely the same thing also happens when taking the
small interval limit of entanglement entropy in an ordinary
CFT at finite temperature. Thus, one would expect that also
for a WCFT the vanishing temperature limit of (4.12)
reproduces (4.15). And indeed, a straightforward calcula-
tion shows that this is also the case for (4.12).

B. Thermal entropy using Wilson lines

One of advantages of using Wilson lines to compute
entanglement entropy holographically is that one can also
directly compute the thermal entropy of black hole sol-
utions (aside using the extensive limit) by simply wrapping
the Wilson line around the black hole horizon. In the case at
hand, this is the ¢-cycle. Thus, the initial and final points
that appear in the matrix M in (4.4) are now identical, and
one has to solve

27°
2 cosh [Aay/2¢,] = 2 cosh ik (4.16)

4

Solving for Aa and plugging the result into (4.2), one
obtains for the 81(2, R) part:

3L(2.R M?
SHER) — og 6<J—7>

(4.17)
The u(1) part is again simply the world line of the massive
particle around the ¢-cycle and, thus, yields

sy — 2xMy. (4.18)

These expressions thermal
entropy (2.42).

As an addendum it is worthwhile to mention that this
prescription of the Wilson line wrapping the horizon is
nothing else than the statement that all the relevant
information about the thermal entropy is encoded in the
connection along the noncontractible cycle (¢-cycle in the
current case). A convenient shortcut' to obtain the thermal
entropy is, thus, by first diagonalizing a,, and then using the
diagonalized version of the connection denoted by 1, to
obtain the thermal entropy as

reproduce exactly the

PSee e.g., [71] for a similar statement in the higher-spin AdS;
case.
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Sth = 27k(LoA,) + mky(Sc,), (4.19)
or written in a more suggestive way as
MY 2
S = 21 <_in<st> - <_Jv _ o )<LW>).
K
(4.20)

V. METRIC INTERPRETATION

Up until this point, our analysis is based on the Chern-
Simons formulation. As in the case of the higher-spin
theory in AdS;, we have imposed several conditions. Even
though the matching of the asymptotic symmetries, the
number of globally well-defined gauge parameters and the
thermal entropy fit the description of a spacelike warped
black hole, it is hard to see at the level of the solution that
the connection (2.7) describes the desired black hole. In
addition, there is the parameter y that we identified with the
tilt of the cylinder where the dual WCFT is defined on.
From a pure Chern-Simons perspective, this is a free and,
up until now, undetermined parameter. However, one
would expect that this parameter should be fixed in one
way or the other by the geometry that is described by this
Chern-Simons theory.

In this section, we will provide a metric interpretation of
our solution (2.7) based on [60]. Our motivation is two-
fold. The first is to explicitly verify that the connection (2.7)
describes a spacelike warped AdS; black hole. The second
is to fix y. The metric interpretation will also enable us to
explicitly compute the Killing vectors as well as the inverse
temperature and angular velocity, providing more evidence
to support the claims made in Sec. I C.

A. Mapping connection to metric

A metric interpretation of the vacuum solutions given
by the connection (2.7) (with 4 = 0 and v = 1) has been
first worked out in [60]. In the following, we will employ
the same methods as in [60] to show that the connection
(2.7) reproduces the metric of spacelike warped black
holes. Thus, we will review briefly the main points of
[60] that are necessary to translate the connection (2.7) into
a metric form.

One of the points established in [60]20 is a precise
relation between the gauge fields A, C in the Chern-Simons
formulation (2.19) and geometric variables 3 that encode
the geometry. While the Chern-Simons fields are conven-
ient for many purposes, one needs to determine the geo-
metric variables from these fields in order to understand the

Please note that in [60] the Chern-Simons gauge field is
labeled B and the geometric variable A in contrast to our
notations.

geometry described by them. In the current setup, this is
done as follows:

(i) Define three linearly independent vectors in 31(2, R),
(£5. 1. ¢5), and the inverse vectors (&2,23,,2%) sat-
isfying 22@7 = ¢!, for I,J =0, 1, 2. Depending on
the choice of these vectors, one can obtain either
timelike, spacelike or null warped AdS; for vacuum
solutions of (2.7).

