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The Rényi entanglement entropy (REE) of the states excited by local operators in two-dimensional
irrational conformal field theories (CFTs), especially in Liouville field theory (LFT) and A" = 1 super-
Liouville field theory (SLFT), has been investigated. In particular, the excited states obtained by acting on the
vacuum with primary operators were considered. We start from evaluating the second REE in a compact ¢ = 1
free boson field theory at generic radius, which is an irrational CFT. Then we focus on the two special irrational
CFTs, e.g., LFTand SLFT. In these theories, the second REE of such local excited states becomes divergent in
early and late time limits. For simplicity, we study the memory effect of REE for the two classes of the local
excited states in LFT and SLFT. In order to restore the quasiparticles picture, we define the difference of REE
between target and reference states, which belong to the same class. The variation of the difference of REE
between early and late time limits always coincides with the log of the ratio of the fusion matrix elements
between target and reference states. Furthermore, the locally excited states by acting generic descendent
operators on the vacuum have been also investigated. The variation of the difference of REE is the summation
of the log of the ratio of the fusion matrix elements between the target and reference states and an additional
normalization factor. Since the identity operator (or vacuum state) does not live in the Hilbert space of LFT and
SLFT and no discrete terms contribute to REE in the intermediate channel, the variation of the difference of
REE between target and reference states is no longer the log of the quantum dimension which is shown in the

1 + 1-dimensional rational CFTs (RCFTs).

DOI: 10.1103/PhysRevD.99.026005

I. INTRODUCTION

One can define some observables to detect the property
of the vacuum or excited states in a local quantum field
theory. For example, entanglement entropy (EE) and the
Rényi entanglement entropy (REE) are helpful quantities
to use when studying global or nonlocal structures in
QFTs. For a subsystem, the entanglement entropy and
Rényi entropy, both of them are defined as a function of the
reduced density matrix p,, which can be obtained by
tracing out the degrees of freedom of the complement of
A in the original density matrix p.

One might wonder whether there is a kind of topological
contribution to the entanglement entropy even for gapless
theories, e.g., conformal field theories (CFTs) (e.g.,
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computing topological contributions in entanglement
entropy called topological entanglement entropy [1] can
quantify some topological properties). Authors of an earlier
work [2] pointed out a connection between the topological
entanglement entropy and boundary entropy. Furthermore,
the connection between the boundary entropy and entan-
glement entropy was explored in [3]. Previously, the
authors of [4] found that the entanglement entropy of local
excited states has a connection with the quantum dimension
in rational CFTs. In this paper, we would like to check
whether the Rényi and von Neumann entropies of locally
excited states are still topological quantities or not in two-
dimensional irrational CFTs.

The nth Rényi entanglement entropy Sg") is defined by
SXL) = log Tr[p]/(1 — n). By analytical continuation of n,
the SX’> coincides with the von Neumann entropy in the
limit n — 1. By using the so-called standard replica trick,
one can calculate the entanglement entropy in field theory.
One can extend [3] from vacuum states to locally excited
states in CFTs. The computations of entanglement entro-
pies for local excited states have been carried out in [5-7]
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in various dimensional field theories. The entanglement
entropy for free scalar fields has been investigated in [7-9].
In large n CFTs with holographic dual, the entanglement
entropy for locally excited states has been studied in
[10,11]. This study mainly focuses on the variation of

Rényi entropy S/g") between excited states and a reference
state, where the excited states are acquired by acting
primary or descendent fields on the vacuum in irrational

CFTs. The variation of n-th REE is denoted by AS\".

In 2D rational CFTs, it was found [4] that, for the locally
primary excited states, the variation of nth Rényi entangle-
ment entropy is related to the quantum dimension [12,13]
of the associated primary operator. The quantum dimension
is the measure of the effective degrees of freedom of a
local operator and it is a kind of topological quantity. In
various dimensional CFTs, REE has been studied in [14-34]
from various perspectives. The papers [16,17,19,20]
mainly concentrated on entanglement entropy in higher-
dimensional field theory. The authors of [18] have found
the REE of local excited states in large central charge
1 4 1-dimensional CFTs from holography. In particular,
the authors of [14,20] have provided a perspective from
which to study Rényi entanglement entropy from string
theory and it provides us with a one loop correction to the
large black hole entropy. In [21,22], the entanglement
entropy of a local excited state in some specific quantum
Lifshitz models has been presented. More recently, the
authors of [35] mainly studied the local states of the product
form of local operators in rational CFTs and they found that
the variation of REE is consistent with the scattering
process during entanglement propagation in RCFTs.

In this research, the previous study [4,15,36] on the
Rényi entanglement entropy for the primary and descend-
ent states has been generalized to irrational CFTs, espe-
cially for Liouville field theory (LFT) and super-Liouville
field theory (SLFT). Previously, the authors of [37] studied
the memory effect of REE in a compact ¢ = 1 free boson
theory at a generic radius, which is an irrational CFT. There
are two main motivations driving the research in LFT and
SLFT. The first one is that the representation of the spectra
will be infinite dimensional in irrational CFTs; therefore,
extracting entanglement entropy for local excited states will
be highly nontrivial. A priori, one cannot expect that the
variation of REE will still be the log of the quantum
dimension. Furthermore, the quantum dimension of a local
primary operator in irrational CFTs will be quite different
from that in the 1+ I-dimensional rational CFTs.
Discovering how to measure the variation of REE in
irrational CFTs in a precise, robust way is our main aim.
The second is that LFT can be reformulated as 3D Chern
Simons theory [38] or 3D gravity theory. In the large central
charge limit, the Liouville field theory might have AdS/
CFT-like connections [39—41] with 3D gravity. Basically,
the boundary conditions in Chern-Simons theory are
associated with the Virasoro conformal blocks. The
Liouville primary fields can be regarded as monodromy

defects, which was proposed in [42]. To understand
whether or not these connections are AdS/CFT-like, we
would like to work out the large central charge properties of
local excited states by primary fields in LFT or SLFT;
because EE and REE can be probed on the field theory side
and the holographic side, both of them will be good objects
with which to test the properties of these connections. In
this sense, the large ¢ universal properties from these data
can be generated to compare with the holographic expect-
ation [10] of REE.

In this paper, we evaluate the second REE in a compact
¢ =1 free boson field theory at generic radius, which is
an irrational CFT, as a preliminary exercise to test the
memory effect of REE. Then we mainly study the 1 + 1-
dimensional LFT and SLFT to show how to extract the
variation of REE for locally excited states between the early
time limit and the late time limit. The second REE of local
primary excited states by using CFT techniques is shown in
a precise way; then these calculations can be extended to
the nth REE of primary and descendent states following
[4,36]. From these studies, we find that the REE of local
excited states in LFT and SLFT is divergent, which is
consistent with the classifications of local operators in LFT
[43]. By choosing an appropriate reference state V,, |0), we

redefine a new quantity ASI(;E) [V,|0),V, [0)] as the differ-
ence of REE between target and reference states to measure
the time evolution of REE in LFT and SLFT, which is
consistent with the quasiparticle picture given in rational

CFTs. This difference of REE ASI(EVQ [V¢l0),V, |0)] can be

reduced to the AS](E';E) [4] given in rational CFTs by choosing
the vacuum state as a reference state. Finally, the variation

of the difference of REE AS&) [Val0), Ve [0)] (1 = o0) —

ASI(E'Q [Vel0),V, |0)](t = 0) depends on the ratio of the
fusion matrix elements associated with V,, V,, in LFT and
SLFT, unlike that of rational CFTs, which cannot be
identified with the quantum dimension. That is to say,
ASEVal0), Vi, [0)]( > 00) = ASEY[V,[0). V., [0} (2 = 0)
will depend on the details of LFT and SLFT.

The outline of this paper is as follows. In Sec. II, we
give the 1+ 1-dimensional setup and study the second
REE in a precise way in LFT and N =1 SLFT. The
difference of REE between the target state and reference

state AS@[V(AO), V,,|0)] has been calculated. In Sec. III,
we extend the above calculation of second Rényi entropy to
the nth REE in LFT to show that the variations of REE are
the log of the fusion matrix elements ratio, which are quite
different from those in the rational CFTs. In Sec. IV, the

difference of REE AS](E'E [V,|0),V, [0)] between states
generated by acting descendent operators on the vacuum
state in this setup is studied. Finally, we devote Sec. V to
the conclusions and discussions and also mention some
likely future problems. In the Appendices, we list some
relevant notations and techniques which are necessary to
our analysis.
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II. THE SECOND RENYI
ENTANGLEMENT ENTROPY

A. Setup in 2D CFT

An excited state is defined by an operator O, acting
on the vacuum |0) in a two-dimensional CFT. The operator
can be primary or descendent. We can make use of the
Euclidean formulation and introduce the complex coordinate
(w,w) = (x + iz, x — ir) on R? such that 7 and x denote
Euclidean time and space, respectively. We introduce oper-
ator O, at x = —/ < 0 initially and investigate its real time
evolution from time O to ¢ under the Hamiltonian H. We
develop the setup shown in Fig. 1 and the corresponding
density matrix reads as follows:

p(t) = C, - e7M1e=H O (=1)|0Y(0]| O (=1)e=¢H it
=C,: Oa(Wz, W2)|O> <0|O;(W1, 17\}1)’ (l)

where C, is determined by requiring Tr p(¢) = 1. Here we
can define coordinates as

wy =i(e—it) -1, wy = —i(e+it)—1, (2)

i(etit)—1. (3)

€ is an infinitesimal positive parameter as an ultraviolet
regulator. Until the end of the calculations, we treat € + it as
purely imaginary numbers as in [4,7,8].

To calculate variation of the nth REE AS; ), we employ the
replica method in the path-integral formalism' by general-
izing the formulation for the ground states [3] to excited
states [7]. In this paper, we choose the subsystem A to be an
interval 0 < x < L at 7 = 0. For simplification, we only
consider L — oo throughout. It leads to an n-sheeted
Riemann surface X, with 2n operators O, inserted.

Finally, the AS{"

\/_Vl = —i(€ — lt) - l, V_Vz =

can be calculated as

ASI(I)_] log (0% (w1 1) 0y (W, 1)+ O (W2, 3, )5,

—n10g<0a(W1’Wl)Oa(Wz’Wz»zl]’ (4)

where (W2k+1’W2k+2) for k= 1,2, e — 1 are n—1
replicas of (w;,w,) in the kth sheet of X,. The term in
the first line in Eq. (4) is given by a 2n-point correlation
function on X,. Here A, is the (chiral and antichiral)
conformal dimension of the operator O,. One should note
that AS&") can be well defined once the vacuum state
belongs to the Hilbert space. That is to say, one can choose
the vacuum state as a good reference state to measure
AS) = ASV[V,]0). |0)] between excited states and the
vacuum state in rational CFTs [4]. Otherwise, one has to
choose an appropriate reference state V, |0) to measure

A S/(;’) [V,|0), Va,.|0>]’ e.g., in Liouville field theory.2

'More precisely, the replica method for the local operator excited
states in field theory has been explicitly shown in Sec. 2.2 of [35].
*We will explain the details at the end of this section.

t
4—.\/!"‘*
Ny A L X

FIG. 1. This figure is to show our basic setup in the two-
dimensional plane w = x + it. We consider the subsystem A,
0<x <L, with L - co. We just put the local operators at
x =—I, t =0. The local operators will trigger left- and right-
moving quasiparticles with time evolution.

B. Convention

Firstly, we study n = 2, i.e., the second Rényi entangle-
ment entropy, in detail. The calculation of ASf) is reduced
to four-point functions in CFTs.

For n = 2, one can connect the coordinate w; with z; by a

conformal mapping w; = z7, which looks like

wy =ie+t—Il=re = (z)2,

Wy, = —ie +t— [ = se'® = (z,)?,
Wy = (ie 4Lt l)eZﬂi = peint+0;) — (23)2,
wy = (—ie +t = 1)e*™ = 5e!?7+0) = (z,)2. (5)

Thus one can find

= —z3 = /w; = Vre"? = iVI—t—ie,
=74 =W, = se"? =iI—t+ie. (6)

If readers are interested in the finite size formula, please
refer to [4].

