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The semiclassical contribution to the partition function is obtained by evaluating the Euclidean action
improved through suitable boundary terms. We address the question of which degrees of freedom are
responsible for this contribution. A physical toy model for the gravitational problem is a charged vacuum
capacitor. In Maxwell’s theory, the gauge sector including ghosts is a topological field theory. When
computing the grand canonical partition function with a chemical potential for electric charge in the
indefinite metric Hilbert space of the Becchi-Rouet-Stora-Tyutin quantized theory, the classical con-
tribution to the partition function originates from the part of the gauge sector that is no longer trivial due to
the boundary conditions required by the physical setup. More concretely, for a planar charged vacuum
capacitor with perfectly conducting plates, we identify the degrees of freedom that, in the quantum theory,
give rise to additional contributions to the standard blackbody result proportional to the area of the plates
and that allow for a microscopic derivation of the thermodynamics of the charged capacitor.
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I. INTRODUCTION

The question of which degrees of freedom are respon-
sible for the Bekenstein-Hawking entropy of black holes
naturally leads one to study nonproper gauge degrees of
freedom, i.e., gauge degrees of freedom that are no longer
pure gauge because of nontrivial boundary conditions.
(i) The most direct line of reasoning is probably to consider
the Hamiltonian formulation of linearized Einstein gravity.
The linearized Schwarzschild solution does not involve
physical degrees of freedom since the transverse-traceless
parts of the spatial metric and its momenta vanish for that
solution. (ii) Another argument, which holds on the non-
linear level, concerns the Bekenstein-Hawking entropy of
the black hole in three-dimensional anti–de Sitter spacetime
where there are no physical bulk gravitons to begin with.
(iii) Yet another approach has to do with the type of
observables that are involved: in general relativity, the
ADM mass is a codimension-two surface integral, with
similar properties to electric charge in Maxwell’s theory.
In particular, it does not involve transverse-traceless var-
iables. Furthermore, the classification of such observables

is directly related to nonproper diffeomorphisms or large
gauge transformations.
One possibility is to introduce the nontrivial boundary

conditions as dynamical canonical variables in the theory,
with suitable additional constraints. This idea goes back to
Dirac [1] and has been used in an investigation of the
definition of energy, and more generally of the Poincaré
generators, in the Hamiltonian formulation of asymptoti-
cally flat general relativity [2]. In the context of Yang-Mills
theory, it has been implemented for various related ques-
tions [3–8], including the infrared problem [9].
These arguments suggest studying the analogue problem

in the context of the quantized electromagnetic field, where
the role of the black hole is played by the Coulomb
solution, the electromagnetic field created by a static point
particle source with macroscopic chargeQ. Besides being a
physical problem in its own right where all conceptual
issues are present, the linearity of the problem and the
wealth of results readily available in the literature make it
directly tractable.
In the first paper of this series [10], a quantummechanical

understanding has been achieved when all polarizations of
the photon are quantized in an indefinitemetricHilbert space:
the quantum state j0iQ corresponding to the classical
Coulomb solution is a coherent state of null oscillators,
made up of a linear combination of longitudinal and temporal
photons. In this computation, infrared divergences occur
when showing that the expectation value Qh0jπ̂iðxÞj0iQ
of the electric field operator is indeed the classical field
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produced by a pointlike source: one uses that the Fourier
transform of k−2 is proportional to ð4πrÞ−1 which really
requires an infrared regularization, ðk2 þm2Þ−1 giving the
Yukawa potential ð4πrÞ−1e−mr, with m → 0þ.
Unlike ordinary coherent states, null coherent states have

the same norm than the standard vacuum, Qh0j0iQ ¼ 1.
Furthermore, the expectation value of the energy of
physical photons vanishes. It is in this sense that these
states behave like different vacua of the theory.
Rather than quantizing the theory for a fixed charge,

what we would like to address here is the computation of
the grand canonical partition function,

Zðβ; μÞ ¼ Tre−βðĤ−μQ̂Þ; ð1:1Þ

with a precise understanding of the underlying Hilbert
space and thus of the trace that is involved. Again, when
trying to deal directly with the electric charge operator,

Q̂ ¼ −
Z
∂V
dσiπ̂i ¼ −

Z
V
d3x∂iπ̂

i; ð1:2Þ

in a large volume V, one has to face infrared questions since
−Q̂ is the zero mode of the longitudinal part of the electric
field.
On the classical level, the role of the chemical potential is

played by the constant value of A0 ¼ −μ at the surface of
the body, while a nonvanishing electric charge requires
πr ¼ Oðr−2Þ. In order to take electric charge into account,
nontrivial falloff or boundary conditions are thus required.
That longitudinal and temporal photons have an impor-

tant role to play in topologically nontrivial situations is
in agreement with the standard interpretation of the
Aharanov-Bohm effect [11] when extrapolated to the
quantized electromagnetic field. The approach we will
follow here is to start with ðAμ; πμÞ as canonical variables
without introducing additional degrees of freedom. For
trivial boundary conditions, standard results equivalent to
those derived in the framework of reduced phase space
quantization are then recovered in the indefinite metric
Becchi-Rouet-Stora-Tyutin (BRST) Fock space through the
quartet mechanism [12] in the bulk. We will analyze in
detail how these results are modified when imposing the
boundary conditions that are used in the context of the
Casimir effect [13]. For technical reasons, it is then also
easier for us here to start with a vacuum capacitor
consisting of two large parallel plates instead of a spherical
vacuum capacitor, so that one may use Fourier series
instead of Bessel functions [14].
Recent work on infrared physics has been driven by new

connections in the field summarized in [15]. There is a
considerable overlap of ideas and results underlying this
computation here and those developed in terms of edge
modes in [16–27]. A detailed comparison, also with the
considerations in [28], deserves further investigation.

The paper is organized as follows. In the next section,
we start by discussing the thermodynamics of a charged
vacuum capacitor following the method developed by
Gibbons and Hawking [29]: from the Euclidean path
integral, it follows that the semiclassical approximation
to lnZðβ; μÞ is given by minus the Euclidean action
evaluated at the classical solution. The appropriate boun-
dary terms needed for the charged capacitor have already
been introduced in the context of charged black holes for
instance in [30]. As compared to the one-loop result for
the standard blackbody, there is now a contribution propor-
tional to the area coming from the classical saddle point,
together with additional contributions at one-loop. The
purpose of this paper is to provide a microscopic derivation
of the saddle point and the additional contributions to the
partition function.
In Sec. III, we point out in what sense the gauge sector of

Maxwell’s theory can be understood as a topological field
theory. It is not really needed for the rest of the paper, but is
included in order to better understand the relation with
three-dimensional gravity for instance.
In Sec. IV, boundary conditions adapted to perfectly

conducting parallel plates, taken at constant z, are imposed.
Through a detailed Hamiltonian analysis, we show that the
modes with vanishingmomenta in the z direction of ðAz; πzÞ,
even though formally longitudinal, are to be considered as
physical in the problem at hand. In that sense, we refer to
them as nonproper gauge degrees of freedom.
In the quantum theory, we compute in Sec. IV C the

contribution of the nonzero modes of the nonproper gauge
degrees of freedom to the standard blackbody result. It is
proportional to the area of the plates. After turning on the
chemical potential for electric charge, a quantum mechani-
cal understanding of the classical thermodynamics of the
vacuum capacitor follows from the contribution of the zero
mode of the nonproper gauge degrees of freedom.
Additional remarks are relegated to Sec. V. Conventions

for mode expansions adapted to the various boundary
conditions are given in Appendix A. In order to be self-
contained, a summary of standard material on BRST
quantization as applied to Maxwell’s theory is provided
in Appendix B and Appendix C.