(i) Then using these vectors one can determine the
geometrical variables B via

8 2b . 2l An
0 __ Yl =720 gn 1 _ >n
B0 = kczac cC"A’ B N
Ch A
B = e (5.1)

The variable ¢ encodes the AdS radius, b encodes the
warping parameter and « is related to arbitrary
rescalings of the time coordinate f.

(iii) Using the 81(2,R) @ u(1) invariant bilinear form
My =iy, with 5, given in (2.3), one can
then determine the metric g,, via

ds* = g, dx*dx" = B'M ;8. (5.2)

Since our claim is that the connection (2.7) describes

spacelike warped AdS; black holes, we choose the follow-

ing vectors in accordance with [60]:

"= (1,0.-1),

&h=(1,0,1),  &2=(0,1,0),

(5.3)
where the notation for the vectors is { = (+,0,—). The

metric obtained from the connection (2.7) with y = 0 and
v =1 in this way is given by

iy dp? 16d7
§° = —
2¢  cka
8drde 16z /2
L e — _5 v/ 2 —p
- 2 <ka1< ka(e+e))
_de?

2¢2

/2 K 512722 K2
Ar | —p = (e 4 P
+ 64rx kBK(e + Re™?) ) >

This metric can be brought into a more familiar form by
choosing a different radial coordinate r via

<(c —4b?)(e% + Re72) = 2(40% + )8

(5.4)

p=2log E\/E(\/r—u—i—\/r—r_)}, (5.5)
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where

il
Szw(nr—r_)z,

B ka cryr_
K= \/216ﬂf5c<r++r_ v/ 3 ), (5.6b)

and ¢ denotes the radius of the warped AdS spacetime. If
one in addition changes the sign of the angular coordinate ¢

(5.6a)

as ¢ — ¢ = —¢ and chooses the parameters b, ¢ and a as
v ¥ +3 16
b=, c=—, =, 5.7
20 20 =Gz 37

then one obtains precisely the metric of a rotating spacelike
warped AdS; black hole [22]

ds? 5 dr?
FZdt +(1/2+3)(r—r Yr—r_)
+ —

+ (Qur — \/ryr_(v? + 3))drdg

+=B@*=1)r+ @*+3)(r. +r.)

—duy/ror_(V* +3))dg?.

In order to make the contact with the results derived
previously using the Chern-Simons formulation a bit easier,
however, we will use the metric (5.4) rather than (5.8) in the
rest of this section.

1=

(5.8)

B. Killing vectors

The purpose of this section is to show that there are four
Killing vectors of the metric (5.4) out of which two are
globally well defined. In addition, we will show that the
two globally well-defined Killing vectors satisfy e = §#A,
and & = &"C,,. This justifies the requirement (2.30) for (the
variation of) mass and angular momentum.

In order to find the Killing vectors of a spacetime given
by a metric g,,, one has to solve £.g,, = 0 for some vector
field &. Solving this equation for the metric (5.4), one
obtains, as proclaimed, four linearly independent Killing
vector fields:

_ V2kabkRe’ — 47K (e + L)
2/ R(e¥ — Q)

t

51 = C1€2\/§¢ <8p

B GERY) (p)’

2V/8(e¥ - 8) (5:92)

L V2kabkRe’ — 4K (e* + R)

52 = Cze_Z\/E(ﬂ <8

g 26/ 8(e¥ — Q) '
(e +8) )
+ 2R - 2) 9, (5.9b)
& =G50, (5.9¢)
54 - C48t, (59(1)

where C, are arbitrary integration constants. This is
consistent with the result in [20]. We note that the
Killing vectors &; and &, are well defined both locally
and globally. The Killing vectors &; and &, on the other
hand are not globally well defined for generic values of &
viz. £ and K, because of the periodicity of the angular
coordinate ¢. For the vacuum values (3.4), however, these
two Killing vectors become periodic. Thus, the vacuum
state has four globally well-defined Killing vectors as
expected for warped AdSs;.