We will follow the standard procedure of the analytical
continuation of Euclidean theory into its Lorentzian version.
The most important and subtle point is that we should treat
+ie+t as a pure imaginary number in all algebraic
calculations. Finally, we take ¢ to be real only in the final
expression of the variation of entropy. Here we identify

(rcos@,,rsind,) = (=1L, e¢—it),

(scosO,,ssinb,) = (=1, —e — it), (7)

which leads to
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r— /lz+(€—it)2, o= /12+(—e—it)2, It is useful to note the relationship

214223
rs=y/(P+e2 -2 +4er, l—z= (10)

213224'
2452 =2(P+e*-1?),

We are interested in the two limits (i) [ > t > ¢ (early
cos(8; —6,) =2cos> (M) -1 time) and (ii) > [ > ¢ (late time), and from (9) we can
know that they separately correspond to
P-e*—1

- 7 2_72\2 22 (8) . e
\/(l +et—17)* +4e’t (1)2:2:4—12(40),
To get REE, we solely focus on the conformal cross . €’ e
ratio (ii) z=21=—5(=1), Zx—5(=0). (11)
4t 4t
i —(=0)+ /U= +¢€ Note that the late time limit is quite nontrivial, which
T o Wi-te , originates from our analytical continuation of .
13224 - €
_ ZnZ =+ + ([ +1)?+ € C. The variation of second Rényi
= 13T = (DTS ) ©) entanglement entropy
The four-point function on X, is mapped onto that of R?
where z;; = z; — z;. by the conformal map w = z>. Thus we find

4
_ _ _ _ dWi
(0491 71) O (w2, 2) O3, W3) 0w ), = [ [ |
i=1 | 4%

= 278821252324 7 - (04(21,21) 04(22, 22) 023, 23) 04 (24, 24)) s,
= 2788 (rs) 7 - (04(21,21)04(22:22) 04(23, 23) 00 (24, 74) )5, (12)

where A is the chiral conformal dimension of the operator O,.
The two-point function looks like

N
(04(21,21)04(22,22) 04(23,23) O (24. Z4) ),

] ) c, c,
(0, (Wi, W) 0,4 (W, 2))s, :W:W’ (13)

where C, represents normalization. Note that the four-point function is proportional to C2 and the AS/S2> is of course
independent of C,. Thanks to the conformal symmetry, the four-point function on R? can be expressed as

(04(21,21)04(22,72) 04(23,23) O (24, 24) )5, = |213224]7** - G(2, 2), (14)

where (z,Z) are given by (9).
In the late time limit (ii), we finally find that the ratio in (16) is expressed in terms of the four-point function on R?:

(Ou(wi, 1) Ou(w2, W3) Ou(w3, W3) Ou(Ws, W4))y, 1 (f

4A
Top? = ) (0u(z1.21)0a(22.22) O (23, 23) a0 ),

(<0a(wl’wl)oa(w2’w2)>2])2 _Cg t
€2 4A
=gl -6 =g (1) 66D 09

In rational CFTs, we can calculate AS&”) between local excited states and the vacuum state as follows:

) _ o) (n) 1 (Oa(Wi, w1) 04 (W2, W3) -+ O (W, W),
AS,” =5,7(0,40)) — S, (1|0)) = log[ — — . . (16
R A (001110, (02 7)), ’
Here X, denotes the n-sheeted Euclidean surface given by the metric
ds*> = dp® + p*(d6)?, (17)

where 6 has the 2zn periodicity 0 ~ 6 + 2zn.
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Extra care should be taken when we generalize (16) to
the case of LFT and SLFT. We note that normally the
vacuum expectation value of n operators is defined as

_ Z
Oa (W2nv W2n)>2 ="

<0a(W1,V_Vl)Oa(W2,V_V2)"‘ » 7.
On

(18)
where Z,, Z, are the partition functions with or without
operators inserted on X,. Following the replica method in

the Euclidean path-integral formalism® [35], we can express

the reduced density as Trp" = Z,,/Z!. As aresult ASEX " can

be written as

One can see that (16) follows when identity operator 1
belongs to the Hilbert space of the theory; however, in
Liouville field theory, the n-point function is defined by the
path integral and therefore it is not normalized:

(Va, Wi, W)V, (Wy, W2) - -+ Vi (o, W2))s, = Z,y

(20)

Because ae€{Q/2+iplpeR}J{Q>a>0}} in
LFT and SFLT, one cannot take all V’s to be the

identity operator, i.e., analytically continue « :%—I— ip

w1 :
ASE‘) = ——(log Trp" — log Trp}}) to p=1iQ/2.
l—n In other words, (16) applies to the case of Liouville field
1 z, 7 . . (o
_ <log — nlog 41 > . (19) th<e§)ry, which gives the Rényi entanglement entropy
1-n Zon Zoi SAn (|V(z>):
|
n 1 (VEW1 0V (wa. 2) ...V (Wapet . 2,1 )V (Wa W3,)) 5
S5 Val0)] (1) = —log : 1)

1—-n

In the LFT and SLFT considered in this paper, the identity
operator does not belong to the Hilbert space and the
vacuum state [44] cannot be considered a good reference
state* such as that in rational CFTs. Therefore, the

s(1]0)) in Eq. (16) cannot be applied in LFT and SLFT.

We can define the difference AS [V |0),V, |0)](z) be-
tween the two excited states. Here V,|0) and V,, |0) are the
target state and reference state, respectively. Alternatively,

we calculate S (0 |0)) in the early time and the late time

(Vi 1)V (wa, 92))5,)"

[

limits and define the difference of REE between the
two states,

S8V (0]]0) (1)
=8 Ve, (DI0)(0),  (22)
to study time evolution. For later convenience, we divide

the primary operators in LFT and SLFT are divided into
two classes in terms of the Liouville momentum’:

ASY[Val0), Vi 10)](1) =

{ala = Q/2+ip,p € R} |J {a|Q/2 > Re(a) > 0/4}
U {a|0/4 > Re(a) > 0}, (23)
{a|Re(a) = Q/4,Im(a) # 0} Marginal case.

a and a, €

D. The second REE in ¢ =1 free boson field theory

To begin with the analysis of REE in special irrational CFTs, the compact free boson theory with generic radius is a
simple irrational theory to see the time evolution of the second REE.® Following [37], the second the REE is as follows:

S = 5 = logl2 P (z2) /2|1 = (1 = D). £(2))) + Slogs (24)

The replica method for the local operator excited states in field theory has been explained explicitly in Sec. 2.2 of [35].

*The existence of the translation invariant normalizable vacuum is not self-consistent with the classical equation of motion of
Liouville field theory, which has been shown in [44]. The nonexistence of the SL(2,C) invariant vacuum in the spectrum has an
important consequence: the identity operator does not belong to the whole Hilbert space; this means that the external Liouville
momentum a cannot be vanishing.

>The main reason to choose reference and target states from the same class in LFT and SLFT is to calculate a well-defined quantity to
restore the quasiparticle picture.

The authors of [37] called it the memory effect of REE.
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where

Z(1.7) = Trexp [mz (LO - i) —2ni7 (io - i)} .
(25)

The partition function can be calculated with the torus
modulus, which is defined by

_ 02(2)*
6(2)*

iK(l—z).

K@) (26)

<

Here, K(z) = ngl(,%, 1,7%).
For z — 0, the relation is

z=16y/g+ O(q). q = e, (27)
For z — 1, the relation is

1-2=16\q' +0(q), ¢ =e?/". (28)

We can analyze the two light cone singularities of the
second Reyni entropy of this theory explicitly, via the torus
partition function [30]

Z(R) =

1 .
Z qht’.lﬂ qh(’,l?l . (29)

n(@)i(7) 52z

where 5 denotes the Dedekind eta function. The conformal
weights are as follows:

1 /e mR\2 - 1 /e mR\2
mm—i(ﬁ+iﬁ mm—§<ﬁ‘iﬁ- (30)
Here e, m are integer numbers. When R? is irrational, there
is no degeneracy in the weights and the theory is irrational

CFT. In the early time limit 7 — ico, 7 — —ioo, g — 0,
g — 0%, the partition function behaves as

Z(‘L’, ‘f) ~ q—c/24é—c/24 ~ 220/3Z_C/122_C/12- (31)
Then the second REE is as follows:

L ¢ s
@ T o0 P 32
2% 2% (32)
In the late time limit 7 — 0™, T - —ico, g —> 1, g —» 0T,
the partition function behaves as

Vo, Ve Var Va5, = 12137 224 4 G 1234 (2. 2)

1, _ dp o .
:§|Z13| 204 4A/_C<alva2,_+lp

RZ]T 2

1
= on®

We have used the following properties:
_ —i_,_
i) =\ 2@, (4)

Z(R) ~q_1/2451_1/24. (35)

1 —+ qhminqhmin -+ .- .)' (33)

Z(R)

n(—1/7) = V=im(z),

Thus

Then, the late time limit of the second REE in ¢ =1
compact free boson theory is
L e, C s
@ == _jog(2%F) + Slog . 36
2 0g(27) + 5 log 5 (36)
The second term in (24) does not vanish in the late time limit.
Finally, the variation of the second REE between the
early time and the late time is

S

AS?) = glog 2. (37)
Here we have chosen ¢ = 1.

The compact free boson theory on generic radius as
“nearly rational” theory and the entanglement entropy has
quasiparticle behavior, which is consistent with the cri-
terion of a quasiparticle picture [37]. In the remaining parts
of this paper, we will calculate REE in Liouville and super-
Liouville field theories, which have different Hilbert space
structures. The first difference is that the vacuum state is not
contained in the Hilbert space of LFT and SLFT and the
second one is that the spectra in LFT and SLFT are
continuous. Due to these two differences, the above
calculations cannot be applied to LFT and SLFT directly.
We will show later what will happen to REE in LFT and
SLFT in more detail.

E. The second REE in Liouville field theory

We are mainly interested in the second REE here,
which is associated with the four-point function in terms
of Eq. (15). The four-point functions in LFT have been
reviewed in Appendix A. In our setup, the interested
(VaVaVaVea)s, is given by Eq. (All). In LFT, the
four-point Green function of primary operator V, in the
s-channel can be expressed by

o . _
> C(a3,a4,5— Lp FAs(Ai:1.2,3.47 Ap»Z)Fs(Ai:I,ZSA’ Apvz)'

(38)

The A;=a;(Q—aq;) is the conformal dimension of external Liouville momentum «; € {ala = Q/2+ip,p € R} |J
{a|0/2 > Re(a) > 0/4} |J {a|Q/4 > Re(a) > 0}. The integration over intermediate momentum p stands for contour
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integration over p € R. F(A;_1534.4,,

z) and F(A;_1534,4,,Z) are the holomorphic and antiholomorphic conformal

blocks, respectively. The Dorn-Otto and Zamolodchikov-Zamolodchikov (DOZZ) formulas C(a, a,%+ ip) are given in
Appendix A 1. More precisely, for a; € (0, Q), the G »34(2, Z) in the s-channel can be modified and expressed as follows:

G1234(Z Z ZD Z, Z)"’/

a,eD

o . o .
(051’0‘2754'”7)C(0537054,3—1P)Fs(A, 12%47 )F (Az 1234’A ,Z), (39)

where D denotes the discrete terms (A68)’ reviewed in Appendices A5 and A 6.
First, let us calculate the REE in the early time limit. One can make use of the s-channel expression in Eq. (A11) for

< V{_l V{l V(_l V{l> :

Giuaa(2.2)

L [rdp o .
24271’6‘( ’a’2+””)c<

lp) F (Az:&,a,a,a’ Apv Z)Fs (Ai:&.a,&,av Ap’ Z) (40)

_ dp 0 o ZAgayiy—2A Agjarin—2A
_2/27r {C( 2—|—lp>C<aa > 1p> o/ (1+---)z8 (I4+--9. (41

We have shown the asymptotic behavior of the early time limit in the last step in (41).