II. THERMODYAMICS OF A CHARGED
VACUUM CAPACITOR

When making the Legendre transformation of the
standard Lagrangian action S½Aμ� ¼ − 1

4

R
d4xFμνFμν for

_Ai, and after adding the boundary term, −
H
∂B dσi½πiA0�,

the first-order action is

I ¼
Z
d4x½ _Aiπ

i −H0 þ A0∂iπ
i þ jμAμ�;

H0 ¼
1

2
ðπiπi þ BiBiÞ; ð2:1Þ
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where Bi ¼ ϵijk∂jAk, Ei ¼ −πi. Alternatively, this action
may be obtained from the extended first-order action after
eliminating the Lagrange multiplier for the primary con-
straint and the momentum π0.
From the viewpoint of constrained Hamiltonian systems,

there are two gauge invariant observables in the problem,
the reduced phase space energy

Hph ¼
Z
d3xHph; Hph ¼ 1

2
ðπiTπTi − AT

i ΔAi
TÞ; ð2:2Þ

and also the electric charge

Q ¼ −
Z
S
dσiπiL; ð2:3Þ

where S is a closed 2-surface.
Consider a spherical vacuum capacitor consisting of two

conducting spheres S1, S2 centered at the origin with radii
R1 < R2 and charges q, −q. Let us first focus on time-
independent fields and assume that there are no sources
inside the body. We will assume here that Ai ¼ 0, even
though the field equations only require ∂jFji ¼ 0. In this
context, there are then no transverse degrees of freedom and

A0 ¼ −ϕ ¼ −
q
4πr

; πi ¼ −
qxi

4πr3
ð2:4Þ

for R1 < r < R2 and zero otherwise.
The thermodynamics can then be obtained from the

Euclidean action evaluated on-shell. Since the problem is at
fixed electric charge, no improvement boundary terms are
needed [31], and

IE ¼ β

2

Z
d3xπiLπ

L
i ¼ 1

2
cSβq2; cS ¼

R2 − R1

4πR1R2

: ð2:5Þ

Using πiL ¼ ∂iϕ and Δϕ ¼ 0 on-shell for R1 < r < R2,R
d3xπiLπ

L
i ¼ R d3x∂iðϕ∂iϕÞ, IE can also be written in

terms of boundary terms as

IE ¼ −
β

2
ðϕjS2 − ϕjS1ÞQ; ð2:6Þ

where ϕS ¼ q
4πr and Q ¼ q for the problem at hand.

This then gives rise to the semiclassical contribution to
the partition function,

lnZðβ; QÞ ¼ −IEðβ; QÞ þ fðβÞ; ð2:7Þ

where one would expect fðβÞ to be given by the standard
one-loop contribution of physical photons,

fVðβÞ ¼
1

3
bVβ−3; bV ¼ π2V

15
: ð2:8Þ

The analysis below shows however that there are additional
contributions

fðβÞ ¼ fVðβÞ þ fAðβÞ −
1

2
lnð2πβÞ;

fAðβÞ ¼
1

2
bAβ−2; ð2:9Þ

with bA proportional to the area,

bA ¼ ζð3Þ
π

A; ð2:10Þ

in the case of the planar capacitor.1 This implies that

U ¼ −
∂ lnZðβ; QÞ

∂β ¼ −f0ðβÞ þ 1

2
cSQ2: ð2:11Þ

In case this can be inverted to yield β ¼ βðU0Þ, with
U0 ¼ U − 1

2
cSQ2, the entropy is

SðU;QÞ ¼
�
1 − β

∂
∂β
�
fðβÞjβ¼βðU0Þ: ð2:12Þ

Alternatively, in order to deal directly with

Zðβ; μÞ ¼ Tre−βðĤ−μQ̂Þ; ð2:13Þ

one supposes instead that the electric potentials at the
boundary are fixed and constant, ϕjS1 ¼ ϕ1, ϕjS2 ¼ ϕ2 with
μ ¼ ϕ1 − ϕ2. Under the additional assumptions that there
are no sources inside the body, ∂iAi ¼ 0 and AT

i ¼ 0 ¼ πiT ,
the classical solution is

ϕ ¼ 1

R2 − R1

�
R2ϕ2 − R1ϕ1 þ

μR1R2

r

�
;

Ei ¼ μR1R2xi

ðR2 − R1Þr3
: ð2:14Þ

In this situation, following [2] (see also [30]), the action
needs to be improved by boundary terms so that this
solution is a true extremum of the variational principle,

I0 ¼ I þ
Z
dtϕ2Q −

Z
dtϕ1Q ð2:15Þ

On-shell, the Euclidean action is now

I0E ¼ β

2
ðϕ2 − ϕ1ÞQ; Q ¼ c−1S μ: ð2:16Þ

1The conditions under which some of these terms can be
neglected will be discussed elsewhere.
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This leads to

I0E ¼ −
1

2
c−1S βμ2: ð2:17Þ

Together with the one-loop results, one thus finds

lnZðβ; μÞ ¼ −I0E þ fðβÞ: ð2:18Þ

The electric charge is then

Q ¼ β−1
∂ lnZðβ; μÞ

∂μ ¼ c−1S μ: ð2:19Þ

At fixed β, the Legendre transform of lnZðβ; μÞ with
respect to μ,

lnZðβ; QÞ ¼
�
1 − μ

∂
∂μ
�
lnZðβ; μÞjμ¼μðQÞ; ð2:20Þ

then leads back to (2.7).
For the case of the so-called exterior problem, the

thermodynamics of a charged spherical shell of radius
R1 can be obtained from the above by letting R2 → ∞ and
taking ϕ2 ¼ 0.
For two parallel plates P1, P2 at z ¼ 0 and at z ¼ L3,

with charge densities q
A and − q

A, one finds under the same
assumptions and in the same manner that πi ¼ −δi3

q
A,

[when xi ¼ ðx; y; zÞ], ϕ ¼ − q
A z, with μ ¼ L3q

A . The only
change in the classical part of the above discussion is then
the replacement of the geometric factor cS by

cP ¼ L3

A
: ð2:21Þ

What we will study below is the quantum mechanical
origin of the semiclassical contribution to the partition
function, together with the additional one-loop contributions.

III. GAUGE SECTOR OF ELECTROMAGNETISM
AS A TOPOLOGICAL FIELD THEORY

The gauge sector of Maxwell’s theory is treated in the
context of the Batalin-Fradkin-Vilkovisky Hamiltonian
formalism [32–34]. It contains the scalar potential, the
longitudinal vector potential, ghosts and their momenta,
and thus captures the information on the electric charge in
regions where there are no sources. A Witten-type super-
symmetric quantum mechanical model [35] is a model for
which the whole action, including the kinetic term is BRST
exact. We show that this is the case for the gauge sector of
Maxwell’s theory when treating the spatial dimensions in a
formal way.
We follow the reviews [36], chapter 19, and [37] chapter 3,

for the BFV treatment of electromagnetism and for super-
symmetric quantum mechanics, respectively.

