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A sort of planar tensor network with tensor constraints is investigated as a model for holography. We
study the greedy algorithm generated by tensor constraints and propose the notion of critical protection
(CP) against the action of greedy algorithm. For given tensor constraints, a CP tensor chain can be defined.
We further find that the ability of quantum error correction (QEC), the non-flatness of entanglement
spectrum (ES) and the correlation function can be quantitatively evaluated by the geometric structure of CP
tensor chain. Four classes of tensor networks with different properties of entanglement are discussed.
Thanks to tensor constraints and CP, the correlation function is reduced into a bracket of matrix production
state and the result agrees with the one in conformal field theory.
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I. INTRODUCTION

Quantum entanglement plays a key role in understanding
the structure of spacetime from the emergent point of
view [1,2]. The Ryu-Takayanagi (RT) formula links the
entanglement entropy of a subsystem on the boundary to
the area of the minimal homological surface in the bulk [3].
Such an approach has been recently generalized to con-
struct the gravitational dual of Renyi entropy [4], which
provides a correspondence of entanglement spectrum (ES)
between the bulk and the boundary. In particular, for the
vacuum in AdS3=CFT2 correspondence, Renyi entropy
satisfies Cardy-Calabrese formula and a nonflat ES is
inherent [5,6]. Another remarkable feature of AdS space
is the subsystem duality, which states that a local operator
in the bulk can be reconstructed in a subsystem A on the
boundary if it is located within the entanglement wedge
of A [7–13]. It can be viewed as the accomplishment of
quantum error correction (QEC) in quantum information
[8,13–15]. Moreover, it is found that RT formula can be
derived from QEC [16].
It has been revealed that tensor networks provide a

geometric picture for entanglement renormalization such
that holographic spaces may emerge from the entanglement

of a many-body system [17–19], gearing up the exploration
on the deep relation between tensor networks and the
structure of spacetime [20,21]. One typical kind of tensor
networks is the multiscale entanglement renormalization
ansatz (MERA), which respects RT formula, exhibiting
logarithmic law of entanglement entropy and non-flat
entanglement spectrum as the AdS vacuum [17–19,22,23].
However, MERA breaks the isometry group SLð2; RÞ and
has a preferred direction, implying that QEC can not be
realized along all directions. On the other hand, perfect
tensors, which are also called as holographic codes, take
the advantages of implementing QEC over a H2 space
[15,24,25]. Unfortunately, it is found that such kind of tensor
networks has a flat ES and trivial connected correlation
functions, which evidently is not a reflection of the holo-
graphic property ofAdS spacetime [26,27]. In random tensor
networks and spin networks, all the orders of Renyi entropy
for the ground state share the same RT formula, leading
to a flat ES as well [28–31]. The attempt to recover the
result of Cardy-Calabrese formula of Renyi entropy,
Sn ¼ ð1þ 1=nÞðc=6Þ logðl=ϵÞ, can be found in [32] where
the bulk dynamics is taken into account.
Recently a new class of tensor networks which is

named hyperinvariant tensor networks has been constructed
in [27], which retains the advantages of both MERA and
perfect tensor networks. The key ingredient of hyper-
invariant tensor networks is to impose multitensor con-
straints, which demand certain product of multiple tensors
to form an isometric mapping. Remarkably, this sort of
tensor networks can not only accomplish QEC as perfect
tensors, but also generate non-flat ES as MERA, thus
qualitatively capturing both holographic features of AdS
spacetime.
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Nevertheless, some key issues remain unanswered in this
approach. First of all, the holographic property of tensor
networks depends on the specific structure of tensor
constraints. What kind of multitensor constraints could
endow desirable features of AdS spacetime to a given
tensor network? More importantly, to accomplish the
holographic features of tensor networks one always faces
a dilemma: once the ability of QEC of a tensor network
becomes stronger, then more easily its ES becomes flat, and
vice versa. Is there any criteria to characterize the ability of
QEC and the non-flatness of ES for a tensor network with
given constraints? At the same time, can any feature of CFT
be reflected by the specific structure of tensor networks?
Wewish to answer above issues based on some examples of
tensor network.
We will construct tensor networks by tiling H2 space

with identical polygons, and then impose tensor constraints
with the notion of tensor chain, which leads to a generalized
description of greedy algorithm. We will investigate QEC,
ES and correlation function by manipulating tensor net-
works. For the ES and correlation function, we will also
compare our holographic results with the results in con-
formal field theory. Moreover, we will propose the notion
of critical protection (CP) to describe the behavior of tensor
networks under the greedy algorithm. A geometric quantity
κc, named as the average reduced interior angle of a tensor
chain, will be proposed to measure the ability of QEC and
justify the flatness of ES.