Once we take the early time limit of Eq. (41), then

d*fo(p)
Iim (V,V, V.V ~ —4A —4AZ Ja\ry
(Z,E)l—>(0.0)< a’aVa (1>Zl |Z13| |ZZ4| dpz

where we define
(0 _ .
folp)=C @+ ip Cla,a,=—ip). (43)

Here we have used the saddle point approximation pre-
sented in Appendix A 6 to obtain the leading behavior in
the early time limit. The two-point Green function for the
primary operator in LFT is as follows:

5(@)5(0)
(x12%12)*
The 5(0) is proportional to the volume of the dilation group
Vol(dilaton) = [°% = co. Then using the “reflection
relationship” [45] V, = S(a)V y_,, one can obtain

5(0)
(x12%12)

In terms of Eq. (15) and the early time limit, the ratio
becomes

(Va(x1)Va(x2))s, = (44)

(Va(x1)Va(xa))s, = (45)

<V(3V(1V&V(1>22
<Vﬁva>%]

d*fo(p)
d 2

@) )
R ~ Iim
EE (. 15(00) (2)=(00)

(29)—(0,0) 8 x 2! 82(0)

|polzl?4er In2[1/2].

"In our setup of REE, the four-point Green function does not
involve any discrete terms.

/ |Z|—4A(1+2AQ/2+,-pp2dp ~
p—0JR

v &f.(p)
8§x2! dp?

2|25 2er)InT3|1 /2],
p—0

(42)

One can choose the appropriate normalization condition to
remove the 52(0) dependence.®

Then
(2) 2
S ~ —log(R
EE .52 00) g(Rgg)
1
~ —log \/.
(2.2)~(0,0) 8 x2182(0)
L Lfap)

P, alePrormn/al). o

Since the second REE is associated with (V;V,V;V,), the
identity operator cannot contribute to the intermediate
channels. When the external Liouville momenta of the
four-point function are a; € {ala = 0/2+ip,p € R} |
{a|0/2 > Re(a) > 0/4} |J {a|0/4 > Re(a) > 0}, the
primary operators will not fuse into the identity operator.
Therefore, the vacuum block in the intermediate channel
will not contribute to the four-point function in the second

8Following standard regularization from Eq. (5.13) in [46], the
normalization factor can absorb &7(0). Here, we just keep the
factor 52(0) like in [38].

’Generally speaking, if Re(a; +a,) < Q/2, and there are
discrete terms (A68) presented, then the identity operator
will contribute to the four-point function as an intermediate
channel operator. Since the second REE is associated with
(Va(0)V,(2)V4(1)V,4(o0)) and Re(a; + a,) = Q/2, the discrete
terms (52) will not contribute to the second REE.
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REE. To restore the quasiparticle picture [4,7] and
make a well-defined quantity to show the memory
effect of REE, we have to choose an appropriate reference
state V,, |0), which is not a vacuum state as given in (23).

In this paper, we choose a reference state which lives
in the same class of target states and we can define the
difference of the second REE in the early time limit as
follows:

ASIVJ0). Vo [0Vt = 0) = SLIVI0}](1 = 0) = SV, [0)](1 = 0) = ~log (f Z,Eflf)) .

@, € fala = 0/2 +ip. p € R} U {a0/2 > Re(a) > 0/4} U {alQ/4 > Re(a) > 0}. 47)
[
(i) Re(a) = Q/4, Im(a) # 0 (marginal case).

Since the factor C(a,a,a,)C(a,a, Q —a,) in
Eq. (38) does not vanish at a;, = Q/2, we have

Here one can see that the AS(EzE) [Vel0), V,, [0)](t = 0) is
finite. Explicitly, one can choose @, =a and the
AS](EZFE [V4|0),V, |0)](z = 0) will be vanishing, which shows
that the quasiparticle picture has been restored. For a, # a,
AS(EZFE[VO,|0>, V,,10)](t = 0) is finite with time evolution,
which does not contradict the quasiparticle picture. When
a, a, do not stay in the same class given by (23), the early and

<Va<0)va(z)va(1)va(°°)>21

— Q 2/ -2 — —2p?
~ Cla,a,= (2A,—A2a)-2p d
(2,2)—=(0,0) (a “ 2) R & P

late time limits of AS](EZE)[VG|O>,V%|O>] cannot be finite ~ ﬁC(&, a. Q)2|Z|—2(2A”_AQ/2)1H_%|1/Z|.

due to the different divergent powers of log divergence, (22)-(00) 2 2

e.g., (46) and (49)."° (48)
Generally speaking, for the four-point function

(Vg (0)V4,(2) V4, (1)V,, (0))s, with external legs a; with

Re(a;) € (0, Q/2), we have to consider the discrete terms’

contributions which have been reviewed in Appendifes AS | s
I

?lnd A6. I.n our setup (V5(0)Vy(2)Va(1)Vy(0))s,,  there Rgg . v C(Ex, a. 2) |2[2erInb|1/2].

is a marginal case:

The ratio for the second REE in the early time limit
reads

(22)=00) 2 5(0) 2
|

1 2 |
—log (%E 70) C (5{, a, %) |z[*2e1n2| 1/z|> . (49)

Then

St Vl0)] (1 = 0)

14

(2,2)—(0.0)

The second REE has the divergent factor In~2 |1/z|, which can be canceled by choosing the reference state V,, |0),

a, € {a € C|Re(a) = Q/4,Im(a) # 0} to obtain a finite ASS[V,|0), V,, |0)]. In the early time limit, the difference
of the second REE between the target states and the reference state is

ASD[V,[0), V, [0)](t = 0) = SRV, |0)](t = 0) — S2[V,, [0)](r — 0) = —log (J{a((?))

a,a, € {a € C|Re(a) = Q/4,Im(a) # 0}. (50)

b
p—0

Now we will calculate the late time limit (z,z) — (1,0) of the second REE. In this limit, applying the bootstrap equation
to holomorphic conformal blocks will be convenient when extracting the correct late time behavior. The four-point function
of primary fields in LFT can be expressed by holomorphic 7-channel conformal blocks as given in Appendix A 1:

1 'd
VaVaVaVabs, = slen e [ Lc(a,al+ip)c(aal-ip
2 R 2% 2 2

X Fs(Ai:a,aﬁc,a’ At? Z) / datFéa |:a(-x:| Ft(Ai:aa&wAt’ Z)' (51)
S Tlaa o

"In the remaining part of this paper, one can refer to the divergent piece of Sl(gzé [V,]0)] in the early and late time limits, respectively.
""Here we have chosen a; =@ = Q — a, @, = a, Re(;) € (0, Q/2); therefore, the discrete term will not be involved.
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The prime of integration over intermediate momentum p stands for contour integration over reals with some additional
so-called discrete terms’ contributions. The integral in ¢, is over S = % +iR".F ésat [g ¢]is the fusion matrix associated with the
transformation from the s-channel to the 7-channel and it has been revisited in Appendix A 7. More precisely, the G4 4 5.4(2. Z)
can be expressed by the holomorphic #-channel conformal block in terms of the conformal bootstrap equation as follows:

. = dp (. Q . 0
Ganaal2:2) = ZDQ; (z.2) + Ky ZC(a, a, >+ zp> C(a, a5 = ip
_ L aa
X Fs(Ai=Ez,a~6t.a’ At’ Z) s datFaSa, |:a C_¥i| Ft(Aizéz,a,&,w Af’ Z)’ (52)
where D is the finite set of discrete terms that have been reviewed in Appendices A 5 and A 6. The D is the set of double poles'*

induced by the factors C(a., a, a,)C(@, @ d,) and Dy (z,Z) is given by the last line in Eq. (A60).
In the late time limit, the leading contributions to the REE will be as follows:

1 tdp (O . 0 L\ aa
V.V, ~ Ly, |-4Ap, |-4A ['9P 14 _ A,-24 L _ A-2A
(VaViVaVals, Y |z13]7*2 |24 A o C<a, a—+ lp) C(a, a>=ip )z A do,FL . [a 5:] (1-2)

1 _4A _4A/dp _ o . _ o .
(z,z):(1,0)2|zl3| |24 RZﬂ'C a.a,> +ip |Claa~—ip

A - aa - _ - ~ -
X Z8 “/dazFéa,[ _}(1 — )28 2y oD T Dy (2. 2). (53)
S aa a,€D

14

For the external Liouville momentum a€{ala=Q/2+ip,peR}|J{a|Q/2>Re(a)>Q/4}|J{alQ/4>Re(a)>0}
and p # 0, we take the late time limit of Egs. (53) and (15) will be

. x dfap) Fop.oplad
I VoV V.V ~ a\Vs 2(s’ 2 , aa
(z,z)gr(ll,o)< atala “>2'(Z,z)_><1,o) 64 x2\/m dp; |, o (54(Q)) ls»(Q)?
x (1 = z)8er=28z80=280]=3/2 <#) In~3/2 (l) (54)
(I-2) z

We have used the late time limit (z,z) — (1, 0) and saddle point approximation to extract the leading contribution from the
relevant terms a, = Q/2, a, = Q/2.
In this limit, the ratio becomes

ViV, ViV,
RY ~ gim VAVeVeVels,
(23)=(1.0) (22)=(1.0)  (VaVa)3,

N m 1 d&falpy)
(25)=(1.0)64 X 21/ 8*(0)  dp?

L aa
2 /( ))QFQ/ZQ/Z[(Z&]

1 1
 N\Appzhpinin—3/2 3t
QN iy (- a)terztenin ((1—z>>1“ (z> (53)

We use same normalization for the two-point Green function given in Eq. (45).
Then the second REE in the late time limit reads

s 1 df,(p) , >, Fopoplad
64 x 2!\/782(0) dp? pqOZ(s”(Q)) |s5(Q)I?

x (1 — z)8erz8erIn=3/2 (ﬁ) In—3/2 G) ) . (56)

In the late time limit, the difference of the second REE between the target state and the reference state is

(2)
SEeVelO)(t = o0 ~ =1
£ [Val0)]( )(z,z)—>(1,0) 0g<

“For external Liouville momentum a€{ala=Q/2+ip.peR}|J{a|Q/2>Re(a)>0/4}J{a|Q/4>Re(a)>0}, there are no
discrete terms.
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’

UPIFY ool
ASZV,[0). Vi [0)]( = 00) = SEIVo[0)](¢  00) — SL[V,, [0}](f — o0) = — log ( S e ) 0
a, p—

(p)FQ/Z Q/z[a, a,]
@, € {ala = 0/2+ip,p € R}  {a]0/2 > Re(a) > 0/4} U {alQ/4 > Re() > 0}. 57)

Additionally, we have to consider the marginal case:
(i) Re(a) = Q/4, Im(a) # 0 (marginal case).
Since C(a, a, a,)C(a, a, Q — a,) does not vanish at a, = Q/2, the late time of the four-point function behaves as
follows:

<V&(0) V(I(Z) V&( 1 )V{I(oo)>21

_0\? I a Ang=28,4p2 (=) Agy—2A
<z,z>f(1.0)c<a’ @, 2> Faopin.a=0r+ip, [aﬂ(l — 2)A 28t P (2)Au=28 P dp d p,
7 Q/2 0/2 [aa] App—28g (3)Ag/n—2A —-( 1 > —3<1)
2(s!,(Q/2))2 —L2L2ad (| _ 1)Aop-28u(7)A0p—20u]n~S n3(=). (58
= 20(@0F) 20 TR 1 o i-o)"\) ©Y

In the late time limit, the ratio for the second REE is

(z2

@ _ = 1 _ 0\ Fonoplad niragrt ] L[
REE(Z’Z):(1.0)3_262(O)C<Q’ a, 2> ( (Q/ )) | ( /2)|2 (1 Z>A / (Z)A /21n ((1 >ln -(j). (59)

Then
DVal0)] (1 = o0)

