
 

Holographic magnetic susceptibility

Lei Yin*

Institute of Quantum Matter, School of Physics and Telecommunication Engineering,
South China Normal University, Guangzhou 510006, China

Hai-cang Ren‡

Physics Department, The Rockefeller University, 1230 York Avenue, New York 10021-6399, USA
Central China Normal University, Wuhan 430079, China

Defu Hou†

Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOS),
Central China Normal University, Wuhan 430079, China

(Received 19 September 2018; published 8 January 2019)

The (2þ 1)-dimensional static magnetic susceptibility in strong-coupling is studied via a Reissner-
Nordström-AdS geometry. The analyticity of the susceptibility on the complex momentum q-plane in
relation to the Friedel-like oscillation in coordinate space is explored. In contrast to the branch-cuts
crossing the real momentum-axis for a Fermi liquid, we prove that the holographic magnetic susceptibility
remains an analytic function of the complex momentum around the real axis in the limit of zero
temperature. At zero temperature, we located analytically two pairs of branch-cuts that are parallel to the
imaginary momentum-axis for large jIm qj but become warped with the endpoints keeping away from the
real and imaginary momentum-axes. We conclude that these branch-cuts give rise to the exponential decay
behaviour of Friedel-like oscillation of magnetic susceptibility in coordinate space. We also derived the
analytical forms of the susceptibility in large and small-momentum, respectively.
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I. INTRODUCTION

Strongly correlated electronic systems, such as the high
temperature superconductors or graphene, are characterized
by a spectrum of novel static and transport phenomena
that cannot be explained by the traditional Fermi liquid
theory of Landau and are difficult to explore with ordinary
field theoretic techniques. The perturbative expansion or
mean field approximation becomes unreliable, especially
in lower dimensions, and the first principle numerical
simulation is hindered by the fermion sign problem. The
holographic theory [1–6] built on the conjectured gauge/
gravity duality is expected to shed some lights on the non-
perturbative physics and to reveal some generic properties
pertaining to a strongly-coupled system [7–9], such as a

non-Fermi liquid [10–14]. According to the holographic
dictionary, the classical solution of the gravity-matter
system in an asymptotically AdS space-time with a black
hole is linked to the thermodynamics of a strongly coupled
quantum field theory on the AdS boundary [15]. In
particular, the linearized solutions of the former generate
various two-point correlation functions of the latter
[1,6,16], and the photon polarization tensor to be inves-
tigated in this work is one of them.
The general structure of the polarization tensor in

energy-momentum representation, dictated by the current
conservation, is given by

Πijðq⃗;ωÞ ¼ χðω; qÞðq2δij − qiqjÞ þ ω2αðω; qÞ qiqj
q2

Π0jðq⃗;ωÞ ¼ Πj0ðq⃗;ωÞ ¼ ωαðω; qÞqj
Π00ðq⃗;ωÞ ¼ q2αðω; qÞ; ð1Þ

with the transverse and longitudinal form factors, χðω; qÞ
and αðω; qÞ, representing the magnetic susceptibility and
electric polarizability, respectively. Both variables ω and q
in χðq;ωÞ and αðq;ωÞ can be continued to the complex
planes. The singularities on the ω-plane reflect the exci-
tation spectrum, while the singularities on the complex
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q-plane give rise to the Debye-like screening and Friedel-
like oscillation in coordinate space. The analyticity of
χðω; qÞ and αðω; qÞ in weak coupling is well known.
For the (2þ 1)-dimensional static polarization tensor
considered in this paper, the one-loop calculation of
χð0; qÞ and αð0; qÞ for a spinor QED reveals two lines
of square root branch points located at [17]

q ¼ �2½μþ iπTð2nþ 1Þ� n ∈ N; ð2Þ

with T the temperature and μ the chemical potential. In
the zero temperature limit T → 0, these singularities
merge into two cuts with Req ¼ �2μ across the real axis,
which results in a discontinuity in the derivative of χð0; qÞ
and αð0; qÞ at q ¼ �2μ and the Friedel oscillation in
coordinate space with the amplitude decaying according
to a power law.
In strong coupling, the holographic χðω; qÞ and

αðω; qÞ extracted from different bulk geometries along
with their analyticity have been discussed extensively
in the literature, such as Refs. [18–22] for q ¼ 0, and
Refs. [23,24] for ω ¼ 0. (For more details, see Ref. [8]
and the references therein). In this paper, we shall focus
on the momentum analyticity of the holographic polari-
zation tensor from a Reissner-Nordström-AdS geometry.
In the same system, Ref. [25] studied the conductivity via
the small frequency expansion in the IR limit of CFT,
finding that the conductivity at zero-momentum scales as
ω2 in ω → 0. For the χð0; qÞ and αð0; qÞ extracted from
the Schwarzschild-AdS geometry (corresponding to zero
chemical potential), it was shown in Ref. [26] that all of
singularities on the q-plane are poles located along the
imaginary momentum-axis. A similar result was obtained
by a study on the probe D3/D5 system at a nonzero
density in Ref. [23] and the authors revealed that such
poles at the purely imaginary momentum screen expo-
nentially a point charge in the medium and do not
cause Friedel-like oscillation. Then came the work by
Blake et al. [27], who solved the Einstein-Maxwell
equations numerically for the gauge field and metric
tensor fluctuations in the Reissner-Nordström-AdS back-
ground with a complex momentum and found two lines
of poles of αð0; qÞ whose locations tend to be parallel to
the imaginary q-axis for large jImqj and bend toward the
imaginary axis at lower jImqj. Their numerical solution
also indicates an exponentially decaying Friedel-like
oscillation behavior even at zero temperature. In our
previous works [17,28], we were able to prove that both
χð0; qÞ and αð0; qÞ extracted from the nonextremal
Reissner-Nordström-AdS geometry are meromorphic
functions and to locate their poles analytically for large
jImqj via Wentzel–Kramers–Brillouin(WKB) solution of
the Einstein-Maxwell equations. The asymptotic distri-
bution of the poles is given by

q ≃ μ

�
�w� i

π

QL1

����n −
1

4

����
�
; ð3Þ

with the integer n ≫ 1, where L1 and L2 are two elliptic
integrals dependent of the temperature T, defined in
Eq. (A7) of Appendix A. As the temperature T → 0,
the distance between adjacent poles, π

QL1
∼ ðlog T

μÞ−1 → 0

and the poles merge into two pairs of cuts, parallel to the
imaginary axis but at much slower rate than the weak
coupling case. For αð0; qÞ, the asymptotic locations (3)
match well with the numerical result in Ref. [27] even
with a moderate Imq. Unfortunately, the condition for the
WKB prevented us from making any rigorous statements
regarding the distribution of these poles near the real
momentum axis, which may be more relevant to exper-
imental observations.
This work is a continuation of Ref. [17]. Different

strategies are employed here to explore the analyticity of
the holographic magnetic susceptibility χð0; qÞ in the
complex q-plane, especially at zero temperature where
the RN black hole becomes extremal. Through the series
solution of the Heun equation involved, we show that the
complex poles of χð0; qÞ discussed in [17] merge into four
branch cuts of square root type at zero temperature, whose
trajectories are located analytically. Coming from the
infinity, these cuts are nearly parallel to the imaginary
axis for large jImqj, in agreement with the WKB approxi-
mation, bending towards the imaginary axis for lower jImqj
and terminating at respective branch points with jImqj ≠ 0
and jReqj ≠ 0, without crossing either the real or imaginary
axes on their paths. Through a relation between the
Einstein-Maxwell equations and the eigenvalue problem
of an one-dimensional Schrödinger equation, we prove that
χð0; qÞ is an analytic function for any finite real q at any
temperature, which excludes any oscillatory behavior
caused by singularities on the real axis. Consequently,
the magnetic susceptibility manifests a Friedel-like oscil-
lation in coordinate space which decays exponentially even
down to zero temperature.
The analytic technique employed in this work is not yet

to be generalized to the case of electrical polarization,
αð0; qÞ in order to extend the result of Ref. [28] to zero
temperature, in which case the Einstein-Maxwell equations
involved are far more complicated. We hope to report our
progress along this line in near future.
The paper is organized as follows: In Sec. II, we

formulate the holographic magnetic susceptibility dual to
an Einstein-Maxwell system in the background of a
Reissner-Nordström blackhole with an asymptotically
Anti-de Sitter boundary. The analyticity of the magnetic
susceptibility is explored in Sec. III. The asymptotic forms
for small and large complex momenta are derived in
Sec. IV, Sec. V concludes the paper.
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II. HOLOGRAPHIC MODEL FOR MAGNETIC
SUSCEPTIBILITY