Having now both the explicit expression of the Killing
vectors (5.9) as well as the expressions for the gauge
parameters (3.6) in the Chern-Simons formulation at hand,
we can explicitly verify that we correctly identified mass and
angular momentum previously in (2.32). This is simply done
by taking the two Killing vectors &; and &,. It is straightfor-
ward to check that they satisfy e = &4, and & = &C, for
the gauge parameters given by (2.10) and (3.6). This result
shows that our analysis combined with the metric interpre-
tation proposed in [60] fits with the usual analysis of the
warped black holes in the metric formulation.

C. Thermodynamic quantities

In this part, we will first determine the location of the
horizon for the metric (5.4) and then proceed in showing
that the horizon is a Killing horizon. As a next step, we will
determine angular velocity and surface gravity. In the end,
we will show that these expressions exactly match (2.39)
found in the Chern-Simons formulation, provided the
parameter y is identified appropriately. This also gives us
a way of fixing y completely.

First one needs to determine the location of the event
horizon in the coordinates (5.4). One particularly simple
way of doing this is to find the constant-p surface where the
determinant of the induced metric changes sign, that is
the location where the timelike Killing vector 0, changes to
be spacelike. On constant-p slices the determinant of the
induced metric y;; reads

det[y;;] = L (e” — Re ™).

5.10
Ska (5.10)

This expression is zero for
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ps = log [+V/8]. (5.11)
We note that, in the coordinates chosen in (5.4), only p, is
admissible as the location of the horizon.

The angular velocity Q can then be determined by
demanding that the norm of the Killing vector £ = 0, +
Q0, that generates the horizon vanishes at the horizon
ie, &¢&,[,_, =0. This in turn means that the horizon
located at (5.11) is a Killing horizon. Computing the norm
of this Killing vector, one finds that the angular velocity is
given by

1
Q=——rcn—— (5.12)
ki 4xlC
by/key/Q — 4k
This is exactly the same expression as (2.41) found
previously using the Chern-Simons formulation upon
identifying the parameter y as

_b Jka
=3\ 72

Since the horizon is a Killing horizon one can also associate
a surface gravity and, thus, temperature to it. The surface
gravity k; can be determined straightforwardly via

(5.13)

/1
Ky = - Evyguvﬂgb|pzp+v (514)
and for the metric (5.4) one obtains
1
Ky = (5.15)

b fha _ 21K
2V 2 T VR
Since temperature 7" and surface gravity k, are related via

T = 5=, one finds for the inverse temperature

ﬂ?
b Jka 22K
P ey i I
g ”(2V2 Kﬁ>

which again exactly coincides with (2.41) using the
identification (5.13). Thus, the exact value of y depends
on the translation from Chern-Simons to geometric vari-
ables. For the values (5.7) that yield the metric (5.8), one
obtains for example

(5.16)

2u

=, 5.17
43 ( )

/4

‘We note that, if one in addition chooses the Chern-Simons
level k as well as the (1) level x as”

*'Please note that these expressions are given in units where
f=G=1

B 50243
C6u(?+3)°

P +3
6v

(5.18)

the thermal entropy (2.42) coincides with the entropy of
spacelike warped AdS; black holes in topologically mas-
sive gravity (see e.g., Sec. V of [30]).

VI. CONCLUSION AND OUTLOOK

In this paper, we showed that lower-spin gravity
described by a 8[(2,R) @ u(1) Chern-Simons theory
contains solutions that can be interpreted as spacelike
warped AdS; black holes. We argued that certain holonomy
conditions give thermodynamically sensible relations
between the canonical charges and the corresponding
chemical potentials. The resulting thermal entropy is
consistent with the first law of black hole thermodynamics
and matches exactly the entropy of a WCFT at finite
temperature. In order to support our claim, we also
computed holographic entanglement entropy and found
again perfect matching with what is expected from a WCFT
at finite temperature, a holographic dual of the spacelike
warped AdS; black hole. Furthermore, following the dic-
tionary presented in [60], we provided a metric interpre-
tation of our results. Our results show that a theory of
lower-spin gravity provides a simple dual setup for a
WCEFT at finite temperature.