II. CONSTRAINTS ON TENSOR CHAINS

A. Tensor chains

We discretize H2 space uniformly by gluing identical
polygons composed of b edges, with a edges sharing the
same node. We call such discretization as the fb; ag tiling
ofH2 space. Since the sum of interior angles of a triangle in
a space with negative curvature must be less than 2π, a
fb; ag tiling of H2 space can be realized only if 1

a þ 1
b <

1
2
.

A tensor network can be constructed based on each
fb; ag tiling, as illustrated in Fig. 1. Associated with each
node, we define a tensor T with a indexes, each of which is
specified to an edge jointed at the node respectively.
Associated with each edge, we define a tensor E with 2
indexes. Because of the rotational invariance of H2 space,
we demand that the indexes of tensor T and E have cyclic
symmetry

Ti1i2���ia ¼ Ti2i3���iai1 ; Ei1i2 ¼ Ei2i1 : ð1Þ

Consider a tensor network Ψ, and let all the indexes of
tensors T contract with those of tensors E such that
all uncontracted indexes belong to tensors E only.
Corresponding to such a network, we define a state jΨi
in the Hilbert space on those uncontracted edges.

By dissecting a tensor network, as in Fig. 1, we define a
key object called tensor chain M, whose general form is
shown in Fig. 2. Vividly, the uncontracted edges in M are
split into the upper part A and lower part B. So we denote its
elements asMA

B. The number of edges at each node satisfies
mi þ ni ¼ a − 2þ δi1 þ δik, where i is the sequence num-
ber labelling the node of tensor chain. Specifically, for
the tensor chain in Fig. 1, k ¼ 4; ðm1; m2; m3; m4Þ ¼
ð2; 0; 1; 1Þ; ðn1; n2; n3; n4Þ ¼ ð1; 2; 1; 2Þ.
Vice versa, a tensor chain can be mapped into the tiling

ofH2 space and its skeleton forms a directed polyline in the
network, where along the direction of the polyline the
sequence number i increases and the upper (lower) edges
are placed on the left (right) hand side of the polyline. To
describe the curvature of its corresponding polyline, we
define the average reduced interior angle of a tensor chain as

κ ¼ 1

k

�Xk
i¼1

mi þ k − 1

�
; ð2Þ

where “reduced” means that we have taken 2π
a as the unit of

interior angles.
We will focus on the tensor network with f5; 4g tiling as

a typical example to disclose the structure of the tensor

T
E

FIG. 1. A tensor network with f5; 4g tiling. Enclosed by the
dashed line is an example of tensor chain. Its skeleton forms a
directed polyline which is marked in red.

FIG. 2. A general form of tensor chain.
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chain which is critically protected under the action of
greedy algorithm. Our analysis and results can be gener-
alized to the tensor networks with fa; bg tiling.

B. Tensor constraints

1. Tensor network with κc = 2

We define tensor constraints as follows. Besides the
cyclic symmetry, we further impose constraints on rank-4
tensor T (orange square) and rank-2 tensor E (blue circle),
such that they satisfy the following equations

ð3Þ

where the conjugation of tensors are marked in dark colors.
In other words, the tensor chains

ð4Þ

are proportional to isometries from the Hilbert space on
upper edges to the Hilbert space on lower edges. For
convenience, in the remainder of this paper we will adopt
the expression like (4) to represent tensor constraints for
short. The shape of the tensor chain in constraints (4) can be
characterized by their average reduced interior angle, which
is f1=1 ¼ 1; 2=1 ¼ 2g. We will call the maximal one as the
CP reduced interior angle κc ¼ 2, as the reason will
become clear later.
For the simple case as illustrated in (4), each of tensor

chains only involves a single tensor T. One can derive other
tensor chains proportional to isometries as well from the
tensor constraints. For instance, from (4), the following
tensor chains are proportional to isometries.