A. Background solutions and fluctuations
in D= 2 + 1 space-time

According to the holographic principle, the generating
functional of correlators of a strongly-coupled quantum
field theory(QFT) defined in space-time S is associated
with the partition function of a classical gravity-matter
theory in a bulk bounded by S. This relation, as was
formulated by Gubser-Klebanov-Polyakov and Witten
(GKPW) [1–6], is

ZQFT½ϕ
∘
i� ¼ ZGrav:½ϕ

∘
i� ð4Þ

where

ZQFT½ϕ
∘
i� ¼ hei

P
i

R
ddxϕ

∘
iOii; ZGrav:½ϕ

∘
i� ¼ eiS½ϕ⋆

i →ϕ
∘
i�;

ð5Þ

with ϕi the bulk fields of the gravity-matter system and ϕ⋆
i

the classical solutions whose boundary value ϕ
∘
i represent-

ing the source for ZQFT, conjugate to the operators Oi.
The bulk action of the gravity-matter system considered

in this work reads

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½G4ðR − 2ΛÞ − K4ðFμνFμνÞ�; ð6Þ

where R is the scalar curvature corresponding to the metric
tensor gμν, Λ is the negative cosmological constant, in
D ¼ 3þ 1 dimensional AdS space-time, Λ ¼ − 3

L2, L is
the AdS radius, and Fμν is the electromagnetic tensor,
Fμν ¼ ∂μAν − ∂νAμ, corresponding to the gauge potential
Aμ. The mass dimension of the gauge potential is ½Aμ� ¼ 1

and that of the coupling constant G4 is ½G4� ¼ 2. The
coupling constant K4 is thereby dimensionless, ½K4� ¼ 0.
The background solution ðĀμ; ḡμνÞ of the Einstein-

Maxwell equation dictated by the action (6) consists of
the Reissner-Nordström-AdS metric

ds2 ¼ ḡμνdxμdxμ

¼
�

L
zþu

�
2
�
−fðuÞdt2 þ z2þ

fðuÞ du
2 þ dx2 þ dy2

�
ð7Þ

and the gauge potential

Ā ¼ Ātdt ¼
Q
zþ

ð1 − uÞdt; ð8Þ

where the metric function

f ¼ 1 − ð1þQ2Þu3 þQ2u4; ð9Þ

with the horizon of this Reissner-Nordström black hole at
u ¼ 1 and the AdS boundary at u ¼ 0. The chemical
potential μ of the boundary field theory is related to the
dimensionless charge of the black hole Q via μ ¼ Q=zþ.
The Hawking temperature T in terms of the chemical
potential and the charges reads

T ¼ μ

4π

3 −Q2

Q
; ð10Þ

which corresponds to the background temperature of the
boundary field theory, and Q ∈ ½0; 3� and L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G4=K4

p
is re-

scaled to 1. At Q2 ¼ 3, it represents the zero-temperature
limit with the extremal metric function f0 ¼ ðu − 1Þ2 ×
ð3u2 þ 2uþ 1Þ holding a double zero at the horizon.
Introducing the metric and gauge potential fluctuations

ðhμν; aμÞ via

gμνðX; uÞ ¼ ḡμνðuÞ þ hμνðX; uÞ;
AμðX; uÞ ¼ ĀμðuÞ þ aμðX; uÞ; ð11Þ

with X ¼ ðt; x; yÞ, a nontrivial solution of the Einstein-
Maxwell equations for ðhμν; aμÞ is driven by their nontrivial
values at the AdS boundary, u ¼ 0. In terms of such a
solution, the action becomes a functional of the boundary
values hμνðx; 0Þ and aμðx; 0Þ and the coefficients of the
power series expansion of this on-shell action in hμνðx; 0Þ
and aμðx; 0Þ give rise to various correlation functions of the
strongly interacting boundary field theory in accordance
with the GKPW formula (4). The holographic counterpart
of the polarization tensor (1) corresponds to the quadratic
term in aμðx; 0Þ, hence the linearized Einstein-Maxwell
equations thereby suffice for our purpose.
Owing to the homogeneity with respect to the boundary

coordinates, ðx; y; tÞ, the linearized Einstein-Maxwell
equations can be Fourier transformed into the frequency-
momentum space for

aμðP; uÞ ¼
Z

d3Xe−iP·XaμðX; uÞ;

hμνðP; uÞ ¼
Z

d3Xe−iP·XhμνðX; uÞ; ð12Þ

with P ¼ ðω; qx; qyÞ. Aligning the spatial momentum q⃗
along the x-axis, the linearized equations can be decom-
posed into two decoupled subsets according to the parity
under the transformation y → −y [29], i.e.,

Even Parity∶ fhtt ; hxx ; hyy; atg and fhxt ; axg;
Odd Parity∶ fhyt ; ayg and fhxyg ð13Þ

In the static limit (ω ¼ 0), each group of Einstein-Maxwell
equations are further decoupled into the two subsets,
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denoted by the curly brackets above. The electric compo-
nent is extracted from the even-parity group, while the
magnetic component from the odd-parity one, respectively.
The two coupled equations responsible to the static
magnetic susceptibility read

a00y þ
f0

f
a0y −

Q2k2

f
ay −

μ

f
h0yt ¼ 0 ð14Þ

h00yt −
2

u
h0yt −

Q2k2

f
hyt − 4

Q2

μ
u2a0y ¼ 0; ð15Þ

where Z ¼ 3
4
ð1þQ−2Þ, and we have introduced a dimen-

sionless momentum q≡ q=μ and the dimensionless modi-
fied momentum k is defined by

k≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ Z2

q
: ð16Þ

For the full set of Einstein-Maxwell equations in terms of
our notations, see [17,28]. The static magnetic susceptibil-
ity at a temperature T is given by

χðqjTÞ≡ lim
ω→0

χðω; qÞ ¼ Cyy
q2

; ð17Þ

where Cyy is the coefficient of jayðP; 0Þj2 in the on-shell
action with P ¼ ð0; q; 0Þ, following the GKPW formu-
lation (4) and Ref. [16], and it is dependent of the
momentum q, temperature T and chemical potential μ of
the system.
In terms of the static solution of the linearized Einstein-

Maxwell equations for ðay; htyÞ that are regular at the
horizon u ¼ 1 and subject to the boundary condition
hty ¼ 0 at u ¼ 0 (in order for extracting the polarization
tensor only), the on-shell action becomes

SEM ¼ −2K4

Z
d3x½ ffiffiffiffiffiffi

−g
p

ḡuuḡαβa0αaβ�
����
u¼0

; ð18Þ

where the prime refers to the derivative with respect to the
dimensionless radical variable u. Consequently, we have

CyyðqÞ ¼
4K4

zþ
lim
u→0

a0yðujqÞ
ayðujqÞ

: ð19Þ

The following sections will elucidate the solution of the
Einstein-Maxwell equations specified above along with the
properties of the temperature-dependent function CyyðqÞ.