Our results presented in this paper can be extended in
various ways. One possible extension would be to look
for spacelike warped black hole solutions with additional
higher-spin charges. Since our work shows that spacelike
warped AdS; black holes can be described by using a Chern-
Simons theory with 81(2, R) @ 1(1) gauge symmetry, it is
suggestive to look at Chern-Simons theories with extended
gauge symmetry which contains 31(2, R) @ u(1) as a sub-
algebra. The most simple possible example for such an
extension might be the nonprincipal embedding of 3L(3, R).
Even though this particular case would not be a higher-spin
extension in the strict sense (since there are no excitations
with spin-s > 2), it would be interesting to look at such a
theory as a first step towards more complicated examples.
The results found in [89] for null warped AdS; in higher-
spin gravity suggests that such an endeavor is indeed
promising. In this work, the authors found boundary con-
ditions for a spin-3 gravity theory in AdS that asymptote to
null warped AdS; and whose asymptotic symmetries are

given by one copy of the Polyakov-Bershadsky Wf) algebra
[90,91]. Since there exist various examples22 of consistent
boundary conditions in (non-)AdS; higher-spin gravity
theories that involve the nonprincipal embedding of
8[(3,R) and the Wgz) algebra, it seems plausible that

*For AdS; higher-spin theories see e.g., [63,78]. Another
example with non-AdS asymptotics, namely Lobachevsky can be
found for example in [92,93].
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Wgz) algebra will make its appearance as the asymptotic
symmetry algebra of a ‘“higher’-spin extended spacelike
warped black hole.

Since lower-spin gravity provides a simple dual model
for a WCFT, it would be very interesting to consider a
supersymmetric extension and then apply the localization
techniques used in [94-96] to compute the full partition
function of lower-spin gravity. This could potentially lead
to many new insights regarding WCFTs and quantum
gravity in general.

Another interesting direction is related to soft excitations
of black hole horizons in three dimensions. Starting with
the work [97], consistent near-horizon boundary conditions
for BTZ black holes were found that lead to a very simple
near-horizon symmetry algebra, namely two affine (1)
current algebras. The thermal entropy of the BTZ black
hole expressed in these near-horizon variables takes a
strikingly simple form

St = 27(Jo + Jo). (6.1)
where J, and J,, denote the zero modes of the affine i(1)
current algebras. Following up on this work there were
many checks in different setups [97—105] as to how general
this result of the entropy is in three-dimensional gravity.
Since lower-spin gravity provides a new theory to test the
generality of the entropy formula (6.1) it might be inter-
esting to see if one can find consistent near-horizon
boundary conditions that either confirm or contradict
(6.1) in this setup.

ACKNOWLEDGMENTS

We would like to thank Alain Buisseret for collaboration
at the early stages of this work [106] as well as Luis Apolo,
Glenn Barnich, Alejandra Castro, Diego Hofman and Wei
Song for valuable discussions. M. R. wants to thank Martin
Ammon and the TPI at the Friedrich-Schiller-Universitit
Jena for the opportunity of an extended visit during the
early stages of this project. T. A. and S. D. are supported in
part by the ARC grant “Holography, Gauge Theories and
Quantum Gravity Building Models of Quantum Black
Holes.” S. D. is a Research Associate of the Fonds de la
Recherche Scientifique F.R.S.-FNRS (Belgium). He is
also supported by IISN-Belgium (convention 4.4503.15)
and benefited from the support of the Solvay Family. The
research of M. R. is supported by the ERC Starting Grant
No. 335146 “HoloBHC.”

APPENDIX A: THERMODYNAMICS OF BTZ
BLACK HOLES

Most of the requirements that we made in the beginning
of this work in the Chern-Simons formulation are inspired
by how the thermodynamics of BTZ black holes are
described in SL(2,R) x SL(2,R) Chern-Simons theory.

Hence we give a brief review® thereof in this Appendix,
focusing on the relevant points for our work. We start with a
very brief review of the main points of thermodynamics
for BTZ black holes in the usual metric formulation of
Einstein gravity in Appendix A 1 and then continue in
Appendix A 2 to review how these geometric statements
translate into the Chern-Simons formulation.

