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Quantum states with negative energy densities have been long known to exist in quantum field theories.
We explore the structure of such states for holographic theories using quantum information theory tools and
show how certain negative energy states are naturally captured by the thermodynamics of black holes with
hyperbolic horizon at zero temperature, suggesting that they provide a dual description of those states. Our
results give a satisfying field theory understanding of the distinct thermodynamics of such black holes.
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I. INTRODUCTION

Classical energy conditions are local inequalities involv-
ing the energy-momentum tensor Tμν which constrains the
allowed matter in a classical theory; e.g., the null energy
condition is given by Tμνuμuν ≥ 0 with uμ any null vector.
Inequalities such as this one were first proposed in General
Relativity in order to neglect unphysical solutions to
Einstein gravity equations. They allow us to exclude exotic
geometries such as wormholes [1], time machines [2], and
warp drives [3,4], while they are a key ingredient for
proving some strong results such as singularity theorems
[5–7] and topological censorship [8], among others.
When introducing quantum fields, it has been long

known that such classical constraints fail to be true
[9,10], since there are states in the Hilbert space with
negative energy densities. In fact, the energy density at any
given point in space-time can be made arbitrarily negative
by choosing a suitable quantum state [11,12]. One is then
led to consider weaker energy constraints such as the
averaged and quantum null energy conditions [13–15]. To
get a better grasp of the origin and relevance of such
quantum bounds, it is important to understand the structure
of these negative energy states. In this paper, we focus on
their holographic description (see Ref. [16] for previous
work). To do so, we use quantum information theory
techniques which have been previously shown to be very
useful in the study of negative energy [17–20].
In the following section, we start by defining the

modular vacua of any global state reduced to a space-time

region, as the states with a minimum expectation value on
the modular Hamiltonian of the reduced system. Using
relative entropy, we show their similarities to the global
vacuum of the theory. In Sec. III, we consider the ground
state of a conformal field theory (CFT) reduced to a ball and
show that the modular vacua maximize the amount of
negative energy inside the ball and provide a sharp
energy bound.
In Sec. IV, we present our main result, and we show that

for holographic CFTs the negative energy excitations and
degeneracy of the modular vacua are naturally captured by
the thermodynamics of black holes with a hyperbolic
horizon at zero temperature. The thermodynamics of such
black holes has long been known to have some odd features
of which the interpretation has been for the most part
unclear [21–23]. Our results give a natural understanding of
such behavior and suggest that these black holes provide a
holographic description of the modular vacua of this setup.

II. MODULAR VACUA

We start with a general discussion regarding reduced
states in which the modular vacua naturally appear. Consider
an arbitrary quantum field theory in d-dimensional space-
time and a fixed global state described by the density
operator ρ. For any smooth and spacelike region A, we
can define the reduced state as

ρA ≐ TrHĀ
ðρÞ ¼ e−KA

Z
; Z ≐ TrHA

ðe−KAÞ; ð1Þ

where KA is the modular Hamiltonian and Ā is the
complementary region with Hilbert space HĀ. The oper-
ator ρA usually has a more complex structure than the
global state ρ but describes the same physics when
calculating the expectation value of an observable in A.
More precisely, it verifies
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hOAi ¼ TrHA⊗HĀ
ðρOAÞ ¼ TrHA

ðρAOAÞ;

where OA is any operator in the causal domain of A. By
considering ρA instead of ρ, we become independent of the
degrees of freedom in Ā at the expense of considering a
more complicated density operator. In this context, a
natural question that arises is what is the pure state jψi
we can construct in the Hilbert space HA that is the most
“similar" to ρA. Relative entropy, defined as

Sðρ1jjρ2Þ ≐ Trðρ1 lnðρ1ÞÞ − Trðρ1 lnðρ2ÞÞ ð2Þ

for any density operators ρ1 and ρ2, seems to be particularly
well suited to answer such a question since it is a measure of
the statistical distance between ρ1 and ρ2 in the following
sense: given the state ρ1, the probability of confounding it
with state ρ2 after N trials of some measurement decays as
e−NSðρ1jjρ2Þ for large N [24]. It therefore allows for a precise
quantification on how similar a state jψi is to ρA.
We then consider (2) with ρ2 ¼ ρA and ρ1 ¼ jψihψ j.