B. Master-fields and decoupled equations of motion

The linearized Einstein-Maxwell equations in the odd
parity sector, Eqs. (15), can be transformed into a pair of
decoupled differential equations for the so-called master-
field Φ�, Refs. [29,30]:

Φ00
� þ f0

f
Φ0

� −
Q2

f
M�ðujkÞΦ� ¼ 0; ð20Þ

with

M�ðujkÞ ≔ ðk2 − Z2Þ þ 2uð�k − ZÞ þ 4u2; ð21Þ

from which the fluctuations ay and hyt can be extracted
according to

Φ�ðujqÞ ¼ 2Q2½2u − ðZ � kÞ�ay −
μ

u
hyt 0; ð22Þ

Eliminating hyt 0 from (22), we obtain that

ayðujqÞ ¼
1

4Q2

1

k
½Φ−ðujqÞ −ΦþðujqÞ�: ð23Þ

Moreover, as was discussed in [17], the solution for hyt
under the homogeneous boundary condition at u ¼ 0

vanishes as hyt ju→0 ¼ Oðu3Þ, and we obtain the relation
from (22):

½kþ Z�Φ− þ ½k − Z�Φþ ¼ 0; as u → 0: ð24Þ

The notations in Eqs. (22)–(24) emphasize that ay and Φ�
are functions of k or q as well and the analyticity with
respect to q is the main theme of this paper.
Because of the complexity of the Eq. (20), it is

impossible to find out explicit solutions for arbitrary
momentum q. Asymptotic solutions can be obtained,
however, for small or large magnitude of q, and can shed
lights on the analyticity. For a small momentum q, the
master-field equations turn into

Φ00
� þ f0

f
Φ0

� −
1

f

�
f0

u
þ 2Q2uðZ � ZÞ

�
Φ�

¼ Q2q2

f

�
1� u

Z

�
Φ� þOðq4Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

R�ðujq2Þ

; ð25Þ

where the leading order equations

Φ00
� þ f0

f
Φ0

� −
1

f

�
f0

u
þ 2Q2uðZ � ZÞ

�
Φ� ¼ 0 ð26Þ

are exactly soluble and the subsequent corrections can be
figured out perturbatively. For a large momentum q, it is
convenient to transform the master equation into a
Schrödinger-like equation via Φ� ¼ 1ffiffi

f
p ϕ�, i.e.,

ϕ00
� − V�ðujk;Q2Þϕ� ¼ 0; ð27Þ

where the potential energy
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V�ðujk;Q2Þ ¼ Q2

f

�
ðk� uÞ2 − Z2 − 6Zuþ 9u2

−
4Q2u4ðu − ZÞ2

f

�
; ð28Þ

is dominated by the first term inside the bracket as q → ∞
and the WKB approximation

ðϕ�Þ″WKB −
Q2

f
½k� u�2ðϕ�ÞWKB ¼ 0 ð29Þ

becomes handy then. This approximation is particularly
useful to locate the Friedel-like singularities of CyyðqÞ for a
large imaginary-part of the complex-momentum q ∼ k. The
details of the solutions of both cases, small q and large q,
will be presented in Sec. IV.

III. THE ANALYTICITY OF THE HOLOGRAPHIC
MAGNETIC SUSCEPTIBILITY

In this section, we shall explore the analyticity of the
correlator CyyðqÞ on the complex q-plane. It follows from
Eqs. (19) and (23) that the magnetic susceptibility can be
singular in two ways: (1) The boundary value of the master
field Φ�ð0jqÞ itself is singular. (2) ay vanishes on the AdS-
boundary. The former possibility will be ruled out on the
entire physical Riemann sheet (defined below) in q-plane
besides four branch points at zero temperature and on the
entire q-plane at nonzero temperature in the subsection III A
below. The latter possibility will be ruled out along the real
axis at an arbitrary temperatures in the subsection III B.

A. The analyticity of the solutions
of the master field equations

Considering different singularity structures of the master
field equations at zero and nonzero temperatures, we treat
the two cases separately.

1. Zero temperature case

At T ¼ 0, Q2 ¼ 3, the RN-AdS black hole becomes
extremal, and the metric function fðuÞ in the background
solution (9) reads

fðuÞ ¼ f0ðuÞ≡ ð1 − uÞ2ð1þ 2uþ 3u2Þ: ð30Þ

and each master field equation of (20) becomes a Fuchs
equation with four regular points, u ¼ 1, 1

3
ð−1� ffiffiffi

2
p

iÞ and
∞, which can be transformed into the standard Heun
equation. The indices at the horizon (u ¼ 1) read

△�;ð�Þ ¼
1

2

h
−1ð�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ðk� 1Þ2

q i
;

k≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 1

q
∈ C; ð31Þ

with △þ;ð�Þ for Φþ and △−;ð�Þ for Φ−,
1 and produce the

asymptotic solutions near the horizon

Φ�ðujqÞ ∼ ð1 − uÞ△�;ð�Þ : ð32Þ

For a real k, the indices△�;ð−Þ < −1 give rise to a divergent
solutions at the horizon, which in turn generates divergent
on-shell actions through the F2 term in the integrand of
Eq. (6):

ffiffiffiffiffiffi
−g

p
F2 ∼ guua02y ∼ ð1 − uÞ2△�;ð−Þ : ð33Þ

Consequently, only the positive indices, △�;ðþÞ, should be
retained, which give rise to a finite on-shell action. For an
arbitrary complex k, we may replace (31) with

α� ¼ 1

2

h
−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ðk� 1Þ2

q i
; k≡

ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 1

q
∈ C;

ð34Þ

supplemented with the requirement Refα�g > −1=2, i.e.,
Ref

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ðk� 1Þ2

p
g > 0 for a finite action solution. This

defines the physical Riemann sheet of the square root on
the complex k-plane, being cut along the lines whereffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ðk� 1Þ2

p
becomes imaginary, i.e.,

k ¼ ∓1� iffiffiffi
2

p η η ∈ ½1;∞Þ ð35Þ

originated from the branch points k ¼ ∓1� iffiffi
2

p .

Consider ΦþðujqÞ first. Introducing a new variable
v ¼ 1 − u, and writing

ΦþðujqÞ ¼ CþvαþPþðvjkÞ; ð36Þ

the master-field equation Φþ in Eqn. (20) is transformed
into a Heun-type equation for PþðvjkÞ:

vðav2 þ bvþ cÞP00þ þ ðβv2 þ γzþ δÞP0þ
þ ðrvþ sÞPþ ¼ 0; ð37Þ

with the coefficients given by

a ¼ 3; b ¼ −8; c ¼ 6;

β ¼ 6ðαþ þ 2Þ; γ ¼ −8ð2αþ þ 3Þ; δ ¼ 12ðαþ þ 1Þ;
r ¼ 3αþðαþ þ 3Þ; s ¼ −8αþðαþ þ 2Þ þ 6ð3þ kÞ:

ð38Þ

1The near horizon geometry at extremality is AdS2 × R2,
where△�;ð�Þ is also the scaling exponent in the IR physics on the
boundary theory. However, for the static case, the characteristic of
the polarization is manifested in complex momentum space.
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This equation can be solved by an infinite series

PþðvjkÞ ¼
X∞
n¼0

GnðkÞvn; ð39Þ

with the recurrence relation among successive coefficients

G1 ¼ −
s
δ

ð40Þ

Gnþ1 ¼ −
nðn − 1Þbþ nγ þ s
ðnþ 1Þðncþ δÞ Gn

−
ðn − 1Þðn − 2Þaþ ðn − 1Þβ þ r

ðnþ 1Þðncþ δÞ Gn−1; ð41Þ

where we have set G0 ¼ 1. Evidently, the denominators in
(41) cannot vanish on the physical Riemann sheet of the
complex k-plane characterized by Reαþ > −1=2 and each
coefficient of the infinite series is analytic there. Poles of
recursion coefficients will show up in un-physical Riemann
sheets, where Refαþg ∈ ð−∞;−1=2Þ.
On the other hand, the distance from the regular point

v ¼ 0 to the nearby regular points v�¼1−1
3
ð−1∓ ffiffiffi

2
p

iÞ¼
1
3
ð4� ffiffiffi

2
p

iÞ is greater than one, implying that the AdS-
boundary, v ¼ 1, is inside the convergence circle of
the power series (42). It follows that the infinite series
Pþð1jkÞ and its derivative with respect v at the boundary
converge uniformly with respect to a finite k and thereby
share the same analyticity with their coefficients GnðkÞ.
To demonstrate this point, the infinite series (42) is splitted

into the sum of its first N terms, PðNÞ
þ ðvjkÞ, and the

remainder RðNÞ
þ ðvjkÞ, i.e., PþðvjkÞ¼PðNÞ

þ ðvjkÞþRðNÞ
þ ðvjkÞ

with

PðNÞ
þ ðvjkÞ≡XN

i¼0

GiðkÞvi; RðNÞ
þ ðvjkÞ ¼

X∞
i¼1

GNþiðkÞvNþi:

ð42Þ

For N ≫ maxf1; jkjg, the recursion formula Eq. (41) for

the coefficients of RðNÞ
þ ðvjkÞ becomes approximately

GNþðiþ1Þ ¼
4

3
GNþi −

1

2
GNþði−1Þ; for N ≫ 1; ð43Þ

that implies asymptotic expression of GNþn from Eq. (41),2

GNþnðkÞ ¼
ffiffiffi
2

p

4
i½3GNðkÞðv1−n− − v1−nþ Þ

þ ð3GN−1ðkÞ − 8GNðkÞÞðv−n− − v−nþ Þ�; ð44Þ

for n ¼ 1; 2; 3;… in terms of GN and GN−1. Since
jv−1� j < 1, we have

jGNþnj ∼ jv−1� jn → 0; as n → ∞: ð45Þ

For a finite k, say, jkj < K, there is always a k-independent
N such that (43) approximates to a specified accuracy. In
addition, we can always find k-independent upper bound of
jGN j and jGN−1j and thereby a k-independent upper bound
of the remainder for a given jvj < jv�j. Consequently, we
end up with two uniformly convergent series

Pþð1jkÞ ¼
X∞
n¼0

GnðkÞ; P0þð1jkÞ ¼
X∞
n¼1

nGnðkÞ; ð46Þ

with respect to k, which is thereby analytic on the physical
Riemann sheet of the complex k-plane.
It follows from (21) and (34), and the analysis given

above that

M−ðkÞ ¼ Mþð−kÞ α−ðkÞ ¼ αþð−kÞ ð47Þ

and both P−ð1jkÞ and P0
−ð1jkÞ are also analytic on physical

Riemann sheet of the complex k-plane.
Now we construct the correlation function CyyðqÞ at zero

temperature. It follows from (23) and (24) that

Cþ
C−

¼ ð1þ kÞP−ð1jkÞ
ð1 − kÞPþð1jkÞ

ð48Þ

and

ayð0jkÞ ¼
C−

6ðk − 1ÞP−ð1jkÞ; ð49Þ

hence,

CyyðqÞ ¼
2K4

zþk

	
ðkþ 1Þ

�
αþ þ P0þð1jkÞ

Pþð1jkÞ
�

þ ðk − 1Þ
�
α− þ P0

−ð1jkÞ
P−ð1jkÞ

�


¼ 2K4

zþk

	
ð1þ kÞ

�
αðkÞ þ P0ð1jkÞ

Pð1jkÞ
�

− ð1 − kÞ
�
αð−kÞ þ P0ð1j − kÞ

Pð1j − kÞ
�


; ð50Þ

where we have removed the subscript “þ” of αþðkÞ and
Pþð1jkÞ, and write α−ðkÞ¼αð−kÞ and P−ð1jkÞ¼Pð1j−kÞ
with the aid of (47). As the right-hand side (RHS) of (50) is
an even function of k, the transformation k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ 1

p
will

not introduce new branch points on the physical Riemann
sheet of the complex q-plane, which remains characterized
by the branch cuts (35). The trajectories of the branch cuts2The derivation is left in Appendix C.
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(35) on the complex k-plane and the relation q2 ¼ k2 − 1
implies the following trajectories of the same set of branch
cuts on the complex q-plane

	 ðRe qÞ2 − ðIm qÞ2 ¼ − η2

2

Re q · Im q ¼ � ηffiffi
2

p
: ð51Þ

or explicitly 8>>><
>>>:

Re q ¼ � η
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8

η2

q
− 1

r

Im q ¼ � η
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8

η2

q
þ 1

r ð52Þ

with η ¼ ½1;∞Þ. The endpoints of the branch cuts (the
branch points) are given by η ¼ 1, which gives rise to

qend-point ¼ � 1ffiffiffi
2

p � i: ð53Þ

2. Nonzero temperature

The master equation at a nonzero temperature is a Fuchs
equation of five regular points with the horizon u ¼ 1 one
of them and none of the others falls within the section of the
real axis u ∈ ½0; 1� between the boundary and the horizon.
As was shown in Ref. [17], both indices at the horizon are
zero and a power series in v ¼ 1 − u can be developed for
the finite action solution with all coefficients polynomials
in q. Unlike the zero temperature case discussed above, the
circle of convergence of this series may or may not extend
beyond the AdS boundary v ¼ 1. If not, the AdS boundary
can be reached by a sequence of analytic continuations
bridging the power series solution around the horizon with
the power series solutions around ordinary points of the
differential equation along the line from v ¼ 1 to v ¼ 0.
Consequently, it was shown that the solution at the AdS
boundary is an analytic function in any finite domain on the
complex q-plane and the correlation function CyyðqÞ is a
meromorphic function.

B. The absence of nontrivial solutions with
vanishing ay at the AdS boundary

According to the definition of the master fields (22), a
nontrivial solution of ayðujqÞ that vanishes at the AdS-
boundary, u ¼ 0, implies that both master fields vanish at
the AdS-boundary except for the case q ¼ 0 (Z − k ¼ 0)3

and at least one of them is nontrivial off the boundary(This
property is reflected in the explicit construction (50) at zero
temperature.). To rule out such a possibility, we start with

the modified master-field equations (27), and find that the
nontrivial solutions ϕ� of the modified master-field equa-
tions which contribute to the poles of CyyðqÞ correspond
to the solutions ϕ� ¼ ffiffiffi

f
p

Φ� of (27) under the Dirichlet
boundary conditions

lim
u→0

ϕ− ¼ lim
u→0

ϕþ ¼ 0; ð54Þ

lim
u→1

ϕ− ¼ lim
u→1

ϕþ ¼ 0; ð55Þ

where the AdS-boundary conditions (54) follow from
Eq. (22) and the horizon conditions (55) result from the
regularity requirement of Φ� there.
The solutions ϕ�ðujk;Q2Þ of (27) together with the

boundary conditions (54) and (55) correspond to the zero
energy eigenstate of the one-dimensional Hamiltonian:

H� ¼ −
d2

du2
þ V�ðujk;Q2Þ; ð56Þ

defined between two infinitely repulsive barriers for u < 0
and u > 1. Because of the following two properties of the
potential (28),

Vþðujk;Q2Þ> V−ðujk;Q2Þ; dV�
dk

> 0; for u ∈ ð0;1Þ;
ð57Þ

an eigenstate of H− at k ¼ Zðq ¼ 0Þ with a negative
eigenvalue might be escalated to zero eigenvalue of H�
at some k > Zðq ≠ 0Þ. If we could rule out the former, we
would rule out the zero energy eigenstate in both H�
when q ≠ 0.
It is easy to find an explicit solution of the master-field

equation for Φ− at k ¼ Z

Φ00
− þ f0

f
Φ0

− −
f0

uf
Φ− ¼ 0 ð58Þ

i.e., Φ− ¼ u. This solution is regular at the horizon
and corresponds to a zero energy eigenstate of H− at
k ¼ Z, of Eq. (56), under the Dirichlet conditions, (54) and
(55), i.e.,

ϕ− ¼ u
ffiffiffi
f

p
: ð59Þ

Notice that the wave function (59) of zero eigenvalue
does not have zeros for 0 < u < 1 at any temperature.
According to the theory of the Sturm-Liouville problem
defined by the eigenvalue problem H−ϕ− ¼ Eϕ−, the
eigenvalue E of any eigenstate orthogonal to (59) has to
be positive. An explicit proof of this statement is shown in
Appendix B. Consequently, there cannot be zero energy
eigenstate of H� at q ≠ 0.