ð5Þ

The detailed analysis is given in [33]. Here we just argue
that all of these tensor chains form a set SD with infinite
number of elements, and satisfy κ ≤ κc. The subscript D
refers to the fact that SD is derived from tensor constraints
given. We stress that one should take all these tensor chains
into account when justifying whether the contraction of
tensor product could be simplified under the action of
greedy algorithm.
We further require that any tensor chain which is

proportional to isometry can be derived from tensor
constraints, which restricts the structure of tensor T and
E. In other words, we require that those tensor chains which
do not belong to the set SD should not be propositional to
isometries, which prevents tensor T and E from trivial

structure, for instance, the outer product of identity matri-
ces. We point out that many tensor chains do not belong to
SD, such as the following tensor chains for constraints (4)

ð6Þ

2. Tensor network with κc = 3=2

Definitely, we may impose other tensor constraints, for
instance, by requiring the following tensor chains to be
proportional to isometries.

ð7Þ

whose average reduced interior angles are f1; 3=2g, then
κc ¼ 3=2. Similarly, from (7), the following tensor chains
are proportional to isometries

ð8Þ

but the following tensor chains are not

ð9Þ
The specific construction of tensors T and E subject to

above constraints is given in Appendix A.

III. GREEDY ALGORITHM AND PROTECTION

A. General greedy algorithm with tensor chain

We first review the greedy algorithm on a tensor network
following the description in [15], which provides an
intuitive way to figure out the region in which the
corresponding subtensor network must be an isometry.
Beginning with an interval A on the boundary of a tensor
network Ψ, we consider a sequence of cuts fCng, each of
which is bounded by ∂A and obtained from the previous
one by a local move on the lattice. The corresponding
subtensor networks also form a sequence of fΦng, where
Φn consists of those tensors between A and Cn. Let C1 ¼ A
and Φ1 is an identity. For perfect tensors, at each step one
figures out a tensor Mn which has at least half of its legs
contracted withΦn and constructΦnþ1 by addingMn toΦn
such that Φnþ1 must be an isometry as well. The procedure
stops when one fails to add such tensors to the sequence.
We can generalize the above description by replacing its

single tensor Mn by a tensor chain Mn which is propor-
tional to isometry, with lower edges contracted with Φn.
According to Sec. II B, those tensor chains which are
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proportional to isometries form a set SD derived from tensor
constraints.
Furthermore, we can generalize the target of greedy

algorithm to a tensor chain M rather than a tensor network
Ψ. Given a tensor chain M, we simplify the contractionP

BM
A
BðMC

BÞ� subject to tensor constraints. For example,
according to (3), we can simplify the contraction

ð10Þ

Similarly, according to (5), we can simplify the contraction

ð11Þ
Actually, the above description of greedy algorithm is

equivalent to the description in [15] for a single-interval. At
each step fromΦn toΦnþ1, aMn ∈ SD is used to simplify a
tensor chain M. For example, the procedure of simplifying
(10) corresponds to the step of extending the shaded region
as illustrated in Fig. 3, where the corresponding tensors are
enclosed by dashed line in red. Similarly, the process of
simplifying (11) corresponds to those steps in Fig. 4.

We define that a tensor chainM is unprotected if it can be
simplified under the action of greedy algorithm. Otherwise,
say it is protected.

B. Critical protection (CP)

Generally speaking, when the tiling and tensor con-
straints are given, the larger κ is, the easier a tensor chain
becomes unprotected. The protected and endless M with
largest κ is called critically protected (CP) tensor chainMc.
Equivalently, one can check that Mc would become
unprotected once the list of its ni are rearranged or
increased. Its κ is called CP reduced interior angle κc.
Under the greedy algorithm generated by (4), if ∃ i s.t.

ni > 1, then M is unprotected. So CP tensor chain has the
form as plotted on the right-hand side of (12)

ð12Þ

Here we have also presented a scheme to figure out CP
tensor chain by a manipulation on the second constraint in
(4). The skeleton of such a CP tensor chain forms a
polyline in the tensor network, as shown in Fig. 5. For (12),
κc ¼ 2=1 ¼ 2, which is just equal to the maximal one of the
average reduced interior angles of the tensor chains in
constraints (4).
We deduce the CP tensor chain Mc from constraints (7)

as follows. From the first constraint, we know the number
of lower edges at any node in CP tensor chain should
be smaller than three; while from the second constraint,
we know any two nodes with two lower edges can not
be neighbored (otherwise they would be swallowed by the
constraint). Therefore, Mc has the form as plotted on the
right-hand side of (13)

ð13Þ
Similarly, one can construct Mc based on the second
constraint in (7), as demonstrated in (13). The corresponding

FIG. 3. One step in the greedy algorithm generated from
(3) beginning at Ā.