In the nonminimal BFV-BRST approach in which
ðA0; π0Þ are among the canonical variables, the action to
be used in the Hamiltonian path integral for electromag-
netism is

S ¼
Z

dt
Z

d3x½ _Aμπ
μ þ _ηP þ _̄Cρ −H0 − fΩ; Kξg�;

ð3:1Þ

where the BRST invariant Hamiltonian is H0 ¼
R
d3xH0,

H0 is given in (2.1), and the graded Poisson brackets are
determined by

fAμðx⃗Þ; πνðy⃗Þg ¼ δνμδ
ð3Þðx⃗; y⃗Þ;

fηðx⃗Þ;Pðy⃗Þg ¼ −δð3Þðx⃗; y⃗Þ ¼ fC̄ðx⃗Þ; ρðy⃗Þg: ð3:2Þ

The BRST charge is

Ω ¼ −
Z

d3xðiρπ0 þ η∂iπ
iÞ; ð3:3Þ

and the gauge fixing fermion is chosen as

Kξ ¼ −
Z

d3x

�
iC̄∂kAk þ PA0 − ξ

i
2
C̄π0

�
; ð3:4Þ

so that

fΩ; Kξg ¼
Z
d3x

�
∂kAkπ0 − ∂iπ

iA0 þ iPρ

þ i∂iC̄∂iη −
ξ

2
π0π0

�
: ð3:5Þ

Eliminating the auxiliary fields πi ≈ Fi0, π0 ≈ 1
ξ ð∂μAμÞ,

ρ ≈ i_η, P ≈ −i _̄C, gives the covariant gauge fixed Faddeev-
Popov action,

S ¼
Z
d4x

�
−
1

4
FμνFμν −

1

2ξ
ð∂μAμÞð∂νAνÞ − i∂μC̄∂μη

�
;

ð3:6Þ

but we will not do so here in order to keep better track of the
various degrees of freedom.
Decomposing into transverse and longitudinal fields,

Ai ¼ AT
i þ ∂iA, with A ¼ ∂iAi

Δ , πi ¼ πiT þ 1
Δ ∂iπ with

π ¼ ∂iπ
i, the first-order action decomposes into a trans-

verse piece,

Sph ¼
Z
dt
Z
d3xð _AT

i π
i
T −HphÞ; ð3:7Þ
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with Hph given in (2.2), and a piece from the gauge sector
(including ghosts),

Sgs ¼
Z
dt
Z
d3xð _A0π

0 − _Aπ þ _ηP þ _̄Cρ −HgsÞ; ð3:8Þ

where

Hgs ¼
Z
d3xHgs ¼ −

1

2
ifΩ; Ω̄g;

Ω̄ ¼ 2iKξ − i
Z
d3xP

1

Δ
∂iπ

i; ð3:9Þ

includes the contribution of the longitudinal electric fields,
and is explicitly given by

Hgs ¼ −π
�
A0 þ

1

2Δ
π

�
þ π0

�
ΔA−

ξ

2
π0
�
þ iPρ− iC̄Δη:

ð3:10Þ

Turning on the chemical potential for electric charge can
be done through the shift A0ðt; x⃗Þ → A0ðt; x⃗Þ − μðx⃗Þ for
a time independent external source μðx⃗Þ, since this changes
HT → HT þ R d3xμðx⃗Þ∂iπ

i and thus to HT → HT − μQ
for constant μ.
In the case of a constant metric, supersymmetric quan-

tum mechanics is described by the action

Sss ¼
Z

dt

�
iBi

dϕi

dt
− iψ̄ i

dψ i

dt
þHss

�
;

Hss ¼ α

2
gijBiBj þ is

∂V
∂ϕi g

ijBj − isψ̄ igij
∂2V

∂ϕj∂ϕk ψ
k:

ð3:11Þ

The entire action is BRST exact

Sss ¼
Z

dt

�
Ω; ψ̄ i

�
i
dϕi

dt
þ gij

�
α

2
Bj þ is

∂V
∂ϕj

���
;

ð3:12Þ

where the BRST charge is

Ω ¼ −iBiψ
i; ð3:13Þ

and the fundamental Poisson brackets are fϕi; Bjg ¼
−iδij ¼ −fψ i; ψ̄ jg, with all other brackets vanishing. As
consequence, the BRST transformations s ¼ fΩ; ·g are
explicitly given by

sϕi ¼ ψ i; sψ i ¼ 0; sψ̄ i ¼ Bi; sBi ¼ 0:

ð3:14Þ

The Hamiltonian can be written as

Hss ¼ 1

2
ifΩ; Ω̄g; Ω̄ ¼ −iψ̄ igij

�
αBj þ 2is

∂V
∂ϕj

�
;

ð3:15Þ
with Ω̄ generating the so-called anti-BRST symmetry,
s̄ ¼ fΩ̄; ·g, explicitly given by

s̄ϕi ¼ αgijψ̄ j; s̄ψ i ¼ gij
�
αBj þ 2is

∂V
∂ϕj

�
;

s̄ψ̄ i ¼ 0; s̄Bi ¼ −2isψ̄ jgjk
∂2V

∂ϕk∂ϕi : ð3:16Þ

The gauge sector can be written as a supersymmetric
quantum mechanical model with Hgs ¼ −Hss if α ¼ s ¼
1 ¼ ξ,

ϕi ¼
�

Aðx⃗Þ
A0ðx⃗Þ

�
; ψ i ¼

�−ηðx⃗Þ
iρðx⃗Þ;

�
;

Bi ¼
�

iπðx⃗Þ
−iπ0ðx⃗Þ

�
; ψ̄ i ¼

�
iPðx⃗Þ
−C̄ðx⃗Þ

�
; ð3:17Þ

and

gij ¼
�− 1

Δ δ
3ðx⃗; x⃗0Þ 0

0 −δ3ðx⃗; x⃗0Þ

�
;

V ¼
Z

d3xAΔA0; ð3:18Þ

provided spatial integrations by parts are allowed. Formally,
DeWitt’s condensed notation is used (in the sense that
summation over i includes an integration over x⃗, while δij
includes a Dirac delta function in three dimensions).
This formulation of the gauge sector can be turned into a

local topological field theory with a BRST exact
Hamiltonian when using the potential π0 defined through
π ¼ Δπ0 in (3.8), (3.9), and (3.10).
Such a reformulation is clearly not essential for an

understanding of the problem. Nevertheless, it indicates
at this stage already that the explicit computation of the
partition function involves the value of the exponential at
the classical saddle point, the “instanton” solution dϕi

dt ¼ 0,
∂V
∂ϕi ¼ 0.

IV. PLANAR VACUUM CAPACITOR

In this main section, the partition function for the
vacuum capacitor is computed, after identifying the com-
plete Hilbert space from a constrained Hamiltonian analysis
that takes the nontrivial boundary conditions of the physical
setup into account. Notations and conventions are fixed
in Appendix A. In order to understand how the boundary
conditions influence the result, it is instructive to first
review the standard and well-known results in the case of
periodic boundary conditions. This is done in Appendix B
and C, following [36].
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A. Spatial boundary conditions

For conducting plates, spatial boundary conditions on
the fields have to be imposed that implement n⃗ · B⃗ ¼ 0 ¼
n⃗ × E⃗ ¼ 0 on the boundary. If xi ¼ ðxa; x3Þ with a ¼ 1, 2,
this is guaranteed if the mode expansion of ðAa; πaÞ
contains sines only,

AcðxiÞ ¼
X
na

X
n3>0

AS
c;ka;k3

sin k3x3eikax
a
;

πdðxiÞ ¼
X
na

X
n3>0

πSdka;k3 sin k3x
3eikax

a
; ð4:1Þ

with nonvanishing Poisson brackets

fAS
c;ka;k3

; π�Sdk0a;k03
g ¼ 2δdc

V

Y3
i¼1

δni;n0i ; ð4:2Þ

where V ¼ 4L1L2L3. In order for bulk cancellations to
work as in the case of periodic boundary conditions, one is
forced to use Neumann conditions for ðA3; π3Þ, so that

A3ðxiÞ ¼
X
na

�
AC
3;ka;0

þ
X
n3>0

AC
3;ka;k3

cos k3x3
�
eikax

a
;

π3ðxiÞ ¼
X
na

�
πC3ka;0 þ

X
n3>0

πC3ka;k3 cos k3x
3

�
eikax

a
: ð4:3Þ

This implies that

fAC
3;ka;0

; π�C3k0a;0
g ¼ 1

V

Y2
a¼1

δna;n0a ;

fAC
3;ka;k3

; π�C3k0a;k03
g ¼ 2

V

Y3
i¼1

δni;n0i ; k3 > 0: ð4:4Þ

These conditions are consistent with the boundary con-
ditions used in the context of the Casimir effect when one
works in radiation gauge A0 ¼ 0, ∂iAi ¼ 0 (see e.g., [38]).
The boundary conditions on the remaining variables then
follow from the Hamiltonian analysis starting from
HC ¼ RB d3xðH0 − A0∂iπ

iÞ. Indeed, in order to impose
the Gauss law in the bulk, ðA0; π0Þ should satisfy Dirichlet
conditions. In turn, the same then goes for the ghost pairs
ðη;PÞ, ðC̄; ρÞ, and also for ðA; πÞ. Again, this is consistent
with the conditions in the context of the Casimir effect
(e.g., [39] where it is shown that there is a standard
supersymmetric cancellation between the zero point
energies of the gauge sector, and also [40–42] for related
considerations).