3At Z ¼ k,Φ− vanishes at u ¼ 0 even ay takes a nonzero finite
value there.
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It follows from (22) that the zero eigenstate of H− at
k ¼ Z itself, however, does not imply a vanishing ayð0jqÞ
and thereby does not imply a singularity of CyyðqÞ at q ¼ 0.
The perturbation theory in the next section shows that
CyyðqÞ ∼ q2 as q → 0.
The second possibility for the singularity of CyyðqÞ is

thereby ruled out for a real q.
Summarizing this section, we have analytically located

the branch cuts of the holographic magnetic susceptibility
on the physical sheet of the complex-q plane at zero
temperature and proved rigorously the absence of poles
on the real axis at any temperature. What we have not
succeeded is to rule out poles on the physical Riemann
sheet away from the real axis at zero temperature.

IV. MAGNETIC SUSCEPTIBILITY AT A SMALL
MOMENTUM AND A LARGE MOMENTUM

A. Small momentum expansion

1. Exact solutions of the master fields at q= 0

The “inhomogeneous” equations in Eq. (25) facilitate an
iterative procedure to find the perturbative solutions for
small q, provided that their homogeneous parts, q ¼ 0 case,

Φð0Þ
�

00 þ f0

f
Φð0Þ

�
0 −

1

f

�
f0

u
þ 2Q2uðZ � ZÞ

�
Φð0Þ

� ¼ 0; ð60Þ

are explicitly solvable, which is indeed the case. It is easy to
verify the following particular solutions

χþð0Þ ¼ Z − u

χ−
ð0Þ ¼ u; ð61Þ

for Φð0Þ
þ and Φð0Þ

− , respectively. The leading order solutions
of the master field equations that are regular at the horizon
read then

Φð0Þ
� ¼ a�χ�ð0Þ: ð62Þ

The other linearly-independent particular solutions of (60),

denoted as ηð0Þ� , can be obtained from the Wronskians of
(60), i.e.,

W½χð0Þ� ; ηð0Þ� �ðuÞ ¼ const: exp
�
−
Z

u

0

f0ðsÞ
fðsÞ ds

�
≡ 1

fðuÞ ;

ð63Þ

where the arbitrary multiplicative constant is set as 1.
Solving the first-order differential equations in Eq. (63), i.e.,

χð0Þ� ðηð0Þ� Þ0 − ðχð0Þ� Þ0ηð0Þ� ¼ 1

f
; ð64Þ

we find that

ηð0Þþ ¼ ðZ − uÞ
Z

u

0

dξ
ðZ − ξÞ2f

ηð0Þ− ¼ −1þ u
Z

u

0

1

ξ2

�
1

f
− 1

�
dξ: ð65Þ

While the integrations involved in Eq. (65) are all elemen-

tary, the explicit forms of ηð0Þ� are cumbersome and both of
them are singular at the horizon.

2. Fluctuation ay and magnetic
susceptibility up to q2-order

Employing the method of variation of parameters, we
obtain a pair of particular solutions of (25):

ðΦ�ÞP:S ¼ −
Q2q2

Z

�
χð0Þ�

Z
u

0

ηð0Þ� χð0Þ� ðZ � sÞds

þ ηð0Þ�

Z
1

u
ðχð0Þ� Þ2ðZ � sÞds

�
þOðq4Þ; ð66Þ

which is regular at the horizon and serves the next order
correction to (62). Combining (62) and (66), we find the
solutions of the master-field equations (25) in small
momentum approximation:

Φ� ¼ a�χ
ð1Þ
� þOðq4Þ; ð67Þ

where

χð1Þþ ¼ ðZ − uÞ −Q2q2

Z

�
ðZ − uÞ

Z
u

0

ηð0Þþ ðZ2 − s2Þds

þ ηð0Þþ

Z
1

u
ðZ þ sÞðZ − sÞ2ds

�

χð1Þ− ¼ u −
Q2q2

Z

�
u
Z

1

0

ηð0Þ− ðZ − sÞsds

þ ηð0Þ−

Z
1

u
ðZ − sÞs2ds

�
: ð68Þ

The two coefficients in Eq. (67) are not arbitrary and are
constrained by the behaviour of the perturbed metric fields
hyt as u → 0, which implies (24). Substituting (67) and (68)
into (24), we obtain the ratio of the two coefficients

a−
aþ

¼ −1: ð69Þ

Following Eqs. (67) and (23), the fluctuation ayðujqÞ and
its derivative with respect to u; a0yðujqÞ, take the form:
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ayðujqÞ ¼
a−
2Q2

1

k
½ðχð1Þ− þ χð1Þþ Þ þOðq4Þ�

¼ a−
2Q2

1

k

	�
u−

Q2q2

Z

�
u
Z

u

0

ηð0Þ− ðZ− sÞsdsþ ηð0Þ−

Z
1

u
ðZ− sÞs2ds

��

þ
�
ðZ− uÞ−Q2q2

Z

�
ðZ− uÞ

Z
u

0

ηð0Þþ ðZ2 − s2Þdsþ ηð0Þþ

Z
1

u
ðZþ sÞðZ− sÞ2ds

��
þOðq4Þ



ð70Þ

and

a0yðujqÞ ¼
a−
2Q2

1

k

	�
1 −

Q2q2

Z

�Z
u

0

ηð0Þ− ðZ − sÞsdsþ ηð0Þ− ðZ − uÞu2 þ ðηð0Þ− Þ0
Z

1

u
ðZ − sÞs2ds − ηð0Þ− ðZ − uÞu2

��

þ
�
−1 −

Q2q2

Z

�
−
Z

u

0

ηð0Þþ ðZ2 − s2Þdsþ ηð0Þþ ðZ − uÞðZ2 − u2Þ

þ ðηð0Þþ Þ0
Z

1

u
ðZ þ sÞðZ − sÞ2ds − ηð0Þþ ðZ þ uÞðZ − uÞ2

��
þOðq4Þ



: ð71Þ

The overall constant a− drops in the correlation function Cyy in accordance with Eq. (19) and we obtain that

CyyðqÞ ¼
4K4

zþZ
4Z2 þ ½−4Z þ ðZ2ðQ2 þ 3Þ − 1Þ�q2 þOðq4Þ

q2 þ 4Z2 þOðq4Þ

¼ K4

zþμ2
Z2ðQ2 þ 3Þ − 1

Z3
q2 þOðq4Þ; ð72Þ

where q is the unscaled momentum. The dimension of the
holographic polarization tensor is ½Cyy� ¼ ½q2=μ� ¼ 1, as
expected. Following Eq. (17), the magnetic susceptibility at
zero momentum reads

χðqjTÞ ¼ K4

zþμ2
Z2ðQ2 þ 3Þ − 1

Q2Z3
; ð73Þ

which becomes

χðqj0Þ ¼ 5

3

K4

zþμ2
: ð74Þ

at zero temperature.

B. WKB approximation at a large momentum

The region far away from the real momentum-axis can be
explored by the WKB-approximation of the modified
master-fields ϕ� ¼ ffiffiffi

f
p

Φ�, and the fluctuation ay in the
WKB-approximation can be obtained from the solutions
of the Schrödinger-like equations (29) via the relation (23).
The nonzero temperature case has been worked out
in [17] and we include the key steps in Appendix A for
self-containedness. There we also derived the asymptotic
form of the magnetic susceptibility which was missing in
[17]. In what follows, we shall focus on the zero temper-
ature case. Unlike the nonextremal blackhole, the validity
of the WKB-approximation extends all the way from the

boundary to the horizon because the condition of the
approximation, jV 0

�j ≪ jV�j3=2 [31] holds for 0 ≤ u ≤ 1.
The general WKB solutions of (29) at T ¼ 0 read