1. BTZ black holes in the metric formulation
The metric of the BTZ black hole [24,25] is given by

ds?* = —N?ds> + N2dr? + rz(dq) + N‘”dt)z, (A1)
with
(r*=r2)(r* = r2) rer_
N? = , N? = ) A2
r2bﬂ2 r2bp ( )

Here the spatial coordinates r, ¢ take values in 0 < r < o0,
@ € [0, 2x] and the temporal one 7 is in —co < ¢t < 0. This
metric has two horizons r., that are given in terms of mass
M, angular momentum J and AdS radius £ as

ri:f< ;—k(fM—J)i %(KMJrJ))- (A3)

Using a different kind of radial coordinate p that is defined

via
p = log [%(\/rz—ri—l-\/rz—r%)], (A4)

and in addition introducing the parameters £ and £ as

‘M =2r(L+L), J=-=2r(L-L), (AS)
one can bring the metric (Al) into Fefferman-Graham

form>* as
2 2|10, 27 N2 4 P2
dsc =7 |dp +7(£(dx )* + L(dx™)?)

2p 4ﬂ2£2 -2p +dy—
—|e —l-? e~ |dxTdx|. (A6)

Here we used light-cone coordinates x* = L+ ¢ for
convenience. Having the metric in a form such as (A6)
makes comparison with the Chern-Simons formulation
easy and, thus, we will continue to use this form.

BFor the interested reader a (nonexhaustive) list of reviews and
further reading regarding the relations between three-dimensional
(higher-spin) gravity and Chern-Simons theories is given by
[61,64,66,67,71,78,107-110].

HSee e.g., [111] for a review.
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Before proceeding to the Chern-Simons formulation, it is
useful to first determine some essential quantities character-
izing the black hole in the metric formulation. The first
important ingredients are the Killing vectors of the metric
(A6). It is straightforward to verify that the Killing vectors
of (A6) are given by

Ve e+ Q) VE
él = Cl <— ap + ( )

= Dyt
2(e® — 22)V/R

2

er*\/§+2p\/§
YT H. ), A7
T ey ) (ATa)
5 —C <_ e—2x+\/§ ~ (e4p + gg)e—bﬁ\/ﬁ
P 27 (e —g9)vE
—2x+/842p
_64—_\/’38,6_) (ATb)
(e* — 1Y)
&3 = C30,+, (A7c)
2x~VR 26V /@
§4ZC4< ¢ 8p+e 4 \—/§8X+
2 (e*” — 1Y)
4p Q) 2V
(e + £8)e ax_), (A7d)
2(e% — 2R)VE
—2VR 20 V82, /Q
55:C5< ¢ ap_e —\/ga)ﬁ
2 (e* — RK)
4p VR
(P48 a) (A7¢)
2(e* — 2R)VR
56 = Cf)ax‘? (A7f)
where we used the abbreviations 8 =22 L and 8 =2 L.

Because of the periodicity of the angular coordinate ¢, for
generic values of ® and &, only two out of these six Killing
vectors are globally well defined i.e., &3 and &¢. The other
four Killing vectors &;, &, &, and &5 become globally well
defined once ® and { become negative. Looking at the
resulting spacetimes, however, one finds that, for almost all
possible combinations of mass and angular momentum
satisfying this requirement, the resulting spacetime exhibits
pathologies such as closed timelike curves, naked singu-
larities or angular excesses/defects with one important
exception. That is, the case with ZM = —§ and J = 0 that
yields global AdS5. Thus, global AdS; can be interpreted as
the vacuum state of the BTZ black hole.

In order to determine the entropy of the BTZ black hole,
one first has to determine the location of the outer horizon
in the coordinates used in (A6). This can be done by either
reading the location off from (A4) or alternatively by
looking at the value of p where the induced metric of

(A6) on slices of constant p vanishes. Both yield the same
result, namely

PH (A8)

1 47

Once the position of the horizon is located, it is straightfor-
ward to determine the angular velocity € by requiring that
the norm of the Killing vector & = #9, + Q0,, vanishes at
the horizon i.e.,

&8ulp=p, =0

Subsequently one can also determine the surface gravity
Kk, of the horizon and, thus, also the temperature 7 = ;—ﬂ =

A1 via
1 e
Ky = _Evygyv 5

By following this, for the metric (A6), the explicit form of
and Q turns out to be