B. Degrees of freedom and dynamics

When substituting the mode expansion, the canonical
Hamiltonian splits into three pieces,

HC ¼ HB þHW þHNPG; ð4:5Þ

with a standard bulk piece

HB ¼
V
4

X
na;n3>0

½πbSka;k3π�Sb;ka;k3 þπ3Cka;k3π
�3C
b;ka;k3

þk21ðAS
2;ka;k3

A�S
2;ka;k3

þAC
3;ka;k3

A�C
3;ka;k3

Þþk22ðAS
1;ka;k3

A�S
1;ka;k3

þAC
3;ka;k3

A�C
3;ka;k3

Þ

þk23ðAS
1;ka;k3

A�S
1;ka;k3

þAS
2;ka;k3

A�S
2;ka;k3

Þþ ik2k3ðAS
2;ka;k3

A�C
3;ka;k3

−AC
3;ka;k3

A�S
2;ka;k3

Þþ ik1k3ðAS
1;ka;k3

A�C
3;ka;k3

−AC
3;ka;k3

A�S
1;ka;k3

Þ
−k1k2ðAS

1;ka;k3
A�S
2;ka;k3

þAS
2;ka;k3

A�S
1;ka;k3

Þ�: ð4:6Þ

The piece

HW ¼ V
2

X
na;n3>0

½AS
0;ka;k3

ðikbπ�Sb;ka;k3 þ k3π�3Cb;ka;k3
Þ�; ð4:7Þ

will give rise to the secondary constraints, −ikbπSb;ka;k3þ
k3π3Cb;ka;k3 ≈ 0. As expected and can be easily checked, there
are no tertiary constraints.
The most interesting piece from the current perspective is

HNPG ¼ V
2

X
na

½π3Cka;0π3C�ka;0
þ ω2

ka
AC
3;ka;0

AC�
3;ka;0

�;

ωka ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22

q
: ð4:8Þ

In summary, we can split degrees of freedom according
to whether they are k3 zero modes or not. In the latter group,

we have ðAb; πbÞ, ðA0; π0Þ, ðη;PÞ, ðC̄; ρÞ, which all satisfy
Dirichlet boundary conditions, as well as the k3 ≠ 0 modes
of ðA3; π3Þ satisfying Neumann conditions.
The former group contains ðAC

3;ka;0
; π3Cka;0Þ, respectively,

the fields

ϕðx; yÞ ¼
X
na

AC
3;ka;0

eikbx
b
; πðx; yÞ ¼

X
na

πC3;ka;0e
ikbxb :

ð4:9Þ
None of these variables is involved in any of the constraints.
They are thus physical. Note that while the associated vector
potential and electric fields are formally longitudinal,

ANPG
i ðx; y; 0Þ ¼ δ3iϕ ¼ ∂i½zϕ�;

πiNPGðx; y; 0Þ ¼ δi3π ¼ ∂i½zπ�; ð4:10Þ
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this is not really the case since z is restricted to the closed
interval ½0; L3�. Note also that the Poisson brackets for these
variables given in (4.4) and the Hamiltonian (4.8), which are
encoded in the bulk first-order action restricted to these
degrees of freedom, completely determine the Lagrangian
action of a massless scalar in (2þ 1) dimensions after
integrating out the momenta,

SNPG ¼ L3

2

Z
dt
Z

L1

−L1

dx
Z

L2

−L2

dy½ð _ϕÞ2 − ∂aϕ∂aϕ�: ð4:11Þ

In this context, the electric charge operator, by analogy with
the discussion in Sec. II, is taken to be the quantum version
of the classical observable

Q ¼ −π3C0;0;0A ¼ −
Z

L1

−L1

dx
Z

L2

−L2

dyπ; A ¼ 4L1L2:

ð4:12Þ

which Poisson commutes bothwith the completeHamiltonian
and all constraints.

C. Partition function

For the nonzero-mode sector of the theory, one can then
follow the analysis of the periodic case (fix the gauge,
choose suitable variables). The difference is only that the
modes involved are restricted to k3 > 0. Up to details related
to the standard Casimir effect (which will be addressed
elsewhere), one finds that the contribution to the partition
function from this sector is the standard blackbody result,
Eq. (B29).
For the new sector, we first consider the nonzero modes

of the nonproper gauge degrees of freedom, ðAC
3;ka;0

; π3Cka;0Þ,
with ka ≠ 0. For them, one defines standard oscillator
variables

aka ¼
ffiffiffiffiffiffiffiffiffiffiffi
ωkaV

2

r �
AC
3;ka;0

þ i
ωka

π3Cka;0

�
; ð4:13Þ

so that

faka; a�k0ag ¼ −iδna;n0a ; H0
NPG ¼

X0
na

ωkaa
�
ka
aka : ð4:14Þ

The contribution to the partition function,

Z0
NPGðβ; ρÞ ¼ Tre−βρĤ

0
NPG ; ð4:15Þ

is given by

lnZ0
NPGðβ; ρÞ ¼ −

X0
na

lnð1 − e−βρωka Þ: ð4:16Þ

The standard approximation then leads to

lnZ0
NPGðβ; ρÞ ¼ −

A
4π2

Z
dk1dk2 ln

	
1 − e−βρ

ffiffiffiffiffiffiffiffiffi
k2
1
þk2

2

p 


¼ A
2π

ζð3ÞðβρÞ−2: ð4:17Þ

For the zero mode of the nonproper gauge degrees of
freedom, the variables q ¼ AC

3;0;0

ffiffiffiffi
V

p
, p ¼ π3C3;0;0

ffiffiffiffi
V

p
, have

canonical commutation relations, while the Hamiltonian
and electric charge observable are given by

H0
NPG ¼ 1

2
p2; Q ¼ −

ffiffiffiffiffiffi
A
L3

s
p: ð4:18Þ

It follows that the contribution to the partition function,

Z0
NPGðβ; ν; μÞ ¼ Tre−βνĤ

0
NPGþβμQ̂; ð4:19Þ

of this free particle is

lnZ0
NPGðβ; ν; μÞ ¼ lnΔq −

1

2
ln ð2πβνÞ þ βμ2

ν

A
2L3

; ð4:20Þ

where Δq denotes the divergent interval of integration over
q, which should be dropped.
The starting point Hamiltonian corresponds to ρ ¼ 1 ¼ ν,

so that the semiclassical contribution to the partition function
discussed in Sec. II is recovered through the last term of
Eq. (4.20).