Writing ρA in terms of its modular Hamiltonian KA and
using that the entanglement entropy of ρ1 vanishes since it
describes a pure state, we find

Sðρ1jjρAÞ ¼ hψ jKAjψi − hKAiρ þ SðρAÞ: ð3Þ

To calculate the first term, we use that KA is a Hermitian
operator, meaning that it will be diagonalized by a complete
and orthonormal set fjψwðuÞg with real eigenvalues kðuÞ,
where u and w are parameters which label the eigenspace
and its degeneracy, respectively. Expanding jψi in this set,

jψi¼
Z

dwdugðu;wÞjψwðuÞi;
Z

dwdujgðu;wÞj2¼ 1;

the relative entropy in (3) becomes

Sðρ1jjρAÞ¼
Z

dwdukðuÞjgðu;wÞj2− hKAiρþSðρAÞ: ð4Þ

We can further simplify this expression by writing kðuÞ in
terms of the Renyi entropies of ρA, defined as

SqðρAÞ ≐
1

1 − q
ln

�
TrHA

ðe−qKAÞ
Zq

�
; ð5Þ

with q ∈ N0. The following values of q are particularly
useful,

SðρAÞ ¼ hKAiρ þ lnðZÞ; S∞ðρAÞ ¼ k0 þ lnðZÞ;

where Sq¼1ðρAÞ ¼ SðρAÞ is the entanglement entropy and
k0 ≐ kðuminÞ is the minimum eigenvalue of KA, which can
be written as

k0 ¼ −ðSðρAÞ − S∞ðρAÞÞ þ hKAiρ: ð6Þ

Since (4) will be minimum when kðuÞ ¼ k0, we can use
expression (6) and find

Sðρmin
1 kρAÞ¼ S∞ðρAÞ; jψmini¼

Z
dwgðwÞjψmin

w i; ð7Þ

where jψmin
w i are the eingestates of KA with minimum

eigenvalue k0. We conclude that any linear combination
of jψmin

w iminimizes the statistical distance to ρA over the set
of pure states inHA. Just from the definition of the modular
Hamiltonian (1), this is a very natural result and is in
accordance with the behavior of a thermal state e−βH=Zβ,
where the ground state j0i (which has the minimum
eigenvalue of energyHj0i ¼ 0) is also the closest pure state.
This analogy is in fact quite precise as can be seen from

defining the following unitary operator: UðsÞ ¼ eisKA=Z.
Considering the action OA → OAðsÞ ¼ UðsÞOAUð−sÞ on
any operator OA, we can formally prove that ρA is thermal
with respect to translations in s, by showing that it satisfies
the Kubo-Martin-Schwinger (KMS) periodicity condition1

TrHA
ðρAOAðsþ iβÞÕAÞ ¼ TrHA

ðρAÕAOAðsÞÞ;

for any operators OA and ÕA and inverse temperature
β ¼ 1. It is then reasonable not only to refer to the states
jψmin

w i in (7) as the modular vacua of the reduced system but
also to call the expectation value hKAi the modular energy.
The modular vacuum energy is given by k0 (6) and

provides a sharp bound for the expectation value of KA on
any state

hKAi ≥ hψmin
w jKAjψmin

w i ¼ k0: ð8Þ

Calculating k0 explicitly for a particular system gives an
inequality that can supply interesting information about the
field theory under consideration. In the following, we will
consider this inequality for a particular system and show
that it gives a constraint on the negative energy excitations
on the causal domain of A.

III. NEGATIVE ENERGY BOUND

The previous discussion was done in full generality for
any state ρ and quantum field theory. To further investigate
the structure of the modular vacua, we consider the global
ground state ρ ¼ j0ih0j of a CFT in d-dimensional
Minkowski space-time and take the region A as a ball of
radiusR, so that themodularHamiltonian is given by [25,26]

1The KMS periodicity condition provides a formal definition
of a thermal state for operators in infinite-dimensional space.
To show it holds with β ¼ 1, notice that UðiÞ ¼ ρ−1A and
Uð−iÞ ¼ ρA.
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KA ¼
Z
CA

dΣνξμTμν; ð9Þ

where dΣν ¼ dΣnν, with nν a unit vector normal to any
(d − 1)-dimensional spacelike surface CA in the causal
domain of the ball of which the boundary is at t ¼ 0 and
jx⃗j ¼ R. The conformal Killing vector ξν generates a flow
that keeps the sphere fixed and is given by