N r 1 . 0\%,,, 2Fé/2,Q/2[Zg] Ao abop]nt 1 3 1
<z,z>3<1.0J_log{3262(())C<a’a’2) 2 (/) oy 1 ) henn ((1—Z)>ln <Z)] (0)

and the difference of the second REE between the target state and the reference state in the late time limit is

a FL l_l(_l
ASEVal0), Vi, [0)](1 = 00) = SRVl0)](r = o0) = SE[V4t [0)](1 > o0) = —1°g< folt) g gnles >
o (P)F s 0pla o)

a,a, € {a € C|Re(a) = Q/4,Im(a) # 0}. (61)

p—0

F. The second REE in super-Liouville field theory

In this section, we would like to consider the states excited by local operators in super-Liouville field theory. For the sake
of consistent notation, we review the corresponding contents of SLFT in Appendix A 2. The four-point Green function for
the André Neveu and John Henry Schwarz (NS-NS) operator V;, V, with the s-channel intermediate states given in
Eq. (A28) is as follows:

<V&V(1V&V(1>Zl = |Z13|_4A‘ZZ4|_4AG1234(Z7Z)
= |73 7* 204|742 {A do,Cns(@, a, a, ) Cns (@, o, ) F§ (A1 234, 8, 2)FS(Aim1 234, 4, 2)
/ ~ ~
+/s do,Cys (@, a, a,)COxs (@ a0 F (A1 234, 8, 2)F(Aj—1234.8).2) |- (62)

The four-point green function for the Pierre Ramond (R-R) operator R;, R, reads similarly:

(RaR.R:R,) s, = |z13 7422241 7*4 G1234(2. 7)

!
= |Z13|_4A|Zz4|_4A |:A dasCR(C_" a, aS)CR ((_Z, a, C_’s)Fi (Ai:d,a,&,a’ Apﬂ Z)F::(Ai:d,a,&,a’ Apﬂ Z)

/ ~ ~
+ / da.\'CR (&’ a, as)CR (av a, as)F‘l\‘)(Ai:&.(z,&.av Ap’ Z)F?(Ai:fl,a,&,a? Ap? Z) . (63)
S
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All the calculations of REE for the NS-NS states can be directly generalized to states excited by the R-R operators and hence

we only carry out the analysis in the former case (62).

We start with the external super-Liouville momentum «; = {ala = Q/2+ip,p € R} |J {a|Q/2 > Re(a) >
0/4} U {a|Q/4 > Re(a) > 0}. With saddle point approximation, the early time behavior of Eq. (62) is as follows:

lim <V,§,V{1V(}V{1>Zl

(2.2)—(0.0) (z,z)f(o,o> 2!

1 dfans(p)
pZ
\/7_T dzfaNS (]7)

/ |Z|—2(2A,,—AQ/2)+2p2p2dp
p—0JR

(2.2)—(0.0)4 x 2!

where faNS (ps) = CNS (av a, as>CNS (5!, a, 5{5) and
funs = Cns(@, a, a,)Cns (@, a, a;). In the early time limit
(z,Z) = (0,0), we have used the fact that the leading
intermediate state in the parity odd conformal block
F?<Ai:&.a.&,a7 Ap? Z>F?(Ai:&.aﬁ,a’ Ap? Z) in (62) is
G_, /26—1 2V, and hence its contribution will be smaller
by a factor of z'/? compared to the even conformal block
(see [47] for more details). As a result we can make the
contribution from the parity-even conformal block [48]. For
the R-R sector, we directly replace Cys(a;,a,,a3) with
Cr(ay, @, a3). The structure constant Cg(ay, ay, a,) has
the simple pole at a, = Q/2 as Cys(a;, @y, a,), which is
from Yyg(a3) in the numerator of (A23) and (A29);
therefore, the analysis of the local excited states associated
with the R-R operator is the same as those with a NS-NS
operator.

The associated ratio in the early time limit is

2) <Vr'l VaVa Va>):2

~ - - - - = ~

R\

| Z|—2(2A{I—Ag/z)1n—%, 1/z
p—0

3 , (64)

dp

The two-point Green function for the primary operator in
the NS sector is as follows:

(V) Valr))s, = 28@20)
: (xllez) “
with
b0 %bzy(ba—%—%z)
Dys(a) = (ﬂw<7>> It (66)

Then using the “reflection relationship” V,=Dys (@) V g—q»
one can obtain

(Vale)Valx)s, =% (67)

1 dzfaNS (p)

F-00  (VaVo3,

(22)—(00)8 x 218%(0)  dp?

2PAorin[1/2].

p—0

As we have done in LFT, we also keep the normalization factor with a delta function in explicit form.

Then

2 2
S2 (1 = 0) = —log(R2) = )—log<

(z.2)—(0,0

N

de aNS (p )

8x2152(0) dp?

oot /2]).
p—0

Finally, the early time of the difference of the second REE between V,|0) and V,, |0) is

ASZ(V,[0). V., [0)](r = 0) = SV, 101 — 0) — SV, [0}](r — 0) = —log (jf((’;))) X
NS p—
w.a, € {ala=0/2+ip.p e R} U {a]Q/2 > Re(a) > 0/4} U {alQ/4 > Re(a) > O}. (68)

Additionally, we have to consider the marginal case:
(i) Re(a) = % Im(a) # 0 (marginal case).

This case is similar to that mentioned above, except that Cys(@, @, a,, )Cns(@, @, Q — a,) does not vanish at

a, = Q/2, so we have
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(V&(O)Va(z)V&(l)Va(oo»zl = CNS(““ > /|Z| 20280-80)+2p dp
(2.2)=(0,0)

(z.z)io,o)gcm (a, @ g) et 1, ()
The ratio for the second REE in the early time limit is
R =0 Dt O a2 ey, (70)
Then
SRV = 0) = tog (G s (a5 ) TaPoorm /2] ). ()

The second REE has a divergent factor In~2 |1/z|, which can be canceled by choosing the reference state V,, |0),

a, € {a € C|Re(a) = Q/4,Im(a) € R,Im(a) # 0}. Finally, the early time of the difference of the second REE
between V,|0) and V, |0) is

ASEV10). V.o [0)](t = 0) = SV J0}](¢  0) = S2[V,, [0)](1 — 0) = log (CC(S”—ZQQ))
a,a, € {a € CRe(a) = 0/4,Im(a) € R,Im(a) # 0}. (72)

Secondly, we consider the second REE in SLFT in the late time limit. For convenience in the late time limit, we have to
use a conformal bootstrap equation to express the four-point function G,34(z, Z), which is similar to the procedures shown
in LFT. The four-point function can be expressed as follows:

<Va1 (07 O)Vaz(z’ Z)Va3(1’ I)V(x4(°°’ °°)>2| = G1234(Z’Z)

1 ! ) ]
=3 (/s da,Cs(ay, oy, o) Cns (a3, a4, @) F§ (A1 234, 8y . Z)

5: ‘g
/datZngLa, q (A: 1234,Aa,,Z)

p=e,o

, ~
/ da,Cys(ay, @y, ag)Cns (a3, ay, @) FF (A= 53.4, By, Z)

/dat ZFgLa, a3 a2}oFlt)(Ai=1,2,3,4v A(X[’Z))' (73)

p=e.o ag - p
In the late time limit of Eq. (73) with saddle point approximation, the four-point function becomes

li VaVaVaV
(z,2)1—r>r(ll,0)< avaVa a>21

~ i dzf(tNS (p\')
2-0102!  dp?

aAd]e 2 2
SL _ N\App—20,+p7 (5\App—2A0,+Dp5 2
O/RF%Q/2+ip.ua,Q/2+ipz[ —L(l z)%er (z)7er psdpdp,.
p5_>

aa
T dzfaNS(ps) 2( / (Q))z Fg72~,Q/2 [Z g}i (1 )AQ/Z—ZA 580/2-28,1n=3/2 ( 1 >ln—3/2 (1> (74)
~ S _ -z a 720, a _— -,
(2-0064x2!0 dp? |, TN [sns(Q)? (1-2) z

where the exact expression for F3F 0/2.0 /2[ 9] is revisited in Appendix A 8. We have used the late time limit to extract the

leading contribution in the final step of Eq. (74). One can show that the contribution from the odd parity part of the
conformal block F{(A;_; 234, 4,.z) in the late time limit will be subleading [48] and we drop the subleading contributions
in Eq. (74).
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Then the ratio associated with the second REE in super-Liouville field theory can be defined as follows:

2) li <V&V(1V&Va>22 ~ T dzfaNS(ps) ( (Q))2 Q/2 Q/Z[ZZ]
=120 (VaVe)3,  @a-10)64 x 2! dp |, ,8(0) lsns(0)]?

x (1 —z)herzhern=3/2 <ﬁ> In=3/2 (%) : (75)

Then the corresponding second REE in the late time limit is

@) P 1 dfans(py)
V., [0)|(¢t ~ - _LC/eQ/claae
re Vel )0 = °°)<z~z>~<1,o> g<64 x216%(0)  dp; |, -0 lsns(Q)P

x (1 — 7)80nz8021n73/2 (ﬁ) In—3/2 (%) ) ) (76)

Choosing the same corresponding reference state that we used in the early time situation, the late time of the difference
2 .
AS[Ve]0). Vi 0)] is

ASEV4l0). Vy [0)](f = 00) = SEV[0)] (1 = 00) = Se [V [0)] (£ = o0),
_ ( aNS(p)FzL/ZQ/Z[aa})

o &)

s

SL
axs(P)Fonoplad

p—0
a,a, € {ala=Q/2+ip,p e R} U{a|Q/2 > Re(a) > Q/4} | {a|Q/4 > Re(a) > 0}. (77)
Additionally, we have to consider the marginal case:
(i) Re(a) =%, Im(a) # 0 (marginal case).

This case is similar to that mentioned above, except that Cng(@, a, ) does not vanish at @, = Q/2, so we have

<V&(O)V(I(Z)V&(] )Va(oo)>21

_ Q a]e _ 2, _ 2
<z.z>f<1o>CNS (a’a’z Fo—o/tip.a=0/2+in, [aje(l—Z)Az" Phactpi(z)Bum2AtPidp dp,

T _ 0\? FSLz, 2[32]?
——=Cxs (0!761,5) Z(S&S(Q))Z%

(z,z)f(1,o)16x2 sns(Q)?
(11— 2) 28 (2) 22 < ! )m—% <1) . (78)
(1-z2) Z

For Re(a) = % in the late time limit, the ratio for the second REE reads

B2~ 1 (@) 2y <Q>>27Fg/z*‘~’“[gg]i<1—@sz%xzm—% E V(). (79
B =0 16 x 262(0) O\ T2 TN sns(0) (1-2) z

Then
(2) - ~ — T _1 ~ g : / FQI72 Q/2[a a]g
SV~ o) = | o1t s (e ) 20 R0
— )A0p38021n3 1 -3 l
(1 = z)%erzRerIn ((1 _Z))ln (Z)] (80)
Finally,
@) o) @) fans(p) SéL/z o2lad
ASEE[V4]0), Vi [0)](1 = o0) = Sge[Ve|0)](t = 00) = Sge[Ve,[0)](f — o0) = —log %, O
a,Ns(p) Q/2 Q/2[Ulr “r] p—0
a,a, € {a € C|Re(a) = Q/4,Im(a) € R,Im(a) # 0}. (81)
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One can show that we have to choose an appropriate
reference state in terms of classification (23) in LFT and
SLFT. Then the early time and late time behavior of

AS](52E> [V¢|0),V, |0)](z) can be well defined and the quasi-
particle picture can be restored. That also means that the
divergent behavior of REE of local excited states in LFT
and SLFT is quite different from that in the vacuum state,
although the vacuum state is excluded in LFT and SLFT, as
argued in [44]. Our calculations have classified the diver-
gent behaviors of the entanglement entropy of local excited
states, especially in LFT and SLFT.