V. DISCUSSION AND PERSPECTIVES

We have used a Hamiltonian approach here in order to
keep track of the various degrees of freedom and of their
nature. It should be possible to streamline these derivations
by using finite temperature Lagrangian path integral
methods combined with techniques from topological field
theory and extend the considerations here to more com-
plicated nontrivial boundary conditions than the ones we
have treated explicitly.
The nontrivial effect is a zero-mode effect, like in the

case of Bose-Einstein condensation [43]. The difference is
however that in the latter both observables Ĥ and N̂ involve
the same degrees of freedom, whereas in our case, the
physical Hamiltonian Ĥ and the electric charge Q̂ involve
different degrees of freedom. The electromagnetic analog
of the semiclassical Bekenstein-Hawking contribution to
the partition function comes here from the zero mode of the
nonproper gauge degrees of freedom, which are themselves
zero modes from the bulk perspective.
Magnetic charge can be treated in the same way when

using a magnetic instead of an electric formulation. Both
types of charges simultaneously can be understood in a
manifestly duality invariant first-order formulation [44]
(see also e.g., [45]) which includes an additional quartet
[46,47].
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The next, in principle straightforward, step is then to
generalize the result discussed here to the spherical vacuum
capacitor. For linearized gravity around flat space, one
can easily adapt the result of [10] and understand the
Schwarzschild solution as a coherent state of unphysical
gravitons. Generalizing the derivation here should also
be tractable and is the object of a follow-up project. This is
then what an observer at spatial infinity would see. He
would, however, not be able to distinguish between a black
hole and a star from that computation alone.
The analysis in this paper in terms of a detailed mode

expansions is possible because boundary conditions at both
z ¼ 0 and z ¼ L3 are specified. The additional scalar field
that emerges from the canonical analysis was not associated
to a single boundary plane, but to both of these planes
together. In the case of black holes, one might wonder
whether the role of these planesmight be played by boundary
conditions at infinity on the one hand and at the horizon on
the other. This would be consistent with the fact that one
needs “surface terms” both at the black hole horizon and at
infinity when using the Hamiltonian action [48] in order to
derive the background contribution to the partition function.
It would be interesting to study in more detail how the

quantization of the electromagnetic field in this topologically
nontrivial setup appears from the viewpoint of large gauge
symmetries. In Chern-Simons theories for instance, large
gauge symmetries become gobal symmetries of the Wess-
Zumino or Liouville theories that describe the residual
dynamics in the presence of boundaries. This role is played
here by themassless scalar theory,whichdoes indeed possess
an infinite number of global symmetries.
The consequences of the present computation, both from

a theoretical and an experimental viewpoint should be fully
explored. One would need to understand from the current
perspective what happens in an interacting theory like QED
for instance, how to resum contributions from the gauge
sector and to get different charged sectors in the electro-
magnetic case, and similarly, to go from a flat to a black
hole background in the gravitational case.
Aswe have tried to show in [10] andwith this computation

here, in order to deal consistently with charged sectors or
black holes in the operator formalism, computations are
transparent when all polarizations of the four potential or of
themetric are quantized in a nonunitaryHilbert space. This is
also implicitly the case in the Euclidean path integral
formulation when choosing real paths for the Euclidean
version of A0, or for the shift vectors. Since most of the
questions on black hole entropy have little to do with
transverse-traceless variables but rather with variables from
the gauge sector, one might want to take this specific
nonunitarity into account when discussing paradoxes related
to black hole physics.

ACKNOWLEDGMENTS

This work is supported by the F. R. S.-FNRS Belgium,
convention FRFC PDR T.1025.14 and convention IISN

4.4503.15. Part of the work was done at the Kavli
Institute for Theoretical Physics China during the program
“Quantum Gravity, Black Holes and Strings 2014.” Another
part has been completedwhile visiting the Perimeter Institute
for Theoretical Physics. Research at Perimeter Institute is
supported by the Government of Canada through the
Department of Innovation, Science and Economic
Development and by the Province of Ontario through the
Ministry of Research and Innovation. The author is grateful
to Cédric Troessaert, Hernán González, Marc Geiller,
Laurent Freidel, and Marc Henneaux for useful discussions.

APPENDIX A: MODE EXPANSIONS

1. Periodic boundary conditions

Consider first periodic boundary conditions in a box BP
with sides of lengths 2Li and volume VP ¼ 8L1L2L3. Note
that in this case, no improvement terms are needed for the
gauge fixed Hamiltonian H0 þ fΩ; Kξg. The fields

zA ¼ ðA0; π0; Ai; πi; η;P; C̄; ρÞ; ðA1Þ
are expanded in terms of Fourier series at fixed time t,

zAðxiÞ ¼
X
ni

zAkie
ikixi ; zAki ¼ zA�−ki ;

zAki ¼
1

VP

Z
BP

d3xzAðxiÞe−ikixi ; ðA2Þ

with ni ∈ Z and ki ¼ πni
LðiÞ

(no summation over i). Quadratic

integrals are related asZ
BP

d3xzAðxiÞzBðxiÞ ¼ VP

X
ni

zAkiz
�B
ki
: ðA3Þ

The canonical Poisson bracket relations that originate
from the kinetic termZ

BP

d3x _ϕðxi; tÞπðxi; tÞ; ðA4Þ

for each canonically conjugated pair are then

fzAki ; z�Bk0i g ¼ σAB

VP

Y3
i¼1

δni;n0i ; ðA5Þ

with all other Poisson brackets following from the middle
of Eq. (A2). Here σAB is the canonical symplectic matrix
obtained by combining�

0 1

−1 0

�
ðA6Þ

for each canonical pair. Translating back to position space
gives
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fzAðxiÞ; zBðyiÞg ¼ σABδð3ÞP ðxi; yiÞ;

δð3ÞP ðxi; yiÞ ¼ 1

VP

X
ni

eikiðxi−yiÞ: ðA7Þ

Alternatively, if one replaces the exponentials by sines
and cosines in the z ¼ x3 direction,

zAðxiÞ ¼
X
na

�
cAka;0 þ

X
n3>0

ðcAka;k3 cos k3x3 þ sAka;k3 sin k3x
3Þ
�

× eikax
a
; ðA8Þ

with a ¼ 1, 2

cAka;0 ¼
1

VP

Z
BP

d3xzAðxiÞe−ikaxa ¼ zAka;0; ðA9Þ

and, for k3 > 0, 
cAka;k3
sAka;k3

!
¼ 2

VP

Z
BP

d3xzAðxiÞe−ikaxa
�
cos k3x3

sin k3x3

�

¼
 

zAka;k3 þ z�Aka;k3
iðzAka;k3 − z�Aka;k3Þ

!
: ðA10Þ

In this case,Z
BP

d3xzAðxiÞzBðxiÞ

¼ VP

X
na

�
cAka;0c

�B
ka;0

þ 1

2

X
n3>0

½cAka;k3c�Bka;k3 þ sAka;k3s
�B
ka;k3

þ iðcAka;k3s�Bka;k3 − sAka;k3c
�B
ka;k3

Þ�
�
: ðA11Þ

and the Poisson brackets are

fcAka;0; c�Bk0a;0g ¼ σAB

VP

Y2
a¼1

δna;n0a ; ðA12Þ

and, for k3, k03 > 0,

fcAk3;ka ; c�Bk03;k0ag ¼ 2σAB

VP

Y3
i¼1

δni;n0i ¼ fsAk3;ka ; s�Bk03;k0ag; ðA13Þ

and all other Poisson brackets vanishing. In these terms, the
periodic delta function can be written as

δð3ÞP ðxi; yiÞ ¼ 1

VP

X
na

eikax
a

�
1þ 2

X
n3>0

cos k3ðx3 − y3Þ
�

¼ 1

VP

X
na

eikax
a

�
1þ 2

X
n3>0

cos k3x3 cos ky3

þ sin k3x3 sin k3y3
�
: ðA14Þ

2. Neumann/Dirichlet boundary conditions

Imposing Neumann or Dirichlet boundary conditions on
anintervalof lengthL3 in thez ¼ x3 directioncanbeachieved
by extending the function of z ∈ ½0; L3� to an even, respec-
tively, odd functionof z ∈ ½−L3; L3�. This amounts to setting
sAk3;ka , respectively, c

A
ka;k3

in (A8) to zero, while keeping the
definitions of the remaining modes in (A9) and (A10)
unchanged (see [49] for an interpretation in terms of second
class constraints). These formulas can then be expressed in
terms of the real volume V ¼ 4L1L2L3 of the bodyB by the
substitution VP ¼ 2V. In the Neumann case, we now haveZ
B
d3xzAðxiÞzBðxiÞ ¼ V