ðϕ�ÞWKB ∝ f1=40

�
C� exp

� ffiffiffi
3

p Z
u

0

k� vffiffiffiffiffi
f0

p dv

�

þD� exp
�
−

ffiffiffi
3

p Z
u

0

k� vffiffiffiffiffi
f0

p dv
��

ð75Þ

with f0 ¼ ð1 − uÞ2ð1þ 2uþ 3u2Þ. The integrals in the
exponents can be carried out explicitly, i.e.,Z

u

0

kþ vffiffiffiffiffi
f0

p dv ¼ ðkþ 1ÞAðuÞ − BðuÞ ð76Þ

Z
u

0

k − vffiffiffiffiffi
f0

p dv ¼ ðk − 1ÞAðuÞ þ BðuÞ ð77Þ

where

AðuÞ ¼ 1ffiffiffi
6

p ln
2þ 4uþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð1þ 2uþ 3u2Þ

p
ð2þ ffiffiffi

6
p Þð1 − uÞ ð78Þ

and

BðuÞ ¼ 1ffiffiffi
3

p ln
1þ 3uþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þ 2uþ 3u2Þ

p
1þ ffiffiffi

3
p ð79Þ
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Because of the divergence of AðuÞ as u → 1, one of the terms inside the bracket of Eq. (75) blows up at the horizon for
Rek ≠ �1 and has to be dropped for a finite on-shell action. We have

ðϕþÞWKB ∝ f1=40

	
exp f− ffiffiffi

3
p ½ðkþ 1ÞAðuÞ þ BðuÞ�g; for Rek > −1;

exp f ffiffiffi
3

p ½ðkþ 1ÞAðuÞ þ BðuÞ�g; for Rek < −1;
ð80Þ

and

ðϕ−ÞWKB ∝ f1=40

	
exp f− ffiffiffi

3
p ½ðk − 1ÞAðuÞ þ BðuÞ�g; for Rek > 1;

exp f ffiffiffi
3

p ½ðk − 1ÞAðuÞ þ BðuÞ�g; for Rek < 1;
ð81Þ

As expected, the discontinuity of the master-field ϕ− at
Rek ¼ 1 and the discontinuity of the master field ϕþ at
Rek ¼ −1 match the asymptotic trajectories of the branch
cuts (35), which correspond to the condensation of the
poles discussed in [17] as T → 0.

V. DISCUSSION AND CONCLUSION

In this work, we explored the analyticity of the static
transverse component of the holographic polarization
tensor, CyyðqÞ, in 2þ 1 dimensions with respect to the
complex spatial momentum. The dimensionless magnetic
susceptibility is given by CyyðqÞ=q2. The zero temperature
features of the static holographic susceptibility are not
determined by the near-horizon IR data, but by the
analyticity in the complex momentum plan. We provided
a rigorous proof that CyyðqÞ is analytic in the neighbour-
hood of a real q even at zero temperature. In addition, we
located analytically four branch cuts on the complex q-
plane at zero temperature, which terminated at the branch
points �1=

ffiffiffi
2

p � i, staying away from the real and imagi-
nary axes. We also worked out the asymptotic form of
CyyðqÞ for small q and large q. The momentum analyticity
of the transverse holographic polarization appears similar
to that of the longitudinal one, as was demonstrated by the
numerical solution [27] and WKB approximation [28] of
the Einstein-Maxwell equations in the sector of even
parity.4 What we have not achieved is to rule out

analytically the poles of CyyðqÞ=q2 away from the real
axis and the branch cuts at zero temperature.
As the holographic polarization tensor may reflect

certain strong-coupling properties, it is instructive to
compare our results with the polarization tensor in weak
coupling at zero temperature to find their difference. The
transverse component of the static polarization tensor in the
massless spinor QED at one loop order reads

σtrðqÞ ¼
(
0; jqj < 2μ;

q
16
þ μ

4π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4μ2

q2

q
− q

8π sin
−1 2μ

q ; jqj > 2μ;
ð82Þ

and σtrðqÞ is the weak-coupling counterpart of the holo-
graphic CyyðqÞ.
The comparison between the momentum analyticity of

CyyðqÞ in strong coupling and that of σtrðqÞ in weak-
coupling at T ¼ 0 is depicted in Fig. 1.
The left panel in Fig. 1 shows discontinuities in the

derivative of σtrðqÞ at q ¼ �2μ because of the condensa-
tion of the branch points (2), which form a pair of branch
cuts crossing the real momentum axis and cause the Friedel
oscillation in coordinate space whose amplitude decays
with distance according to a power law. In contrast, the
right panel in Fig. 1 for CyyðqÞ shows that the real axis is
free from singularities and is spared by the bending branch-
cuts. The nonzero real parts of the branch cut locations give
rise to oscillatory behavior in coordinate space, while the
nonzero imaginary parts of them imply exponential decay
of the amplitude of the oscillation at large distance in
coordinate space even at zero temperature, instead of the
power-law decay in weak-coupling case.
To elaborate the observation perspectives of the

(2þ 1)-dimensional polarization tensor in a (3þ 1)-
dimensional environment, we consider the photon pro-
pagator Dμνðq⃗jz; z0Þ in the presence of a sheet of medium
located at z ¼ 0, whose electromagnetic property is
described by the holographic polarization tensor. Here
we use the momentum representation in ðx; yÞ-directions
and the coordinate representation in z because of the lack of
translation invariance in that direction. The vector potential

4The distinction between the real part of the branch cuts
location in strong coupling and the location of the discontinuity
2μ in weak coupling is observed in other studies [27,32].
Throughout this paper, we follow the convention in our previous
works [17,28] by scaling the Uð1Þ gauge potential in Eq. (6)
such that K4

G4
¼ L2 ¼ 1. An arbitrary ratio K4

G4
≡ η2 amounts to the

transformations at → ηat and μ → ημ in the Einstein-Maxwell
equations, and thereby the transform of the asymptotic branch
cuts from k ≃ μ to k ≃ μη. The notation in [27] corresponds to
η ¼ 1

2
which gives rise to the asymptotic cuts at q ≃�1=2kF,

while Ref. [32] that starts with Aharony-Bergman-Jafferis-Mal-
dacena theory gives rise to “q ≃�1kF” result, as oppose to the
result in weak-coupled system.
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at a point in the medium in response to a current element
located at another point in the medium corresponds to the
Fourier transformation of its transverse component, i.e.,

Dijðx⃗Þ ¼
Z

d2q⃗
ð2πÞ2 e

iq⃗·x⃗Dijðq⃗j0; 0Þ: ð83Þ

To the first order in the (3þ 1)-dimensional electromag-
netic coupling e2, we have

Dijðq⃗j0; 0Þ ¼ D0
ijðq⃗Þ þ e2D0

iaðq⃗Þ
�
σtr:ðq⃗Þ

�
δab −

qaqb
jq⃗j2j

��
×D0

bjðq⃗Þ; ð84Þ

where the first term D0
ijðq⃗Þ is the static transverse compo-

nent of the (3þ 1)-dimensional free propagator and the
magnetization comes from the polarization in the second
term that is our main consideration. Also, in the static case,
Dijðqj0; 0Þ is always contracted with the Fourier compo-
nent of a stationary electric current and the factor qb in (84)
does not contribute because of the current conservation.
Hence, effectively, Dijðq⃗j0; 0Þ ¼ DðqÞδij with a scalar
form factor

DðqÞ ¼ 1

2q
þ e2

4q2
σtr:ðqÞ; ð85Þ

where the first term on RHS comes from the free
propagator and the second term reflects the polarization
of the medium with e the electric charge in 3þ 1
dimensions, σtr:ðqÞ is the 2D polarization, proportional
to CyyðqÞ for the holographic polarization in our case.
Assuming that CyyðqÞ has no poles on the entire physical
Riemann sheet (not just around the real axis) and only
focusing on the second term of (84), Its Fourier transform
takes the asymptotic form at large jx⃗j, i.e.,Z

d2q
4π2

eiq⃗·x⃗
�
1

4q2
σtr:ðqÞ

�
∼

1

jx⃗j2 e
−μjx⃗j cos

�
μffiffiffi
2

p jx⃗j þ ϕ

�
;