III. THE nth REE IN LFT AND SLFT

In the previous section, we computed the second REE of
the local excited states. In this subsection, we use the n-
point conformal block and operator product expansion

L.SL aa
Fa~Fo—0/2a-02 [a (;J

(OPE) to obtain the nth Rényi entanglement entropy of the
local excited states. Here we give a sketch of the nth REE
following [4], which is similar to the procedure for rational
CFTs, albeit with slight modification. First we define the
following matrix elements F, , [similar to the F" matrix in
Eq. (2.10) in [49] ] by

F@n—m=/FW,mmm (82)

where F(a|z) is the conformal block for the four-point
function (V4(z1,%;) - -+ Va(24,24)). One should note that
the fusion matrix is of infinite dimension which is different
from that in rational CFTs.

In the late time limit, the dominant contribution from the
intermediate channel in Eq. (82) is denoted by F, and it is
defined as follows:

(1- z)AQ/ZZAQ/Zln‘3/2(ﬁ)ln‘yz(%) a€{ala=Q/2+ip,p eR}
X U {a]0/2 > Re(a) > 0/4} U {a|Q/4 > Re(a) > 0}, (83)

(1 = 9o ztenin (Ll

a € {a|Re(a) = 0/4,Im(a) # 0},

where ~ denotes neglect of the normalization factors of two-point functions and the factors associated with structure
constants C(a;, @y, a3) and Cns (@, @, a3) in LFT and SLFT, respectively.'®
The nth Rényi entanglement entropy can be obtained from the formula (16). We find

(Va(wi, w)Va(wa, wy) - Vi (Wap, Woy))s, = n=HA L (rs) DA (Ve (21.20) Valz2.20) - Va(zan Zon))s,»  (84)

where we define

|zoks1 " = 1,

We normalize the two-point function"*

(Va(wi, W) Va(wa, 92))s, =

Then we get

(Va(wi, w1)Va(wa, 2) - Vg (Way, Wap))s, _ (&
((Valwi, w)Ve(wy, w2))s, )" n

ntn=

|20k 42| = 5. (85)

1 1

NGRS (86)

4An
> (rs) 208 (Va(24,20) Val(22,22) -+ Va(Zons Zon))s,

2¢ \ 4An _ _ _
~ |\ = : <Va(21, Zl)Va(ZZv ZZ) e Va(ZZVLv ZZVL)>E, ’ (87)

where we take the late time limit in the final expression.

BRefer to Eqgs. (54) and (58) in LFT and Egs. (74) and (78) in SLFT. All these factors are divergent in the late time limit,

narﬁely, (z,2) = (1,0).

For the sake of simplicity, we have omitted the normalization factor associated with §(0), which does not affect the final

conclusions.
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The 2n points z;,2,,...,2, in the z coordinate are given by

Zoper = Xin(ie + t — )i = 2R (1= 1 — ie)h

Zopsn = €2 (—ie + 1 — I)h = &2 (1 — t + ie)r,

k+1/2

Zokp1 = € h(—ie — 1 — 1)i = e 2T (1 + 1 + i€

k172

Zokn = € i(ie — 1t — )i = e (I + 1 —ie)i.  (88)

In the early time limit r </ we find

22k41 = 22k42+ k41 ™ 22k42 (89)

for all k. On the other hand, if we take the late time limit
t > [, we find the asymmetric limit:

22441 = 22k44s 22k+1 = 2ok425 (90)

for all k.
If we can regard the 2n-point functions as n products of
two-point functions (86) in the late time limit, we have

<V&(Zl’ Zl) e Va(zm Zn)>2,
= (Va(z1.21)Va(22. 22))x, @ (Valz3,23)Valzs, 2))s,
® <V&(Z2n—1v ZZn—l)Va(ZQW Z2n>>21’ (91)

which respects the late limit in the antiholomorphic
sectors and ® denotes that we only consider the dominant
contribution with a divergent factor. In the holomorphic
sector, we would like to take the late time limit. To this end,
we need to exchange some of the z;’s with z;’s as

(11722)(23724) e (Zzn—hzzn) - (Z17Z4)(23’Z6) T (Z2n—17z2)'

(92)
|

ASYV,4[0), Vi [0)] (7 — o0)

“log ( FAPIFS 02

" L ara,
fa,(p>FQ/z.Q/2[,,;[,:1> o

This transformation is realized by applying the F-
transformation n — 1 times.

We can estimate the difference in the late time limit as
follows:

ik 2i€l‘(l/"_1)

L2k+1 T R2kpa = €T T,
i +(1/n—1)

_2m.k+”| 2 ) 2iet .

" (93)

20441 — 22kp2 2 €

Their absolute values are all the same and are given by

2e

n=1"*

ntn

5= (94)

Thus we can estimate the 2n-point function in the late
time limit as follows:

<V,}(Z1, Zl)va(ZZ’ Z2) U Va(ZZna ZZn)>Z]

= (Fy™ | dim (Va(2,2) V(2 )

|22k 11 =20k 12| =0~

- Vol(zan Zzn»zl}
o (F,)n=t - 57440, (95)

Then

(Va(wi, W) Vo (wy, 3) - - Vi (Way, Wap))s,
((Va(wi, w1)Va(w, w2))s, )"

= (Fot)n_1 .

(96)

The late time limit of the difference of the nth REE
ASY V4 [0). v, [0)] is

a,

ae {ala=0/2+iplp € R} J {Q/2 > Re(a) > 0/4}

= U {Q/4 > Re(a) > 0}, (97)

L ao
_ IOg f(l(p)FLQ/Z'Q/Z [z_x('x]
far (P)FQ/Z 0/2 larar]
\ rar p—=0

a € {alRe(a) = Q/4,Im(a) # 0}.

Then the variation of the difference ASS") [V«l0),V, |0)] between the early time and late time limit is

ASY[V,]0), V,, [0)](t — o0) — ASY[V,]0), V,, |0)](z — 0)

L aa
-1 FQ/z,Q/z ;;]
Og FL [{Ir{lj]
erepluarl )|, 0

a€{ala=0/2+ip,p eR}J{Q/2 > Re(a) > 0/4}

= U {Q/4 > Re(a) > 0}, (98)

L aa
—10g FL [a’ra_r]
0/2.0/2'ardy p—0

a € {a|Re(a) = Q/4,Im(a) # 0}.

Here we have restored the structure constants in F, defined by Eq. (98).
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This is the main difference between LFT and rational
CFTs. In Appendices A7 and A 8, unlike that in rational
CFTs, one can show that Eq. (83) cannot be identified as a
quantum dimension [4], which is associated with modular
invariance [34]. Therefore, Eq. (98) is no longer associated
with a topological quantity.

To close this section, we would like to comment on how
[Val0). V4 [0)](1 = o0) =
AS [V |0). V,, [0)](t = 0) in generic CFTs. In terms of
the main result, Eq. (98), ASﬁln> [Vel0),V, |0)](t = o0) —

AS [V |0),V, [0)](r — 0) depends on the ratio of the
fusmn matrix elements associated with target states and
reference states. Technically speaking, these fusion matrix
elements come from the intennediate dominant channel in

the late time limit. Then the AS [V,,|0> Vo |0)](t = o0) —

AS [V |0),V, |0)](r = 0) can be obtained directly in
generic CFTs. In this sense, to obtain the memory effect
of REE in generic CFTs, we only care about the fusion
matrix element associated with the intermediate dominant
holomorphic channel in the late time limit.

to extend the calculation of AS/(L,"

IV. THE nth REE FOR GENERIC
DESCENDENT STATES

In the previous sections, we computed the nth REE of
two classes of local excited states in LFT and SLFT,

(VE(wi, wy) V(W W) VT (wa, ) V(Wh, #)))
ht

o <8W1
N 811

V(21,200 V(1. 2V (22,

%)V (z5,7,)) + less divergent terms.

respectively. In this section, we would like to extend the
analysis to states generated by generic descendent operators
in LFT following [36]. In the late time limit, the authors of
[36] showed that the difference of the nth REE only
depends on the most singular term in the two-point function
and the 2n-point function. One can define the following
generic descendent operator:

V(w,w) = LOV, (w, W), (99)
where L) is a complicated product form of the holomorphic
generators; V,(w,w) is a primary operator of conformal
dimension /; and V(w, W) is a quasiprimary operator. The
operator L) has a fixed conformal dimension m:

(Lo, L] = mL). (100)

The conformal transformation for the descendant
operators can be derived from the energy-momentum tensor
and the conformal transformation from the z plane to the w

plane is
8Z1 n
L—m|w1 = L—mlzl <8—W1> +

where the ellipsis denotes the terms of lower conformal
dimensions leading to less divergent terms in the limite — 0.
By the conformal transformation, the four-point function is
transformed as follows:

(101)

(8v’v > <8w2) hem <8w2> heim (Gw >h+m (8;‘/1) i <8w’2> htm (5%) It
02, 0% 07, 07, 075 075

(102)

The coefficient for the leading term is the same as that for the primary operator. The terms with lower conformal dimensions do

not change the final result.

The two-point function for V can be expressed as follows:

(LOV) () LV () =

—1)"(h|LETLE)|R)

- (103

(z-z

In the late time limit, (z;,25) (22, 2}) (Z1,2Z]) (22, Z5) approach each other. The four-point correlation function of V can be

transformed to

(VH(z21.2) V(4. 2) VT (22, 22) V(2. 7))
=D(V, (ZI’ZI)V(II

—D/cm

Zl)|mv (ZZ)

_D [n CmaVae) Vel Vale)Vale) Va2

:/l Cna(LOVE @)LV ()W LOVE (22) LDV () (Va(Z) ValZ) Val(Z) V.

Z)Val22,22)Va(22. 7))

() (Va(z1)

va<zll)|mv6(22)va(zl2)>
Va(zll) ‘nV&(ZZ)Va(ZIZ»

o(22))- (104)
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Here (V3(21)Vo(2))|nVa(2z2)Va(25)) denotes the conformal
block expansion with the Virasoro module [m], which
exhibits a continuous spectrum in Liouville field theory,
and [m] contains the dominant contribution satisfying the
fusion rule.'> The correlation function of four descendant
operators has been transformed into the differential operator
D acting on the correlation function of corresponding
primaries in the first equality. In the second equality, the
partition function is expanded by the conformal blocks and
here c,, denotes the OPE coefficients. In the third equality, the
holomorphic part can be expressed by the #-channel like in [4]
in the late time limit. In the fourth equality, we pull the
differential operator back into the Virasoro operators acting

1

(V2. 2) V(2. 7))V (2. 22) V(2. ) = FLSE

Min(ay),Min(e,) [g g
® (Va(z1)Va(Z))) ® (Va(z2)Va(Zy)) + less divergent terms.

on the primaries in the correlation function. In LFT and SLFT,
we have shown that the dominant contribution to REE in the
late time limit comes from the intermediate channel with
m = Q/2,n = Q/2 in primed contour integration over m, n
in Eq. (104).

In Secs. I and III, we have already found that the
most divergent term comes from the intermediate operator
with the minimal conformal dimension of the operator in
the intermediate fusion channel and Cwin(a,) Min(a,) =

(Ff/ﬁn(as)innm’)[Zg])‘l :ﬁ,m which is similar to that

in rational CFTs [4]. We use upper index L, SL to
distinguish the quantities in LFT and SLFT. The most
divergent term is as follows:

(LOVE(z)) LV, (2)) @ (LOVE () LIV, (2)))

(105)

So the four-point function in the w-coordinate keeping the most divergent term is

1

(VH(wy, ) V(W5 W0V (W, o)V (wh, Wh)) = FLSE

Min(a,),Min(a,)

Therefore, for a quasiprimary operator, we still have
SAVI0))(r = 00) = =108 Fijt, ) win(a) @4, which is
defined by Eq. (83) in LFT and SLFT.

Finally, we present the main results with the more

generic descendent operators:

V= 3 s LEDTLEIV (2 2).

m,j.r.k

(107)

Here j and k denote the quasiprimary operators and V,, is
the primary operator. L(=/)L(=KQ,(w,W) is a quasipri-
mary operator and L(—) (L(=¥) is a combination of
holomorphic (or antiholomorphic) Virasoro generators with
fixed conformal dimension [Ly, L] = p,L{=J).