ξ ¼ 2π

�ðR2 − jx⃗j2 − t2Þ∂t − 2txi∂i

2R

�
: ð10Þ

It can be interpreted as an inverse local temperature vector,
which can be defined and calculated for much more general
systems [27,28].
Considering different surfaces, CAwill change the explicit

expression of KA but leave its spectrum unchanged.2

For definiteness, we may take CA at t ¼ 0 so that the
modular Hamiltonian can be written as

KA ¼ 2π

Z
jx⃗j≤R

dd−1x

�
R2 − jx⃗j2

2R

�
T00ðx⃗Þ: ð11Þ

This operator gives the energy density in the ball as weighted
by the inverse local temperature, which is a positive function.
Due to local negative energy excitations, we expect this
operator to have some negative eigenvalues in its spectrum.
The modular vacua correspond to a very special set of states,
given by the ones which maximize the amount of negative
energy in the ball. From (6),we already see that theirmodular
energy k0 will be negative, since the Renyi entropy is a
decreasing function of q and hKAiρ ¼ h0jKAj0i ¼ 0.
Moreover, from (8), we have the following inequality,

Z
CA

dΣνξμhTμνi ≥ k0 ¼ −ðSðρAÞ − S∞ðρAÞÞ; ð12Þ

which holds for the expectationvalue of any state and surface
CA, and the bound is sharp for the modular vacua. The
modular vacuum energy k0 gives a bound on the negative
energy excitations in the causal domain of A. The fact that
(12) holds for an infinite set of surfaces CA is specially
interesting.
The right-hand side of this inequality will not only be

negative but also divergent, due to the infinite entanglement
contributions captured by the Renyi entropies on the
boundary of the ball. Just from the integral expression
on the left-hand side, such a behavior is not a surprise and
can be expected.
The key observation is the fact that, when considering

averages of energy densities, the weight function should be
defined in a complete Cauchy surface.3 Therefore, in order

to recover the integral expression in (12), such a function
must be equal to zero outside the ball and given by the
inverse local temperature inside. Since the conformal
Killing vector (10) vanishes at the boundary jx⃗j ¼ R, the
resulting weight function is continuous, but nondifferen-
tiable. This apparently minor and technical detail is the
reason the integral (12) is able to capture infinite negative
energy excitations on the boundary of the ball and become
divergent for certain quantum states. This was expli-
citly shown by Fewster and Hollands (Sec. 4.2.4 of
Ref. [12]) and Verch (Proposition 3.1 of Ref. [30]) for
two-dimensional CFTs, and we will provide additional
evidence in Appendix A.4

Apart from having an understanding of the divergence on
both sides of (12), we learn that both have their origin in the
sharp localization of boundary of the region. On the
boundary of the ball, the Renyi entropy captures infinite
entanglement contributions while the integral, infinite
negative energy excitations.
Despite this divergent behavior, the derived energy

bound is still an interesting quantity to study, especially
because it is sharp for the modular vacua. We will illustrate
this in the following section by showing how nontrivial
information can be extracted from it. There are other energy
inequalities, such as the quantum null energy condition
[13,15], which are useful and conceptually interesting
despite of the fact that for certain states they involve
divergent quantities [33].
In Appendix A, we use an independent approach to

rederive, generalize, and calculate explicitly the inequality
(12) for two-dimensional CFTs.
The modular vacua seem to be given by a complex set of

states which are very difficult to study using standard field
theory tools. In the following section, we will show that,
when considering holographic CFTs, these states are
captured in a very simple way by hyperbolic black holes
at zero temperature.

IV. HOLOGRAPHY OF THE MODULAR VACUA

We now explicitly compute the modular vacuum energy
k0 for this system. To do so, we use the construction
developed in Ref. [25], where it was shown that the reduced
ground state on the ball ρA can be conformally mapped to a
thermal state with temperature T̃ ¼ 1=ð2πRÞ on a back-
ground geometry R × Hd−1, where Hd−1 is a hyperbolic
plane with curvature scale R. Given that ρA and the thermal
state are related by a unitary conformal transformation, the
Renyi entropy (5) is invariant and can be calculated from
the free energy of the thermal state as [34]

2See Sec. 2.1 of Ref. [29].
3For example, in (11), it should be defined in the whole space.