ð86Þ

where the integral in (86) is calculated via a contour
integration, going along the branch-cuts in the upper half
plane of Fig. 1(b) and ϕ is a phase constant. The details
behind (84) and (86) can be found in Appendix D. The
exponential factor on the right hand side of (86) is explicitly
in contrast to the case in a weakly-coupled field theory, such
type of Friedel-like oscillation with faster than power-law
decay behavior is observed in the density-density correlation
in other holographic strongly-coupled systems[27,32,33]
and in the zero fermionic flavor limit: Nf → 0 [34].
The Friedel-like oscillation caused by the transverse

component of the polarization tensor is responsible for the

FIG. 1. Momentum analyticity of static transverse polarization in weak/strongly coupling cases. The lines or curves represent the
branch-cuts resulting from the singularities condensation. In weak-coupling (a), the H-type structure of branch cuts based on Eq. (82)
shows that all branch-points condensate on the two kinks�2μ and indicate a power-law decay mode in a large distance at T ¼ 0K; while
in strong-coupling (b) depicted by Eqs. (51) and (52), all poles condensate at �1=

ffiffiffi
2

p � i so as the branch-cuts keep a particular
separation from the real-axis.
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Ruderman–Kittel–Kasuya–Yosida effect [35], where the
local magnetic field acting on a nuclear magnetic moment
is generated by other nuclear magnetic moments and is
polarized by the Fermi sea of electrons. Therefore, the
effect discussed in this work may find its application in the
Ruderman–Kittel–Kasuya–Yosida effect in some 2D met-
als, whose low-lying excitations are Dirac like, such as a
doped graphene.
On the other hand, one may associate the absence of the

cuts crossing the real momentum axis to the bosonic
degrees of freedom which may dominate in the boundary
field theory. Even in weak coupling, the singularities for
scalar QED at one-loop order at [28]

q ¼ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμþ i2πnTÞ2 −m2

q
; ð87Þ

with m the mass of the charged bosons will not condense
toward the real axis for jμj < m, which is required for the
positivity of the quadratic action underlying the perturba-
tion theory in the absence of a Bose condensate, while a
singularity as jμj → m will show up in thermodynamic
functions. But in the holographic model considered in this
work, the chemical potential appears unconstrained.
Therefore it is likely that the analyticity of the static
polarization tensor around the real momentum axis reflects
a generic feature of the strongly coupling of a fermionic
system if the gauge/gravity duality holds and it would be
interesting to observe the exponentially decayed oscillation
at zero temperature in some strongly correlated electronic
systems.
At the moment, we are unable to generalize the analytical

works presented above to the case of the longitudinal
component of the polarization tensor because of the
technical complexity and hope to report our progress along
this line in near future.
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APPENDIX A: THE WKB APPROXIMATION
AT NONZERO TEMPERATURE

The pair of equations (15) can be decoupled further
through the master fields introduced in the subsection II B
and the WKB solutions, obtained in Ref. [17],

ðϕ�ÞWKB ¼ f1=4

Q1=2D�

�
i exp

�
−Q

Z
1

u

k� vffiffiffi
f

p dv

�

þ exp

�
Q
Z

1

u

k� vffiffiffi
f

p dv

��
; ðA1Þ

follow together with their derivatives with respect to u:

ðϕ0
�ÞWKB ¼ f1=4Q1=2ðk� uÞD�

�
i exp

	
−Q

Z
1

u

k� vffiffiffi
f

p dv




− exp

	
þQ

Z
1

u

k� vffiffiffi
f

p dv


�
; ðA2Þ

where the ratio of the constants D� are fixed by Eq. (24),
i.e.,

Dþ
D−

¼ −
i exp ð−Q R

1
u

k−vffiffi
f

p dvÞ þ exp ðQ R
1
u

k−vffiffi
f

p dvÞ
i exp ð−Q R

1
u

kþvffiffi
f

p dvÞ þ exp ðQ R
1
u

kþvffiffi
f

p dvÞ : ðA3Þ

We have then the boundary values of ðϕ�ÞWKB and
ðϕ0

�ÞWKB, i.e.,

lim
u→0

ðϕ�ÞWKB ¼ Q−1=2D�½ie−Q½kL1�L2� þ eþQ½kL1�L2��
ðA4Þ

lim
u→0

ðϕ0
�ÞWKB ¼ Q1=2kD�½ie−Q½kL1�L2� − eþQ½kL1�L2��:

ðA5Þ

Substituting (A4) and (A5) into the expressions of ay, (23),
and Cyy, (19), with the ratio (A3), the following WKB
approximation of CyyðqÞ is obtained after some algebra:

CyyðqÞjWKB ¼ 4K4Q
zþ

k
cosh½2QL1k�

sinh½2QL1k� þ i cosh½2QL2�
;

ðA6Þ

with L1 and L2 the two temperature-dependent elliptic
integrals:

L1 ≔
Z

1

0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1þQ2Þu3 þQ2u4

p ;

L2 ≔
Z

1

0

1 − uduffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1þQ2Þu3 þQ2u4

p ; ðA7Þ

As T → 0, L1 → 0, L2 → 0, and L2=L1 → 0. Obviously
the mass dimension of ½Cyy� ¼ ½z−1þ � ¼ 1 as expected and
the roots of the denominator in Eq. (A6) contribute to
asymptotic poles of the transverse polarization. It follows
from Eq. (17) that the magnetic susceptibility
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χðqjTÞ
���
WKB

¼ 4K4Q
μ2zþk

cosh½2QL1k�
sinh½2QL1k� þ i cosh½2QL2�

; ðA8Þ

which is of mass dimension ½χ� ¼ ½ðμ2zþÞ−1� ¼ −1 with
q ¼ q=μ ∼ k for q ≫ μ.

APPENDIX B: PROOF OF THE
NON-NEGATIVITY OF THE EIGENVALUES

The “Hamiltonian operator” in the subsection III B
corresponding to the master field Φ− at k ¼ Z reads

H− ≔ −
d2

du2
þ V−ðuÞ ðB1Þ

with V−ðuÞ≡ V−ðujk ¼ Z;Q2Þ and defines the eigenvalue
problem

H−ϕ ¼ Eϕ ðB2Þ

It can be shown that the operator H− is Hermitian, subject
to the boundary conditions

ϕð0Þ ¼ 0; and ϕðuÞ ∼ 1 − u as u → 1−: ðB3Þ

We have found an exact zero mode of this eigenvalue
problem at k ¼ Z: ϕ0 ¼ u

ffiffiffi
f

p
> 0. If there is another mode

ϕðuÞ that is orthogonal to ϕ0, the associated eigenvalue
E > 0. To prove this statement, we note that the orthogon-
ality between ϕðuÞ and ϕ0ðuÞ requires that ϕðuÞ switch its
sign somewhere in the interval 0 < u < 1. Let us denote by
ζ the first sign switching zero-point away from u ¼ 0, and,
without loss of generality, assume ϕ > 0 for 0 < u < ζ.
Obviously

dϕ
du

����
u¼ζ

< 0: ðB4Þ

It follows from the eigenvalue equations, H−ϕ0 ¼ 0 and
H−ϕ ¼ Eϕ that

−E
Z

ζ

0

duϕ0ϕ ¼
�
ϕ0

dϕ
du

−
dϕ0

du
ϕ

�����ζ
0

¼ ϕ0ðζÞ
dϕ
du

����
u¼ζ

< 0:

ðB5Þ

Then the positivity of the integral on LHS,
R ζ
0 ϕ0ϕdu > 0,

implies that E > 0. The proof is completed.