(A9)

(A10)

P=PH

_ kﬂ\/Z—i—\/Z __\/Z—\/E
PV Tver o T Tveve MY

The thermal entropy can then be determined via the area
law St = £- and one obtains

STh—27t(\/27rk + 27k ) (A12)

2. BTZ black holes in the
Chern-Simons formulation

Einstein gravity with negative cosmological constant can
be described by the difference of two Chern-Simons actions
[61,112]

I = Ics[A] = Ies[Al, (A13)

where

2
ICS[A]zﬁ/M<AAdA+§AAAAA>. (Al4)

The Chern-Simons level k, the AdS radius £ and Newton’s
constant G are related via kK =-%. The Chern-Simons
connections A and A both take values in 8[(2,R). We
choose the basis as

[L,, L] = (n—m)L,,, (A15)
for m, n = 0, £1 whose invariant bilinear form (...) is give
in (2.3). The manifold M is given by a cylinder with
coordinates 0 < p < o0, —o0 <t < o0 and ¢ € [0, 2x].
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The BTZ black hole [24,25] in this setup is described by
the following connection:

A=b""a+d)b, A=b(a+db, (A16a)
2r dr

a = <L1 —I,CL_1> (d(p—f—?), (A16b)
27 5 dr

a= (L—l —7£L1> (d(ﬂ—?), (A16C)

where a popular choice® for b is b = e’™ and £ and L
are the constants that encode mass M and angular momen-
tum J of the BTZ black hole that we introduced in (AS5).
The metric in this formulation is recovered via g,, =
2((A,—A,)(A,—A,)) and yields (A6). The metric in
the original BTZ coordinates (A1) can be recovered by
simply replacing p with the radial coordinate r according
to (A4).

In the metric formulation, all thermodynamic quantities
have a clear and geometric interpretation. In the following,
we show how these geometric statements translate into the
Chern-Simons formulation. Now we consider the following
questions in the Chern-Simons formulation:

(i) How to identify the vacuum state?

(ii) How to relate inverse temperature f and angular

velocity Q with the charges £ and £?

(iii) How to determine the thermal entropy?
The main idea to tackle these questions in the Chern-
Simons formulation is basically to look at the holonomies
of the gauge connections A and A. These holonomies
around given cycles should be trivial, which is tantamount
to requiring that these cycles can be contracted in a smooth
manner.

a. The vacuum state

Looking at the holonomies around the ¢-cycle that is

Hol,(4) = b~'e$%b. Hol,(A) = bed %b',  (A17)
one can see that these holonomies—that are nontrivial for
generic values of £ and L—become trivial i.e., Hol,,(A) =

Hol,,(A) = —11 for the following values of £ and L:

. k
Ezﬁz—g—(1+2n)2,

T

(A18)

where n is some integer number. For n = 0 this corre-
sponds exactly to ZM = —§ and J = 0, i.e., global AdS; in
terms of a metric interpretation. Thus, these holonomies
can serve as a tool to determine the vacuum state.

#One of the reasons why this choice of gauge is favored is that
this naturally leads to the metric (A6).

Alternatively one can also make use of the fact that
diffeomorphisms or in other words Killing vectors & in the
metric formulation are on-shell equivalent to gauge trans-
formations of the form
SA,=0,+[A el 5A, =0,6+[A,.¢, (A19)
with gauge parameters € = &A, and é = &A,. One can
show that the Killing vectors (A7) in combination with the
connections (A16) yields six linearly-independent gauge
parameters €, and €, with a, b =1, 2, 3 satisfying
0cA, = 5515” = (. Out of these six gauge parameters, again
two are globally well defined and the other four become
globally well defined only for the vacuum values (A18).
This corresponds to the symmetry enhancement that we
have encountered at the level of the Killing vectors in the
metric formulation.