FIG. 4. Two steps in the greedy algorithm generated from (5) beginning at Ā.
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polyline in the network is marked in Fig. 6. TheCP reduced
interior angle is κc ¼ ð1þ 2Þ=2 ¼ 3=2.

IV. QEC AND ES

Throughout this paper we will only consider the QEC by
inserting an operator into the interbonds, for instance,

ð14Þ

By virtue of tensor constraints, one can push an operator O
“through” tensor chains in (4) and turn into an operator O0,
namely

ð15Þ

ð16Þ

where the conjugation of tensors are marked in dark colors.
Then one can realize the algorithm of QEC, as shown in
Fig. 5. Actually, pushing an operator to an interval Ā on the
boundary is the inverse of the greedy algorithm beginning
at Ā. So any operator inserted outside the CP tensor chain
can be pushed to the boundary.
Next we consider the ES of the reduced density matrix

ρA ¼ 1

Z
TrĀjΨihΨj ¼

1

Z
ΨΨ†; Z ¼ hΨjΨi; ð17Þ

where Ā is contracted in the matrix production of tensor
networksΨ andΨ†, and the normalized factor Z is obtained
by contracting all the indexes between them. ρA has a flat
ES if all the nonzero eigenvalues are identical. From the
diagonalization of ρA, we know that the flatness of ES is
equivalent to

ρ2A ∝ ΨΨ†ΨΨ† ∝ ΨΨ† ∝ ρA; ð18Þ

which is also equivalent to state that all the orders of Renyi
entropy are equal. If all the tensors are absorbed by the
greedy algorithm starting from A and from Ā respectively,
then the relation in (18) holds and leads to a flat ES.
Otherwise the ES is generally nonflat. When there exist
tensors which are not absorbed by the greedy algorithm,
although we can not exclude the tiny possibility that (18)
happens to be valid for some construction of tensor T and E
under fine-tuning, we still call that the ES is nonflat for a
general construction of tensor T and E.
We show the result of the greedy algorithm acting on the

tensor network with constraints (4) in Fig. 5. It indicates
that the ES is flat, which coincides with the results in [26].
While for the tensor network with constraints (7), the ES is
nonflat as shown in Fig. 6. At the same time, we point out
that the ability of QEC in this network is weakened in
comparison with that in the network with (4), because the
operator inserted into the region enclosed by CP tensor
chains will approach the endpoints of A during the pushing
process. Such phenomenon may be related to the approxi-
mate QEC [8,34].
The boundary effect in above analysis should be

stressed. One may notice that CP tensor chain Mc itself
falls into the shaded region, implying that it is absorbed by
the greedy algorithm. This phenomenon results from the
boundary effect in a network with finite layers, where

FIG. 5. The tensor network with f5; 4g tiling and tensor
constraints (4). Those tensors within the shaded region with
purple (red) stripes is absorbed by the greedy algorithm starting
from A (Ā). The CP tensor chain is marked by a solid line in red.
An operator O in the bulk is pushed to a subinterval of Ā.

FIG. 6. The tensor network with f5; 4g tiling and tensor
constraints (7). The tensors in the blank region are not absorbed
by the greedy algorithm. Two CP tensor chains correspond to
thick polylines in purple and red, respectively. An operator O
enclosed by the CP tensor chain is pushed to a region within Ā on
the boundary, where blue edges in the shape of rod indicate the
employment of the second constraint in (7).
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besides the lower edges of Mc, the edges at the end of Mc
need to be contracted as well. The boundary effect
of greedy algorithm is investigated with details in [33].
Here we just remark that this effect is very limited, only
swallowing finite layers (usually only one layer) of tensors
enclosed by Mc.
Next we investigate the Renyi entropy Sn for the tensor

network composed of the tensors subjected to constraint
Fig. 7. The specific construction of tensors T and E is given
in Fig. 17, where elementary tensors Q and U satisfy the
relation in (B3). We numerically calculate Sn for region A
in the tensor network in Fig. 6. The result is shown in
Fig. 7, reflecting a nonflat ES. For a fixed region A, Sn has a
form of ð1þ 1=nÞaþ b, which appears to be in agreement
with the Cardy-Calabrese formula of Renyi entropy up to a
constant. While the constant b depends on the length of A.
Our strategy is applicable to other tensor constraints

constructed by tensor chains.
κc ¼ 1. The tensor network with single constraint is
plotted in Fig. 8. Irrespective of the interval A one
picks out on the boundary, no tensor is absorbed
by the greedy algorithm. The CP tensor chain is
closed and we always obtain a nonflat ES. On the
other hand, wherever an operator is inserted in the
bulk, it cannot be pushed to the boundary with the use
of the isometry. So such a tensor network does not
enjoy QEC.