4There is also evidence that, even for smooth weight functions
in d > 2, such integrals can be divergent because the average is
over a spacelike surface. See Refs. [31,32] for explicit examples
for scalar fields in d ¼ 4.
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SqðρAÞ ¼ −
�
FðT̃=qÞ − FðT̃Þ

T̃=q − T̃

�
; ð13Þ

where FðTÞ ≐ EðTÞ − TSðTÞ, with EðTÞ and SðTÞ the
energy and entropy of the thermal state. In particular,
the entanglement entropy and infinite Renyi entropy are
given by

SðρAÞ ¼ SðT̃Þ; S∞ðρAÞ ¼ SðT̃ÞþEð0Þ−EðT̃Þ
T̃

: ð14Þ

Using these expressions in (12), k0 can be written as

k0 ¼
Eð0Þ − EðT̃Þ

T̃
: ð15Þ

For an arbitrary CFT, this result is not particularly useful,
since the calculation of the energy of a thermal state in a
hyperbolic geometry is still a very difficult computation.
However, if we restrict to holographic CFTs, the AdS=CFT
dictionary [35–37] suggests that the thermal state will be
dual to a black hole in asymptotic anti-de Sitter (AdS) with
a hyperbolic horizon. This means that the energy of the
thermal state is mapped to the mass of the black hole
EðTÞ → MBHðTÞ, a quantity that can be obtained from a
standard computation.
For a generic temperature, the mass of the hyperbolic

black hole will depend on the gravity theory to which the
specific CFT is dual. However, in Ref. [25], it was shown
that for T ¼ T̃ the thermal state is described by a hyperbolic
slicing of AdS, which has a finite temperature T̃ associated
to an acceleration horizon analogous to Rindler’s in
Minkowski space-time. Since pure AdS is a solution to
any covariant theory of gravity with negative cosmological
constant, the above result is completely general. Moreover,
the “mass” of pure AdS vanishes MBHðT̃Þ ¼ 0, meaning
that the modular vacuum energy can be computed holo-
graphically as

k0 ¼ MBHð0Þ=T̃;

where MBHð0Þ is the zero temperature mass of the black
hole solution with a hyperbolic horizon in the dual gravity
theory.5 This expression might seem peculiar, given that in
the previous section we argued that k0 should not only be
negative but divergent, which seems a curious thing to
expect from the zero temperature mass of a black hole.
However, it has long been known that black holes in

asymptotic AdS with a hyperbolic horizon have an excep-
tional thermodynamics in which their zero temperature

mass has exactly these characteristics: it is negative and
divergent [21–23]. The most negative value of mass
allowed by the black hole thermodynamics is given by
MBHð0Þ, in exact correspondence with the maximum
amount of negative energy allowed by the theory inside
the ball according to (12). We have therefore found a very
satisfying holographic explanation for the unusual thermo-
dynamics of hyperbolic black holes in asymptotic AdS.
We can also investigate how the degeneracy of the

modular vacua Ω0 is encoded in the black hole thermody-
namics. Thiswas already considered in Sec. 5 ofRef. [34] by
comparing the large q expansion of the Renyi entropy
expressions (5) and (13), where a simple calculation shows

lnðΩ0Þ ¼ SBHð0Þ:

This means that if we consider a flat superposition of the
modular vacua

ρ0 ¼
Z

dw
Ω0

jψmin
w ihψmin

w j; ð16Þ

we have

hKAiρ0 ¼ TrHA
ðρ0KAÞ ¼ MBHð0Þ=T̃; ð17aÞ

Sðρ0Þ ¼ −TrHA
ðρ0 lnðρ0ÞÞ ¼ SBHð0Þ: ð17bÞ

We emphasize that these expressions hold for any
holographic CFT and therefore suggest the following:
the hyperbolic black holes at zero temperature provide a
holographic description of a flat superposition of the
modular vacua of the ground state of a CFT reduced to
a ball (16). This is in line with the field theory discussion of
Sec. II, where we pointed out the similarities between the
modular vacua and the ground state; both their holographic
duals, pure AdS and the hyperbolic black hole, are at zero
temperature.
For a specific gravity theory, the mass and entropy of the

black hole can be computed and written in terms of field
theory quantities through standardmethods. In Appendix B,
we briefly review the calculation for Einstein gravity. The
procedure is similar to the ones presented in Ref. [34], and
in fact, some results can already be extracted from their
equations through (12).
By considering the hyperbolic black hole solution in