We do not repeat the calculation in detail here as this has
been analyzed in [36]. The differences have already been
presented in Eq. (104). Here we provide the final result as
follows:

Su[VI0))(t > o)

ao 1 .
= log FII\J/[in(aS),Min(a,) |:a C—J - n—1 10g TrpO
; 1
= Sy — ] log Trpg, (108)
n—

Due to the fusion rule in LFT or SLFT, [m] is not a vacuum
module, which does not belong to the spectrum of LFT or SLFT.

(LOVEWILOV,(wh)) @ (LOVE (wa) LOV(w)))

[Ga)
® (Va(w)V,(W))) & (Va(np)V,(Ws)) + less divergent terms.

(106)

with the normalized density matrix py = 2

T where

Sf’,ﬂmaIy[Va|0>](t — o0) = —log FE

ao
Min(ay),Min(a,) {

109
a&] ( )
is the REE of the local excited state V,|0). The density
matrix is defined as

p=BMB'M", (110)
and these matrices are associated with coefficients in
Eq. (107):

Bl jyirky = Aoy i

M iy iriy = (RILEDTLED RYS, i (111)

As we see from Eq. (108), S,[V,|0)](f > oo) has a
similar structure in LFT and SLFT with that in rational
CFTs. S,[V,|0)](t = o) makes two main contributions.
The first contains the universal part depending on the fusion

"Here the FLS' contains the divergent piece shown in
Eq. (83), and Min(a,), Min(a,) are the minimal conformal
dimensions of the intermediate operator involved in the fusion
process.

YPrecisely, here we have neglected the normalization factors
and associated DOZZ factors.
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matrix element of the corresponding primary operator and it is divergent due to the divergent component [Eq. (83)] in the
first term. The other comes from the normalization scheme of the local descendent operator. Finally, we can see that the

variation of the difference ASEE [V4l|0).V, |0)] between the early time and the late time is

ASIV,4[0), Vi [0)] (1 — o0)

Fp 0l
B log <W> p—0 trp,
= U {Q/4 > Re(a) > 0},
Fon.0plad 1 1rpg
—log <Q/2Q/2[]> - ——log w4 € {a|Re(a)

— ASE[V,]0), V,, [0)]( — 0)

~Lilogi% ae{ala=0/2+ip.peR}{Q/2> Re(a) > Q/4}

(112)

= Q/4’ Im(a) * O}’

where we choose p, defined by the reference state (107) associated with primary operator V, .

V. DISCUSSIONS AND CONCLUSIONS

In this paper, the time evolution of the difference

AS](E’E) [Vel0).V, |0)](z) of REE between locally excited
states V,|0) and the reference states V,, |0) has been studied
in 1 + 1-dimensional irrational CFT, especially in Liouville
field theory and super-Liouville field theory. In rational
CFTs, there are finite primary operators and one needs to
undertake the finite summation to extract the difference of
REE shown in [4]. Furthermore, the reference states V,, |0)
can be chosen as a vacuum state 1|0). In irrational CFTs,
there are infinite-dimensional and continuous spectra which
are also highly degenerate. One might doubt that the
differences of REE in irrational CFTs have very different
structures compared with that [4] in rational CFTs.

To answer this question, we calculate the second REE
in a compact ¢ = 1 boson at a generic radius which is an
irrational CFT as a preliminary exercise. Because the Hilbert
spaces of LFT and SLFT are very special in irrational CFTs,
they are especially chosen as playgrounds to calculate the

difference of REE ASU[V,[0), V, [0)](r) between two
excited states, e.g., V, [0) and V,, |0). Furthermore, there
is no well-studied holographic dual of the local primary
operator in integrable rational CFTs [50] and one cannot
make use of AdS/CFT to calculate REE in this case.
Although the holographic dual of LFT or SLFT is not clear,
it is interesting to extract the large ¢ universal properties

thereof. One can study the time evolution of REE SI(E'E [V,]0)]
by applying the replica trick in LFT and SLFT and one might
obtain some properties of large ¢ CFTs.

To understand these properties, the second REE

Sgé[V(AO)] of local excited states is calculated in LFT and
SLFT. For a state excited by a local primary operator V ,, the
REE is divergent both in the early and late time limits. The

divergent behaviors of REE Sg]g[V(AO)](t) in the early and
late time limits are different, which seems to contradict the
quasiparticle picture proposed in rational CFTs [4,7]. That

also means that S%[Va|0>](t - ) — S](EZE)[VG|O>}(t —0)is

divergent. ' The identity operator does not live in the Hilbert
space of LFT and SLFT and no discrete terms contribute to
the REE; the vacuum block does not make a contribution to
REE. That is the main reason leading to the different
divergent behavior of REE in the early and late time limits.
To define finite quantities, e.g., ASEX") [V,|0), V,,[0)](t), one
has to classify all locally excited states in LFT and SLFT. The
zero point of the structure constant (DOZZ formula) pre-
sented in the second REE has been estimated to classify the
primary operators in LFT and SLFT. These primary operators
have been divided into two classes in terms of the real part
of Liouville momentum a, e.g., @ € {ala = Q/2 +ip,p €
R} U {a]0/2 > Re(a) > 0/4} U {alQ/4 > Re(a) > 0}
and @ € {a|Re(a) = Q/4,Im(a) # 0}. Due to the fact that
the second REE of excited states is divergent, one has to
choose an appropriate reference state V, |0) which lives in
the same class as the target states V,|0). The difference

AS [V 0),V,,|0)](#) of the second REE between target
states V,|0) and reference states V,,|0) will be finite in both
the early and late limits. One can study the time evolution

behavior of AS [ «|0). V, [0)](2). The difference of the

REE AS [V |0), V, |0)] between the early time limit and

the late time limit always coincides with the log of the ratio

FF:Q/Zi’ZQ/Z[“] of the fusion matrix element between two
a=0/20=0/2 ey

excited states, e.g., V,|0), V,, |0). The precise expression has

been listed in Eq. (112). Following [4], one can also directly

extend this analysis to the generic nth REE. The difference

AS [V |0), V, |0)](7) between the early and late time is
independent of n and it still contains the log of the ratio of

Fay—0/2.0=0/2ac)
T between the target
and reference state. Finally, REE of the generic descendent
states following [36] has been investigated. Comparing

this with the case of primary states, the difference

fusion matrix elements

®Equivalently, AS{" 0)](1— 00)—ASV[V,[0).1]0)] x

(t—0) is divergent.

[Val0).1
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ASX') [V,]0), V, 0)](¢) in descendent states V/,|0), V,, |0) in
LFT or SLFT now contains one more additional term which
is associated with the normalization factor of the descendent
operator.

How can one understand the different divergence behav-

iors of AS&") [V,|0), V,,|0)] in the two classes of local excited
states? In terms of [43], they define the states V,|0) as the
Liouville momentum a € {Q/2 + ip, p € R} as normal-
izable and the states V,|0) with 0 < a < Q/2 are non-
normalizable states. The normalizable states correspond to
nonlocal operators which create macroscopic holes in the
surface. In this paper, we have confirmed the difference
between the normalizable states and non-normalizable states
from the memory effect of the REE perspective.

Finally, one can apply these techniques to calculate the
out-of-time-ordered correlation function (OTOC) to check
whether the superintegrability of LFT is consistent with the
chaotic proposal [51]. Recently, the authors of [52] proposed
acorrespondence between 1 + 1-dimensional Liouville field
theory and the one-dimensional conformal quantum mechan-
ics Sachdev-Ye-Kitaev (SYK) model. One can compare the
OTOC in Liouville field theory with the late time behavior of
the two-point function of bilocal operators in SYK and then
check the correspondence [52] between LFT and SYK. More
recently, the authors of [53—55] proposed the Liouville field
theory action as the optimization of the complexity of static
states in conformal field theory. Also, the associated mea-
surements of the complexity in generic field theory and the
holographic aspects thereof have been proposed in [56—62],
respectively. One can extend the study of the complexity of
local excited states in conformal field theory to define the
optimization procedure. Hopefully, some progress in these
directions can be reported in the near future.
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APPENDIX: NOTATIONS AND TECHNIQUES
1. The Notations of LFT

The full Liouville action (see a review in [46]) is

SL= ﬁ / d*E\/9(0,00ppg™ + OR + Anue®?], (Al)

where Q = b + %. The conformal dimension of the corre-
sponding primary operator ¢> is

A(e*?) = A(e*) = a(Q - a). (A2)
The stress tensor is
T(z) = —(0)* + Q0*¢, (A3)
and the central charge of the conformal algebra is
cg=1+60>=1+6(b+b")% (A4)

The three-point function of the primary operator in
LFT is

C(al , A, a3)

<Va] (Zl’ Zl)vaz (Z2v ZZ)Vag (Z3v Z3)> =

|2(AI+A2—A3

|212

3|2(A|+A3—A2 |2(A2+A3—A1) ’ (AS)

)|Z1 )|Zz3

with z;; = z; — z;. The function C(a,,a,,a3) is called structure constants associated with dynamical data of any CFT.
The DOZZ formula is an analytic expression for C in LFT from [63,64]. The DOZZ formula gives the three-point

function
- i T3, (0)Y), (201 )Y, (202) T (213)
Clay, oy, a3) = AQ=22L a)/b b b : | A6
(a1, a2, a3) YTy(ay +a+a3—0) (o) +ay —az3) Ly + a3 — ) Vp(az + ap — ) (A6)
where
T, (x) : &7
X)) =———"—"—
7T, 0r,(Q - )
and
A= mpy (D) > (A8)
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The I';(x) is given by Eq. (A31). In this paper, we need the four-point function of the primary operator, which reads

(Vo (21,21) V) (22:%2) Vi, (23.23) Vi, (24, Z4) ) = 213 | H A 21782789 |7 2R 8= R1=84) | 7) |40 | 7 [HAIH82-85—80) G (2, 2),

(A9)
with the harmonic cross ratio z defined as
- 212234’ (A10)
213224
and G]234(Z, Z) as
1 [~dp : . -
Gi4(2,2) = 5/ Zc(alv o, Q/2 +ip)R;(ay,)Claz, as, Q/2 = ip)Froza (A1, Ay, 2) Frosu (A, Ay, Z). (Al1)
-0
|
_ 2 2 :
Here _Ap =p 4+ Q /4, and the functions F1234%(z) and c :§+3Q2_ (A16)
F1234(Z) are the Virasoro conformal block. In this paper, 2

we follow the notation for the four-point Green function
given in [45] with respect to the normalization of the two-
point function.

2. The Notations of SLFT

The N = 1 supersymmetric Liouville field theory may
be defined by the action (see a review in [46])

1 1
Ssr 4 / 5\/@2][ 9ap0a@Opp

n
1 -
+5 (wOy + o) + 2iub pye’® + 2mu*b>e*h?,
n
(A12)

where ¢ is a bosonic and y a fermionic field, y denotes a
two-dimensional cosmological constant, and b is a
Liouville coupling constant.

The theory has N =1 superconformal symmetry.
The energy-momentum tensor and the superconformal
current are

1
T = =5 (09dp - QP9 + yy),

and the superconformal algebra is

[Lmv Ln} = (m - n)Lm+n + %m(mz - 1)5m+n7 <A13)
m—2k
(L. Gi] = TGm+kv (Al4)
c 1
{Gr.Gi} =2L 4 + 3 <k2 - Z) Ops1- (A15)

The central charge in SLFT is given by

The NS-NS primary fields ¢*(¢%) in the N' = 1 SLFT
have conformal dimensions

ANS — %a(Q —a). (A17)

As before, physical states have a= % +ip with
Q = b+ 4. The R-R primary field is defined as

R(z,2) = 0¢(z,7) e, (A18)

where o is the spin field and € = = is the fermion parity.

For simplicity we can take all € = 4 and drop this index.
The dimension of the R-R operator is

1 1
Al =—+5a(Q-a).