κc ¼ 5=3. The tensor network with the constraint com-
posed of three T tensors is plotted in Fig. 9. Given an
interval A on the boundary, an operator inserted in the
wedge of A can be pushed to A. So such a tensor
network enjoys QEC. While, it is subtle to justify
whether the ES is flat or not. We find both flat and
nonflat ES can be obtained, which depends on the
specific choice of the interval A, as shown in Fig. 9. So
we call this tensor network has a mixed ES.

The constructions of tensors T and E in above two tensor
networks are given in Appendix A.
We list the properties of entanglement for above tensor

networks with f5; 4g tiling in ordering of their κc in Table I.
We find that the higher κc is, the stronger is the ability of
QEC, but the ES more easily becomes flat. We remark that
such a relation still holds in general cases. A detailed
analysis on tensor networks with general tiling and general
constraints is given in [33], where the tensor networks with
general constraints in terms of tensor chains are classified
based on their properties of QEC and ES, with the power of
CP reduced interior angle κc. The four tensor networks
considered in this paper are typical examples of their
own class.

V. CORRELATION FUNCTION

Taking the tensor network with constraint (7) as an
example, we show that the two-point correlation function in
CFT can be reproduced here.
Given a local operator O on the boundary, we may

calculate the two-point correlation function

FIG. 7. Renyi entropy Sn as a function of n, denoted by black
dots and fitted by blue line.

FIG. 8. A tensor network with f5; 4g tiling and its tensor
constraint. κc ¼ 1=1 ¼ 1.

FIG. 9. A tensor network with f5; 4g tiling and its tensor
constraints. κc ¼ ð1þ 2þ 2Þ=3 ¼ 5=3. Under the greedy algo-
rithm, whether all the tensors are absorbed or not depends on the
choice of A and Ā.

TABLE I. The entanglement properties of tensor networks.

κc 1 3=2 5=3 2

QEC N Y Y Y
ES Nonflat Nonflat Mixed Flat
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Cðx1; x2Þ ¼
hΨjOðx1ÞOðx2ÞjΨi

Z

−
hΨjOðx1ÞjΨihΨjOðx2ÞjΨi

Z2
: ð19Þ

During the course of evaluating hΨjOðx1ÞjΨi
(hΨjOðx2ÞjΨi), all of the indexes are contracted except
the indexes located at x1 (x2). It turns out that except those
tensors in the neighborhood of x1 (x2), most of the other
tensors are absorbed by the greedy algorithm.
In hΨjOðx1ÞOðx2ÞjΨi, all the indexes are contracted

except the indexes located at x1 and x2. The greedy
algorithm functions similarly as the case when we discuss
QEC and ES. Let us consider x1 and x2 as those marked
points in Fig. 6, then the tensors which are not absorbed by
the greedy algorithm are just illustrated as in Fig. 6. As a
result, the survived tensors T and E in hΨjOðx1ÞOðx2ÞjΨi
form a bracket of matrix product state (MPS) sandwiching
Oðx1ÞOðx2Þ, as shown in Fig. 10.
Furthermore, the MPS is formed by the tensors along the

geodesic connecting x1 and x2. The length of the geodesic
is proportional to the number of tensor pairs TT† in Fig. 10,
i.e., the number of sites of the MPS, which is denoted as
lðx1; x2Þ. Because of the tiling of H2 space, when two
points are far from each other, we have1

lðx1; x2Þ ¼ c log jx1 − x2j; ð20Þ
where jx1 − x2j is the number of the indexes between x1
and x2 on the boundary and c is a constant based on the
tiling.
Based on the interpretation of MPS, when jx1 − x2j is

large enough, we can expect that the correlation function
behaves like

Cðx1; x2Þ ∼ e−mlðx1;x2Þ ¼ jx1 − x2j−mc; ð21Þ
where the positive coefficientm reflects the gap of the theory
describing the MPS. Our interpretation fromMPS shares the
same strategy with the one from bulk field dynamics in [35].
After all, (21) agrees with the result in CFT.
With the specific construction of tensors T and E in