Einstein gravity [21] and using (17), we find

hKðEÞ
A iρ0 ¼

�
1 − d
d

��
d − 2

d

�ðd−2Þ=2
SðρAÞ; ð18aÞ

SðρðEÞ0 Þ ¼
�
d − 2

d

�ðd−1Þ=2
SðρAÞ; ð18bÞ

where SðρAÞ is the entanglement entropy of ρA. As
expected, the modular vacuum energy is negative and

5For even dimensions, the black hole mass at T ¼ T̃ might not
be zero but have a constant Casimir contribution; see Ref. [38].
This will have no impact in our discussion since k0 is given by the
difference between masses.
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divergent since it is proportional to SðρAÞ. The degeneracy
is also divergent apart from the d ¼ 2 case where the
modular vacuum is unique, in agreement with Ref. [39].
Since not all holographic field theories will be dual to

Einstein gravity, we can also consider the Gauss-Bonnet
hyperbolic black hole [22,23] for d ≥ 4, which allows for
field theories with a more complicated structure. Although
the mass and entropy can be computed analytically for
generic d, the expressions are quite complicated, so we only
present the d ¼ 4 results, which are given by

hKðGBÞ
A iρ0 ¼ 4n2c=ð5nc − 1ÞhKðEÞ

A iρ0 ; ð19aÞ

SðρðGBÞ0 Þ¼ ð−3n2cþ6nc−1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ð3nc−1Þp

ð5nc−1Þ3=2 SðρðEÞ0 Þ; ð19bÞ

where nc ≐ c=a with a and c the central charges in d ¼ 4,
defined in the usual way from the trace of hTμνi. The
allowed range of nc is given by nc ∈ ½2=3; 1þ ffiffiffiffiffiffiffiffi

2=3
p � (see

Appendix B for details).
We can consider the behavior of these quantities for a

fixed value of a and variable c. Since the entanglement
entropy is independent of c [25], from (19), we can directly
analyze how the modular vacuum energy and degeneracy
behave as a function of c. As c increases, so does the
modular vacuum energy, while its degeneracy decreases
and becomes equal to 1 for nc ¼ 1þ ffiffiffiffiffiffiffiffi

2=3
p

. This behavior
together with the energy inequality (12) means that, while
CFTs with larger c allow for more negative energy inside
the ball, the number of states with this critical behavior
decreases. This is a nontrivial statement that we were able
to extract from the bound (12) despite its divergent nature.

V. DISCUSSION

In this work, we have explored the holographic descrip-
tion of the modular vacua of the ground state of a CFT
reduced to a ball, which contain maximum amount of
negative energy inside this region. Despite the fact that such
states seem to have a very complicated structure which
makes them difficult to study using field theory techniques,
we have shown through (17) that their holographic
counterpart seems quite simple and given by hyperbolic
black holes at zero temperature. The negative mass of such
black holes played a crucial role in capturing the negative
energy excitations.
Though our analysis was made entirely for zero temper-

ature black holes, we can speculate on the holographic
meaning of finite temperatures. Pure AdS (which has zero
temperature) is dual to the ground state of the CFT, while
thermal excitations are described by a black hole at finite
temperature. Given the similarities between the ground
state and the modular vacua discussed in Sec. II, we might
consider an analogous situation; the modular vacua are
dual to the zero temperature hyperbolic black hole, while

excitations of those modular vacua are described by the
finite temperature black hole. Since its mass will be
negative for temperatures between zero and T̃ [where the
mass vanishes MBHðT̃Þ≡ 0], such a range could corre-
spond to other states in the CFTwith negative energy inside
the ball. For small perturbations of the T̃ case toward
smaller temperatures, a simple argument suggests that this
is indeed so (see Sec. 4.2 of Ref. [40]).
A crucial step for making the connection at zero temper-

ature was the large q expansion of the Renyi entropy. A
further analysis of the subleading contributions of the
expansions obtained from its usual definition (5) and the
thermodynamic expression (13) might shed some light onto
the meaning of hyperbolic black holes at small but finite
temperature.
From the field theory perspective, it is also interesting

to continue the study of the modular vacua for systems in
which the modular Hamiltonian has nonlocal contribu-
tions. Though it is unclear whether such states will still
have negative energy density inside the region, inequality
(8) might contain interesting physical information. A good
starting point for this analysis is to consider a two-
dimensional chiral fermion or scalar field reduced to
two disjoint intervals, where the exact modular
Hamiltonian contains nonlocal terms and can be com-
puted from the results in Refs. [29,41].
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APPENDIX A: Two-dimensional CFT