TR (A19)

To consider both NS and R sectors, we will need
various functions defined differently for each sector.
Here we use the notations C;, T;, I';, where i = 1 mod
2 for Cyns, YTns, I'ng and i = 0 mod 2 for R. One can refer to
Appendix A4 to find out the exact definition of these
special functions.

The four-point function for the NS-NS operator is

G4(Zv Z) = (V(u(oo’ OO)VaS(l, l)vaz (Z’ Z)Vrzl (07 0)>’
(A20)

which can be written in the “s-channel” representation:

_ da
G4(Z,Z):A . [C(a4’a3’as)
2

+iR* 1

Az
X Clay.ar,a)|Fe, |7 ()2 (A21)
T Loy o
~Clag,as,a)Canma)lFy, [P 2| @F] (a22)
ay
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The e,0 in Fj and F7_ denote N =1 Neveu-Schwarz blocks with even and odd fermion parity as in [65,66].
Following [67,68] the structure constants have the following explicit form (here, o stands for a; + a, + a3):

0ob )\ (@-a)/b Ns(0)Yns (2ay ) Yns (2a2) Ts (23)
C , , — bl —b
(a1 . a3) (ﬂw< ) ) TNS(“ Q)TN (051+2—3)TN5(C¥2+3—1)TNS(053+1—2)

- (@-a)/b 2i0L o (0) Yns(20) Tns (20) Tns (2
Clay, o, a3) = <ﬂ,uy<Q—)b1‘b2> iTs(0) Trs (201) Ts (202) Vs (2013) ’ (A23)
2 Tr(a— Q) Yr(a123) Tr(A213-1) Tr(@341-2)
where we define a;,;_x = a; + a; — o for short and
X x4+ 0 1
T =7 =T,z = A24
1) Ns(%) ’ <2> b( 2 ) Ins(0)ns(Q =) (A24)
X x+0
['i(x) =Tys(x) =T <§)Fb< 5 ) (A25)
Functions for the R sector are defined differently. For example, we have
x+b x+b7!
The four-point function for R-R operators,
G4<Zv Z) = <Ra4(°°? oo)Rag (1’ I)Raz (Z’ Z)Ral (0’ 0)>’ (A27)
can be also written in a similar form:
_ da; _ aza - o (B 2
Gua.2) = [, (Chlasaslo) s anla) 1P, [ 21(2) P~ Cip gl C (el P, [ 22) ). (A28
+iR*
The corresponding structure constants become
b (Q-a)/b T (0)TR(20) T R(2a0) Ty (2
CS (. ala) = <7Iﬂ}/<Q—>bl_bz> « [ ns(0)Yr(200) Y (202) Tns (2a3)
2 Tr(a— Q) Tr(ar42-3) Tns(@13-1) Tns(@341-2)
€T (0)Tr(201) Yr(2a2) Yns (2a3) (A29)
Tns(a— Q) Tns(i12-3) Yrlaz3-1) Tr(as11-2)
Crlay, mylaz) = [(Pl + p3)Crl(ar, ay|az) = 2p poCxe(ayr, aofas)]. (A30)

T2

3. The function I';(x)

The function ', (x) is a close relative of the double gamma function studied in [69]. It can be expressed by means of the

integral representation
% dt e — 7012 (0-2x)* Q-2x
logI" = — - - . A3l
°&ls(x) A : <(1 — e (I—e )T 8 : ) (A31)

Important properties of I',(x) are listed as follows:
functional relation I',(x + b) = v/2zb" 2~ (bx)[,(x). (A32)

analyticity I',(x) is a meromorphic function and it has poles only
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at x = —nb —mb~' ,n,m € 7. (A33) I, (x)
T S = A35
=0 (435)
Further properties are listed in [70].
In terms of the functional relation in Eq. (A32), one can ~ We will use the properties
find the residues near by various pole as follows:
- Self-duality S,(x) = S,-1(x), (A36)
Iy(x) = # +0(x), x—-0. (A34)
X
Functional relation S,(x + b*!) = 2 sin(zb*'x)S, (x),
4. Double Sine Function (A37)
In terms of I',(x), the double sine function is given as
follows: Reflection relation S, (x)S,(Q —x) = 1. (A38)
|
The asymptotics behavior of S;(x) is
2 X X 2 a2
_ . b irl ) g x| = 00, x; <0,
Sb(x—x0+1xl)~ , y (A39)
. bxy xo Yo ¥
e~ BEx0) it i) gy |x| = o0, x; > 0.
We define the following functions:
1 Fb (x) in
Ty(x) =,  Sp(x) ==~—"—,  G(x) =e PG, (x), A40
b( ) Fh(X)Fb(Q—X) /7( ) Fb(Q_x) b( ) b( ) ( )
and, in SFLT, we follow notations from [71] to denote
x x+Q x+b x+b7!
Ins(x) =Ty (5 )T . IR(x) =T, L, ; (A41)
2 2 2 2
X x+ 0 x+b x+b7!
TNS(X)—Tb<§>Tb< 2 >, TR(X)_Tb< > >Tb< 2 > (A42)

etc. Using relations, basic properties of these functions can
be established easily:

I'ns(2a)

0-2a
Tou—g)  Vs@a (A43)
IR(2a) oo
m = WR((Z>/1 26, (A44)

where Wys(a), Wg(a) are defined in (A45) and (A46), and
A= ﬂ,uy(%)bl"’z. The functions W; are defined as

0-2

2(mpuy(bQ/2))” 7 m(a — Q/2)
L(1+b(a=0/2))0(1 +4(a=0/2))
(A45)

Wys(a) =

0-2a

Wi(a) = 2m(zuy (bQ/2)) 7
R F(1/2+b(a—Q/z))r‘(]/2+%(a_Q/2)).
(A46)

In the literature, one can define the following equations for
convenience:

swﬁ&mwﬁﬁgﬁ (A47)
So(x) = Sg(x) = %. (A48)

They have the following relations with Syg z functions:

Sxs(2x)

m = Wns(x)Wns(Q = x), (A49)
SR(ZX) . _
m = Wr(x)Wg(Q - x). (A50)
In the paper we used the following:
(1) Reflection properties:
Sns(*)Sns(Q — x) = Sp(x)Sr(Q —x) =1 (AS1)

026005-22



CONFORMAL BOOTSTRAP TO RENYI ENTROPY IN 2D ...

PHYS. REV. D 99, 026005 (2019)

(i) Locations of zeros and poles can be obtained from Eq. (A41):

Sxs(x) =0e x=Q +mb+nb!,
Sp(x) =0& x=Q+mb+nb,
Sns(X)'=0© x = —mb —nb7!,

Sp(x)' =0 x = —mb —nb",

(ii1) Basic residue:

1
limXSNS (x) = —.
x—0 T

5. Poles Structure and Discrete Terms

Following the Appendix about the LFT in [72], the four-point functions of primary operators are

<Va] (O) V(12 (Z) V(13 (1)V(14 (OO)> = / 0 C(al » A, as)c(a?a’ Ay, as) |FS(A(1,‘:]V2V3.49 Aa\. s Z) |2da.w
iR+5

m,n € Zsy,m~+n ez, (AS52)
m,n € Zsy,m~+ne€2Z+1, (A53)
m,n€Zsy,m+n¢€27Z, (A54)
m,n € Zsg,m~+n €27 + 1. (A55)
(A56)

(A57)

where Re(a;), ...,Re(ay) = Q/2. For a; € (0, Q/2) cases, Eq. (A57) needs to be extended. The proper way to integrate
should preserve the crossing symmetry with the assumptions given in [73-75].

The integrand of (A57), as a function of a € C, has many poles. The two structure constants C(a;, @, a,) and
C(a3, ay, @) in (A57) have poles and these poles comes from the zeros of the Y’s in the denominator of the DOZZ formula

in LFT."” These poles are as follows:

1 2 3 4

5 6 7 8

O-a,—L | a,+L | 20—a,—L —-Q+a,+L

ad—L

—a;+0+L | —ay—L | ag+0+L

where a; = a; + ay,qy =a; —a,, for LFT: L ={bm+b~'n:m,ne 72},

for SLFT NS sector: L = {bm +b~'n:m+n € 27"},

for SLFT R sector: L = {bm+b~'n:m+n€27=° +1}.

Note that rows 1 and 2 are related by @ — Q — o symmetry
and so are 3 and 4, etc. The poles coming from C(a,, a3, @)
are obtained by replacing 1,2 — 3,4 in the above equations.
If Re(q;) = % the real part of the poles belongs to the
intervals (—o0,0] U [Q,+o0) and the intervals do not
intersect with the integration contour Q/2 + iR (A57).
When Re(a,) = Re(a; + a,) starts to decrease from Q into
the interval (0, Q), the poles start to move on the plane ;.
One can show that only the rows 1 and 2 may cross the line
Q/2 + iR. When Re(a,) decreases to Q/2, row 1 crosses
the line from its left, and row 2 cross the line from it right.
As Re(ay) further decreases, several poles from those rows
in the table will have crossed the line. These poles are

P.={x€ Q- (a+a)—L:Re(x) €(0/2,0)},

P_={x€a +a+ L:Re(x) € (0,0/2)}. (A59)

"The similar structure constant in SLFT is given in the above
Appendix A 2 and we just list the relevant results.

(A58)

To extend analytically the integral (A57), the integration
contour has to be deformed to avoid the poles from crossing
it. Using the Cauchy formula, this amounts to adding +2xi
times the residues of the integrand of (A57) at points in P,
respectively. These terms are the so-called discrete terms
[73-75] known in the literature.

Using the @, > Q — a, symmetry of T, the contribution
of P, equals that of P_. Then, the poles from a,; can be
similarly treated. For the LFT four-point function for
values of Re(w;) € (0,Q/2), the resulting form is as
follows [72]:

(Vi (0)Vg, (2) Vi, (1) Vg, (00))
= /Q C(al » A, aS)C((ZS’ Ay, C_L") |F.Y(A(l,-7 Aap Z)|2dax
S+iR :

+-2 Z Resax—>p [C(alv a3, aS)C(a3, ay, C_ls)”
pEP_

X Fy(Ag. Ay, 2)* +[(1,2) < (3,4)]. (A60)
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In this paper, we will use asymptotic form of the
conformal block as z = 0, or z — 1. The z — O series
expansion of the conformal block is

F (Aa1 g Aas ’Z) =7 At

x (1 + (A(lz _Aa] +A{3)A(Aa3 _Aa4 +A{I\.)Z

ag

+0(z2)>. (A61)

Once s-channel blocks are known, #-channel blocks can
be obtained by a permutation of the arguments, while
taking global conformal symmetry into account, and this
becomes [76]

Fi Ay Ay 2) = (1= 2)2 8 F (A, A, 1 -2).
(A62)

In this paper, to compute the dominant asymptotic behavior
of (AS9) as z — 0 or z — 1 is very important. We need
to consider the internal charges a; € P, U (Q/2 + iR)
involved and find the smallest scaling dimension
A, = a(Q — a). In this paper, we will make use of these
details to obtain REE. Some further calculations have been
given in Appendix A 6.

6. To Calculate the Dominant Contribution
in Early Time

In this section, we would like to show some details about
how to do the early time integral appearing in the four-point
function in LFT. The early time limit (z,Z) — (0,0) is a
short distance limit, or equivalently z; — z, or z3 — 4.
Hence one can insert a corresponding OPE [74,75] in
Eq. (A57). If the OPE would be given by a sum as in
rational CFTs, the dominant contribution trivially would be
realized by the contribution of the r.h.s. operator with the
lowest conformal dimension. In LFT, we have an integral as
given in formula (1.10) of [74].