Appendix A, one can derive Cðx1; x2Þ concretely. In
Appendix B, by adopting the construction in Fig. 17,

we show that Cðx1; x2Þ satisfies (21) indeed. Especially, m
is determined by the inner construction of tensor T and E as
well as the type of the operator O.
Similarly, those higher-point functions can be evaluated

in tensor networks as well. The network structure of three-
point function is simplified under the action of the greedy
algorithm into a MPS-like form: three linear MPSs are
connected at a point in the bulk y, as shown in Fig. 11. The
three-point correlation Cðx1; x2; x3Þ, characterized by the
connected part of hΨjOðx1ÞOðx2ÞOðx3ÞjΨi, is supported
by the two-point correlations of MPS between fxi; yg for
i ¼ 1, 2, 3 in the bulk. Thus,

Cðx1;x2;x3Þ∼ expf−m½lðx1;yÞþ lðx2;yÞþ lðx3;yÞ�g

∼ exp

�
−
1

2
m½lðx1;x2Þþ lðx2;x3Þþ lðx3;x1Þ�

�

¼ ðjx1−x2jjx2−x3jjx3−x1jÞ−mc=2; ð22Þ

where (20) is applied at the last step. Equation (22) agrees
with the result in CFT as well. Nevertheless, the network
structure of four-point function can not be simplified into a
MPS-like form any more, as shown in Fig. 12. A block of
tensors in the bulk prevents a geometrical estimation of
correlation. It also agrees with the fact that conformal
symmetry cannot fully determine the form of the four-point
function in CFT.
The above analysis can be applied to other tensor net-

works. The greedy algorithm plays a similar role as in the
evaluation of ES, except that the boundary effect will be
suppressed by the insertion of operators on the boundary.
Multipoint correlation functions in tensor networks can

be reduced into some brackets of MPS. For a general tensor
network, the generated MPS may have multiple layers. The
number of layers is approximately proportional to the
distance between twoCP tensor chains beside the geodesic.
It is interesting to notice that given a tiling of tensor network,
this distance becomes larger with the increase of κc, which is
observed if we compare different tensor networks in this
paper with each other and is proved in [33]. Such tendency
implies that the correlation between two endpoints carried
by the MPS becomes stronger as well.

FIG. 10. Those tensors which are not absorbed by the greedy
algorithm in hΨjOðx1ÞOðx2ÞjΨi form a bracket of MPS, where
each TT† pair denotes a site.

FIG. 11. Three-point function.

1For simplicity, we have neglected the finite size of the system,
i.e., considering jx1 − x2j ≪ Lwhere L is the number of edges on
the boundary. To recover the finite size effect, one can replace
jx1 − x2j → L

π sin ðπL jx1 − x2jÞ.
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VI. CONCLUSION AND OUTLOOK

In this paper the notion of critical protection based on
tensor chain has been proposed to describe the behavior of
tensor networks under the action of greedy algorithm. In
particular, a criteria has been developed with the help of the
average reduced interior angle of CP chain such that for a
given tensor network the ability of QEC and the flatness of
ES can be justified in a quantitative manner. Currently it is
still challenging to construct tensor networks which could
capture all the holographic features of AdS spacetime.
What we have found in this paper has shed light on this
issue. First, we have learned that the notion of critical
protection provides a description on the limit of informa-
tion transmission with full fidelity. CP tensor chain is the
maximal boundary which can holographically store the
interior information [36,37]. Thus, for a tensor network
which is desired to capture the feature of QEC as AdS
space, it must not contain circular CP curves. As a result,
the tensor network with κc ¼ 1 in this paper is not a
candidate of holography. Furthermore, among the examples
of tensor networks considered in this paper, the tensor
network with κc ¼ 3=2 has more likelihood to mimic the
AdS holography since it exhibits both features of QEC and
nonflat ES, which motivates us to propose some strategy to
construct tensor networks in more general setup which
could capture the desirable holographic aspects of AdS
space, which will be explored in [33].
The correlation in tensor networks with constraints

becomes more transparent since the greedy algorithm
reduces the structure of network into MPS lying on the
geodesic. The number of layers in MPS is determined by
CP tensor chains. This fact can be understood as the
realization of Witten diagram in AdS space. Furthermore,
from the viewpoint of field theory in bulk, the correlation
function is the partition function of a particle in AdS space.
Since the classical trajectory of the particle is just the
geodesic, the partition function has the same form as (21),
where m is the mass of the particle. Therefore, we expect
that the MPS may effectively describe the trajectory of a
particle in AdS space, where the number of layers in MPS