b. Inverse temperature and angular velocity

A similar approach based on the holonomies can be
taken for computing the thermal entropy of the BTZ black
hole in the Chern-Simons formulation. This is usually done
by first performing a Wick rotation of the Lorentzian time
coordinate ¢ to Euclidean time 7z which is then compacti-
fied. This changes the topology of the solid cylinder to that
of a solid torus. One can introduce complex coordinates
(z,Z) by analytically continuing the light-cone directions
xt = ”7E+ @=z and x~ —> ”7‘3 — @ = —Z. These coordi-
nates are then identified as
7~z 421~ 7+ 277, I~Z742r~7+42x7, (A20)
where 7 is the modular parameter of the boundary torus.
Following e.g., [66,67] (see also [71] or [78]) smooth black
hole solutions are defined via the holonomies of the
contractible cycles around the constant-p torus. This is
tantamount to the statement that the holonomies belong to
the center of the gauge group [113,114]. For rotating BTZ
black holes these holonomies are given by

Hol, ;(A) = b~'e®D, Hol, ;(A) = be®b™!, (A21)
where
o =2n(za, + ta;), @ =2x(ta, + 7a:). (A22)

The requirement to have trivial holonomies is a restriction
on the eigenvalues of (A22) namely

Eigen|w| = Eigen|@] = Eigen[2ziLy].  (A23)
The quantities @, @ can also be written in terms of the
Lorentzian connections a, = a, —a; and a, = a, + a;
(@, =a,—as and a, = a,+ a:). In addition, one can
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use the fact that the modular parameters and the thermo-
dynamic potentials for the BTZ black hole have to satisfy26
ip
=—(1+Q
T 2T[( +Q),

7= ﬁ(l—g).

“on (A24)

Using this one can write the relations (A22) equivalently as
o = if(a, + Qa,) = ih, @ = if(a, + Qa,) = ih.
(A25)

Thus, one can also say that the holonomy conditions (A22)
give restrictions on the eigenvalues of & and / such that

Eigen[h] = Eigen[h] = Eigen[27L,].  (A26)
In the absence of rotation Q = 0, this means that the
Euclidean time cycle has to be contractible and, thus, also
the holonomy around that cycle has to be trivial. For the
rotating solutions, the contractible cycle is a more general
thermal cycle given by (A22) (or equivalently (A25)).

c. Thermal entropy and first law

These holonomy conditions give precise relations
between the thermodynamic potentials f3, € and the charges
£ and L. Once these relations are fixed, there are various
ways of computing the thermal entropy from the connec-
tions (A16) (see e.g., [71]). One particular simple way is via
integrating the first law of black hole thermodynamics

6Sth = P(6M — Q8J). (A27)
In order to be able to integrate this first law, one needs to
know how mass M and angular momentum J are related to
the constants £ and L. In (A5), we have already presented

2This relation can be determined from the metric side where
this statement translates to the absence of a conical singularity at
the horizon of the BTZ black hole.

this relation without any explanation. We will explain this
point here. In the metric formulation, mass and angular
momentum are the canonical boundary charges associated
to translations in time as well as in the angular direction
i.e., the Killing vectors 9, and —d,,. The (variation of the)
canonical boundary charges in the Chern-Simons formu-
lation is given by

0le] +00le| = 5. [ dpteda,) 5 [ dnleda,),
(A28)

where ¢ and € are gauge parameters that preserve the
boundary conditions via 6.4, = 0, + [A,, €] and 5e—Aﬂ =
9,€ +[A,.€]. The link between the charges in the metric
formulation and the ones in the Chern-Simons formulation
is connected with the on-shell relation € = §*A,, € = A "
between gauge parameters €, € and Killing vectors &~.
Using this relation, one finds that the variation of the mass
and angular momentum in the Chern-Simons formulation is
given by

¢6M = 8Qlel, ] + 50[él, ]

k k o
. / dolada,) -5 / dp(asa,).  (A29)

8] = 50le|_y ] +50él_y ]

k k s
= —Z/d(p<a(p5a¢> —I—Z/d(ﬂ@lqﬁa(ﬂ (A29b)

By integrating these expressions one exactly finds the
relations (AS5).

Once mass, angular momentum as well as the corre-
sponding chemical potentials are properly determined, one
can proceed in integrating the first law of thermodynamics
(A27) to obtain the thermal entropy. For the connection
(A16) one obtains exactly the same expressions for # and Q
as in (A11). This then leads to the thermal entropy (A12).
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