X
na

�
cAka;0c

�B
ka;0

þ 1

2

X
n3>0

cAka;k3c
�B
ka;k3

�
;

ðA15Þ
while for the Dirichlet case,Z

B
d3xzAðxiÞzBðxiÞ ¼ V

2

X
na;n3>0

sAka;k3s
�B
ka;k3

: ðA16Þ

The canonical Poisson brackets now originate from
kinetic terms of the formZ
B
d3x _ϕðxi; tÞπðxi; tÞ ¼

Z
L1

−L1

dx
Z

L2

−L2

dy

×
Z

L3

0

dz _ϕðxi; tÞπðxi; tÞ; ðA17Þ

which implies that the brackets of the remaining modes in
(A12), (A13) are to be multiplied by 2, or equivalently, in
these equations, VP needs to be replaced by V. In position

space, one needs to replace δð3ÞP ðxi; yiÞ in the RHS of (A7)

by δð2ÞP ðxa; yaÞΔ�ðx3; y3Þ, with the þ corresponding to the
Neumann and the − to the Dirichlet case, and where (see
e.g., [50], chapter 4)

Δ�ðx3; y3Þ ¼ δ2L3
ðx3 − y3Þ � δ2L3

ðx3 þ y3Þ

¼ 1

2L3

X
n3

ðeik3ðx3−y3Þ � eik3ðx3þy3ÞÞ; ðA18Þ

and also

Δþðx3; y3Þ ¼
1

L3

þ 2

L3

X
n3>0

cos k3x3 cos k3y3;

Δ−ðx3; y3Þ ¼
2

L3

X
n3>0

sin k3x3 sin k3y3: ðA19Þ

APPENDIX B: PARTITION FUNCTION FOR
PERIODIC BOUNDARY CONDITIONS

When there is no electric potential at the surface of the
body, no global electric charge and no nontrivial boundary
conditions, the theory is quantized in such a way that the
contribution to the partition function from the unphysical
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bosonic degrees of freedom ðA0; π0Þ, ðA; πÞ cancels the one
from the ghost degrees of freedom ðη;PÞ, ðC̄; ρÞ so that
only the physical degrees of freedom ðAT

i ; π
i
TÞ contribute.

Let us briefly review these computations. As we are
ultimately interested in infrared effects, we keep the volume
finite and work with Fourier series including zero modes,
instead of Fourier integrals.

1. Nonzero modes

For periodic boundary conditions in a box BP of volume
VP ¼ 8L1L2L3, we can adapt the change of variables from
Sec. 19.1.6 of [36] to the case of Fourier series instead of
Fourier integrals. In this case, ki ¼ πnðiÞ

LðiÞ
and one defines

A0
0 ¼

X
n⃗

0 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωk⃗VP

p ½a
0;k⃗e

ik⃗·x⃗ þ c:c:�;

π0
0 ¼ i

X
n⃗

0
ffiffiffiffiffiffiffiffiffi
ωk⃗

2VP

r
½ða

3;k⃗ þ a
0;k⃗Þeik⃗·x⃗ − c:c:�; ðB1Þ

A0
i ¼

X
n⃗

0 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωk⃗VP

p ½am;k⃗e
m
i;k⃗
eik⃗·x⃗ þ c:c:�;

πi
0 ¼ −i

X
n⃗

0
ffiffiffiffiffiffiffiffiffi
ωk⃗

2VP

r
½ðam;k⃗e

m
i;k⃗

þ a
0;k⃗Þeik⃗·x⃗ − c:c:�; ðB2Þ

η0 ¼ −
X
n⃗

0 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω3

k⃗
VP

q ½ck⃗eik⃗·x⃗ þ c:c:�;

P0 ¼ i
X
n⃗

0
ffiffiffiffiffiffiffiffiffi
ω3

k⃗

2VP

s
½c̄k⃗eik⃗·x⃗ þ c:c:�; ðB3Þ

C̄0 ¼ −i
X
n⃗

0
ffiffiffiffiffiffiffiffiffi
ωk⃗

2VP

r
½c̄k⃗eik⃗·x⃗ − c:c:�;

ρ0 ¼ −
X
n⃗

0 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωk⃗VP

p ½ck⃗eik⃗·x⃗ − c:c:�; ðB4Þ

so that

A0 ¼ −i
X
n⃗

0 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω3

k⃗
VP

q ½a
3;k⃗e

ik⃗·x⃗ − c:c:�;

π0 ¼
X
n⃗

0
ffiffiffiffiffiffiffiffiffi
ω3

k⃗

2VP

s
½ða

3;k⃗ þ a
0;k⃗Þeik⃗·x⃗ þ c:c:�; ðB5Þ

where
P0

n⃗ ¼
P

n⃗≠0⃗, and ωk⃗ ¼
ffiffiffiffiffiffiffiffiffi
k⃗ · k⃗

p
, while fem

i;k⃗
g is an

orthonormal triad, the first two vectors being transversal
and the third longitudinal, kie1

i;k⃗
¼ 0 ¼ e2

i;k⃗
and e3

i;k⃗
¼ ki

ωk⃗
.

Finally, there is an additional change of variables to null
oscillators,

ak⃗ ¼ a
3;k⃗ þ a

0;k⃗; bk⃗ ¼
1

2
ða

3;k⃗ − a
0;k⃗Þ: ðB6Þ

For the nonzero modes, if aa;k⃗, a ¼ 1, 2 are the trans-
verse physical oscillators, while aα

Γ;k⃗
, α ¼ 1, 2, Γ ¼ 1, 2 are

the null oscillators of the unphysical sector, with a1
Γ;k⃗

¼
ðak⃗; bk⃗Þ bosonic and a2

Γ;k⃗
¼ ðck⃗; c̄k⃗Þ fermionic, the non-

vanishing Poisson brackets are

faa;k⃗; a�b;k⃗0g ¼ −iδabδn⃗;n⃗0 ; faα
Γ;k⃗
; aβ

Δ;k⃗0
g ¼ −iηΓΔδαβδn⃗;n⃗0 ;

ðB7Þ

where indices are lowered (and raised) with δab, δαβ and the
indefinite metric ηΓΔ given by

ηΓΔ ¼
�
0 1

1 0

�
: ðB8Þ

The canonical Poisson brackets of the fields zA are then
equivalent to these nonzero-mode Poisson brackets and the
zero-mode brackets:

fA
0;0⃗; π

0

0⃗
g ¼ 1 ¼ fAi;0⃗; π

i
0⃗
g ¼ −fη

0⃗
;P

0⃗
g ¼ −fC̄

0⃗
; ρ

0⃗
g:
ðB9Þ

Note that longitudinal fields A ¼ A0, π ¼ π0 do not have
zero modes, so that the commutation relations for the
modes in a box imply fAðx⃗Þ;Πðy⃗Þg ¼ −½δð3Þðx⃗; y⃗Þ − 1

VP
�.

How zero modes for these fields may be re-introduced is
briefly discussed in the next section.
With a view towards a subsequent large volume limit

and a passage from Fourier series to integrals, zero modes
are usually neglected. In this case,

P
n⃗ →

V
ð2πÞ3

R
d3k,

δn⃗;n⃗0 →
ð2πÞ3
V δð3Þðk⃗; k⃗0Þ. If discrete and continuous Fourier

coefficients/oscillators are related by zA
k⃗
→

ffiffiffi
V

p
ð2πÞ3=2 z

Aðk⃗Þ,
aAk⃗ →

ffiffiffi
V

p
ð2πÞ3=2 aAðk⃗Þ for all aak⃗, aα

Γ;k⃗
, sums over n⃗ may

simply be replaced by integrals over k⃗ and Kronecker by
Dirac deltas in the above expressions for the mode
expansions of the fields, the Poisson brackets and quadratic
expressions like the Hamiltonian or the BRST charge.