corresponds to the quantum fluctuations of the trajectory
near the geodesic.
The geometric description of CP tensor chain is appeal-

ing. In the light of its periodic structure, we find the analogy
of CP tensor chain is the curve of constant curvature in H2

space such that κc is related to the geodesic curvature of the
curve [33]. Specifically, an open CP tensor chain corre-
sponds to a hypercircle, which has a constant distance from
its axes (a geodesic), as illustrated in Fig. 6. Such a distance
measures the deviation from RT formula when evaluating
the Renyi entropy, which may be linked to the tension of
cosmic brane in [4].
Because of the chain structure of tensor constraint, in our

present framework we have investigated QEC and ES only
for a single interval on the boundary. It is an open question
whether these properties of entanglement can be realized
for multi-intervals on the boundary, as investigated in
network with perfect tensors or random tensors [15,24,28].
Finally, beyond the applications in holography, we expect

that tensor network models in this paper may be applicable
to describe the quantum states of critical system in con-
densed matter physics as well, because of the SLð2; RÞ
symmetry inH2 space. Imposing tensor constraints in terms
of tensor chains leads to a generalized greedy algorithm,
which is completely under control and would greatly
simplify the calculation involved in tensor networks. The
correlation and entanglement of the tensor network statewill
be determined by the tiling style, the tensor constraints (κc)
as well as the specific construction of elementary tensors.
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APPENDIX A: SPECIFIC CONSTRUCTION
OF TENSORS SUBJECT TO
TENSOR CONSTRAINTS

In Figs. 13–15, we define tensor U, tensor Q and tensor
R as the building blocks for T and E. The elements of
tensor U are Uμν. They satisfy following relations

Uμν ¼ Uνμ;
X
ν

UμνU�
ρν ∝ δμρ: ðA1Þ

The elements of tensor Q are Qμνρσ where two indexes
μν (ρσ) are grouped together. They satisfy

FIG. 12. Four-point function.
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Qμνρσ ¼ Qρσμν ¼ Qνμσρ;X
ρσ

QμνρσQ�
μ0ν0ρσ ∝ δμμ0δνν0 : ðA2Þ

The elements of tensor R are Rμνρσ. They satisfy

Rμνρσ ¼ Rρσμν ¼ Rνμσρ;X
ρσ

RμνρσR�
μ0ν0ρσ ∝ δμμ0δνν0 ;

X
νσ

RμνρσR�
μ0νρ0σ ∝ δμμ0δρρ0 : ðA3Þ

Specifically, we construct the tensor T and tensor E for
the tensor network with f5; 4g tiling for different tensor
constraints, as shown in Figs. 16–19. Specific elements of
some tensors Q and R are given in [27].

APPENDIX B: CORRELATION FUNCTION
IN A SPECIFIC TENSOR NETWORK

Given a tensor network, we define the unnormalized
reduced density matrix of two points fx1; x2g on the
boundary as

FIG. 17. (a) Tensor T and (b) tensor E in (7) and Fig. 6.

FIG. 16. (a) Tensor T and (b) tensor E in (4) and Fig. 5.

FIG. 18. (a) Tensor T and (b) tensor E in Fig. 8.

FIG. 13. (a) Tensor U. (b) Tensor U is proportional to an
isometry.

FIG. 14. (a) Tensor Q, where two indexes on each side are
grouped together. (b) Tensor Q is proportional to an isometry
between two grouped indexes.

FIG. 15. (a) Tensor R. (b) Tensor R is proportional to isometries
along two directions.
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ρ̃ ¼ Tr∁fx1;x2gjΨihΨj; ðB1Þ
where ∁fx1; x2g is the supplementary of two points
fx1; x2g. Now we treat ρ̃ as a matrix with column index
in Hx1 ⊗ H�

x1 and row index in Hx2 ⊗ H�
x2 , where super-

script “�” refers to the dual space. Meanwhile, operatorO is
treated as a column vector. Then all the brackets in (19)
can be expressed in terms of matrix product, such as
hΨjOðx1ÞO0ðx2ÞjΨi ¼ OT ρ̃O0. Thanks to greedy algo-
rithm, ρ̃ has a form of MPS, as shown in Fig. 10. One
can show that ρ̃ is a symmetric matrix. Those tensors
absorbed by the greedy algorithm contribute to ρ̃ as a
constant factor but do not affect the correlation function, so
we just set it to be 1.
Adopting the specific construction of tensors in Fig. 17,