In this Appendix, we present an independent field
theory derivation and generalization of the energy inequa-
lity (12) for two-dimensional CFTs. To do so, we use the
following result,

Z þ∞

−∞
dxhðxÞhT00ðxÞi ≥ −

c
6π

Z þ∞

−∞
dx

�
d
dx

ffiffiffiffiffiffiffiffiffi
hðxÞ

p �
2

;

ðA1Þ

rigorously derived by Fewster and Hollands for a general
CFT [12]. The central charge is given by c, while hðxÞ is a
non-negative and even6 weight function that belongs to the
Schwartz space. For a fixed function hðxÞ, the bound on the
right-hand side must hold for the expectation value on any
state. In Ref. [12], it was shown that the bound is sharp,

6The inequality can also be written for noneven weight
functions; see Ref. [12].
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meaning that for a given function hðxÞ there is always a
state which saturates the inequality. An extension involving
mixed states was derived in Ref. [18] from the monoto-
nicity property of relative entropy.
We now take the function hðxÞ equal to the local

temperature in Eq. (11) inside A and zero outside, so that
the left-hand side of (A1) becomes the expectation value of
the modular Hamiltonian

hKAi ≥ −
c
6π

Z
R

−R
dx

�
d
dx

ffiffiffiffiffiffiffiffiffi
fðxÞ

p �
2

; ðA2Þ

where fðxÞ ¼ πðR2 − x2Þ=R. Since this bound is sharp,
calculating the right-hand side will give an expression
for the modular vacuum energy k0. Changing variables to
u ¼ x=R and using that the integrand is even, we find

hKAi ≥ −
c
3

Z
1

0

du

�
u2

1 − u2

�
: ðA3Þ

The resulting integral is infinite due to the contribution
when u → 1, precisely where the chosen function hðxÞ is
nondifferentiable. This is exactly what we expected from
our discussion in Sec. III; the lower bound on the modular
Hamiltonian is divergent due to infinite negative energy
contributions at the boundary. In order to extract a sensible
result, we introduce a regulator ϵ according to umax ¼
1 − ϵ=R, so that the integral can be easily solved,

hKAi ≥ −
1

2

�
c
3
ln

�
2R
ϵ

�
−
2

3
c

�
;

where we have only kept the divergent and finite terms in
the ϵ=R → 0 limit. Between square brackets, we recognize
the entanglement entropy of the ground state reduced to a
segment of length l ¼ 2R [42,43]. The constant term is
a nonuniversal contribution which can be absorbed into a
redefinition of the regulator according to ϵ → e2ϵ. We then
have the following result:

hKAi ≥ k0 ¼ −
1

2
SðρAÞ: ðA4Þ

This inequality agrees with the one obtained by calculating
the right-hand side of (12) using that S∞ðρAÞ ¼ SðρAÞ=2
from Refs. [43,44]. It also matches with the holographic
calculation in (18a).
This procedure for calculating the modular vacuum

energy will be useful whenever the modular Hamiltonian
is proportional to the energy-momentum tensor. For a
global thermal state reduced to an interval of length
l ¼ 2R, this is also the case, but with inverse local
temperature equal to [44–46]

fβðxÞ ¼
2β sinhðπðR − xÞ=βÞ sinhðπðRþ xÞ=βÞ

sinh ð2πR=βÞ : ðA5Þ

Considering (A1) with hðxÞ ¼ fβðxÞ inside the interval
and zero outside, we get the modular Hamiltonian on the
left-hand side and an integral on the right, which after
the change of variables z ¼ cothðπR=βÞ= cothðπx=βÞ is
reduced to

hKβ
Ai ≥ −

c
6

�Z
1

0

2dz
1 − z2

−
�
2πR
β

coth

�
2πR
β

�
þ 1

��
:

Once again, we obtain a divergent integral due to the
nondifferentiability of the function at the boundary. To
regulate such divergence, we introduce a regulator which
takes into account the change of coordinates, zmax ¼
cothðπR=βÞ= cothðπðR − ϵÞ=βÞ, so that the integral can
be easily solved and gives

hKβ
Ai ≥ −

1

2

�
c
3
ln

�
β

πϵ
sinh

�
2πR
β

��
−
2

3
c

�

þ c
6

�
2πR
β

coth

�
2πR
β

�
− 1

�
:

The first term between square brackets we recognize as
the entanglement entropy of the thermal state reduced to a
segment of length l ¼ 2R [43], where we identify the same
nonuniversal constant factor we had for the ground state.
The second term can be correctly identified as hKβ

Aiβ
after solving a simple integral and using that the energy
density of a thermal state is given by hT00ðxÞiβ ¼ cπ=6β2

[47].7 We then find the following inequality:

hKβ
Ai ≥ k0ðβÞ ¼ −

1

2
SðρβAÞ þ hKβ

Aiβ: ðA6Þ

Comparing with the general expression of k0 given in (9)
and using that S∞ðρβAÞ ¼ SðρβAÞ=2 from Refs. [43,44], we
find perfect agreement with our previous discussion.
The divergent contribution to the modular vacuum

energy k0ðβÞ in both the zero (A4) and finite temperature
(A6) cases is independent of β and therefore exactly the
same. Having argued that such divergence has its origin in
the nondifferentiability of the weight function at the
boundary, we expect fβðxÞ to be independent of β near
x ¼ �R. Taylor expanding (A5), we find that this is
indeed so:

fβðxÞ ¼ �2πðx� RÞ þOðx� RÞ2:

7This is computed by compactifying the time direction into a
circle of radius β=2π (which maps the vacuum into a thermal
state) and using that the energy-momentum tensor transforms
according to the Schwartzian derivative.
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APPENDIX B: Black hole thermodynamics

In this Appendix, we briefly review the calculation of the
zero temperature mass and entropy of the hyperbolic black
hole for Einstein gravity in (dþ 1) space-time dimensions.
The black hole solution is given by [21]

ds2 ¼ −VðrÞðdtL=RÞ2 þ dr2=VðrÞ þ r2dH2
d−1;

where dH2
d−1 is the unit metric on the (d − 1) hyperbolic

plane and L is the AdS radius. The time coordinate has
been rescaled so that in the limit r → þ∞ the boundary
metric R × Hd−1 is recovered with curvature scale R.
The function VðrÞ ¼ ðr=LÞ2 − 1 − μ=rd−2 determines

the horizon radius rþ from VðrþÞ ¼ 0, while the black
hole mass is related to the factor μ according to

MBH ¼ðd−1Þwd−1

2ld−1
p

Lμ
R

¼ðd−1Þwd−1Lrd−2þ
2ld−1

p R

��
rþ
L

�
2

−1

�
;

where wd−1 is the infinite volume of the unit hyperbolic
plane, lp is Planck’s length, and in the second equality we
have written μ ¼ μðrþÞ from VðrþÞ ¼ 0. The temperature
of the black hole can be computed from the surface gravity
κ as

T¼ κ

2π
¼V 0ðrþÞL

4πR
¼ðd−2Þ

4πR
L
rþ

�
d

d−2

�
rþ
L

�
2

−1

�
; ðB1Þ

where it is equal to T̃ ¼ 1=ð2πRÞ for rþ ¼ L. From the first
law of black hole thermodynamics dS ¼ dM=T, we can
compute its entropy as S ¼ 2πwd−1ðrþ=lpÞd−1.
From (B1), we can solve for the zero temperature

horizon radius and find ðr0þ=LÞ2 ¼ ðd − 2Þ=d, so that
the zero temperature mass and entropy are given by

MBHð0Þ ¼
�
1 − d
d

��
d − 2

d

�ðd−2Þ=2
T̃SBHðT̃Þ;

SBHð0Þ ¼
�
d − 2

d

�ðd−1Þ=2
SBHðT̃Þ;

where we have written everything in terms SBHðT̃Þ. From
(14), we see that the black hole entropy at T̃ is mapped to
the entanglement entropy SðρAÞ (after proper regularization
of wd−1 [25]), so that we recover (18).
For the hyperbolic black hole in Gauss-Bonnet gravity

[22,23,48], the calculation is completely analogous but
more involved. Following a similar procedure as in the
Einstein case (and using the convenient conventions of
Ref. [34]), both the zero temperature mass and entropy can
be computed analytically for arbitrary d.
For d ¼ 4, the allowed range of nc is usually taken as

nc ∈ ½2=3; 2� [34]. However, this does not take into account
the fact that any physical black hole solution must have
non-negative entropy. With this under consideration, we
find nc ∈ ½2=3; 1þ ffiffiffiffiffiffiffiffi

2=3
p � where for nmax

c (19b) vanishes.
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