2. Zero modes

The piece of the BRST gauge fixed Hamiltonian (in
Feynman gauge ξ ¼ 1) H1 ¼ H0 þ fΩ; K1g involving the
zero modes zA

0⃗
is H1

0⃗
¼ 1

2
πi
0⃗
πi;0⃗ −

1
2
π0
0⃗
π0
0⃗
þ iP

0⃗
ρ
0⃗
. When

ðA
0;0⃗; π̄

0

0⃗
Þ are quantized as anti-Hermitian operators and the

zero-mode ghosts in the Schrödinger representation
(cf. [36], Secs. 15.3.2 and 15.4.4), and after limiting the
bosonic zero-mode integrations to intervals ΔAμ;0⃗, their
contribution to the partition function would be

ZðβÞ ¼
Y3
μ¼0

ΔAμ;0⃗ffiffiffiffiffiffiffiffi
2πβ

p × β × Z0ðβÞ; ðB10Þ
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with Z0ðβÞ the partition function for the nonzero modes.
Note also that the piece of the BRST charge involving zero
modes is Ω

0⃗
¼ −iπ0

0⃗
ρ
0⃗
.

Wewill proceed differently however and start the analysis
from the zero-mode contribution to the classical Lagrangian

L ¼ − 1
4

R
d3xFμνFμν. Indeed, L

0⃗
½Aμ;0⃗� ¼ 1

2
_Ai;0⃗

_Ai
0⃗
. There

then is only the primary constraint π0
0⃗
≈ 0, but no secondary

constraint. Introducing the zero-mode ghost pair ðC̄
0⃗
; ρ

0⃗
Þ,

the associated BRST charge isΩ
0⃗
given above. If one would

like the theory to also include the zero modes of the other
ghost pair, ðη

0⃗
;P

0⃗
Þ, one can do so by adding a suitable

nonminimal sector. This is done by considering the zero-
mode Lagrangian as a function of the spurious P

0⃗
, L

0⃗
¼

L
0⃗
½Aμ;0⃗;−P0⃗

�. There then is an additional constraint
−η

0⃗
≈ 0, for which one introduces the ghost pair ðπ

0⃗
; A

0⃗
Þ,

unrelated to components of ðAi;0⃗; π
i
0⃗
Þ. The BRST charge

including this nonminimal sector is then

Ω
0⃗
¼ −ðπ

0⃗
η
0⃗
þ iπ0

0⃗
ρ
0⃗
Þ: ðB11Þ

Choosing as gauge fixing fermion

1

2
iΩ

0⃗
¼ iC̄

0⃗

�
−A

0⃗
−
1

2
π0
0⃗

�
þ P

0⃗

�
A
0;0⃗ −

1

2
π
0⃗

�
; ðB12Þ

the BRST gauge fixed Hamiltonian is H
0⃗
¼ Hph

0⃗
þHgs

0⃗
,

with

Hph

0⃗
¼ 1

2
πi
0⃗
πi;0⃗; ðB13Þ

and Hgs

0⃗
¼ − 1

2
ifΩ

0⃗
;Ω

0⃗
g, which is explicitly given by

Hgs

0⃗
¼ −π

0⃗

�
A
0;0⃗ −

1

2
π
0⃗

�
− π0

0⃗

�
A
0⃗
þ 1

2
π0
0⃗

�
þ iC̄

0⃗
η
0⃗
þ iP

0⃗
ρ
0⃗
: ðB14Þ

When proceeding in this way, the longitudinal fields ðA; πÞ
will also include zero modes. Integrating out momenta can
be done consistently including the zero modes. The same
applies to the mode expansion of (3.3), (3.9) with the
understanding that Δ goes to −1 for zero modes. When
defining new variables for zero-modes as for the nonzero
modes [without a sum and with ω

0⃗
¼ 1 in (B1), (B5), (B3),

(B4)], and in (B6), the Poisson brackets of the unphysical
sector in (B7) also include these zero modes.
When quantizing the unphysical zero-mode pairs,

ðA
0;0⃗; π

0

0⃗
Þ; ðπ

0⃗
; A

0⃗
Þ; ðη

0⃗
;P

0⃗
Þ; ðC̄

0⃗
; ρ

0⃗
Þ;
ðB15Þ

in the Dirac-Fock representation, their contribution to the
partition function cancels through the same mechanism,

reviewed in Appendix B 3 below, as for the nonzero modes
of the unphysical sector. One then remains with the (infinite)
contribution of three bosonic free particles encoded in (B13),
whose contribution to the partition function is

ZðβÞ ¼
Y3
i¼1

ΔAi;0⃗ffiffiffiffiffiffiffiffi
2πβ

p × Z0ðβÞ: ðB16Þ

3. Bulk cancellations

When inserting the mode expansion reviewed above, the
BRST charge is given by

Ω ¼
X
n⃗

ðc�
k⃗
ak⃗ þ a�

k⃗
ck⃗Þ: ðB17Þ

In Feynman gauge ξ ¼ 1, the gauge fixed Hamiltonian

H1 ≔ H0 þ fΩ; K1g ¼ Hph þHgs; ðB18Þ

is given by

Hph ¼ 1

2
πi
0⃗
πi;0⃗ þ

X0
n⃗

ωk⃗a
�
a;k⃗
aa
k⃗
; Hgs ¼

X
n⃗

ωk⃗a
α
Γ;k⃗
aΓ
α;k⃗
:

ðB19Þ

Here ωk⃗ ¼
ffiffiffiffiffiffiffiffi
kiki

p
for the nonzero modes, ω

0⃗
¼ 1 for the

zero modes of the unphysical sector, aa;k⃗, a ¼ 1, 2 are the
transverse oscillators of the physical sector, while aα

Γ;k⃗
are

the bosonic and fermionic null oscillators of the unphysical
sector, with nonvanishing (graded) commutation relations

½âa;k⃗; â†b;k⃗0 � ¼ δabδn⃗;n⃗0 ; ½âα
Γ;k⃗
; âβ†

Δ;k⃗0
� ¼ ηΓΔδ

αβδn⃗;n⃗0 ;

ðB20Þ

where indices are lowered and raised with the appropriate
metrics δab, δαβ, ηΓΔ and their inverses.
At this stage, the difference with the partition function for

a complex scalar field, and with Bose-Einstein condensation,
appears clearly: the observable for which we would like to
introduce a chemical potential involves different degrees of
freedom than the ones of the Hamiltonian. Furthermore, such
a BRST Fock space quantization guarantees that only the
physical sector contributes. Indeed, since

Ĥ1 ¼ Ĥph þ 1

2
½Ω̂; ˆ̄Ω�; 1

2
ˆ̄Ω ¼

X
n⃗

ωk⃗ð ˆ̄c†k⃗b̂k⃗ þ b̂†
k⃗
ˆ̄ck⃗Þ;

ðB21Þ

it follows that e−βĤ
1 ¼ e−βĤ

ph þ ½Ω̂; M̂� for some operator
M̂. The trace to be used for the partition function is the
Lefschetz trace, for which the sum over diagonal matrix
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elements is weighted by minus one to the power the ghost
number of the state. In the context of supersymmetric
quantum mechanics, this corresponds to computing the
Witten index. The Lefschetz trace of BRST exact operators
vanishes, while for a BRST closed operator, it agrees with
the Lefschetz trace of the operator in cohomology. Hence, in
the current setup, the trace reduces to the trace for the
physical Hamiltonian in the physical Hilbert space associ-
ated to transverse photons,