we demonstrate one part of the inner structure of ρ̃ in
Fig. 20, which plays a key role in the evaluation of the
reduced density matrix. We observe that such a network
which looks complicated is actually an outer product of 4
individual networks and each of them has a period
composed of 4 sites, where each site is denoted by a pair
of tensors TT†. We write lðx1; x2Þ as l for short. Since we
are interested in the behavior of correlation function at large
scale, it is enough to consider l=4 ∈ Z. Then ρ̃ can be
decomposed into

ρ̃ ¼ Vl=4F; V ¼ ⨂
4

i¼1

Vi; F ¼ E ⊗ E†: ðB2Þ

Four Vi’s have been marked out with different colors in
Fig. 20. Actually, fV2; V3; V4g can be obtained by cycling
V1. So they share the same eigenvalues.

To evaluate these eigenvalues explicitly, we set U and Q
to be

Uμν ¼ δμν; Qμνρσ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

p
δμρδνσ þ irδμσδνρ; ðB3Þ

where μ; ν; ρ; σ ¼ 1; 2;…; d and 0 < r < 1. The case of
r ¼ 0, 1 should be excluded, since it leads to the flatness of
ES. Plugging it into V1, we have

ðV1Þμνρσ ¼ d3ð1 − r4Þδμνδρσ þ d4r4δμρδνσ; ðB4Þ

which is real and symmetric. It can be diagonalized as

V1 → d4diag

�
1; r4; r4;…; r4|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

d2−1

�
; ðB5Þ

where the eigenvector of the eigenvalue d4 is δμν. We can
further diagonalize V as

V → ⨂
4

V1 ðB6Þ

→ d16diag

�
1; r4;…; r4|fflfflfflfflffl{zfflfflfflfflffl}

4ðd2−1Þ

; r8;…; r8|fflfflfflfflffl{zfflfflfflfflffl}
6ðd2−1Þ2

;

r12;…; r12|fflfflfflfflfflffl{zfflfflfflfflfflffl}
4ðd2−1Þ3

; r16;…; r16|fflfflfflfflfflffl{zfflfflfflfflfflffl}
ðd2−1Þ4

�
: ðB7Þ

The first eigenvector is the identity operator I. We use
α ¼ 0, 1, 2, 3, 4 to label the degenerate subspace of
eigenvalue d16r4α. Since ρ̃ and F are symmetric, from (B2),
we have

VF ¼ FVT: ðB8Þ

So F is diagonal between different subspaces.
We decompose the operator O according to these five

subspaces

O ¼
X4
α¼0

Oα; OαV ¼ VOα ¼ d16r4αOα: ðB9Þ

FIG. 20. The inner structure of V, a part of ρ̃ containing 4 sites. V is an outer product of 4 channels fV1; V2; V3; V4g.

FIG. 19. (a) Tensor T and (b) tensor E in Fig. 9.
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We find that

ITFI ¼ d4; ðB10Þ

OT
αFI ¼ ITFOα ¼ gδα0; ðB11Þ

OT
αFOα0 ¼ fαδαα0 ; ðB12Þ

where coefficients

fα ¼ OT
αFOα; g2 ¼ f0d4: ðB13Þ

Now those brackets in (19) can be evaluated.

Z ¼ IT ρ̃I ¼ d4lþ4; ðB14Þ

hΨjOðx1ÞjΨi ¼ OT ρ̃I ¼ d4lg; ðB15Þ

hΨjOðx2ÞjΨi ¼ IT ρ̃O ¼ d4lg; ðB16Þ

hΨjOðx1ÞOðx2ÞjΨi ¼ OT ρ̃O ¼
X4
α¼0

d4lrαlfα: ðB17Þ

Finally,

Cðx1; x2Þ ¼
P

αd
4lrαlfα

d4lþ4
−
�
d4lg
d4lþ4

�
2

ðB18Þ

¼
X4
α¼1

fαd−4rαl ðB19Þ

¼
X4
α¼1

fαd−4e−ðα log
1
rÞl ðB20Þ

which behaves like (21) with m ¼ α log 1
r > 0 for the

minimal α such that fα ≠ 0.
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