For Re(a; + a,) > Q/2 [74], the integral is

2

Vo OV Ve (DVarloo)) = [ (0 p(P)ap

(A63)

(22)—

whose asymptotics for z — 0 is

z_ f(0) ., e
—logz 2 +2long(0)+8(—logz)%

f”(o) 4+ ..
(A64)

One can apply the following OPE [74]:

4n
X [Vos24ir(0)]-
The integration contour here is the real axis if o

and @, are in the basic domain |Q/2 —Re(a;)|+
|Q/2 —Re(a,)| < Q/2. In this case, one can find that

rap 5\A0/2+ip—Bq, —A
thl (O)Vaz(z> = —C(al,az,as)(zz) Q/2+i a) T Bay

(A65)

1 3

A 0
E W(ZZ)“ A AZC(al,az,—>VQ/2(O)+"'

2
(A66)

But we have to take into account that C(a;, az,%) =0.
The function f(P) is C(al,az,%+ iP)C(al,az,% —iP).
Due to f(0) = 0, the first nonvanishing term is the one with
7"(0), which is then

(Ve (0)Ve, (2) Vi, (1)Ve, (00))

z IV -
(23)5(00)%f”<0)(zz)% 4178~ log(22)) .

(A67)
This conclusion corresponds to a statement by Seiberg in
[43]; see the comment after his Eq. (4.15).20

For a; and a, that stay outside of the basic domain [74],
we can use the following OPE:

Vm (0) Vaz (Z) = (ZZ)_Z{llaz [Va] +a, (0)]

1

2
1

+ = (22) 2% 8(a) + @) [V gy -, (0)]

2
1 [dP

45 [ G Clarasa)(z)bomras
2 ) 4rx

X [Vosa+4ir(0)]- (A68)

The integral has again an asymptotics as above
Eq. (A64). The first two terms in Eq. (A68) are the so-
called discrete terms. But now the more dominant term is
given by the contribution of the discrete term, i.e.,

(Ve (0)V e, (2) Ve, (1)V¢, (00))

~  Claj,ar,a; +a)Clay, a0, O —ay —a
(22 500) (a, a0, a1 +ay)Clay, ap, Q — ) — )

(2)brsa ™y, L (0) (A69)
Depending on the value of a; and a,, other discrete terms
can take over, as discussed in [74].

To calculate the late time limit of (V, (0)V,,(z) x
Vg, (1)V4,(c0)), we have to use conformal boostrap equa-
tions firstly and following the above procedures in this

*'The fact that the author writes Q/8 instead of 02 /4 is due to
different normalizations.
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subsection. We have presented the main results and will not  of the quantum dimension [40] LFT, we will show that the

repeat all the details here. F{o[29) will be the quantum dimension.
Just to follow the convention in [77-79], we introduce
7. The Fusion Matrix in Liouville Field Theory Fi o [Zz Zﬂ as follows:
In this subsection, we will see how to associate with the
quantum dimension defined in LFT. For the late time limit . [a3 052] _ N(ay, ay, a))N(ay, as, &) o [a3 0‘2}
of the second REE, the fusion matrix element F; .02ladl “ g o) ~ N(ay, a5, a0)N(agapay) % la,a,
will be presented. This matrix element cannot be identified A70
as the quantum dimension in LFT. Following the definition ( )
|
where
r,(2 203) (2a0) T, (201 )T
Nlas, ar, ;) = p(20 = 2a3)0' (20)1, (201 )T, (Q) (A71)

Fb(ZQ a —(12—(13)Fb(Q (¢4} —a2+ag)Fb(a1 +(X3 )Fb<az+(l3 —(11).

The b — 6 symbol has the explicit form

pr (@3, Splay +ay —ay)Sy(a; + ay — ay) /
Sp(2 duS,(—a, £+ 2 Sp(— —-Q/2
aa,[a4a1 Sy (s 1 — a3)Sy(cs + a5 — @ 4)| b(2a,)]* [ duSy(—ay £ () = Q/2) + u)Sy(—ay £ (a3 = Q/2) +u)

x Sy +ag = (o, — Q/2) —u)S,(Q + (a, — Q/2) — u), (A72)

where the following notation has been used: S, (a + u) := S, (a 4+ u)S,(a — u). The function S, (x) is defined by Eq. (A35)
in Appendix A 4. The integral can be performed using the identity

3

/dzHSb 2)Sy(vi+2) = HSb(u,~+uj), (A73)

ij=1

where the balancing condition is Z ' Hi +v; = Q. We are interested in the FEL wa [Z Z] which has been shown in Sec. ITE.
wol =A{5 a5}y and the canonical 6 symbols are

In terms of the notation of [80], the 6 symbols correspond to F asa,[

ay o az oy
defined as
{al QZ‘ as} _ M(as’ a2, al)M(aéh as, as) {(Z] 052’ as}an
aagla o M, a3, 0)M(ay. ap.a1) \azayl a b’
(A74)
with
M(az.ay, 1) = (S,(20 — oy —ay — 3)S,(Q — &y — @y + @3)Sy () + a3 — ) Sy(ay + a3 — )2 (AT5)
With following relation given in [80],
{al a as} _ {a1 fj!z’ as} , &= 0—a. (A76)
a3 0y O b 3 0yl oy b
one can obtain that
EL, {0‘3 0‘2} _ M(Oizt, a,, ay)M(dy, a3, a) FET [053 0’2} (A77)
S lag oy M(ay, o, o)M(ay, a3, @) “% laga
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Then
L [5! a} _ 0(2a,) Ty(ay) Ty(20 = 2a,)05(Q — ) Tp(2a = a,)T,(2a+ Q + &), (2a - 0 + a,)°
o al Fb(as) Fb(2a1> Fb(za - as)rb(Q - (,15)3 Fb(_za + Q + as)rb(za - Q + as)zrb(zQ - 2(1,)

Up(a,) Ty(Q — o)1, (20 — O + a )T, (=2a + 20 — ;) T ()T (=2a + Q + a, )T, (2a — O + ay)
Cp(ay) Ty (=20 +20 — a )T, (Q — )T, (2a = Q + a,) Ty (2o — )T, (Q — o, )T, (=2 + 20 — ay)
x |8, (2a,) . (A78)

The factor in the second line of (A78) comes from the four normalization factors N(as3, a,, a;) in Eq. (A70), the factor in the
third line of (A78) is from the four factors associated with M (a3, a,, a;) in Eq. (A77), and the factor in the last line of (A78) is
mainly from F' ELI [%3 %] in Eq. (A72). We have already made use of Eq. (A73) to do the u integration to obtain the simple

ay a
expression (A78). From (A78) and the meromorphic property of I';, (a) shown in the Appendix, one can see that there is no pole

structure in F’ ]ozya, [#9] for @y — 0. We then obtain the following expansion near a; — 0,

a o

FL, [az 0!1} _ % 15, (20, Ty () T(20)T5(0 — ) T (—2a 420 —a,) T, 2a—a, )T (—2a+ O+ a, )T, 2a— O +a,)

way T, (2a,) I,(Q)°T,(20-2a)? I, (2a)°T,(20 - 2a,) ‘
(A79)
The factor |S,(2,)|* can be taken care of using
ISy (a)]> = —4sinzb(2a — Q) sinzb~' (2a — Q),
but we will temporarily keep it. The only divergence is from the simple pole of I',(,) in Eq. (A34),
I,(0)
I ~— A80
)~ L (A80)
and the residue is given by the simple pole of F§, ,[29],
a 1 [,(Q - 2a)l)(2a— Q) 1 Sp(2a - Q)
FE [aa} =—S 2,20 =—IS 2= A8l
0a,—0 ad o | b(a)| Fb (2a)rb(2Q _ 2(1) o | b(a)| Sb<2a) ( )
With the help of the following identity from Eq. (A37),
Sy(x 4+ b*") = 2sin(zb*'x)S, (x), (A82)
we can express the residue as [where we also use Sj,(x) = Sj-1(x)]
a 1 1S, (2a,)|>S,(2a — Q) 1 sinzhQ sinzb~'Q
FOa,—»O[ ﬂ = - N o 1 = - - ] .
aal  2zma 4sin[zb(2a — Q + ;)] sin[zb~' 2a = Q)]S,(2a — Q) 2z, sin[zb(2a — Q)]sin[zb~" (2a — Q)]
(A83)

By comparing the definition of the quantum dimension [40] in LFT, we will show that the F’ 6!0 [Z o] will be the quantum
dimension.

8. The Fusion Matrix in Super-Liouville Field Theory

Similar to Appendix A 7, we would like to comment on the quantum dimension and fusion matrix presented in the second
REE in SLFT. Generically, the fusion matrices take the form i, j = 1, 2, which correspond to the parity of e and o,
respectively [48]:
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_ N0 -a - —a)(Q—a + a3 — )0 +a,—ay —a3)Ti(a3 + a, — )
Fj(ZQ —a; —a; — aQ)Fj(Q —a,—a, + al)Fj(Q —a;—ay + as)Fj(as +a; —a)

Fi(Q—ai—ay +a)li(ay +ay —a)Ti(a, + ay —ay)Ti(a, + oy + a, — Q)

Fi(Q—a,—ay+a)lj(as +ag —a)lj(as +ag —a3)Tj(ay + a3 + ay — Q)

s (12:|i

FarlY a |:
as

J

I'ns (20 — 2a,)T'ns (2a,) 1 [ieo az; ]!
ns (20 — 2a,)I'ys (2a,) _./ dTJa&,a/|: 3 2] . (A84)
1—‘NS(Q - 2at)FNS(2at - Q) I J-ico ‘ ag ap;
We will consider i = j = 1, which gives the fusion matrix for the NS sector. In this case, we have
J [“3 0‘2] 1 _ Sns(Q 4+ 7—a1)Sns (7t + oy +ay —a3)Sns(t + o) Sns(t+ag +an + a3 — Q)
ot s o]y SNS(Q +T4+ a4 — az)SNS(T + a4 + at)SNS(Q +T4+a;— as)SNS(T +a; + a‘v)
n Sp(@+7—a)Sp(r+as+ay—a3)Sg(r+ a1)Se(t+as + ap + a3 — Q) (A85)
Se(Q+t+ay—a)Sp(t+as +,)Sg(Q+ 7+ ay —a,)Sp(t +ar +ay)
|
where Sys g are defined by Eq. (A41). In terms of the I'vs(Q) X
explicit form of I'ns(x) ~ P Tns(x) ~ 2.(0)" (A89)
. [a3 az} In the second line of (A88) we use
ot ay ap TNs(Zx) 0-2x WNS(Q - x) 0-2x
=G =——— 17 .
Tw(2i-0) ~ Wys ()
in Eq. (A84), we can show that (A90)
a all a all We also need the values of the derivative T4(0):
R A L e
« A @ e T (0) = ——— (A91)
B Rs(0)

Alternatively, it can be shown that for @, = 0, the fusion
matrix becomes

a3 0‘1]1

az

Fo,a{ = Cns(a;,ay,03)

1
Wxs(Q)Wis(a,)
”WNS(Q —al)WNS(Q —053) ’

(A87)

where Wy is defined in (A45) and (A46). It is not difficult
to see that near a; ~0 (and a; = a3 = a), the DOZZ
function has a single pole,

Tis(0) Yns (2a,) Tns (20)
Tns (20— Q)TNS(OH)2 ’
 Tis(0) s (2a,) Wis (Q — a)
Ws (@) TR ()
N 2Wyns(Q —a)
Wys (@) 7, ’

Cns(a;, a, ) ~ A(@-20)/b

(A88)

where in the second line we use

We have made use of the definition of I'yg, I'r given in
Eq. (A41). Substituting (A88) back into (A87) and with the
help of the identity
1
Wys(x)Wys(Q —x) = —4sinzb(x— Q/2) sinﬂz(x— 0/2),
(A92)
we obtain the pole structure of the fusion matrix:
Fo[ee b2 sinZbQsinZb~'Q
“\a a . 7o sinzb(a—Q/2)sinzb~ (a—Q/2)
(A93)

So we can again relate the entanglement entropy due to the
local operator to its quantum dimension

Res, _oFoo ~ sinzb(a — Q/2)sinzb™ (a — Q/2). (A94)

Similar to the situation in LFT, the fusion matrix element

for F3/j, o216 )¢ presented in the second REE (56) in SLFT

cannot be identified as a quantum dimension.
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