TrWe−βĤ1 ¼ Trphe−βĤ
ph
: ðB22Þ

Alternatively, in the context of path integral quantization,
it is convenient to introduce a collective notation aA for all
the oscillators aa, aαΓ. BRST Fock quantization is imple-
mented by using the holomorphic representation with
boundary conditions that fix that creation operators at t0,
a�Aðt0Þ ¼ a�A and destruction operators at t, aAðtÞ ¼ aA, (see
e.g., [51,52], and also [53], chapter 9, [36], chapters 15,
16). In order to be able to turn on a chemical potential, we
consider the coupling to a source by using

Hj

k⃗
¼ ωk⃗a

�
A;k⃗

aA
k⃗
− a�

A;k⃗
jA
k⃗
ðτÞ − aA;k⃗j

�A
k⃗
ðτÞ: ðB23Þ

The path integral representation of the kernel Uj

k⃗
ðt0; tÞ at

fixed k⃗ of the evolution operator eiðt
0−tÞHj

k⃗ is then given by

Uj

k⃗
ðt0; tÞ ¼ eiS

j

k⃗ jextr, where the classical action to be used is

the one that has a true extremum when taking into account
the boundary conditions

Sj
k⃗
¼
Z

t0

t
dτ
�
1

2i
ð _a�

A;k⃗
aA
k⃗
− a�

A;k⃗
_aA
k⃗
Þ −Hj

k⃗

�

þ 1

2i

�
ða�

A;k⃗
aA
k⃗
Þðt0Þ þ ða�

A;k⃗
aA
k⃗
ÞðtÞ
�
: ðB24Þ

When using that the appropriate extremum is

aA
k⃗
ðτÞ¼ e−iωk⃗ðτ−tÞaA

k⃗
þ i
Z

τ

t
dτ0jA

k⃗
ðτ0Þe−iωk⃗ðτ−τ0Þ;

a�A
k⃗
ðτÞ¼ e−iωk⃗ðt0−τÞa�A

k⃗
þ i
Z

t0

τ
dτ0j�A

k⃗
ðτ0Þe−iωk⃗ðτ0−τÞ; ðB25Þ

one finds

lnUj

k⃗
ðt0; tÞ

¼ a�
A;k⃗

aA
k⃗
e−iωk⃗ðt0−tÞ

þ i
Z

t0

t
dτ½a�

A;k⃗
jA
k⃗
ðτÞe−iωk⃗ðt0−τÞ þ j�A

k⃗
ðτÞe−iωk⃗ðτ−tÞaA;k⃗�

−
Z

t0

t
dτ

�Z
t0

t
dτ0j�

A;k⃗
ðτÞθðτ − τ0Þe−iωk⃗ðτ−τ0ÞjA

k⃗
ðτ0Þ
�
:

ðB26Þ

When using a time-independent source jc and t0 − t ¼ −iβ,
this gives

lnUjc

k⃗
ðβÞ¼ a�

A;k⃗
aA
k⃗
e−βωk⃗ þða�

A;k⃗
jA
k⃗
þ j�

A;k⃗
aA
k⃗
Þω−1

k⃗
ð1−e−βωk⃗Þ

þ j�
A;k⃗

jA
k⃗
½ω−1

k⃗
β−ω−2

k⃗
ð1−e−βωk⃗Þ�: ðB27Þ

When evaluating the trace in the holomorphic represen-
tation, one should split into physical and unphysical
oscillators. For each physical oscillators, there is a
pre-factor of ð1 − e−βωk⃗Þ−1 coming from an appropriate
change of variables. As explicitly recalled in Appendix C,
these pre-factors cancel for the unphysical oscillators.
This cancellation corresponds to the one between the
bosonic and fermionic determinants in supersymmetric
quantum mechanics. As a result,

Tre−βĤ
jc

k⃗ ¼ 1

ð1 − e−βωk⃗Þ2 e
ω−1
k⃗
βj�

A;k⃗
jA
k⃗ ðB28Þ

In the absence of sources, when integrating over all the
modes and discarding the infinite contribution of the
zero modes of the physical sector, one finds the standard
blackbody result,

lnZ0ðβÞ ¼ −2
V

ð2πÞ3
Z

d3k ln ð1 − e−βωk⃗Þ ¼ Vπ2

45β3
: ðB29Þ

Note that, if instead of the kernel of the evolution operator,
one directly computes the trace, the alternating sign in the
Lefschetz trace is taken into account through periodic
boundary conditions in imaginary time for the ghosts (see
e.g., [54] for finite temperature QED or [55] for super-
symmetric quantum mechanics), so that all fields satisfy
periodic boundary conditions in imaginary time.
Note also that, in real time, indefinite metric quantization

is implemented in the path integral through imaginary
values for the paths associated to ðA0; π0Þ (cf. [36] page
355). In the Euclidean approach, when one substitutes
A0 by iÃ0, these become then again real paths for Ã0.
Conversely, this means that standard real paths for Ã0 in the
Euclidean approach correspond to using an indefinite
metric Hilbert space in real time.
Turning on a chemical potential for electric charge,

Hgs → Hgs þ μQ, with Q ¼ −
ffiffiffi
V
2

q
ða

0⃗
þ a�

0⃗
Þ can be done

in the above computation through the coupling to the
source,

jA
k⃗
¼ ðja

k⃗
; jα

Γ;k⃗
Þ ¼

�
0;−μ

ffiffiffiffi
V
2

r
δα1δ

1
Γδn⃗;0⃗

�
ðB30Þ

and its complex conjugate. The result does not change:

e
ω−1
k⃗
βj�

A;k⃗
jA
k⃗ ¼ 1 due to the metric ηΓΔ used to contract indices

of the sources.
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APPENDIX C: COHERENT STATES
OF QUARTETS

To a pair of bosonic null oscillators,

½âΓ; â†Δ� ¼ ηΓΔ; ηΓΔ ¼
�
0 1

1 0

�
;

one associates the coherent states,

jai ¼ eâ
†
Γa

Γ j0i; ha�j ¼ h0jea�ΓâΓ :

Their overlap is given by

ha�jai ¼ ea
�ΓaΓ ;

while the completeness relation is

1̂ ¼
Z Y

Γ¼1;2

da�ΓdaΓ
2πi

e−a
�ΔaΔ jaiha�j;

with fundamental integral

I½j; j�� ¼
Z Y

Γ¼1;2

da�ΓdaΓ
2πi

e−a
�ΔaΔþa�ΔjΔþj�ΔaΔ ¼ ej

�ΔjΔ :

ðC1Þ

Formulas for a pair of fermionic null oscillators, with
anticommutation relations given by ½ĉΓ; ĉ†Δ� ¼ ηΓΔ, are the
same except for the absence of ð2πiÞ−1 in the integration
measure.

Using the notation aαΓ ¼ ðaΓ; cΓÞ, for α ¼ 1, 2, let
Oða�; aÞ be the kernel of an operator Ô in the Fock space
of a quartet. In this representation, the Lefschetz trace is
given by

TrÔ ¼
Z Y

α;Γ¼1;2

da�α;Γdaα;Γ
ð2πiÞ2−α Oða�; aÞe−a�Δγ aγΔ :

For the operator e−βωN̂ with N̂ ¼ â�Γα âαΓ the counting
operator for quartets, the kernel is

ha�je−βωN̂ jai ¼ ea
�μ
α aαμe−βω ;

so that

Tre−βωN̂ ¼
Z Y

α;Γ¼1;2

da�α;Γdaα;Γ
ð2πiÞ2−α e−a

�Δ
γ aγΔð1−e−βωÞ ¼ 1:

For the last equality, the change of variables að�Þα;Γ →

að�Þα;Γð1 − e−βωÞ−1
2 leads to a vanishing Jacobian because

bosonic and fermionic contribution cancels, before using
(C1) with vanishing sources.
It also follows that

Tre−βωN̂b ¼ 1

ð1 − e−βωÞ2 ; ðC2Þ

where N̂b ¼ â†Γâ
Γ is the number operator for the bosonic

part of the quartet, i.e., for a pair of bosonic null oscillators.
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