APPENDIX C: ASYMPTOTIC EXPRESSION OF
GnðkÞ FROM GENERATING FUNCTION

The remainder RðNÞ
þ ðvjkÞ defined in (42) serves the

generating function of the coefficients fGnðkÞg when its
index is large. It follows from the asymptotic recurrence
formula

GNþðiþ1Þ ¼
4

3
GNþi −

1

2
GNþði−1Þ; for N ≫ 1; ðC1Þ

that

RðNÞ
þ ¼ PþðvjkÞ − PðNÞ

þ ðvjkÞ ¼ 4

3
vðRðNÞ

þ þ GNvNÞ

−
1

2
ðv2RðNÞ

þ þ GNvN þ GN−1vN−1Þ; ðC2Þ

Solving Eq. (C2) for RðNÞ
þ , we obtain that:

RðNÞ
þ ðvjkÞ ¼

ffiffiffi
2

p

4
i

�
1

v − v−
−

1

v − vþ

�
× vN ½3GNv2 þ ð3GN−1 − 8GNÞv�; ðC3Þ

where v� ¼ 1
3
½4� i

ffiffiffi
2

p �. The function RðNÞ
þ can be safely

expanded according to the power of v
v�

for j v
v�
j < 1, i.e.,

P̃þ ¼
ffiffiffi
2

p

4
ivN

�
3GN

X∞
i¼2

�
1

vi−1−
−

1

vi−1þ

�
vi

þ ð3GN−1 − 8GNÞ
X∞
i¼1

�
1

vi−
−

1

viþ

�
vi
�

¼
ffiffiffi
2

p

4
ivN

	
ð3GN − 8GNÞ

�
1

x−
−

1

xþ

�
v ðC4Þ

þ
X∞
i¼2

�
3GN

�
1

vi−1i
−

1

vi−1þ

�

þ ð3GN−1 − 8GNÞ
�
1

vi−
−

1

viþ

��
· vi



: ðC5Þ

from which the asymptotic expression of Gn for large
indexes n → ∞ can be extracted as

GNþnðkÞ ¼
ffiffiffi
2

p

4
i½3GNðkÞðv1−n− − v1−nþ Þ

þ ð3GN−1ðkÞ − 8GNðkÞÞðv−n− − v−nþ Þ�

¼
ffiffiffi
2

p

4
i½ð3GNðkÞv− þ 3GN−1ðkÞ − 8GNðkÞÞ · v−n−

ðC6Þ

− ð3GNðkÞvþ þ 3GN−1ðkÞ − 8GNðkÞÞ · v−nþ �; ðC7Þ

Eq. (44) follows then.

APPENDIX D: OBSERVING 2D POLARIZATION
TENSOR IN 3D ENVIRONMENT

In the presence of a homogeneous medium in x-y plane,
the Dyson equation, for the static 3D photon propagator
reads
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Dijðq⃗jz; z0Þ ¼ D0
ijðq⃗jz − z0Þ þ e2

Z
∞

−∞
dζ0

Z
∞

−∞
dζD0

ia

× ðq⃗jz − ζÞδðζÞσabδðζ0ÞDbjðq⃗jζ0; z0Þ; ðD1Þ

where q⃗ represents the 2D momentum whose magnitude is
μq, and all indices, i; j; a; b ¼ fx; yg and e is the electric
charge in 3þ 1 dimensions. The free photon propagator
D0

ijðqjz − z0Þ in this mixed representation (momentum in
x-y, coordinate in z) takes the form

D0
ijðq⃗jz − z0Þ ¼

Z
∞

−∞

dqz
2π

eiqzðz−z0Þ
1

q2 þ q2z

�
δij −

qiqj
q2 þ q2z

�
;

ðD2Þ
and the two-dimensional polarization tensor of the medium
is written as

σabðq⃗Þ ¼ σtr:ðqÞ
�
δab −

qaqb
q2

�
: ðD3Þ

For the physical phenomena within the medium, z ¼ z0 ¼ 0
and we have

Dijðq⃗j0; 0Þ ¼ D0
ijðq⃗j0Þ þ

Z
dqz
2π

Z
dq0z
2π

1

q2 þ q2z

×

�
δia − e2

qiqa
q2 þ q2z

�
σtr:ðqÞ

�
δab −

qaqb
q2

�

×
1

q2 þ q02z

�
δbj −

qbqj
q2 þ q02z

�
ðD4Þ

¼ D0
ijðq⃗j0Þ þ

1

4q2

�
δij −

qiqj
q2

�
σtr:ðqÞ; ðD5Þ

to the order e2. Also, Dijðqj0; 0Þ is always contracted with
the Fourier component of a stationary current in static case
and the factor qj in above equation does not contribute
because of the current conservation and hence, effectively,
Dijðq⃗j0; 0Þ ¼ DðqÞδij with a scalar form factor

DðqÞ ¼ 1

2q
þ e2

4q2
σtr:ðqÞ: ðD6Þ

where the first term on RHS comes from the free propa-
gator and the second term reflect the polarization of the
medium. For the holographic polarization tensor consid-
ered in this work, σtr:ðqÞ ∝ CyyðqÞ. Transforming the
second term of Eq. (D6) into coordinate space and denoting
the result by Pðx⃗Þ, we have

Pðx⃗Þ≡ 1

4

Z
d2q
4π2

eiqx
σtr:ðqÞ
q2

¼ 1

8π

Z
∞

0

dq
σtr:ðqÞ
q

J0ðq · jx⃗jÞ;

ðD7Þ
where we have used polar coordinates for the momentum
integral and J0ðzÞ is the zeroth order Bessel function.

We employ the technique of contour integral to calculate
the radial integral on RHS of Eq. (D7), starting with

I ≡
�Z

0þi0þ

−∞þi0þ
þ
Z þ∞

0

�
dq

σtr:ðqÞ
q

Hð1Þ
0 ðq · jx⃗jÞ; ðD8Þ

where Hð1Þ
0 ðzÞ ¼ J0ðzÞ þ iY0ðzÞ is the zeroth order Hankel

function of the first kind and Y0ðzÞ is the zeroth order
Neumann function,

Y0ðzÞ ¼
2

π
J0ðzÞ ln

z
2

þ an analytic function evenwith respect to z:

ðD9Þ
The integration path of (D8) is chosen to run just above
the logarithmic cut along the negative real axis. Since
J0ðq · jx⃗jÞ and σtr:ðqÞ are even with respect to q, the nonzero
result of I is given by the noneven part of Hð1Þ

0 ðq · jx⃗jÞ with
respect to q, and reads

I ¼ −2
Z

0

−∞
dq

σtr:ðqÞ
q

J0ðq · jx⃗jÞ

¼ −2
Z þ∞

0

dq
σtr:ðqÞ
q

J0ðq · jx⃗jÞ ¼ −16πPðx⃗Þ: ðD10Þ

To calculate the integral in (D8), we assume that there are no
poles on the entire physical sheet and deform the contour on
the upper-half q-plane to wrap up the pair of branch-cuts on
the right panel of Fig. 1. We obtain that Pðx⃗Þ ¼ ReI ¼
ReðIþ þ I−Þ with

I� ¼
I
C�

σtr:ðqÞ
q

Hð1Þ
0 ðq · jx⃗jÞdq; ðD11Þ

where C� denotes a contour wrapping up the cut originated
from the branch point q� ¼ ð� 1

2
þ iÞμ and turning around

the branch point counterclockwise. For large jx⃗j

Hð1Þ
0 ðq · jx⃗jÞ ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

πq · jx⃗j

s
eiðq·jx⃗j−π

4
Þ; ðD12Þ

we have

I� ¼
ffiffiffiffiffiffiffiffi
2

πjx⃗j

s
e−i

π
4

I
C�

σtr:ðqÞ
q3=2

eiq·jx⃗jdq: ðD13Þ

According to the analysis in Sec. III A, the branch points are
of square root type and σtr:ðqÞ does not diverging at the
branch points. Hence we may write

σtr:ðqÞ
q3=2

¼ fðqÞ þ gðqÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q − q�

p ðD14Þ

and the functions fðqÞ and gðqÞ can be expanded according
to integer powers of t≡ q − q�. The term that dominates the
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large jx⃗j behavior is the leading term of the power series of
gðqÞ, which predominately contributes to the contour
integral, i.e.,

I� ≃

ffiffiffiffiffiffiffiffi
2

πjx⃗j

s
e−i

π
4gðq�Þe�iq�jx⃗j

I
C�

t1=2eijx⃗jtdt ∼
1

jx⃗j2 e
iq�jx⃗j;

ðD15Þ

Consequently,

Pðx⃗Þ ¼ RefIþ þ I−g ∼
1

jx⃗j2 e
−μjx⃗j cos

�
μffiffiffi
2

p jx⃗j þ ϕ

�
;

ðD16Þ
where the phase ϕ depends on the phases of Iþ and I−. The
large-jx⃗j behavior (86) is thereby obtained.
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